
Journal of Object Technology | RESEARCH ARTICLE

Incremental Verification of UML/OCL Models
Robert Clarisó∗, Carlos A. González†, and Jordi Cabot‡

∗‡Universitat Oberta de Catalunya (UOC), Spain
†Grantecan S.A., Spain

‡ICREA, Spain

ABSTRACT Model-Driven Development employs models as core artifacts of the software development process. This requires
ensuring the correctness of models, an analysis which is computationally complex. However, models may evolve over time and
these changes usually require re-checking models from scratch. To this end, this paper proposes techniques for the incremental
verification of a fundamental correctness property: internal consistency of UML class diagrams annotated with OCL constraints.
These techniques allow modelers to significantly reduce (or even avoid altogether) the cost of re-verifying a class diagram after
model updates.

KEYWORDS UML, OCL, Formal Verification, Model Evolution, Model Certificate, Scalability

1. Introduction

Model-Driven Development is a software development
paradigm where models play a central part. In this paradigm,
models are used beyond documentation or communication pur-
poses: some elements of the implementation may be generated
(semi)automatically from models. Thus, the correctness of mod-
els is critical as any error in the model may translate into errors
in the final implementation, where it will be much harder to
detect, debug and fix.

There are many types of software models, and one the most
frequently used is the UML class diagram (Petre 2013), which
describes the static structure of a system in terms of classes and
their relationships. Several correctness properties for this type
of diagram can be defined. A fundamental correctness prop-
erty is called strong satisfiability (Rull et al. 2015; González &
Cabot 2014): a lack of contradictions in the diagram allowing
us to construct a finite instance with a non-empty population
for each class and association that satisfies all the constraints,
e.g., inheritance relationships and multiplicities of associations.
Checking satisfiability is computationally expensive, and it be-
comes undecidable if the model is annotated with complex

JOT reference format:
Robert Clarisó, Carlos A. González, and Jordi Cabot. Incremental
Verification of UML/OCL Models. Journal of Object Technology. Vol. 19, No.
3, 2020. Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2020.19.3.a7

integrity constraints written in the Object Constraint Language
(OCL) (Cabot & Gogolla 2012).

As an example, we present the running example we will
use throughout this paper: the UML/OCL model depicted in
Figure 1. This class diagram describes the management of
observing requests in a telescope facility. Researchers sub-
mit proposals to observe a particular event or celestial object
during a time frame, specified as a series of observing blocks.
Astronomers at the telescope use observing instruments (e.g.,
spectrographs) to run the observing blocks and gather data about
the requested target. Several integrity constraints establish lim-
its on the duration of an observing proposal, observing blocks
and the identifiers of observing instruments. This model is satis-
fiable: it is possible to populate all classes in this model while
satisfying all graphical constraints in the class diagram and all
textual invariants simultaneously. For instance, Figure 2 shows
a valid object diagram describing the objects (with their type
and attribute values) and the links connecting them.

Several tools support this verification using different types
of solvers and reasoning tools. We will refer to them using the
generic term model finders. Nevertheless, models may change
during the development of a software system, for instance, due
to changes in the domain or the business rules. A problem of
model verification tools for satisfiability is that they do not sup-
port incremental verification, i.e. the ability to re-use results
from previous verifications to facilitate the analysis of simi-
lar models. Thus, time-consuming verification runs should be

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a7

Class diagramClass diagram

Proposal

title : String

requestedTime : Integer

grantedTime : Integer

AstronomicalEvent

urgent : Boolean

duration : Integer

Instrument

id : Integer

available : Boolean

CelestialObject

brightness : Real

Target

name : String

Block

duration : Integer

scheduled : Boolean requires

1..2block

*

observes

1

block

*

defines *

proposal1

-- No duplicate instrument ids
context Instrument inv UniqueInstrument:

Instrument.allInstances()->forAll(i| (self.id = i.id) implies (self = i))

-- Time limits on observing proposals
contest Proposal inv TimeLimits:

(self.requestedTime > 0) and (self.grantedTime >= 0) and
(self.grantedTime <= self.requestedTime)

-- Observing blocks must be longer than the events they observe
context AstronomicalEvent inv BlockDuration:

self.block->forAll(b | (b.duration >= self.duration))

Figure 1 Running example: (top) A UML class diagram model describing the management of observing requests in a telescope
facility; (bottom) additional integrity constraints, described as OCL invariants.

repeated after each model change, a problem that impairs its
practical application in an industrial setting.

In this paper, we propose techniques for the incremental
verification of satisfiability in UML/OCL class diagrams. These
techniques combine known methods for speeding verification,
such as model slicing (Shaikh, Clarisó, et al. 2010), with a novel
approach: the use of instances of the model as certificates of
satisfiability. Whenever a model is checked for satisfiability, a
valid instance of the model is provided as an output of the model
finder. After an update in the model, rather than re-verifying the
model it may be sufficient to adjust the original valid instance
as an instance of the new model to certificate that the model is
still satisfiable.

For instance, if a new OCL invariant is added to the model, it
is sufficient to check if our certificate satisfies the new invariant:
if it does, our old certificate is still valid. Checking an OCL
invariant on a given instance is orders of magnitude faster than
invoking a model finder. Moreover, if the certificate is not valid
and a model finder needs to be invoked, it may be possible to
limit the verification to a subset (a slice) of the original model.

Paper organization. The remainder of this paper is or-
ganized as follows. Section 2 presents related work and the
relationship of this paper with other problems like model or
database repair. Section 3 describes the method. Then, Section 4
describes the tool support for the method. Finally, Section 5
concludes and presents future work.

2. Related work
In this section, we discuss different types of works that are
related to the incremental verification of UML/OCL models.

2.1. Verifying declarative specifications
Many different paradigms have been considered for the verifica-
tion of UML/OCL models (Gabmeyer et al. 2019; González &
Cabot 2014): SAT solvers (Soeken et al. 2010; Kuhlmann et al.
2011), SMT solvers (Clavel et al. 2010; Dania & Clavel 2016;
Wu 2017; Soltana et al. 2020), constraint programming (Cabot
et al. 2014; E. K. Jackson et al. 2011), theorem proving (Brucker
& Wolff 2008), query containment (Rull et al. 2015), term rewrit-
ing (Romero et al. 2007), graph solvers (Semeráth et al. 2018)
and search-based methods (Soltana et al. 2020). On the other
hand, Alloy (D. Jackson 2012) provides both a textual notation
and an analyzer that can verify models using relational logic
and SAT solvers (Torlak & Jackson 2007). Nevertheless, the
underlying verification problem for these declarative notations
is undecidable. Therefore, verification techniques exhibit a com-
binatorial explosion which hampers their scalability and limits
their applicability in large and complex models.

Several strategies have been considered to improve the effi-
ciency of the verification, both in the context of UML/OCL and
Alloy:

– Parallelization (Rosner et al. 2013): splitting the search

2 Clarisó et al.

Object diagramObject diagram

celestialobject1:CelestialObject

name='Moon'
brightness=2.0

block1:Block

duration=10
scheduled=false

instrument1:Instrument

i d = 7
available=false

instrument2:Instrument

i d = 9
available=false

proposal1:Proposal

title='Moon Eclipse'
requestedTime=8
grantedTime=8

astronomicalevent1:AstronomicalEvent

name='Eclipse'
urgent=true
duration=1

Figure 2 Object diagram with a valid instance for the running example in Figure 1.

space into smaller domains that are explored in parallel by
different threads of execution.

