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ABSTRACT Graph transformation units are rule-based devices to specify processes on graphs and the dynamics of information-
processing systems with graphs as states. In this article, we propose graph transformation units as a framework to model graph
algorithms, to prove their correctness and to analyze their complexity. A specific emphasis is laid on the improvement of the
efficiency of graph algorithms by massive parallelism.
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1. Introduction
Graph problems and their algorithmic solutions are of great
theoretical and practical interest. Typical examples are the
computations of shortest paths, minimum spanning trees and
maximum network flows. A look into the books and papers
on graph algorithms reveals that there is no common and uni-
form way to describe and analyze graph algorithms. On the
contrary, the authors use a wide spectrum of informal or semi-
formal methods, but rarely formal ones. Most frequently, one
encounters a kind of pseudo-code where an intuitive standard
interpretation is assumed and a formal mathematical semantics
is not explicitly given. Consequently, correctness proofs and
the deduction of complexity bounds are somewhat doubtful al-
though they often meet a common agreement. An exception is
the LEDA approach which provides a platform for combinato-
rial and geometric computing including graph algorithms (see
(Mehlhorn & Näher 1999)). However, algorithms are modeled
on the level of imperative programming that is far away from a
more intuitive visual modeling paradigm.

In this article, we propose and advocate graph transformation
units as rule-based devices to model and analyze graph algo-
rithms. The framework of graph transformation units offers a
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formal semantics, a proof schema, a structuring principle and
analysis methods (cf., e.g., (Andries et al. 1999; H.-J. Kreowski
& Kuske 1999; H.-J. Kreowski et al. 2008)). Since graph trans-
formation units are based on graph transformation rules, the
stepwise execution of the algorithms may illustrate basic ideas
of these algorithms which in turn may be helpful for their under-
standing, their verification and their teaching. For this purpuse
existing graph transformation tools for testing, simulating, vi-
sualizing, and verifying the algorithms could be employed (see
for example (Taentzer 2003; Ermler et al. 2012; Jakumeit et al.
2010; Plump 2012; Ghamarian et al. 2012)).

A graph transformation unit is a formal syntactic construct
consisting – in its simple form – of a finite set of graph trans-
formation rules, two graph class expressions and a control con-
dition. In the structured form, a unit can also use other units.
Semantically, the graph class expressions specify initial and
terminal graphs; the rules can be applied to graphs yielding
graphs so that rule application can be repeated; and the control
condition determines the order in which the rules are applied. A
graph transformation unit computes a binary relation between
initial and terminal graphs. An initial graph is semantically
related to a terminal graph if the latter one can be derived from
the former by iterated rule application according to the control
condition. In other words, a graph transformation unit models
a graph algorithm. The derivation lengths and the graph sizes
(and related quantities) provide a base for induction proofs. This
allows to prove properties of the modeled graph algorithms and
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in particular their correctness. Since a rule application can be
performed in polynomial time where the order of the polyno-
mial corresponds to the size of the left-hand side of the applied
rule, the derivation lengths also yield complexity bounds. For
the sake of simplicity and general intelligibility, correctness and
complexity results are stated and explained, but not formally
proven. Furthermore, the framework also offers methods that
analyze which rules can be applied in parallel, thus enabling
parallelization of graph algorithms.

The main contribution of this paper is a case study to demon-
strate the usefulness of the framework of graph transformation
units for the modeling of graph algorithms. As illustrating ex-
amples, we have chosen the well-known characterization of
Eulerian graphs as connected graphs with only even-degree
nodes and the computation of shortest paths. As a consequence,
the graph transformation units modeling them can be compared
with the elaborations of both topics in nearly all text books on
graph algorithms showing that our modeling is quite adequate
with respect to conciseness, preciseness, proving, and complex-
ity analysis. With respect to parallelization of the (sequential)
algorithms, we open up a new line of investigation.

The area of graph transformation has been developed for
the last 50 years with an emphasis on graph language gen-
eration and modeling of graph-based information-processing
systems in a wide range of potential applications. Hence, it is
somewhat surprising that little systematic work has been done
on graph algorithms although they are obvious cases of graph
transformation. To our knowledge, there are two approaches to-
wards graph-transformational computation of graph algorithms.
The first one is the notion of graph relabeling systems (see,
e.g., (Litovski et al. 1999a)) that is particularly designed for
distributed algorithms on graphs and networks where the un-
derlying structure is preserved and only labels are changed in
computation steps. The second one is the concept of graph
programs (see, e.g., (Plump 2009, 2012)) which are a kind of
graph transformation units with restricted ways of specifying
initial and terminals graphs and control conditions.

The paper is organized as follows. After the preliminaries in
Section 2, graph transformation units in their simple form are
introduced in Section 3 and in Section 4 in the structured form
which allows the reuse of units within units. Both concepts are
illustrated by classical graph algorithms such as the computa-
tion of shortest paths and Euler tours. Parallel rules and their
applications are considered in Section 5 and we show that the
shortest path algorithm of Section 3 can be parallelized such
that all results are computed in a logarithmic number of steps.
The paper ends with a related work section and a conclusion.

That the development of graph transformation units into a vi-
sual modeling language could be worthwhile is largely inspired
by our cooperation on an integrated graph-based semantics for
UML with Martin Gogolla and Paul Ziemann (Kuske et al.
2009).

2. Preliminaries
In this section, we recall the basic notions and notations of
graphs and rule-based graph transformation as far as needed

in this paper to define graph transformation units in Sections
3 and 4. All preliminaries are standard in the area of graph
transformation. We organize them by the subsections “graph-
tranformational rule bases”, “graph class expressions” and “con-
trol conditions” as these three components form graph transfor-
mation approaches underlying graph transformation units (cf.,
e.g., (H.-J. Kreowski et al. 2008)).

2.1. Graph-transformational rule bases
There are many classes of graphs such as undirected or directed,
labeled or unlabeled, hypergraphs, trees, forests, Petri nets,
finite automata, etc. There are also various ways to transform
graphs in a rule-based manner (cf. (Rozenberg 1997)). A graph-
transformational rule base provides a class of graphs, a class of
graph transformation rules and a prescription of how the rules
are applied to graphs. Hence, the general concept of graph-
transformational rule bases allows for choosing the class of
graphs and the rule application approach that are most adequate
for modeling the algorithm at hand. We focus our considerations
on directed edge-labeled graphs and the type of rule application
that is most frequently used in the literature. It is called DPO-
approach where DPO is the acronym for double pushout (see,
e.g., (Ehrig et al. 2006, 2015)), but we define the rule application
explicitly without recourse to categorical notations.

Definition 1 (Rule base). A (graph-transformational) rule base
B = (G,R,=⇒) consists of a class of graphs G, a class of rules
R, and a rule application operator =⇒ with =⇒

r
⊆ G × G for

every r ∈ R.

