
Journal of Object Technology | RESEARCH ARTICLE

On developing and validating dynamic systems:
simulation engineering

Fiona Polack∗ and Kieran Alden†

∗Keele University, UK
†University of York, UK

ABSTRACT Dynamic systems, where the behaviour is the dominant characteristic, pose engineering challenges that are often
neglected in model-based software engineering. However, supporting simulation development from design models is important
in demonstrating that a simulator and simulation experiments are fit for their intended purpose. In engineering agent-based
simulations, observable system behaviour is built up from the behaviour of low-level components; such simulations are used as
research tools in (for instance) biological systems research. We have found that domain experts can validate diagrammatic
models of behaviour and accompanying text, but we need model-based software development, and ideally automatable model
transformation, to maintain fitness for purpose into code and experimentation.
We present an exploration of behavioural model transformation, devising and applying manual transformation guidelines to an
existing, published Java Mason simulator, created using the CoSMoS approach and UML-style state diagrams. We succeed
in recreating part of the class structure of the code, but also expose many issues to be overcome, in terms of what needs to
be modelled to enable transformation, and how and when design decisions are taken and documented. We also identify the
need to generate the creation of low-level simulation, visualisation, and data capture mechanisms, and a means to design and
encode simulation experimentation.

KEYWORDS Complex systems, Simulation, Validation, Model-driven engineering

1. Introduction
Software engineering and software modelling has been domi-
nated by approaches to modelling data structure ever since the
advent of relational databases, a focus reinforced by the dom-
inance of object-oriented (OO) programming and ubiquitous
class modelling. Model driven engineering (MDE), based on
models created in languages defined by metamodels, provides a
consistent, repeatable approach to deriving OO programs from
class models. However, engineering dynamic systems (systems
where behaviour is the dominant characteristic) requires a differ-
ent approach to modelling and validation; whilst model driven
approaches exist, they are not universally applicable.

JOT reference format:
Fiona Polack and Kieran Alden. On developing and validating dynamic
systems: simulation engineering. Journal of Object Technology. Vol. 19, No.
3, 2020. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a6

The dynamic systems that we engineer are agent-based sim-
ulations of complex systems, developed in collaboration with
laboratory scientists, and used to generate and explore hypothe-
ses of interest to the scientists. In this paper, we use the design
of one such simulation as a case study; we use the published de-
sign of the simulator to explore whether it might be possible to
use model transformation approaches to derive a code structure.
The original simulator was created on the Java Mason OO agent
simulation platform, with code hand-crafted with reference to
the design models that had been created with and signed-off by
the laboratory scientists.

To explore potential model driven engineering, we start, here,
by exploring a systematic but manual derivation of a class dia-
gram suitable for model transformation. We compare the results
with the class structure of the actual simulator, enabling a better
understanding of how to achieve our ultimate goal of model-
driven simulation engineering.

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a6

1.1. Background

There is a significant body of research and practice on the
behaviour-based model-driven engineering of safety critical
systems (e.g. working from Simulink or similar designs). This
work supports code generation, but depends on the equivalence
of behavioural models (e.g. state diagrams) and mathematical
models of dynamical systems. Such critical systems engineer-
ing demonstrates that formally-correct programs can be derived
from behavioural diagrams, but does so by imposing strict con-
straints on what can be modelled. It is, in effect, a special case
of behaviour-dominated systems, with the strong formal un-
derpinning necessary to support critical-systems development.
However, when creating research simulations of complex sys-
tems, the engineering is not, and cannot be, exact, because the
systems being engineered are analogies of real systems that are
not, themselves, well-understood or understandable.

There are many reasons for wanting to engineer research sim-
ulations of complex systems. For instance, a research simulation
supports:

– entirely repeatable experiments;
– systematic modification of experiments;
– unlimited data generation.

Furthermore, a research simulation does not require live animals
or human subjects, so avoids many ethical and privacy concerns.