– Model slicing (Shaikh, Clarisó, et al. 2010; Sen et al. 2009;
Uzuncaova & Khurshid 2008): dividing the original mod-
els into submodels that abstract unnecessary details from
the original model and can be verified separately.

– Domain-specific solvers (Ganov et al. 2012): These solvers
can analyze parts of the model in parallel, speeding up the
verification.

– Bound reduction (Clarisó et al. 2017): A quick pre-analysis
of the model can discard parts of the search space that do
not include any potential solution, speeding up the analysis.

– Limiting the expressiveness (Queralt et al. 2012; Oriol &
Teniente 2017; Balaban & Maraee 2013): Reducing the
set of constructs that can be used in defining integrity
constraints can make the problem decidable and/or provide
efficient algorithms for finding solutions.

In this paper we consider incremental verification: given a
verified model and a change in the model, we reduce the amount
of work required to check the new model by reusing information
about the verification of the original model.

2.2. Conflict resolution approaches

Evolving a model (Khalil & Dingel 2013) often implies dealing
with potential evolution conflicts, especially in a collaborative
modeling scenario (Izquierdo & Cabot 2016).

While these papers mainly address the challenge of conflict
resolution (i.e., how to reconcile the different versions of a
model created in parallel by different designers evolving and
refactoring the original model), they all need to represent the
sequence of model changes to reason on it. In this sense, the
conflict (meta)models they propose (see, for instance, (Brosch
et al. 2012)) could be useful in the context of this work as an
internal representation for the reasoning tool.

To optimize the reasoning process, the above works also typ-
ically include a taxonomy of potential changes in a model, e.g.,
(Altmanninger et al. 2009). These taxonomies have inspired our
own list of model changes in Section 3.2.

2.3. Incremental analysis
Different types of incremental analysis have been proposed in
the context of declarative models and integrity constraints. We
discuss their relationship with incremental verification.

Several previous works have considered the incremental eval-
uation of integrity constraints, e.g., (Cabot & Teniente 2009;
Oriol & Teniente 2015): given an instantiation of the UML class
diagram where the OCL integrity constraints are satisfied and a
change (create/update/delete) in that instantiation, propose effi-
cient mechanisms to reevaluate the contraints in the modified
instantiation. Notice that, in contrast to incremental evaluation,
incremental verification analyzes the model (“is there any in-
stantiation that satisfies the constraint?”) rather than a specific
instantiation (“is the constraint satisfied in a given instance?”)
and also deals with changes at the UML/OCL model (modifying
a class) rather than changes in its instantiation (creating a new
object).

The execution of model transformations may also exhibit
scalability problems for large models. Hence, several works
have considered the incremental execution of model transfor-
mations (Jouault & Beaudoux 2016; Varró et al. 2016). Trans-
formation rules usually have guards or application conditions,
expressed as queries over models in a similar way to integrity
constraints. Therefore, incremental model transformation is
closely related to the incremental evaluation of integrity con-
straints.

Finally, some previous works like (Egyed 2007; Blanc et al.
2009; Reder & Egyed 2012) have used incrementality while
checking the well-formedness of UML models e.g. all methods
used in a sequence diagram are declared in the corresponding
class diagram. Instead, in this paper we focus on the intra-model
consistency for UML class diagrams, considering the satisfia-
bility of OCL integrity constraints rather than well-formedness
rules.

2.4. Incremental verification
For instance, in (Semeráth et al. 2016) verification is incre-
mental in the sense that the analysis of a declarative model is
divided into a sequence of steps to improve scalability and guide
the search towards more realistic solutions. Nevertheless, few
approaches have considered the incremental verification of a

Incremental Verification of UML/OCL Models 3

declarative model after a set of changes in the model. In this
section, we describe three of the closest ones to our approach,
which are defined in the context of Alloy: Titanium (Bagheri &
Malek 2016), iAlloy (Wang et al. 2019) and Platinum (Zheng et
al. 2020).

Titanium (Bagheri & Malek 2016) is a tool for checking
of evolving Alloy specifications. The goal of Titanium is us-
ing information about the verification of the original model to
tighten the lower and upper bound for the shared relational val-
ues, without losing any potential solution. Using these reduced
bounds improves the efficiency of the analysis for the modified
model. Titanium supports a rich set of edit operations, includ-
ing updates in the definitions of signatures, but does not avoid
re-running the verification (it only improves its efficiency) and
is specific to the Alloy notation and solver.

iAlloy (Wang et al. 2019) is a tool for the incremental veri-
fication of Alloy models. This tool performs static analysis to
detect changes in predicates and dependencies between them,
and records the value of intermediate predicates to reuse them
if the current predicate and the predicates it depends on have
not been modified. Nevertheless, iAlloy (a) does not support up-
dates in the definition of signatures and (b) only reuses solutions
(it is not able to update them to avoid recomputation).

Platinum (Zheng et al. 2020) is another extension of the
Alloy Analyzer to support evolving specifications. It allows re-
using checks performed in previous versions of the specification
(whole or parts). Nevertheless, it again does not allow updating
previous results to avoid recomputation.

3. Method
Verifying the satisfiability of a UML/OCL class diagram is a
computationally complex task. When the model is satisfiable,
the result of the verification is an instance of the class diagram,
i.e. an object diagram in UML terminology, which satisfies all
textual and graphical constraint in the model.

Let us consider the problem of incremental verification of
UML/OCL class diagrams. In this problem, we start from a
UML class diagram annotated with OCL invariants, where we
have verified a correctness property (satisfiability). This class
diagram is called the original model. Moreover, we have an-
other UML/OCL class diagram obtained by adding, changing
or deleting elements from the original model. This second class
diagram is called the updated model. Our goal is verifying the
updated model efficiently, taking advantage of (a) the informa-
tion about the verification of the original model and (b) the
differences between the original and the updated model.

In this paper, we propose using the instance computed by
the model finder on the original model as a certificate of satis-
fiability. The notion of certificate originates from theoretical
computer science. In that field, a certificate is a piece of infor-
mation that can be used to verify whether a particular string
belongs to a language. For instance, when checking if a pos-
itive integer n is composite (it is the product of two smaller
positive integers), any pair of positive integers 〈x, y〉 such that
x · y = n, x < n and y < n can be used to certify that n is
composite. Certificates play a major role in complexity theory,

for instance, in the definition of problems where certificates can
be checked efficiently but no efficient algorithm for computing
solutions has been proposed (the P vs NP problem). Similarly,
the concept of certificate is also common in computational logic
(Benedetti 2005), e.g., a certificate of satisfiability for a logic
formula.