The rule application operator is used in infix notation, i.e.,
(G, H) ∈ =⇒

r
is denoted by G =⇒

r
H. In the following, we

present a sample rule base that is used throughout this paper.

Definition 2 (Directed edge-labeled graph). Let Σ be a set of
labels with ∗ ∈ Σ. A (directed edge-labeled) graph over Σ is a
system G = (V, E, s, t, l) where V is a finite set of nodes, E is a
finite set of edges, s, t : E→ V are mappings assigning a source
s(e) and a target t(e) to every edge e ∈ E, and l : E → Σ is a
mapping assigning a label to every edge e ∈ E.

An edge e with s(e) = t(e) is called a loop and if l(e) = z it
is also called a z-loop. For a node v ∈ V, the number of edges
with v as source is denoted by outdegree(v) and the number
of edges with v as target by indegree(v). An edge with label
∗ is also called an unlabeled edge. In drawings of graphs, the
label ∗ is omitted. A symbol next to a node or within a node
represents its name. The components V, E, s, t, and l of G
are also denoted by VG, EG, sG, tG, and lG, respectively. The
class of all directed edge-labeled graphs is denoted by GΣ. Two
graphs in G{∗} are given in Fig. 1.

Each directed graph G = (V, E, s, t, l) has an underly-
ing undirected graph U(G) = (V, E, att, l) with att(e) =
{s(e), t(e)} for each e ∈ E. A path in U(G) between v and v′

of length n is a sequence v0e1v1 · · · envn with n ≥ 0, v0 = v,
vn = v′, and att(ei) = {vi−1, vi} for i = 1, . . . , n. The graph
U(G) is connected if for each v, v′ ∈ V, there is a path in
U(G) between v and v′. The graph G is connected, if U(G)
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is connected. A path in G is a sequence p = v0e1v1 · · · envn
with n ≥ 0, v0 = v, vn = v′, s(ei) = vi−1 and t(ei) = vi for
i = 1, . . . , n. If v0 = vn and n > 0, the path p is a cycle.

Definition 3 (Graph morphism). For graphs G, H ∈ GΣ, a
graph morphism g : G → H is a pair of mappings gV : VG →
VH and gE : EG → EH that are structure-preserving, i.e.,
gV(sG(e)) = sH(gE(e)), gV(tG(e)) = tH(gE(e)), and
lG(e) = lH(gE(e)) for all e ∈ EG.

Fig. 1 shows an example of a graph morphism where the
nodes 1 and 2 are mapped to the nodes 1′ and 2′, respectively.

1 2
−→

1’ 2’ 3’

Figure 1 A graph morphism from the left graph to the right
one

If the mappings gV and gE are bijective, then G and H are
isomorphic, denoted by G ∼= H. If they are inclusions, then
G is called a subgraph of H, denoted by G ⊆ H. For a graph
morphism g : G → H, the image of G in H is called a match
of G in H, i.e., the match of G with respect to the morphism
g is the subgraph g(G) ⊆ H. If the mappings gV and gE are
injective, the match g(G) is also called injective. In this case,
G and g(G) are isomorphic.

Definition 4 (Rule). A rule r = (L ⊇ K ⊆ R) consists of
three graphs L, K, R ∈ GΣ such that K is a subgraph of L and
R.

A rule with negative context r = (N ⊇ L ⊇ K ⊆ R)
consists of a rule (L ⊇ K ⊆ R) and a graph N ∈ GΣ with
L ⊆ N (see, e.g., (Habel et al. 1996)). The components N,
L, K, and R are called negative context, left-hand side, gluing
graph, and right-hand side.

A rule is depicted as L→ R where the nodes belonging to
the gluing graph are equally numbered in L and R. The edges of
the gluing graph are all edges of EL ∩ ER connecting the nodes
of the gluing graph. A rule with negative context is depicted
as N → R where the items that belong to N but not to L are
dashed. Fig. 2 shows a rule with negative context.

bridge:
1 2 3

−→
1 2 3

Figure 2 A rule with negative context

The application of a graph transformation rule to a graph G
consists of replacing a match of the left-hand side in G by the
right-hand side in such a way that the match of the gluing graph
is kept. A rule with negative context can only be applied if the
match of L in G has no context that corresponds to the dashed
context of the left-hand-side, i.e., to the complement N − L.

Definition 5 (Rule application). The application of r = (L ⊇
K ⊆ R) to a graph G = (V, E, s, t, l) consists of the following
three steps.

1. Choose a match g(L) of L in G subject to the following
conditions.

– dangling condition: v ∈ gV(VL) with sG(e) = v
or tG(e) = v for some e ∈ EG − gE(EL) implies
v ∈ gV(VK).

– identification condition: gV(v) = gV(v′) for v, v′ ∈
VL implies v = v′ or v, v′ ∈ VK as well as gE(e) =
gE(e′) for e, e′ ∈ EL implies e = e′ or e, e′ ∈ EK.

2. Now the nodes of gV(VL) − gV(VK) and the edges of
gE(EL)− gE(EK) are removed yielding the intermediate
graph Z ⊆ G.

3. Add the right-hand side R to Z by gluing Z with R in g(K)
yielding the graph H with VH = VZ ] (VR − VK) and
EH = EZ ] (ER−EK) where] denotes the disjoint union
of sets. The edges of Z keep their labels, sources, and
targets so that Z ⊆ H. The edges of R keep their labels;
they also keep their sources and targets provided that those
belong to VR −VK. Otherwise, they are redirected to the
image of their original source or target, i.e., sH(e) =
g(sR(e)) for e ∈ ER− EK with sR(e) ∈ VK, and tH(e) =
g(tR(e)) for e ∈ ER − EK with tR(e) ∈ VK.

The dangling condition ensures that the removal of g(L)−
g(K) does not produce dangling edges (edges without source
and/or target) so that Z is a graph. The identification condition
requires that those items that are identified via the matching
morphism belong to the gluing graph. The identification condi-
tion is significant for the application of parallel rules introduced
in Section 5.

A rule with negative context r = (N ⊇ L ⊇ K ⊆ R)
is applied to G in the same way provided that the morphism
g : L → G cannot be extended to N, i.e., there is no graph
morphism h : N → G with h|L = g (where h|L denotes the
restriction of h to L).

The application of r to G w.r.t. the graph morphism g is
denoted by G =⇒

r
H. It is called a direct derivation from G to

H. A derivation from G to H is a sequence of direct derivations
G0 =⇒r1

G1 =⇒r2
· · ·=⇒

rn
Gn with G0 = G, Gn = H and n ≥ 0.

The sequence r1 · · · rn is called the application sequence of the
derivation. If r1, . . . , rn ∈ P, the derivation is also denoted by
G n
=⇒

P
H. If n does not matter, we write G ∗

=⇒
P

H and if the

underlying rule set is known from the context, the subscript P
may be omitted.