A complex system has behaviour at many scales. From the
perspective of an outside observer, there is emergent, system-
level behaviour. The observed behaviour is a consequence of
lower-level, smaller-scale systems interacting. In engineering
a complex system simulation, care must be taken to determine
the scales and abstractions at which to represent lower-level
behaviours, and at which to observe and measure the emergent
higher-level behaviours. We cannot include everything in the
simulation: (a) we could not execute such a large simulation; (b)
we do not know about everything; (c) a simulation containing ev-
erything would be as complex as the original and thus of limited
help to the researchers. There is no method or short-cut to guide
the identification and representation of implicated behaviours;
there is only domain expert judgement, engineering judgement,
and trial and error. The resulting simulation is a simplification
of all the systems in the real world that might be part of or
interact with the designated system of interest. Furthermore,
anything represented directly in the research simulation not only
represents its real equivalent, but also acts as a surrogate for
things not expressed explicitly in the simulation.

There are well-known approaches available for developing
behavioural systems (see (Polack et al. 2009) for an early dis-
cussion of approaches). The CoSMoS process (Stepney & Po-
lack 2018) provides a lifecycle and techniques for the engineer-
ing demonstrably fit-for-purpose complex system simulations,
which have been applied in the development of biological and
robotic systems simulations. CoSMoS advocates MDE, but
CoSMoS is not prescriptive, so it does not have inherent lan-
guages on which to base MDE support. There is limited research
on MDE for behavioural modelling (e.g. (Polack 2012)), but no
simulation development has yet attempted to use it.

We focus here on the CoSMoS-style simulation projects
exploring largely cell-level biological systems implicated in im-
mune responses (Alden et al. 2012; Moore et al. 2013; Greaves
et al. 2013; Read 2011; Williams et al. 2013). These develop-
ments have used UML-style modelling, but no modelling tools,
and code has been hand-crafted.

Agent simulation platforms come in many forms, but Java-
based platforms offer a well-supported, flexible programming
environment, with good visuals and data collection capabilities.
A key practical issue is that the behavioural modelling used
to explore the domain and prepare for development does not
map directly into OO-based agent simulation platforms selected
by developers. A first step in employing model transformation
targeting agent-based simulation platforms is to understand how
the information in the design and documentation maps to the
implemented simulation.

The case study here is the documented development of a
Java Mason agent simulation, developed using the CoSMoS
approach: Alden’s PPSim1 (Alden 2012; Alden et al. 2012).
The design uses UML-style state diagrams to capture the do-
main behaviour, and then reworks the biological behaviours
into computational behaviour designs, also represented in state
diagrams. All transformation is manual. The documentation
records fitness for purpose arguments that give assurance that
the computational design is (a) demonstrably derived from the
domain model, and (b) appropriate for the development of the
software platform. The model has been fully validated with the
collaborating domain experts, and demonstrated to be appro-
priate for the defined simulation purpose — the exploration of
hypotheses concerning the timing and implicated behaviours of
Peyer’s patch formation in the gut of a mouse embryo. PPSim
has been extensively studied, both as the origin of new insights
in its domain (Alden et al. 2012) and as a case study in the
engineering of fit-for-purpose simulations.

2. Notations and metamodels
UML has an established abstract syntax that links behavioural
and class concepts2; some features that relate state and class
diagrams are summarised in Fig. 1. The state diagram concepts
capture the states of interest in the lifetime of an object of a class
and transitions between states, whilst the class diagram concepts
express data structure, in terms of attributes and operations, that
underpins OO models and implementation. Using a common
metamodel allows us to confidently relate concepts between
diagrams, and establishes the basis for model transformation
(Czarnecki & Helsen 2006). Other key concept correspondences
that are expressed in the full language definition include the
following.

– The state diagram references one class, defining permitted
behaviours of its objects; the states of the state diagram are
defined over the values of attributes of that class.

– The guard or condition that must be true for a transition to
occur is a Boolean clause.

1 www.kennedy.ox.ac.uk/technologies/resources/ppsim-peyers-patch
-development-simulator created by Kieran Alden.