The major contribution of our proposed method is that it is
not limited to reusing the results of the analysis of the original
specification, as (Wang et al. 2019; Zheng et al. 2020) Instead,
whenever a change is performed to the original class diagram,
we will query and update the certificate to make sure it still
proves the satisfiability of the updated model, avoiding new
calls to the model finder whenever possible. Notice that some
actions such as checking if an OCL constraint holds in a certifi-
cate do not require invoking the model finder and can be thus
performed much more efficiently. Thus, if we can replace a
call to the model finder by the evaluation of an invariant in our
certificate, we will greatly reduce the computational overhead.
Nevertheless, for complex changes we may still need to invoke
the model finder to create a new certificate. In those cases, we
will nevertheless describe efficient strategies to generate a new
certificate. Figure 3 shows an overview of this process, where
the inputs are (a) the list of changes applied to the model, (b) the
updated model and (c) an object diagram that acts as a certificate
of satisfiability of the original model. This method produces a
certificate of satisfiability for the updated model, if it is indeed
satisfiable.

The following sections will cover the major steps in the
process: (a) how to identify the list of changes that have been
applied to a UML/OCL class diagram (Subsection 3.1); (b) how
to assess the impact of these changes on the validity of the
certificate (Subsection 3.2); (c) how to adapt the certificate to
take into account these changes (Subsections 3.3 and 3.4); and
(d) how to regenerate the certificate efficiently if all else fails
(Subsection 3.5).

3.1. Detecting model changes
The first challenge in incremental verification is identifying the
set of updates that have been applied to transform the original
model into the updated model. In this Section, we outline
several potential ways to detect model changes. Nevertheless,
the computation of this list is out of the scope of this paper: we
assume that the list of updates is provided as an input to our
method.

First of all, if the designer is using a modeling tool or IDE
(Magic Draw, Papyrus, Eclipse Modeling Tools) to create the
UML class diagram, recording the log of actions performed
by the designer inside the tool yields the list of updates. This
approach has two drawbacks. First, the implementation is tightly
coupled with a particular tool or IDE, so adapting it to a different
tool requires development effort. Moreover, the log of actions
must be analyzed to detect if there are any actions that invalidate
previous actions (e.g. add an attribute and then delete it). These
useless actions may interfere with our incremental reasoning
and therefore should be removed from the list before applying
our method.

Another strategy to obtain the list of updates is using a tool

4 Clarisó et al.

UML/OCL
model M

UML/OCL
model M′

Model
finder

Certificate
C(M)

changes Resolvable?

Repair
Certificate

Candidate
C(M′)

Valid?

Model
slicing Slice (M’)

Proposed method

Model
finder

Yes

No

Certificate
C(M′)

Unsat

Yes

Discard

No

Figure 3 Overview of the proposed method (red: inputs, green: outputs).

for model comparison such as EMFCompare (Brun & Pieranto-
nio 2008), DiffMerge (Thales 2015), the Epsilon Comparison
Language (Kolovos 2009) or (Falleri et al. 2008). These tools
are able to compute a list of differences between two models,
that can be provided as an input to our approach.

Finally, some tools like USE (Gogolla et al. 2007) define
a textual notation to encode both the UML class diagram and
the OCL constraints. In this case, it is possible to use tools
for text comparison such as diff to identify the differences
between two models. The list of changes identifies the set
of lines that have been added, modified or deleted, by their
line number. To use this information at the model level, it is
necessary to establish the correspondence between line numbers
in the textual specification and the elements in the model. This
requires that the parser records the line numbers where each
element in the UML/OCL class diagram is defined.

3.2. List of model changes and their impact on the cer-
tificate

In this Section, we discuss the list of model changes to UM-
L/OCL class diagrams that will be supported by our method.
The changes will be classified according to their impact to the
satisfiability of the model. Thus, different types of changes will
be addressed differently, from no change in the certificate at
all, to performing small updates in the certificate or recomput-
ing the certificate from scratch (if an incremental update is not
possible).

As a general rule, we will only consider changes in the model
that result in a well-formed UML/OCL class diagram: it does
not make sense to check the satisfiability of a UML/OCL model
that is not well-formed. Thus, problems such as “removing the
class in one association end of an association” or “assigning
the same name to two classes” will not be included in our
discussion.

Several works have proposed taxonomies to classify the wide
variety of changes that can be applied to conceptual models (Ci-
cchetti et al. 2008; Roddick et al. 1993; Lehnert et al. 2012;
Gómez & Olivé 2002; Altmanninger et al. 2009). In this pa-

per, we focus our taxonomy on the incremental verification of
satisfiability UML/OCL models. Thus, we will classify the
changes that a designer can perform to a UML class diagram
according to three different criteria: (a) the type of change; (b)
its effects on satisfiability; and (c) its impact on the validity of
the certificate. In our description, we borrow and adapt some of
the terminology used by (Cicchetti et al. 2008), tailoring it to
our problem of interest (satisfiability).

Considering the type of change in the UML/OCL model, we
will distinguish four categories:

Addition The inclusion of new information in the UML class
diagram, e.g. creating a new class.

Deletion The removal of an element in the UML class diagram,
e.g. deleting an attribute of a class.

Update The modification of the properties of an existing ele-
ment in the UML class diagram, e.g. rewriting an OCL
constraint or changing the multiplicity of an association
end.

Composite A non-atomic refactoring that aggregates several
atomic changes, e.g. pulling an attribute from a subclass to
a superclass.

Then, from the point of view of the satisfiability of the model,
model changes belong to one of these two categories:

Non-breaking: A change where if the original UML/OCL
class diagram was satisfiable, the updated model remains
satisfiable, e.g., renaming an attribute1.

Potentially breaking A change where, even if the original
UML/OCL class diagram was satisfiable, the updated
model may or may not be satisfiable. An example of a
potentially breaking change is adding an OCL constraint to
the UML/OCL model (it may make the model unsatisfiable

1 As mentioned previously, we assume that the change preserves the well-
formedness of the model, e.g., the name has been changed consistently in all
references to the attribute.

Incremental Verification of UML/OCL Models 5

Element Change Type Breaking? Resolvable?

Attribute Create with no modifiers Addition No Yes

Delete Deletion No Yes

Rename Update No Yes

Change (basic) type Update No Yes

Add unique modifier Update Yes Depends

Remove unique modifier Update No Yes

Pull to superclass Composite Yes Depends

Push to subclass Composite Yes Depends

Class Create empty class Addition No Yes

Delete Deletion No Yes

Rename Update No Yes

Make abstract Update Yes Depends

Make non-abstract Update Yes No

Association Create Addition Yes Depends

Delete Deletion No Yes

Rename association Update No Yes

Rename association end Update No Yes

Change multiplicity of an association end Update Yes Depends

Move association end from one class to another Composite Yes No

Inheritance Create generalization Addition Yes No

Create generalizaton set Addition Yes No

Delete generalization Deletion Yes No

Delete generalization set Deletion Yes No

Make a generalization set disjoint/complete Update Yes Depends

Make a generalization set overlapping/incomplete Update No Yes

Invariant Create Addition Yes Depends

Delete Deletion No Yes

Rewrite body (constraint) Update Yes Depends

Move to another class Composite Yes No

Table 1 Summary of potential changes to a UML/OCL class diagram.

if it contradicts any of the previous graphical or textual
constraints).

That is, potentially breaking changes may turn a satisfiable
model into an unsatisfiable one, while non-breaking changes
preserve satisfiability. Intuitively, any change that introduces
a new constraint in the model (that may interact with previ-

ously defined constraints) or that makes a previously existing
constraint more restrictive will be potentially breaking.