For example, the rule bridge can be applied to the subgraph
of the left graph in Fig. 3 depicted with thick lines with the
effect that an additional edge is inserted from the first (leftmost)
to the third node, also shown as a thick edge.

=⇒
bridge

Figure 3 A rule application

It is worth noting that the application of a given (fixed) rule
to a graph G with |V| nodes and |E| edges can be performed
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in polynomial time provided that the equality of labels can
be checked in polynomial time. This is due to the fact that
any left-hand side (or negative context) of size k has at most
(|V|+ |E|)k matches in G. Moreover, the further steps of the
rule application can be done in linear time.

2.2. Graph class expressions
Sometimes it is desirable to restrict the class GΣ of graphs to
some subclass. For example, one may want to start derivations
only from specific initial graphs or filter out a subclass of all
derived graphs as output. To this aim graph class expressions
restrict the class GΣ to subclasses, i.e., each graph class expres-
sion e specifies a set SEM(e) ⊆ GΣ. The class of all graph
class expressions is denoted by E .

Typical examples of graph class expressions that are used in
this paper, are all, ∆-labeled for ∆ ⊆ Σ, P-reduced for P ⊆ R,
forbidden(M) for M ⊆ GΣ, simple, strictly-simple and loop-
free, where SEM(all) = GΣ, SEM(∆-labeled) = G∆, SEM(P-
reduced) consists of all graphs to which no rule in P can be
applied, SEM(forbidden(M)) contains all graphs that have no
subgraph isomorphic to some G ∈ M, SEM(simple) consists
of all graphs the parallel edges of which have different labels,
SEM(strictly-simple) consists of all graphs without parallel
edges, and SEM(loop-free) consists of all graphs without loops.

Graph class expressions e and e′ may by combined to e & e′

with SEM(e & e′) = SEM(e) ∩ SEM(e′). Moreover, we em-
ploy the graph class operator a-looped for a ∈ Σ that can be
applied to a graph class expression e such that a-looped(e) pro-
vides each node of each graph in SEM(e) with an extra a-loop.

Given one of the graph class expressions above, it is easy
to check whether a graph meets the expression. In the cases of
∆-labeled, P-reduced, forbidden(M), simple, strictly-simple,
and loop-free, one can use the matching algorithm that is part
of the rule application procedure because all those expressions
require the presence or absence of certain subgraphs. Therefore,
all of them can be checked in polynomial time as pointed out
at the end of the previous subsection. Moreover, the operator
a-looped is obviously linear in the number of nodes. Further
possibilities to describe graph class expressions are pointed out
in the second paragraph of Section 6.

2.3. Control conditions
Rule application is highly nondeterministic. On one hand a rule
may be applied to a graph at several matches. On the other
hand, there may be various rules applicable to the current graph.
Control conditions can reduce this nondeterminism. In more
detail, each control condition is defined over a finite set ID of
names with SEM(id) ⊆ GΣ × GΣ for each id ∈ ID. In simple
graph transformation units, these names refer to rules and for
each rule r the relation SEM(r) is defined as =⇒

r
.1 The class of

all control conditions is denoted by C. Every control condition
C ∈ C specifies a binary relation SEM(C) ⊆ GΣ × GΣ.

A useful class of control conditions are regular expressions.
For a given set of rules P, the set REG(P) of regular expres-
sions over P is recursively defined as follows. λ, ∅ ∈ REG(P),

1 For technical simplicity, we do not distinguish between rules and their names.

P ⊆ REG(P), and for reg1, reg2 ∈ REG(P), (reg1; reg2),
(reg1|reg2), and (reg∗1) ∈ REG(P) where ∗ has a stronger bind-
ing than ; which in turn has a stronger binding than |. As usual,
the language L(reg) of a regular expression reg ∈ REG(P)
is defined by L(λ) = {λ}, L(∅) = ∅, L(reg) = {reg} if
reg ∈ P, and L(reg1; reg2) = L(reg1)L(reg2), L(reg1|reg2) =
L(reg2) ∪ L(reg2) and L(reg∗) = L(reg)∗. A pair (G, G′) is
specified by a regular expression reg if there is a derivation
G0 =⇒r1

G1 =⇒r2
· · ·=⇒

rn
Gn such that G0 = G, Gn = G′ and

r1 · · · rn ∈ L(reg). For example, the control condition r1; r∗2
only allows derivations in which rule r1 is applied first and then
rule r2 is applied arbitrarily often.

The unary operator ! can be applied to regular expressions for
expressing that they must be applied as long as possible. Hence,
(G, G′) ∈ SEM(reg!) if and only if (G, G′) ∈ SEM(reg∗) and
there is no graph G′′ such that (G′, G′′) ∈ SEM(reg).

One further useful control condition is a priority relation
over rules, i.e., a binary relation < on a set P of rules which is
transitive, but neither reflexive nor symmetric. It demands that
a rule r ∈ P can only be applied if there is no applicable rule
r′ ∈ P with a higher priority, i.e., with r′ > r.

3. Simple Graph Transformation Units
In this section, we recall the notion of graph transformation
units in their simple form which can be seen as basic means
to model graph algorithms. A structuring principle is added in
the next section. Graph transformation units were introduced
in (H.-J. Kreowski & Kuske 1996) and further developed in
(H.-J. Kreowski et al. 1997; H.-J.. Kreowski & Kuske 1999;
Andries et al. 1999; Janssens et al. 2005) (see (H.-J. Kreowski
et al. 2008) for a comprehensive overview).

The illustrating units in this and the next two sections model
the well-known characterization of Eulerian graphs by con-
nected graphs with nodes of even degree as well as some vari-
ants of shortest-paths algorithms. Some of the shortest-paths
units are used as illustrating examples in (H.-J. Kreowski et al.
2018). The Eulerian-graphs example is new.

A simple graph transformation unit provides rules, a control
condition, and two graph class expressions.

Definition 6 (Simple graph transformation unit). A (simple)
graph transformation unit is a system gtu = (I, P, C, T) where
I ∈ E is the initial graph class expression, P ⊆ R is a finite set
of rules, C ∈ C is a control condition over P and T ∈ E is the
terminal graph class expression. The semantics of gtu is the
binary relation

SEM(gtu) = (SEM(I)× SEM(T)) ∩ ∗
=⇒

P
∩SEM(C).

The components I, P, C, and T are also denoted by Igtu, Pgtu,
Cgtu, Tgtu, respectively. In examples, a graph transformation
unit is presented schematically where the components I, P, C,
and T are listed after respective keywords “initial”, “rules”,
“cond”, and “terminal”. We omit the control condition if it does
not impose any restriction on the order of rule applications. We
also omit the graph class expression all.
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It is worth noting that each graph transformation unit gtu
may serve as a graph class expression with SEM(gtu) =
pr1(SEM(gtu)) where pr1 denotes the projection to the first
component.

The following three examples illustrate the use and useful-
ness of this concept for the modeling of graph algorithms.

3.1. Connected graphs
Consider the simple graph transformation unit in Figure 4. Its
initial graph class expression specifies the class of all unlabeled
graphs. Its rule set consists of the three rules opp, bridge, and
test. According to the control condition, the rules opp and bridge
can be applied arbitrarily often in arbitrary order whereas the
rule test is not allowed. Instead, it occurs in the terminal graph
class expression permitting only graphs to which the rule test is
not applicable via an injective matching morphism.

connected

initial: {∗}-labeled

rules:
opp:

1 2
−→

1 2

bridge:
1 2 3

−→
1 2 3

test:
1 2

−→
injective 1 2

cond: (opp | bridge)∗

terminal: {test}-reduced

Figure 4 The graph transformation unit connected

The rule opp inserts an edge ē in the opposite direction of
an existing edge e provided that ē is not present, yet. The rule
bridge, already known from Section 2, inserts an edge from the
start node to the end node of each path of length 2 provided
that such an edge does not yet exist. In particular, none of
the two rules can be applied to the same match twice. Both
rules applied as long as possible produce the symmetric and
transitive closure of each initial graph. In particular, they cannot
connect disconnected graph components. The rule test can only
be applied if there are two nodes that are not connected by an
edge. It is applicable as long as opp or bridge is applicable. It is
still applicable to {opp, bridge}-reduced graphs if they are not
connected. In other words, an initial graph is connected if and
only if the application of opp and bridge as long as possible in
arbitrary order derives a graph to which test is not applicable.

Altogether, we get the following results concerning correct-
ness and complexity of connected.

Proposition 1 (Correctness and complexity). Let P =
{opp, bridge}. Then the following holds:

1. Let G ∈ GΣ. Then (G, H) ∈ SEM(connected) for some
H ∈ GΣ if and only if G is unlabeled and connected and
H ist the symmetric and transitive closure of G.

2. Let G0 =⇒
P

G1 =⇒
P
· · ·=⇒

P
Gk be a derivation such that

Gk is P-reduced. Let n be the number of nodes of G0.
Then k ≤ n2.

3. The membership problems for SEM(Iconnected) and
SEM(Tconnected) are decidable in polynomial time.

Hence, the unit connected can be effectively used as a graph
class expression specifying in polynomial time the class of
connected unlabeled graphs.

3.2. indegree = outdegree
It is well known that in each connected directed graph G an
Euler tour can be constructed if and only if for each node v
in G the condition indegree(v) = outdegree(v) is satisfied.
This condition can be checked for unlabeled graphs with the
graph transformation unit indeg=outdeg in Figure 5. Each
derivation of indeg=outdeg starts with an unlabeled graph. The
control condition allows all derivations over {split, rem} and
is therefore omitted. Each application of the rule split removes
an unlabeled edge and adds an out-loop to the source of the
edge and an in-loop to the target. The rule rem removes an
in-loop as well as an out-loop from a node v. As the set of
nodes is not changed during derivations, a derived graph that
is terminal is discrete consisting of the nodes of the initial
graph and, therefore, it is uniquely determined independent of
the order of rule applications. Moreover, one may consider,
for each node, the difference between the number of outgoing
unlabeled edges plus the number of out-loops and the number of
incoming unlabeled edges plus the number of in-loops. It turns
out by a simple induction on the lengths of derivations that these
differences are invariant. This means that indegree = outdegree
holds for an initial graph if and only if the application of rules
as long as possible yields a discrete graph.

indeg=outdeg

initial: {∗}-labeled

rules:

split:
1 2

−→
1

out

2

in

rem:
1

out in −→
1

terminal: {split}-reduced & {∗}-labeled

Figure 5 The graph transformation unit indeg=outdeg

Summarizing, we get the following results concerning cor-
rectness and complexity of indeg=outdeg.

Proposition 2 (correctness and complexity). Let P =
{split, rem}. Then the following holds:
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1. Let G ∈ GΣ. Then (G, H) ∈ SEM(indeg=outdeg)
for some H ∈ GΣ if and only if G is unlabeled,
indegreeG(v) = outdegreeG(v) for each v ∈ VG and H is
the discrete graph consisting of the node set VG and the
empty edge set.

2. Let G0 =⇒
P

G1 =⇒
P
· · ·=⇒

P
Gk be a derivation such that

Gk is P-reduced. Let m be the number of edges in G0.
Then k ≤ 2m.

3. For SEM(Iindeg=outdeg) and SEM(Tindeg=outdeg), the
membership problems are decidable in polynomial time.

Hence, the unit indegree = outdegree can be effectively used
as a graph class expression specifying in polynomial time the
class of all directed unlabeled graphs satisfying the condition
indegree = outdegree.

3.3. Shortest paths
Most shortest-path-algorithms like the ones by Floyd/Warshall
(Floyd 1962; Warshall 1962) and by Dijkstra (Dijkstra 1959) are
based on two elementary operations: the sequential composition
of paths summing up the distances and keeping the path with
minimum distance out of some parallel paths (i.e. paths with
the same source and target nodes). The algorithms differ from
each other by the order in which the two basic operations are
applied. The graph transformation unit in Figure 6 models the
computation of shortest paths (or more precisely their distances)
by these two operations in arbitrary order.

shortest_paths

initial: 0-looped(loop-free & strictly-simple & N-labeled)

rules:

sum:
1 2x 3y

z
−→

z ≤ x + y 1 2x 3y

x + y

min:
1 2

x

y
−→
x ≤ y 1 2x

terminal: {sum, min}-reduced

Figure 6 The graph transformation unit shortest_paths

The edges of the initial graphs are labeled with natural num-
bers representing the distances of direct connections between
nodes. Each node is provided with a 0-loop representing the
shortest paths of length and distance 0. Moreover, a pair of
different nodes is connected by at most one edge so that this
is a shortest path of length 1. The rules sum and min are ap-
plied to the initial graphs as long as possible in arbitrary order.
An application of the sum rule matches a path of length 2 and
creates a bridging edge with the sum of the distances of the
two edges as distance provided that there is not yet a bridging
edge with an equal or smaller distance. An application of the
min-rule matches two parallel edges where the one with the
minimum distance is kept, the other edge is removed. As nodes

are neither created nor removed, the node set does not change
during derivations.

It may be noted that the unit is infinite because we allow
arbitrary large distances. But this causes no problems. For each
initial graph, the number of potentially applicable rules is finite
as the distances x, y, z in the rules can be bounded by the sum
of distances of all edges.

The unit computes shortest distances of paths between each
two nodes in a graph G where the distance of a path p is the sum
of the distances of the edges on p and is denoted by distG(p).
This is stated in the following result.