Finally, from the point of view of the validity of the certifi-
cates of satisfiability, model changes will be classified into two
categories:

6 Clarisó et al.

Element Change Action

Attribute Create with no modifiers Add default value to all objects of this class and all their subclasses

Delete Remove the value for this attribute in all objects of this class and subclasses

Rename Change the name of the attribute

Change (basic) type Assign a default value of the new type to all objects of this class and subclasses

Remove unique modifier No change required

Class Create empty class Add empty object of this type

Delete Remove all objects of this type

Rename Change the name of the class

Association Delete Remove all links of the association

Rename association Change the name of the association

Rename association end No change required

Inheritance Make a generalization set
overlapping/incomplete

No change required

Table 2 Actions required to adapt certificates to non-breaking model changes.

Resolvable A potentially breaking change is resolvable if the
certificate of satisfiability can be (trivially) updated to pro-
vide assurance of the satisfiability of the updated model.
Naturally, all model changes that are non-breaking are also
resolvable.

Non-resolvable A potentially breaking change is non-
resolvable if the certificate of satisfiability needs to be
recomputed from scratch using a model finder.

Some changes may be resolvable or non-resolvable depend-
ing not only on the type of change, but on the specific details
of what properties are being modified and what are the original
and updated values for those properties. For example, adding
an OCL invariant to a model may be a resolvable change: if the
current certificate already satisfies the OCL invariant, no change
to the certificate is required. Otherwise, the change becomes
non-resolvable: we need to invoke the model finder in order to
generate a new certificate of satisfiability.

Table 1 summarizes the list of changes that will be considered
by our approach and classifies them according to the three
criteria described in this Section. This table does not intend to
be exhaustive, as many other changes could be considered, e.g.
adding classes to generalization sets or creating an association
class from an association. Nevertheless, the set of proposed
changes is sufficiently rich to describe typical edit operations
while creating or refining a UML class diagram.

From this Table, we can see that changes that remove con-
straints from elements in the model (e.g., deleting an invariant)
or relax these constraints (e.g., setting the isUnique modifier of
an attribute to false) are non-breaking. The rationale is that the
same certificate that was satisfied in the original model will still

be valid if the updated model is less restrictive. For this reason,
the majority of deletion changes are non-breaking. Similarly, ad-
dition changes are also non-breaking if they add elements with
no constraint attached (empty classes or attributes without mod-
ifiers) but become potentially breaking otherwise. For changes
that add or modify constrained elements, their resolvability will
depend on whether the certificate satisfies the new constraints
or not. Finally, most composite changes are too complex and
thus non-resolvable.

As invoking a model finder to verify a model is computa-
tionally very expensive, the goal of our approach is to avoid
this call whenever possible. The best scenario is a non-breaking
change, as satisfiability is preserved and few adjustments are
required (see Section 3.3). If the change is potentially break-
ing, whenever the change is resolvable, it should be solved by
adapting the certificate. Moreover, if a change is considered
non-resolvable, the computation of the new certificate should be
performed as efficiently as possible. The following subsections
3.4 and 3.5 consider how these type of changes are addressed.

3.3. Dealing with non-breaking changes
By definition, non-breaking changes preserve the satisfiability
of the model. This means that the existence of a valid certificate
for the updated model is assured. In particular, we can adapt the
existing certificate so that it conforms to the updated model by
applying minor adjustments.

Table 2 summarizes the actions that need to be applied to
the certificate (an object diagram) to respond to non-breaking
changes. Intuitively, deletions will make us remove information
(values, objects or links) from the object diagram. Meanwhile,
additions will require us to create empty objects or use default

Incremental Verification of UML/OCL Models 7

(a) Rename class Proposal to Request and rename attribute Target::name to id

(b) Create class Dummy and attribute description:String in class Instrument

(c) Delete association between classes Block and Instrument

Figure 4 Repairing the object diagram from Figure 2 after non-breaking changes.

8 Clarisó et al.

Element Change Action

Attribute Add unique modifier Check if there are duplicate values

If there are, randomly remove all but one

Re-check invariants accessing this attribute

Pull to superclass Apply two changes: delete attribute + add attribute; then, re-check all invariants that
include this attribute

Push to subclass Same as “Pull to superclass”

Class Make abstract Remove all objects for this class; re-check invariants and multiplicity constraints of
this class, superclasses and subclasses

Association Create Randomly add links between objects to satisfy the multiplicity of association ends

Change multiplicity of an as-
sociation end

Check if the new multiplicity holds. If not, randomly add / remove links to meet
multiplicity constraints and re-check invariants that traverse the association

Inheritance Make a generalization set
disjoint/complete

Check if inheritance in this generalization set is is already disjoint/complete in the
certificate

Invariant Create Check if the certificate already satisfies the invariant; if that fails, check if removing
all objects that violate this invariant breaks other invariants or multiplicity constraints

Rewrite body (constraint) Same as “Create invariant”

Table 3 Actions that attempt to repair certificates after resolvable model changes.

values for the new elements. Then, updates may require no
action at all (if the update makes a constraint less restrictive) or
change the name of a class, association or link.

To illustrate this process, Figure 4 shows several examples
of repairs after performing non-breaking changes to the running
example (Figure 1). The baseline certificate is the object dia-
gram shown in Figure 2. Three sets of changes are considered:
(a) renaming a class and an attribute; (b) creating an empty class
an attribute with no modifiers and (c) deleting an association.
These three scenarios are studied separately, that is, they are not
applied one after the other.

In scenario (a), the renaming applies only to the objects of
the modified classes (and, for the renaming of attributes, their
subclasses), changing the type name and the attribute name.
In case (b), we need to create an empty object for the new
class Dummy and add an attribute value to each object of class
Instrument. As there is no restriction about the values of at-
tribute description, we can choose any value for this attribute.
We can use a default value for all objects or, as we have done
in Figure 4, a random different value for each object. Finally,
in scenario (c), all links of the deleted association are removed
from the object diagram.

3.4. Dealing with potentially breaking resolvable
changes

In contrast with non-breaking changes, potentially breaking
changes do not provide the assurance that satisfiability can
be preserved. Also, due to potential interactions with other

constraints in the model, certificates for the updated model may
be very different to those in the original model. Thus, in the
worst case, we may need to invoke the model finder to generate
a new certificate. However, in some cases we will be able to (a)
decide the certificate is already valid or (b) repair the certificate
to make it valid in the updated model.

For the sake of conciseness, in the remainder of this Section
we will use the term “resolvable” to refer to potentially breaking
resolvable changes. Non-breaking changes, which are also
resolvable, have been considered in the previous Section.

Table 3 describes the conditions for the validity of a certifi-
cate after a resolvable change and, in case the certificate can be
repaired, the required actions that perform that repair. The core
operation in this step is the ability to evaluate OCL conditions
on the certificate and the ability to perform atomic changes in
the model such as creating objects or links or modifying the
value of an attribute.

To illustrate these repairs, we depict in Figure 5 the outcome
of applying several resolvable changes to the model of our
running example (Figure 1). This time we are considering two
changes independently: (i) modifying the multiplicity of an
association and (ii) adding a new invariant.