Proposition 3 (Correctness). Let (G, H) ∈
SEM(shortest_paths). Then the following holds:

1. For every shortest path p from v to v′ in G, there is some
e ∈ EH with sH(e) = v, tH(e) = v′, and lH(e) =
distG(p).

2. For every e ∈ EH , there is a shortest path p from sH(e) to
tH(e) in G with lH(e) = distG(p).

The first statement can be proved by induction on the lengths
of shortest paths and the second one by an induction on the
length of derivations.

What about complexity? The graph transformation unit
shortest_paths is highly nondeterministic because, for every
initial graph, the order of rule applications is not restricted.
But to reach a terminal graph, a derivation must be prolonged
as long as rules are applicable. In particular, a computation
cannot get stuck before a result is obtained. Moreover, the cor-
rectness guarantees that the resulting terminal graph is unique
independent of the order of rule applications. But the various
derivations may have quite different lengths. Therefore, one
may get the shortest distance more efficiently if one restricts
the computation to special derivations by adding appropriate
control conditions. Two specializations may illustrate the idea.

First, we mimic the well-known Floyd/Warshall algorithm
((Floyd 1962)). Assume that the nodes of some initial graph
are numbered from 1 to n. Then, for i = 1, · · · , n, we apply
sum as long as possible with i as intermediate node of the path
of length 2 in the left-hand side followed by min as long as
possible. If the application of sum with intermediate node i is
denoted by sum(i), then the sketched control can be formally
expressed by

(sum(i)!; min!)n
i=1.

The length of a derivation according to this control is bounded
by 2n3 because, for i = 1, . . . , n, sum can be applied at most
(n− 1)(n− 2) times generating at most as many parallel edges
so that min must be applied at most (n− 1)(n− 2) times. In
other words, the bound of the derivation length reflects exactly
the known complexity of the cubic Floyd/Warshall algorithm.

Second, we model the shortest-paths algorithm by Mahr
(Mahr 1982). The control condition looks similar:

(sum[ine]!; min!)∗

It means that, in an arbitrary number of rounds, one must apply
sum as long as possible in the ine-mode followed by min as
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long as possible. Here ine is the shortcut of ignore-new-edges
and requires that sum is not allowed to match edges that are
newly generated in the same round. Therefore, there are at most
n(n − 1)(n − 2) matches of sum in one round producing at
most as many parallel edges, so that the number of following
min steps is bounded by n3, too. Consequently, the length of
a derivation according to this control is bounded by 2 · n3 · k
where k is the number of rounds one needs to reach a reduced
graph. By a proof quite similar to the proof of Proposition 3,
one can show that the edges after l rounds represent the shortest
paths of the initial graph of lengths up to 2l . As there is always
a shortest path the length of which is smaller than n if there
is a shortest path at all, the result of computations is reduced
after k steps latest with 2k ≤ n − 1 < 2k+1. Therefore, the
length bound coincides with the complexity bound of Mahr’s
algorithm which is shown to be of the order n3 · log n.

4. Structured Graph Transformation Units
Simple graph transformation units allow the modeling of com-
putational processes on graphs in the small. In order to divide
large rule sets into smaller parts or to reuse already defined units
within others, structuring concepts are needed. This gives rise
to the concept of structured graph transformation units which
import a set of graph transformation units so that an imported
unit (maybe with many rules) can play the role of a single rule.
In the following, we assume that the import structure is acyclic
(cf. (H.-J. Kreowski et al. 1997) for graph transformation units
with a more general import structure).

Definition 7 (Structured graph transformation unit). The set
STRUCT of structured graph transformation units is recur-
sively defined as follows:

– Each simple graph transformation unit gtu is in STRUCT.
The import depth of gtu is 0 and is denoted by depth(gtu).

– Let U ⊆ STRUCT with max{depth(t) | t ∈ U} =
n. Let I, T ∈ E , P ⊆ R, and let C ∈ C be a control
condition over P ∪U. Then (I, U, P, C, T) ∈ STRUCT
with depth(I, U, P, C, T) = n + 1.

Structured graph transformation units transform initial
graphs into terminal graphs by applying rules or imported units
sequentially such that the control condition is satisfied. This
means that structured graph transformation units have a binary
relation as interleaving semantics.

Definition 8 (Semantics of structured graph transformation
units). The semantics of each gtu ∈ STRUCT is given
by SEM(gtu) = (SEM(I)× SEM(T)) ∩ (

⋃
u∈U SEM(u) ∪

=⇒
P

)∗ ∩ SEM(C).

The following example of the construction of Euler tours
illustrates how the structuring principle can be used. While the
existence of an Euler tour implies the connectedness and the
indegree = outdegree condition obviously, the converse is more
difficult to see. One usual proof is mainly based on two algorith-
mic constructions: First, one gets a set of edge-disjoint simple
cycles which cover all edges. Second, a particular traversal of
the simple cycles yields an Euler tour.

4.1. Constructing Euler tours
The explicit construction of Euler tours is useful in some applica-
tions such as the planning of delivering tours or for constructing
tours with the approximation algorithm of Christofides for the
Travelling Salesperson Problem (Christofides 1976). In order
to construct an Euler tour in a directed Eulerian graph, we use
the ideas of (Hierholzer 1873) and cover the graph with simple
cycles which are then traversed in a special order, where a cycle
v0e1v1 · · · envn is simple, if vi 6= vj for all i, j ∈ {1, . . . n}
with i 6= j. The covering of the graph can be obtained by
constructing successively simple cycles and labeling them with
distinct numbers. The search of a simple cycle is performed
by the graph transformation unit simple_cycle which uses the
simple units search, extract and rel presented in the following.

The unit search is given in Figure 7. The initial and terminal
graph class expressions allow all graphs. The rule start chooses
an edge between two nodes with a ∗-loop and labels the loop
of its source with c and the loop of its target with run. The
rule run chooses a next edge from the node with the run-loop
to a node with a ∗-loop, replaces the run-loop by a c-loop and
the ∗-loop by a run-loop. The application of stop replaces the
run-loop by an end-loop, if there is an edge from the node with
the run-loop to some node with a c-loop. The rule start must be
applied exactly once, then run arbitrarily often and finally stop
exactly once.

search

rules:

start:
1 2

−→
1

c

2

run

run:
1

run

2
−→

1

c

2

run

stop:
1

run

2

c

−→
1

end

2

c

cond: start; run∗; stop

Figure 7 The graph transformation unit search

Let G be an unlabelled graph with exactly one loop at each
node, at least one edge between two distinct nodes and let
G satisfy the indegree = outdegree condition. Let G ∗

=⇒G′

be a derivation the application sequence of which is a pre-
fix of some word in L(start ; run∗ ; stop). Then there is a
derivation G ∗

=⇒G′ ∗=⇒H such that (G, H) ∈ SEM(Csearch)
which implies that (G, H) ∈ SEM(search). The graph H
is the result of labeling the loops of a path v0e1ve · · · envn,
where v0e1 · · · en−1vn−1 is a simple path (i.e., vi = vj implies
i = j for all i, j ∈ {0, . . . , n − 1}) and vn = vk for some
k ∈ {0, . . . , n− 1}. The unit labels the loop of vn−1 with end
and the loop of each other node in the path with c.