In scenario (i), we first need to evaluate whether the current
certificate already satisfies the new multiplicity. This is not the
case as object block1 is only connected to one Instrument.
Then, we check whether the change has increased the lower
bound, decreased the upper bound or both. If it has increased
the lower bound, we will need to add new links to the objects

Incremental Verification of UML/OCL Models 9

(i) Modify multiplicity of association end requires from [1..2] to [2..2]

(ii) Add invariant context Instrument inv maxId: (self.id <= 7)

Figure 5 Repairing the object diagram from Figure 2 after resolvable changes.

that do not reach this minimum. Conversely, if it has decreased
the upper bound, we will need to remove links from objects
above this maximum. If the change has both increased the
lower bound and decreased the upper bound, both adding and
removing links is required. The choice of which links should
be added or removed is performed randomly. It may happen
that adding or removing links is not enough: the number of
objects of the classes linked in the association ends may not be
compatible with the new multiplicity. If it is necessary to create
or delete objects, we will rely on the model finder to regenerate
the certificate. We will also resort to the model finder if our
random choice of links to be added or deleted does not satisfy
the multiplicity constraints or the invariants in the model.

Regarding scenario (ii), we start by checking if the object
diagram already satisfies the new invariant. This is not the
case as object instrument2 has id = 9. Before giving up
and invoking the model finder, we can try to repair the object
diagram by deleting the objects that do not satisfy the new
invariant. In this case, deleting object instrument2 does not
violate any other invariant or multiplicity constraint, so we can
repair the object diagram without resorting to the model finder.

The examples shown in Figure 5 manage to successfully
repair the certificate. Nevertheless, in the general case the
changes described in these examples may fail to repair the
certificate, e.g., removing the objects that do not satisfy the new

invariant may violate other invariants or multiplicity constraints.
If that happens, it will be necessary to invoke the model finder
to regenerate the certificate.

Section 4 provides more details about how these repairs are
computed and applied to the object diagram.

3.5. Dealing with potentially breaking non-resolvable
changes

Breaking non-resolvable changes require to recompute the cer-
tificate from scratch using a model finder. If a certificate cannot
be found, we can safely conclude the model is unsatisfiable at
this point and rollback the latest changes (or report the error to
the designer).

This model finding process is computationally very expen-
sive, which is exactly why we aim to minimize the number of
times is required with our certificate-based technique. Neverthe-
less, we can at least reuse the sequence of changes since the last
checkpoint to reduce the verification effort.

Starting from the list of changes, we can perform a change
impact analysis: identify the parts of the model that have been
affected by the changes (and that, therefore, could be poten-
tially in conflict) while immediately proposing a partial trivial
certificate for the others. This model slicing (Shaikh, Clarisó,
et al. 2010) exponentially reduces the complexity of the model
finding process.

10 Clarisó et al.

UML/OCL
model M

UML/OCL
model M′

changes

USE model
finder

Object
Diagram

SOIL
script

SOIL
script’

rewrite
as

repair

Figure 6 Tool support for incremental verification based on USE.

!celestialobject1 := new CelestialObject
!celestialobject1.name := ’Moon’
!celestialobject1.brightness := 2.0

!astronomicalevent1 := new AstronomicalEvent
!astronomicalevent1.name := ’Eclipse’
!astronomicalevent1.urgent := true
!astronomicalevent1.duration := 1

!proposal1 := new Proposal
!proposal1.title := ’Moon Eclipse’
!proposal1.requestedTime := 8
!proposal1.grantedTime := 8

!instrument1 := new Instrument
!instrument1.id := 7
!instrument1.available := false
!instrument2 := new Instrument
!instrument2.id := 9
!instrument2.available := false

!block1 := new Block
!block1.duration := 10
!block1.scheduled := false

!insert(proposal1, block1) into ProposalBlock
!insert(block1, celestialobject1) into BlockTarget
!insert(block1, instrument1) into BlockInstrument

Figure 7 SOIL script that can be generated from the object diagram in Figure 2.

A description of the algorithm to compute the optimal sub-
model to be re-verified is out of the scope of this paper. Never-
theless, we provide an overview of the operation of this method:
Starting by an empty submodel, the construction process could
proceed by initializing the submodel with the list of all model
elements directly affected by the change. Then, we would add
to the submodel, transitively, all other elements connected to
those already in the submodel, until no more elements can be
added.

The key point is how we define “connectedness”, i.e., which
model elements depend on each other. If we follow a conser-
vative approach (where all elements linked to the affected ones
are added), we may end up with a large submodel. A more fine-
grained approach could stop the propagation when certain that
an element, though physically linked to an affected one, has no
impact on the verification process. As an example, consider two
classes A and B related via an association R with multiplicities
0..∗ : 0..∗. If there is no OCL expression navigating through
R in the model we can be sure that the instantiation of B has
no impact on the satisfiability of A. Note that we could just
make sure that R is empty, which is allowed by the multiplicity
constraints, to decouple both classes. Therefore, there is no
need to add B (and the transitive closure of B) to the submodel.

For instance, let us consider adding the following invariant
to class CelestialObject:

-- Brightness value between 0 and 1.0
context CelestialObject inv BrightnessLimits:

(self.brightness >= 0.0) and
(self.brightness <= 1.0)

This new invariant is a local constraint (Shaikh, Clarisó, et al.
2010): it only restricts the values of attributes of the objects of
a single class, and its validity can be established by evaluating
this condition on individual objects. Moreover, no other invari-
ant in the model (neither local nor global) constrains attribute
brightness. As a result, we can simply invoke the solver to
check this constraint considering a submodel consisting only
of class CelestialObject. Given that our certificate in Fig-
ure 2 only has one object of type CelestialObject, we can
instruct the bounded verification solver to perform verification
with a lower and upper bound of 1 for the population of this
class. If the verification is successful, we can update the values
of celestialObject1.brightness using the output of the
solver.

Depending on the list of changes and the characteristics of
the model, a number of other similar rules could be proposed to
minimize the size of the submodel to be reverified.

4. Tool support

In this section, we discuss the implementation of the method
described in Section 3 with the help of the tool USE (UML-
based Specification Environment) (Gogolla et al. 2007). For the
sake of conciseness, we will focus on the repair of certificates
described in subsections 3.3 and 3.4.

The USE environment offers a wide variety of features for
the design, validation and verification of UML/OCL specifica-
tions. Among others, we can highlight a textual notation for
describing UML/OCL models, a GUI for editing and inspecting
both specifications and system states and an OCL interpreter.

Incremental Verification of UML/OCL Models 11

(a) Rename class Proposal to Request and rename attribute Target::name to id

Original SOIL Repaired SOIL

1 !proposal1 := new Proposal
2 !celestialobject1.name := ’Moon’
3 !astronomicalevent1.name := ’Eclipse’

1 !proposal1 := new Request
2 !celestialobject1.id := ’Moon’
3 !astronomicalevent1.id := ’Eclipse’

(b) Create class Dummy and attribute description:String in class Instrument

Original SOIL Repaired SOIL

1 !dummy1 := new Dummy
2 !instrument1.description := ’description1’
3 !instrument2.description := ’description2’

(c) Delete association between classes Block and Instrument

Original SOIL Repaired SOIL

1 !insert(block1, instrument1)
2 into BlockInstrument

Figure 8 SOIL scripts that repair the non-breaking changes in Figure 4.