For example, the unit search can be applied to the upper
graph of Figure 8 with the lower graph as a possible result
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=⇒
search

c end

c

ccc
c

c

Figure 8 An execution of search

where for a better readability the loops are omitted and the loop
labels (apart from ∗) are written next to the corresponding nodes.
The filled node represents the match of node 1 in the application
of the rule start.

Since every rule application reduces the (finite) number of
unlabeled loops, the maximum length of every derivation is
linear in the number of nodes of the initial graph if each node
of the initial graph carries at most one unlabeled loop.

The unit extract given in Figure 9 is similar to search.

extract

rules:

r1:
1

end

2

c

−→
1

end

2

run
sc

r1:
1

run

2

c

−→
1 2

run
sc

r3:
1

run

2

end

−→
1 2

sc

cond: r1; r∗2 ; r3

Figure 9 The graph transformation unit extract

If it is applied to the lower graph of Figure 8, it replaces the
edges of the simple cycle found by the unit search by sc-edges
and the c-loops at the nodes of the cycle by ∗-loops. This yields
the upper graph in Figure 10.

The simple unit rel is defined as (all, {r}, r!, all) where r is
the rule

1

c

−→
1

Its application to the upper graph of Figure 10 yields the
lower graph in the figure.

The unit simple_cycle applies the three units search, extract

sc
sc

scscsc
sc

c

c

=⇒
rel

sc
sc

scscsc
sc

Figure 10 An execution of rel

and rel in this order, i.e.,

simple_cycle = (all, {search, extract, rel}, ∅,

search; extract; rel, all).

The covering of the graph with simple cycles is performed by
the unit cycle_cover given in Figure 11. The initial graph class
expression requires that the initial graph is unlabeled, connected
and satisfies the indegree = outdegree property. Moreover, each
node is equipped with exactly one unlabeled loop. At first, a
counter with the value 0 is generated by the rule gen_counter.
The counter is a node with a counter-loop depicted simply as a
square node. Afterwards, the following procedure is repeated
as long as possible. The counter is increased by 1 if there is
an unlabeled edge left (rule check); then the unit simple_cycle
labels an unlabeled simple cycle with sc and afterwards the unit
num (defined below) labels each edge of this cycle with the
value of the counter. When the rule check cannot be applied
anymore the counter is removed by the rule rem_counter.

cycle_cover

initial: ∗-looped({∗}-labeled & loop-free & connected &
indeg=outdeg)

uses: simple_cycle, num

rules:

gen_counter: ∅ −→ 0

check:
1 2

3
k

−→
1 2

3
k + 1

rem_counter: k −→ ∅

cond: gen_counter; (check; simple_cycle; num)!;
rem_counter

Figure 11 The graph transformation unit cycle_cover

The simple unit num is defined as (all, {r}, r!, all) with
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r:
1 2

sc
3

k −→
1 2

k
3

k

By induction one can show that the unit cycle_cover covers
the initial graph with edge-disjoint simple cycles. If cycle_cover
is applied to the upper graph of Figure 8, the graph of Figure 12
is a possible output graph.

1

1

1

1
1

1 3

3

4

4

4

4
4

4

4

4

3 3

3 2

2

3

3

3 2

5

5
5

5

5

5

2
2

2

2

2

Figure 12 A result of cycle_cover

The structured transformation unit EulerTour is given in
Fig. 13.

EulerTour

initial: ∗-looped({∗}-labeled & loop-free & connected &
indeg=outdeg)

uses: cycle_cover

rules:

first:
1 2

1 −→
1 2e

1 end

1

visit_new:
1

l

2k

3 4

k
5

end
−→

1 2

k

e

3 4 5

end

k

visit_act:
1

k

2k
−→

1 2

k

e

visit_old:
1

k

2l

3 4l

end

k

−→
1 2

l

e

3 4l

end

last:

end

1
−→ ∅

cond: cycle_cover;
first; (visit_new > visit_act > visit_old)!; last

Figure 13 The structured transformation unit EulerTour

The rule first selects some edge from the 1-cycle and labels
it with e. This e-edge is the first edge of the Euler tour to be

e
e

1
1

1

e e
e

4
4

4
4

4
4

4

4
3 3

3 2
2

e
e

e 2

5

5
5

5
5

5
2

2
2

2
2

1 3
end

=⇒
visit_new

e
e

1
1

1

e e
e

4
4

4
4

4
e

4

4
3 3

3 2
2

e
e

e 2

5

5
5

5
5

5
2

2
2

2
2

1 3 4
end

Figure 14 An execution of visit_new

constructed. Simultaneously, the rule generates a string graph
which represents the sequence 1 meaning that cycle 1 is the first
visited. Technically, the filled round nodes represent nodes with
a string-loop. The rule visit_new is applied when the current
tour meets a cycle not yet visited. In this case the tour continues
on this new cycle and the number of the new cycle is appended
to the string graph. Please note that the dashed edge means
that no k-edge must occur in the string graph. According to
the priority control condition, the rule visit_act can be applied
when visit_new is not applicable. It continues the tour on the
actual cycle. If neither visit_new nor visit_act is applicable,
the visit_old rule may be applied continuing on the last visited
circle and deleting the last edge from the string graph (together
with its target). When the tour is complete, the rule last is
applied in order to remove the remaining of the string graph.

Fig. 14 shows a rule application of EulerTour. The upper-
most filled round node indicates the beginning of the already
constructed tour and diamond represents its end.

From the diamond in the upper graph the tour must pro-
ceed on cycle 4 which is modeled by the rule application of
visit_new leading to the lower graph of Fig. 14. After four
further steps on cycle 4, the tour continues on cycle 2, enters
cycle 5 and after going along the whole cycle 5 it reenters cycles
2, 4, 3, and 1 in this order and ends at the starting point.

Altogether, the execution of the unit EulerTour visualizes
the construction of an Euler tour in an unlabeled and loop-free
connected graph that satisfies indegree = outdegree.

5. Parallel Rule Application
The framework of graph transformation offers concepts and re-
sults concerning the parallel application of rules. From the point
of view of graph algorithms, this is of great interest because it
provides a machinery for the parallelization of graph algorithms.
As far as needed in this section, some basic notions and facts
on parallel rule application are recalled in the following (see,
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e.g., (Ehrig & Kreowski 1976; Ehrig et al. 2006; H. Kreowski
et al. 2018)). To demonstrate the potentials, we show how by
means of massive parallelism the indegree = outdegree condi-
tion can be checked in a constant number of steps and shortest
paths can be computed in a logarithmic number of steps. The
example units are the parallel versions of indeg=outdeg and
shortest_paths in Section 3.

Definition 9 (Parallel rule application). 1. Let P ⊆ R and
let ri = (Li ⊇ Ki ⊆ Ri) ∈ P for i = 1, . . . , n. Then the
parallel rule p = r1 + · · ·+ rn = ∑n

i=1 ri is given by the
disjoint unions of the components (∑n

i=1 Li ⊇ ∑n
i=1 Ki ⊆

∑n
i=1 Ri).

2. Let r = (L ⊇ K ⊆ R) and r′ = (L′ ⊇ K′ ⊆ R′) be
two rules and let G =⇒

r
H and G =⇒

r′
H′ be two direct

derivations w.r.t. g : L → G and g′ : L′ → G. Then
the direct derivations are parallel independent if the cor-
responding matches intersect in gluing items only, i.e.,
g(L) ∩ g′(L) ⊆ g(K) ∩ g′(K).

Facts. Let ri = (Li ⊇ Ki ⊆ Ri) ∈ P for i = 1, . . . , n and
p = (L ⊇ K ⊆ R) = ∑n

i=1 ri be the corresponding parallel
rule. Then the following holds.

1. Let G =⇒
p

X be a direct derivation w.r.t. g : L →
X. Then there is a sequential derivation G =
G0 =⇒r1

G1 =⇒r2
· · ·=⇒

rn
Gn = X where the morphism of

the first step is g1 = g|L1 (where g|L1 is the restriction of
g to L1).

2. Let G =⇒
ri

Hi for i = 1, . . . , n be direct derivations w.r.t.

gi : Li → G. Let each two of them be parallel independent.
Then there is a direct derivation G =⇒

p
X w.r.t. g : L→ G

defined by g|Li = gi for i = 1, . . . , n.

The first fact states that the graph obtained by the application
of a parallel rule can also be derived by applying the component
rules sequentially. As the disjoint union of graphs is commu-
tative, the fact holds for every order of the atomic rules. The
second fact is the key for the parallelization of graph algorithms.
It states that the direct derivation of a parallel rule can be con-
structed from matches of the atomic component rules, and these
matches may be found in parallel. If one can make sure that
these direct derivations are pairwise independent, the complex-
ity of the parallel step is of the same order as the complexity
of the ordinary steps. The following example illustrates how
a graph algorithm may be improved by parallelization. It uses
some new control conditions for parallel derivations defined as
follows.

Definition 10 (Control conditions for parallel derivations). Let
ri = (Li ⊇ Ki ⊆ Ri) ∈ P for i = 1, . . . , n and let p = (Lp ⊇
Kp ⊆ Rp) = ∑n

i=1 ri be the corresponding parallel rule. Let
G =⇒

p
X be a direct derivation w.r.t. g : Lp → G.

1. G =⇒
p

X is maximum parallel if there is no r = (L ⊇

K ⊆ R) ∈ P such that p + r is applicable to G w.r.t.
g : (Lp + L)→ G with g|Lp = g.

2. G =⇒
p

X is double-free if there is no pair i 6= j with ri = rj

and g|Li = g|Lj.

3. G =⇒
p

X is double-free maximum parallel if it is double-

free and there is no r = (L ⊇ K ⊆ R) ∈ P such that a
double-free derivation G =⇒

p+r
Y exists w.r.t. g : Lp + L→

G with g|Lp = g.

4. G =⇒
p

X is larger than another application of a parallel

rule G =⇒
q

Y if p consists of more atomic rules than q.

5.1. indegree = outdegree in parallel
The following graph transformation unit checks the indegree =
outdegree condition by means of massive parallelism. The con-
trol condition requires that at first the rule split and then the rule
rem be applied with maximum parallelism.

indeg=outdeg_in_parallel

initial: {∗}-labeled

rules: split, rem

cond: split[maxpar]; rem[maxpar]

terminal: {split, rem}-reduced & {∗}-labeled

Obviously, all derivations in this unit consist of two appli-
cations of parallel rules whereas the lengths of derivations in
its sequential counterpart are between |EG| and 2 · |EG| where
|EG| denotes the number of edges in the initial graph.

5.2. Shortest paths in parallel
The following graph transformation unit computes shortest paths
by means of massive parallelism. The rules sum and min are
already used in the shortest_paths unit in Section 3. The control
condition requires that, repeatedly, the sum rule be applied
with double-free maximum parallelism followed by the largest
maximum parallel application of the min rule.

shortest_paths_in_parallel

initial: 0-looped(loop-free & strictly-simple &
N-labeled)

rules: sum, min

cond: (sum[double-free maxpar];
min[largest maxpar])∗

terminal: {sum, min}-reduced

The initial graphs have a 0-loop at each node and no parallel
edges so that the min rule cannot be applied and the present
edges represent the shortest paths of length 0 and 1. As the left-
hand side of the sum rule coincides with the gluing graph, each
two applications of sum are parallel independent. The negative
application condition prevents that one edge of the left-hand
side of sum is matching with a 0-loop. Therefore, there are

10 Kreowski and Kuske



at most n · (n− 1) · (n− 2) double-free applications of sum
where n is the number of nodes in the initial graph. And a sum
step is double-free maximum parallel if each path of length 2
from v to v′ is matched once provided that there is no edge
from v to v′ with a distance shorter than the sum of distances
of the edges on the path. Each application of sum may create a
parallel edge. The following largest maximum parallel min step
makes sure that no two parallel edges are left. More precisely,
two min applications are parallel independent if they match four
different edges or intersect in the edge that is kept. Therefore,
whenever there are m parallel edges between two nodes, the
largest parallel step removes m− 1 of them, and this happens if
all applications of min choose the same edge to be kept.

To illustrate how this parallel algorithm works, Fig. 15 shows
the results after each of three rounds starting with the left upper
graph. For a better readability, we omit all 0-loops and represent
newly inserted edges dashed.

A

B
2

C
8

5

D3

1

E2

1 F

6

2

=⇒
round 1 A

B
2

C
7

4

D3

1

5

3

E2

1

10

37 F

6

2

9

4

=⇒
round 2 A

B
2

C
6

4

D3

1

5

3

E2

16 3

9

F

5

2

4

9

11

=⇒
round 3 A

B
2

C
6

4

D3

1

5

3

E2

16 3

8

F

5

2

4

8

10

Figure 15 An execution of shortest_paths_in_parallel

That the unit computes the shortest distances between each
two nodes can be seen as follows. The initial and terminal
graphs are the same as in the unit shortest_paths in Section 3. A
parallel derivation from an initial to a terminal graph can be se-
quentialized due to the fact above. In this sequential derivation,
a sum application may occur that does not obey the negative
application condition. But then there is already an edge as
good as or better than the edge that would be generated by sum.
Hence this step can be omitted together with the min step later
on that removes this superfluous edge without changing the re-
sult. If the sequential derivation is modified in this way as long
as possible, then we end up with a derivation from an initial
to a terminal graph in shortest_paths. Conversely, consider a
derivation of shortest_paths from an initial graph G to a termi-
nal graph H. Without loss of generality, one can assume that it
follows the second case of control (sum[ine]!; min!)∗ defined
in Section 3. It is easy to see that all the applications of the sum
rule in one round according to the ine mode are sequentially in-
dependent. Therefore, they can be applied in parallel. Moreover,

this is maximum parrallel as the sum rule is applied as long as
possible in one round. The following applications of the min
rule as long as possible end up with the minimal edge between
each two nodes so that one gets the same result as a largest
parallel application of the min rule. This means that each round
according to the ine mode can be replaced by two derivation
steps in shortest_paths_in_parallel. This implies also that after
a logarithmic number of parallel steps the terminal graph is
reached.