For our work on incremental verification, we will take advantage
of the following features of USE:

– A model finder plug-in (Kuhlmann et al. 2011) that relies
on the relational solver Kodkod (Torlak & Jackson 2007)
to compute valid system states for a UML class diagram
annotated with OCL invariants. This model finder will be
used to compute certificates and to regenerate certificates
when a repair is not possible.

– An imperative language called SOIL (Simple OCL-based
Imperative Language) (Büttner & Gogolla 2011) that al-
lows the creation and update of system states in an specifi-
cation. USE implements an interpreter for this language in
its console. This language will be used as the formalism to
encode, query and repair the certificate of satisfiability.

The strategy to take advantage of these tools is summarized in
Figure 6. The model finder plug-in available in USE will allow
us to compute a valid object diagram, which can be trivially
rewritten as a SOIL script that creates each object and links
and assigns the proper attribute values. For example, Figure 7
shows the SOIL script corresponding to the object diagram for
the running example provided in Figure 2. Then, information
about the changes applied to the model will be used to repair
the certificate, that is, rewrite parts of the SOIL script. The
changes correspond to the actions described in Tables 2 and 3:
adding and deleting objects and links; changing attribute values;
renaming model elements; or evaluating OCL expressions on
the model to the check if the repair is successful.

To illustrate this process, we show in Figure 8 and 9 how to
perform the repairs described in the Section 3. First, Figure 8

describes how the SOIL scripts should be modified as a result
of the non-breaking changes described in Figure 4. In this case,
the adaptations are straightforward.

Meanwhile, Figure 9 describes the repairs for the resolvable
changes in Figure 5. In this case, the repairs need to query the
certificate to check if it is still valid after the changes. We will
also have to make sure that our repair produces a correct object
diagram. If that is the case, we can again rewrite it as a SOIL
script to process further changes.

5. Conclusion
Model finders can prove the satisfiability of UML/OCL class
diagrams by computing instances of the model that fulfill all
textual or graphical constraints. Nevertheless, these tools require
many computational resources, so whenever possible more light-
weight methods would be preferable.

In this paper, we have presented a method for the incremental
verification of the satisfiability of UML/OCL class diagrams.
The key element of our method is the use of valid instances
of the model as certificates of satisfiability. Given a satisfiable
model and a set of changes to be applied to the model, this
approach attempts to repair the certificate without having to
invoke a model finder. A drawback of this approach is that it
only works on satisfiable models: it cannot help us track if a set
of changes to an unsatisfiable model have made it satisfiable.

As future work, we want to advance in the implementation of
the method and explore effective strategies for the management
of certificates. So far, our discussion of the method has assumed
that we only maintain a single certificate at all times. However,

12 Clarisó et al.

(i) Modify multiplicity from [1..2] to [2..2]

−− Check if the certificate already satisfies the new lower bound
−− Alternatively, we could use ’check −d −a’ for this check
newLowBound := 2;
problemSet := Block.allInstances()→select(b: Block | b.requires→size()<newLowBound);
if (problemSet→isEmpty()) then

WriteLine(’Certificate already valid. No change needed’);
end
−− Add links randomly
for blk in problemSet do
num := newLowBound − blk.requires→size();
−− Find ’num’ instruments not connected to ’blk’ and create a link between them
−− First, check that there are enough of them
enough := num <=

Instrument.allInstances()→select(y: Instrument | y.block→excludes(blk))→size();
if not enough then
WriteLine(’Repair failed: multiplicity not satisfied. Invoke the model finder’);

end
for i in Sequence{1..num} do
instr := Instrument.allInstances()→any(y: Instrument | y.block→excludes(blk));
insert (blk, instr) into BlockInstrument;

end
end

−− The multiplicity on the other side of the association is "∗"
−− This means the added links cannot violate that multiplicity constraint
−− There also no invariants traversing this association: no invariant to be rechecked

(ii) Add new invariant

−− Check if the certificate satisfies the new invariant
−− The ’−d’ flag lists the objects that do not satisfy the invariant
check −d −a
−− Answer: Instrument ins2 violates maxId

−− Destroy the objects that do not satisfy the invariant
!destroy ins2

−− Check if there are some objects remaining to ensure strong satisfiability
!if Instrument.allInstances()→isEmpty() do
WriteLine(’Repair failed: A class has an empty population. Invoke the model finder’);

end

−− Re−check all invariants and multiplicity constraints to see if all are fulfilled
check −d −a
−− Answer: affirmative. The certificate is now valid

Figure 9 SOIL scripts to repair the resolvable changes in Figure 5.

Incremental Verification of UML/OCL Models 13

it might be more efficient to maintain several certificates. These
certificates could be computed offline, when the designer is
performing other tasks. Then, when a resolvable change is
applied, we can try to repair each of them separately. In this
way, the likelihood that at least one of the available certificates
can be repaired is increased. Moreover, while we have focused
on UML class diagrams, most of the components of our proposal
could be easily generalizable to other types of structural models
and UML-like domain-specific languages. We plan to develop
such adaptations to broaden the scope of our approach.

Acknowledgments
This work is partially funded by the H2020 ECSEL Joint Un-
dertaking Project “MegaM@Rt2: MegaModelling at Run-time”
(737494) and the Spanish Ministry of Economy and Compet-
itivity through the project “Open Data for All: an API-based
infrastructure for exploiting online data sources” (TIN2016-
75944-R).

References
Altmanninger, K., Seidl, M., & Wimmer, M. (2009). A sur-

vey on model versioning approaches. International Jour-
nal of Web Information Systems, 271–304. doi: 10.1108/
17440080910983556

Bagheri, H., & Malek, S. (2016). Titanium: efficient analysis
of evolving Alloy specifications. In Proceedings of the 2016
24th acm sigsoft international symposium on foundations
of software engineering (fse) (pp. 27–38). doi: 10.1145/
2950290.2950337

Balaban, M., & Maraee, A. (2013). Finite satisfiability of UML
class diagrams with constrained class hierarchy. ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
22(3), 24:1–24:42. doi: 10.1145/2491509.2491518

Benedetti, M. (2005). Extracting certificates from quantified
boolean formulas. In 19th international joint conference on
artificial intelligence (ijcai’2005) (pp. 47–53). Professional
Book Center.

Blanc, X., Mougenot, A., Mounier, I., & Mens, T. (2009). In-
cremental detection of model inconsistencies based on model
operations. In International conference on advanced infor-
mation systems engineering (caise) (Vol. 5565, pp. 32–46).
doi: 10.1007/978-3-642-02144-2_8

Brosch, P., Seidl, M., Wimmer, M., & Kappel, G. (2012).
Conflict visualization for evolving UML models. Journal of
Object Technology, 11(3), 2: 1–30. doi: 10.5381/jot.2012.11
.3.a2

Brucker, A. D., & Wolff, B. (2008). HOL-OCL: a formal proof
environment for UML/OCL. In International conference on
fundamental approaches to software engineering (fase) (Vol.
4961, pp. 97–100). doi: 10.1007/978-3-540-78743-3_8

Brun, C., & Pierantonio, A. (2008). Model differences in the
Eclipse Modeling Framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2), 29–34.