Summarizing, this proves the following result about the cor-
rectness and complexity of the unit shortest_paths_in_parallel.

Proposition 4 (Correctness and complexity). Let

G0 =⇒
parsum

G1 =⇒
parmin

· · · =⇒
parsum

G2k−1 =⇒
parmin

G2k

be a derivation in shortest_paths_in_parallel from an initial
graph to a terminal graph with alternating parallel sum and min
steps according to the control condition. Then the following
holds.

1. For every shortest path p from v to v′ in G0, there is some
e ∈ EG2k with sG2k (e) = v, tG2k (e) = v′, lG2k (e) =
distG0(p).

2. For every e ∈ E2k , there is a shortest path p from sG2k (e)
to tG2k (e) in G0 with lG2k (e) = distG0(p).

3. Let n be the number of nodes in G0. Then the length
2k of the given derivation has a logarithmic bound, i.e.,
2k ≤ n− 1.

The same parallelization principle may be employed to the
unit shortest_paths with respect to the control that mimics the
Floyd/Warshall algorithm. Again, all the sum-applications
(where the intermediate node is fixed) can be applied in parallel
and all the following min-applications also. But this must be
repeated for every node such that the derivation length becomes
2n.

To our knowledge, this kind of parallelization technique is
not yet used within the area of graph transformation, and we
are not aware of much work in this direction on the level of
modeling outside graph transformation.

6. Related Work
In the literature, there are some other graph-transformational
approaches to the modeling of graph algorithms. One of them
are graph relabeling systems presented in, e.g., (Litovski et al.
1999b). They are well suited to model, visualize and verify
distributed algorithms in communication networks. A particular
feature of graph relabeling systems is that the application of a
rule preserves the structure of the networks, but changes the
labels of nodes and edges. In (Plump 2012; Campbell et al.
2019) it is shown how the graph programing language GP can
be used to model graph algorithms. Graph programs are de-
fined inductively, where basic graph programs are rule schemata
specifying derivation relations and composed graph programs
are constructed via while-loops, sequential composition and the
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operator as long as possible. To our knowledge, GP is the only
other graph transformation approach that is used systematically
in the context of graph algorithms but without parallelism.

In this paper, we have considered some typical examples
of graph class expressions. Further well-studied frameworks
that may be used to provide graph class expressions in transfor-
mation units are for example typed graphs (Ehrig et al. 2006),
monadic second order logic formulas (Courcelle & Engelfriet
2012), or nested graph conditions (Habel & Pennemann 2009).

There are various sophisticated graph transformation tools
that provide control conditions such as AGG (Taentzer 2003),
GrGen.NET (Jakumeit et al. 2010) or GROOVE (Ghamarian
et al. 2012) (see also (Jakumeit et al. 2014) for a comparison
of graph transformation tools). Hence, the tools are promis-
ing candidates for implementing graph transformation units.
In (Luderer 2016) stepwise control conditions are studied. They
guarantee that no derivation step violates the control condition
so that the degree of nondeterminism can be reduced dramati-
cally.

Graph transformation units can be considered as a declarative
conception of model-to-model transformation like, e.g., triple
graph grammars (see, e.g., (Anjorin et al. 2015)). The latter
ones are one of the modeling languages that are compared which
each other with respect to rule inheritance in (Wimmer et al.
2012). As graph transformation units and triple graph grammars
have much in common, the results for triple graph grammars
may carry over to graph transformation units.

In the literature one finds quite a variety of graph transfor-
mation approaches (cf. (Rozenberg 1997) for some typical
examples). All of them employ special types of graphs and rule
application principles and use – if at all – particular kinds of
initial and terminal graphs as well as of control conditions to
regulate the derivation process. In contrast to that, the frame-
work of graph transformation units is approach-independent
so that all particular approaches can be used as underlying
rule bases in combination with the generic concepts of graph
class expressions and control conditions. Moreover, a graph
transformation unit embraces a rule set, a set of used units, spec-
ifications of input and output graphs, and a control condition
while such components are kept and studied separately in most
other graph-transformational frameworks (or some of them are
not considered at all).

Besides the tools mentioned above, there are several fur-
ther graph transformation tools like Atom32, eMoflon3, Fu-
jaba4, Henshin5, and ViaTra6. While they are mainly tailored
to software development and model transformation, it may be
worthwhile to examine whether they can be employed for the
implementation of graph transformation units.

7. Conclusion
In this article, we have proposed the framework of graph trans-
formation units as a general approach to the modeling and anal-
2 http://atom3.cs.mcgill.ca
3 https://emoflon.org
4 https://web.cs.upb.de/archive/fujaba/projects.html
5 https://www.eclipse.org/henshin/
6 https://www.eclipse.org/viatra/

ysis of graph algorithms. The framework provides a common
syntactic description of graph algorithms in a visual, rule-based,
and structured manner, and a precise computational semantics
given by iterated rule applications, which are also called deriva-
tions. Moreover, it provides an inductive proof schema to prove
properties including correctness based on the lengths of deriva-
tions (in addition to other induction variables like the sizes of
graphs or the lengths of paths), and a common complexity mea-
sure given by the lengths of derivations, and finally, it provides
the prospect of tool support for testing, simulating, visualizing,
and verifying graph algorithms that are modeled as graph trans-
formation units by adapting graph-transformational tools to the
processing of graph transformation units.

To shed more light on the significance of our proposal, future
research may include the following topics.

1. Further case studies to get a better feeling and understand-
ing how the modeling, structuring, and analyzing of graph
algorithms can be done in a convenient and adequate way,

2. expansion of our considerations to NP-complete graph
problems and their heuristic and approximating solutions,

3. further exploration of the parallelization technique as it
offers a quite general way to improve the efficiency of
algorithms,

4. standardization of the features of graph transformation
units including the underlying rule bases, the graph class
expressions and the control conditions to turn the frame-
work into a proper modeling language like UML, and

5. the development of translators from graph transformation
units into the input formats of graph-transformational tools
so that they can be used systematically.
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