Büttner, F., & Gogolla, M. (2011). Modular embedding of the
Object Constraint Language into a programming language.
In 14th brazilian symposium on formal methods, foundations

and applications (SBMF) (Vol. 7021, pp. 124–139). Springer.
doi: 10.1007/978-3-642-25032-3_9

Cabot, J., Clarisó, R., & Riera, D. (2014). On the verification
of UML/OCL class diagrams using constraint programming.
Journal of Systems and Software, 93, 1–23. doi: 10.1016/
j.jss.2014.03.023

Cabot, J., & Gogolla, M. (2012). Object constraint language
(OCL): A definitive guide. In Formal methods for model-
driven engineering - 12th international school on formal
methods for the design of computer, communication, and
software systems, SFM 2012, bertinoro, italy, june 18-23,
2012. advanced lectures (pp. 58–90). doi: 10.1007/978-3
-642-30982-3_3

Cabot, J., & Teniente, E. (2009). Incremental integrity checking
of UML/OCL conceptual schemas. Journal of Systems and
Software, 82(9), 1459–1478. doi: 10.1016/j.jss.2009.03.009

Cicchetti, A., Ruscio, D. D., Eramo, R., & Pierantonio, A.
(2008). Automating co-evolution in model-driven engineer-
ing. In 12th international IEEE enterprise distributed object
computing conference, (EDOC) (pp. 222–231). IEEE Com-
puter Society. doi: 10.1109/EDOC.2008.44

Clarisó, R., González, C. A., & Cabot, J. (2017). Smart bound
selection for the verification of UML/OCL class diagrams.
IEEE Transactions on Software Engineering, 45(4), 412–426.
doi: 10.1109/TSE.2017.2777830

Clavel, M., Egea, M., & de Dios, M. A. G. (2010). Checking
unsatisfiability for OCL constraints. Electronic Communica-
tions of the EASST , 24. doi: 10.14279/tuj.eceasst.24.334

Dania, C., & Clavel, M. (2016). OCL2MSFOL: a mapping
to many-sorted first-order logic for efficiently checking the
satisfiability of OCL constraints. In Acm/ieee 19th interna-
tional conference on model driven engineering languages
and systems (models) (pp. 65–75).

Egyed, A. (2007). UML/Analyzer: A tool for the instant
consistency checking of UML models. In Proceedings of the
29th international conference on software engineering (icse)
(pp. 793–796). doi: 10.1109/ICSE.2007.91

Falleri, J.-R., Huchard, M., Lafourcade, M., & Nebut, C. (2008).
Metamodel matching for automatic model transformation
generation. In International conference on model driven
engineering languages and systems (models) (Vol. 5301, pp.
326–340). doi: 10.1007/978-3-540-87875-9_24

Gabmeyer, S., Kaufmann, P., Seidl, M., Gogolla, M., & Kappel,
G. (2019). A feature-based classification of formal verifica-
tion techniques for software models. Software and Systems
Modeling, 18(1), 473–498. doi: 10.1007/s10270-017-0591-z

Ganov, S., Khurshid, S., & Perry, D. E. (2012). Annotations for
Alloy: Automated incremental analysis using domain specific
solvers. In International conference on formal engineering
methods (icfem) (Vol. 7635, pp. 414–429). doi: 10.1007/
978-3-642-34281-3_29

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A
UML-based specification environment for validating UML
and OCL. Science of Computer Programming, 69(1-3), 27–
34. doi: 10.1016/j.scico.2007.01.013

Gómez, C., & Olivé, A. (2002). Evolving partitions in concep-
tual schemas in the UML. In 14th international conference on

14 Clarisó et al.

advanced information systems engineering (caise) (Vol. 2348,
pp. 467–483). Springer. doi: 10.1007/3-540-47961-9_33

González, C. A., & Cabot, J. (2014). Formal verification of
static software models in MDE: A systematic review. In-
formation and Software Technology, 56(8), 821–838. doi:
10.1016/j.infsof.2014.03.003

Izquierdo, J. L. C., & Cabot, J. (2016). Collaboro: a collabora-
tive (meta) modeling tool. PeerJ Computer Science, 2, e84.
doi: 10.7717/peerj-cs.84

Jackson, D. (2012). Software abstractions: logic, language,
and analysis. MIT press.

Jackson, E. K., Levendovszky, T., & Balasubramanian, D.
(2011). Reasoning about metamodeling with formal specifi-
cations and automatic proofs. In International conference on
model driven engineering languages and systems (models)
(pp. 653–667). doi: 10.1007/978-3-642-24485-8_48

Jouault, F., & Beaudoux, O. (2016). Efficient OCL-based
incremental transformations. In International workshop on
ocl and textual modeling (ocl@models) (Vol. 1756, pp. 121–
136). CEUR-WS.org.

Khalil, A., & Dingel, J. (2013). Supporting the evolution
of UML models in model driven software development: a
survey (Tech. Rep. No. 602). School of Computing, Queen’s
University.

Kolovos, D. S. (2009). Establishing correspondences between
models with the Epsilon comparison language. In European
conference on model driven architecture-foundations and
applications (ecmfa) (Vol. 5562, pp. 146–157). doi: 10.1007/
978-3-642-02674-4_11

Kuhlmann, M., Hamann, L., & Gogolla, M. (2011). Extensive
validation of OCL models by integrating SAT solving into
USE. In 49th international conference on objects, models,
components, patterns (tools) (Vol. 6705, pp. 290–306). doi:
10.1007/978-3-642-21952-8_21

Lehnert, S., Farooq, Q., & Riebisch, M. (2012). A taxonomy
of change types and its application in software evolution.
In IEEE 19th international conference and workshops on
engineering of computer-based systems (ECBS) (pp. 98–107).
IEEE Computer Society. doi: 10.1109/ECBS.2012.9

Oriol, X., & Teniente, E. (2015). Incremental checking of OCL
constraints with aggregates through SQL. In International
conference on conceptual modeling (er) (Vol. 9381, pp. 199–
213). doi: 10.1007/978-3-319-25264-3_15

Oriol, X., & Teniente, E. (2017). OCLuniv: Expressive UM-
L/OCL conceptual schemas for finite reasoning. In Interna-
tional conference on conceptual modeling (er) (Vol. 10650,
pp. 354–369). doi: 10.1007/978-3-319-69904-2_28

Petre, M. (2013). UML in practice. In International confer-
ence on software engineering (icse) (pp. 722–731). IEEE
Computer Society. doi: 10.1109/ICSE.2013.6606618

Queralt, A., Artale, A., Calvanese, D., & Teniente, E. (2012).
OCL-Lite: Finite reasoning on UML/OCL conceptual
schemas. Data & Knowledge Engineering, 73, 1–22. doi:
10.1016/j.datak.2011.09.004

Reder, A., & Egyed, A. (2012). Incremental consistency check-
ing for complex design rules and larger model changes. In
International conference on model driven engineering lan-

guages and systems (models) (Vol. 7590, pp. 202–218). doi:
10.1007/978-3-642-33666-9_14

Roddick, J. F., Craske, N. G., & Richards, T. J. (1993). A
taxonomy for schema versioning based on the relational and
entity relationship models. In 12th international conference
on the entity-relationship approach (er) (Vol. 823, pp. 137–
148). Springer. doi: 10.1007/BFb0024363

Romero, J. R., Rivera, J. E., Durán, F., & Vallecillo, A. (2007).
Formal and tool support for model driven engineering with
Maude. Journal of Object Technology, 6(9), 187–207. doi:
10.5381/jot.2007.6.9.a10

Rosner, N., Siddiqui, J. H., Aguirre, N., Khurshid, S., & Frias,
M. F. (2013). Ranger: Parallel analysis of Alloy models by
range partitioning. In 28th ieee/acm international conference
on automated software engineering (ase) (pp. 147–157). doi:
10.1109/ASE.2013.6693075

Rull, G., Farré, C., Queralt, A., Teniente, E., & Urpí, T. (2015).
AuRUS: explaining the validation of UML/OCL conceptual
schemas. Software and Systems Modeling, 14(2), 953–980.
doi: 10.1007/s10270-013-0350-8

Semeráth, O., Nagy, A. S., & Varró, D. (2018). A graph solver
for the automated generation of consistent domain-specific
models. In International conference on software engineering
(icse) (pp. 969–980). doi: 10.1145/3180155.3180186

Semeráth, O., Vörös, A., & Varró, D. (2016). Iterative and
incremental model generation by logic solvers. In Interna-
tional conference on fundamental approaches to software
engineering (fase) (Vol. 9633, pp. 87–103). doi: 10.1007/
978-3-662-49665-7_6

Sen, S., Moha, N., Baudry, B., & Jézéquel, J.-M. (2009). Meta-
model pruning. In International conference on model driven
engineering languages and systems (models) (Vol. 5795, pp.
32–46). doi: 10.1007/978-3-642-04425-0_4

Shaikh, A., Clarisó, R., Wiil, U. K., & Memon, N. (2010).
Verification-driven slicing of UML/OCL models. In 25th
IEEE/ACM international conference on automated software
engineering (ASE) (pp. 185–194). doi: 10.1145/1858996
.1859038

Shaikh, A., Clarisó, R., Wiil, U. K., & Memon, N. (2010).
Verification-driven slicing of UML/OCL models. In Ieee/acm
international conference on automated software engineering
(ase) (pp. 185–194).

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., & Drechsler,
R. (2010). Verifying UML/OCL models using boolean
satisfiability. In Design, automation and test in europe (date)
(pp. 1341–1344). IEEE Computer Society. doi: 10.1109/
DATE.2010.5457017

Soltana, G., Sabetzadeh, M., & Briand, L. C. (2020). Practical
constraint solving for generating system test data. ACM Trans.
Softw. Eng. Methodol., 29(2), 11:1–11:48. Retrieved from
https://doi.org/10.1145/3381032 doi: 10.1145/3381032

Thales. (2015). EMF Diff/Merge. Retrieved from https://
projects.eclipse.org/projects/modeling.emf.diffmerge

Torlak, E., & Jackson, D. (2007). Kodkod: A relational model
finder. In International conference on tools and algorithms
for the construction and analysis of systems (tacas) (Vol.
4424, pp. 632–647). doi: 10.1007/978-3-540-71209-1_49

Incremental Verification of UML/OCL Models 15

https://doi.org/10.1145/3381032
https://projects.eclipse.org/projects/modeling.emf.diffmerge
https://projects.eclipse.org/projects/modeling.emf.diffmerge

Uzuncaova, E., & Khurshid, S. (2008). Constraint prioritization
for efficient analysis of declarative models. In International
symposium on formal methods (fm) (Vol. 5014, pp. 310–325).
doi: 10.1007/978-3-540-68237-0_22

Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., &
Ujhelyi, Z. (2016). Road to a reactive and incremental model
transformation platform: three generations of the VIATRA
framework. Software and Systems Modeling, 15(3), 609–629.
doi: 10.1007/s10270-016-0530-4

Wang, W., Wang, K., Gligoric, M., & Khurshid, S. (2019). In-
cremental analysis of evolving Alloy models. In International
conference on tools and algorithms for the construction and
analysis of systems (tacas) (Vol. 11427, pp. 174–191). doi:
10.1007/978-3-030-17462-0_10

Wu, H. (2017). MaxUSE: A tool for finding achievable
constraints and conflicts for inconsistent UML class dia-
grams. In International conference on integrated formal
methods (ifm) (Vol. 10510, pp. 348–356). doi: 10.1007/
978-3-319-66845-1_23

Zheng, G., Bagheri, H., Rothermel, G., & Wang, J. (2020).
Platinum: Reusing constraint solutions in bounded analysis of
relational logic. In International conference on fundamental
approaches to software engineering (fase) (Vol. 12076, pp.
29–52). Springer. doi: 10.1007/978-3-030-45234-6_2

About the authors
Robert Clarisó received his BSc (2000) and PhD (2005) in
Computer Science from UPC-Barcelona Tech. Since 2005, he
is a lecturer at the IT, Multimedia and Telecommunications
Department of Universitat Oberta de Catalunya (UOC). He is
also a member of the SOM Research Lab within the Internet
Interdisciplinary Institute (IN3-UOC). His research interests
include formal methods, model-driven engineering and tools
for e-learning You can contact him at rclariso@uoc.edu or visit
https://robertclariso.github.io/.

Carlos A. González received his PhD degree from the École des
Mines de Nantes (EMN) in 2014. After that, he was a research
associate at the SnT Centre for Security, Reliability and Trust
of the University of Luxembourg. Since 2018, he is a member
of the R&D area of Grantecan S.A., the company responsible
for the design, construction and operation of GTC, the world’s
largest, single-aperture, optical telescope currently in operation.
His research interests include, but are not limited to, model-
driven engineering and software verification and validation. You
can contact the author at carlos.gonzalez@gtc.iac.es.

Jordi Cabot received his PhD degree in Computer Science from
Universitat Politècnica de Catalunya (UPC) in 2006 and his Ha-
bilitation (French HdR) from the École Doctorale in Nantes in
2012. He has been a visiting researcher in Milan (Politecnico di
Milano) and Toronto (University of Toronto) and an Associate
Professor and Inria International Chair at École des Mines de
Nantes where he led an Inria Research team in Software Engi-
neering. Since May 2015, he is an ICREA Research Professor
at Internet Interdisciplinary Institute (IN3), a research center

of the Universitat Oberta de Catalunya (UOC), where he leads
the SOM Research Lab. Beyond his core research activities, he
tries to book some time for blogging and other dissemination
and technology transfer actions. You can contact the author at
jordi.cabot@icrea.cat or visit https://jordicabot.com/.

16 Clarisó et al.

mailto:rclariso@uoc.edu?subject=Your paper "Incremental Ve\discretionary {-}{}{}ri\discretionary {-}{}{}fi\discretionary {-}{}{}cation of UML/OCL Models"
https://robertclariso.github.io/
mailto:carlos.gonzalez@gtc.iac.es?subject=Your paper "Incremental Ve\discretionary {-}{}{}ri\discretionary {-}{}{}fi\discretionary {-}{}{}cation of UML/OCL Models"
mailto:jordi.cabot@icrea.cat?subject=Your paper "Incremental Ve\discretionary {-}{}{}ri\discretionary {-}{}{}fi\discretionary {-}{}{}cation of UML/OCL Models"
https://jordicabot.com/