2 OMG’s UML metamodels: https://www.omg.org/spec/UML/About-UML/

2 Polack and Alden

www.kennedy.ox.ac.uk/technologies/resources/ppsim-peyers-patch-development-simulator
www.kennedy.ox.ac.uk/technologies/resources/ppsim-peyers-patch-development-simulator
https://www.omg.org/spec/UML/About-UML/

Figure 1 Part of the metamodel for state diagrams and class
models in UML, based on UML 2.x and MOF metamodelling.
The BooleanClause class is shown as referencing the Attribute
class and calling the Operation class: in practice, Booleans
reference the name or value of an object slot, and call the
operations of an object.

– The literals in a Boolean clause may be (values of) at-
tributes of (objects of) the class or of any class which is
the target of an association from the class.

– A Boolean clause may imply (by the need to evaluate the
clause) execution of operations of the class or any class
which is the target of an association from the class.

– An action on a state implies calls to class operations.
– A transition is triggered when the condition on the tran-

sition becomes true; as well as conditions external to the
object, a transition condition may reflect that actions have
caused the object’s slot values to become inconsistent with
its current state.

In designing an agent simulation, state diagrams are used
to model agent behaviours, whereas, strictly, a class diagram
would model agent types, operations and interactions. In gen-
eral, agents are not synonymous with objects, but in practice,
and because the developments target OO agent platforms, the ab-
stract syntax and semantics of UML diagrams can be considered
consistent with the agent design.

2.1. State diagram concrete syntax
The concrete syntax used in the case study state diagrams (Fig-
ures 2 and 3) represents object creation by an arrow (transition)
from a solid black dot to a named state, represented as a soft
rectangle. A state contains the state name and may list labelled
actions that take place when an object enters or exits the state, or
occur whilst the object is in the state; these actions can change
the value of attributes of the object, reference linked objects, etc.
The case study does not use the full UML transition syntax: a
transition is an arrow from the source state to the target state,
labelled with the condition on the transition.

3. Validating behaviour designs
The complex-systems simulation development scenario is one
that even critical systems engineers are not familiar with: rather
than engineering a system that minimises uncertainty, risk or

hazards, simulation development seeks to faithfully replicate the
uncertainty of an incompletely understood reality. Simulation
validity is not binary, but is an argument that acknowledges
assumptions and uncertainties – an argument that must be revis-
ited if the domain understanding, the design, or the simulation
purpose is modified.

The process of validation includes conventional software
testing, and also trial-and-error tuning of the simulation so
that the desired high-level behaviours emerge, without being
explicitly programmed in, from behaviours and parameterisation
that are an acceptable match to the real system. In the PPSim
project, significant effort went into modelling the relevant parts
of the biological domain and reviewing the models and fitness
for purpose arguments with domain experts (fitness for purpose
arguments are discussed in, e.g. (Ghetiu et al. 2009; Alden et
al. 2011; Polack 2015; Stepney & Polack 2018)), to confirm
their appropriateness to specific experiments. Compared to
conventional software engineering, the published fitness for
purpose arguments (Alden et al. 2011; Alden 2012) are neither
complete nor sufficient: they only establish conditional validity.
However, they present the basis on which trust is established in
the simulation, which is the best we can hope for in complex
systems simulation.

A validation step on design models, which is essential for
MDE, is to check that the models conform to their metamodel.
The case study state diagrams can be shown to conform to the
metamodel in Fig. 2.1, and to be logically consistent (logical
consistency rules form part of the full metamodel definition).
For example, the literals or values in the Boolean clause repre-
senting a transition condition must be consistent with the defini-
tion of the source state of the transition; and, the conjunction of
the Boolean clauses representing conditions on transitions from
a state must be logically complete.

PPSim has demonstrated over the years that manual confor-
mance checking is not sufficient. It is easy to create a confor-
mant diagram that is not a valid representation of the domain.
The challenges of simplifying and translating biological be-
haviour, states and controls into computational language mean
that model structure and semantics are sometimes shown to be
inconsistent with the domain — we are still discovering issues
with the relatively simple state diagrams (below) that describe
the behaviour of PPSim cells. The fitness for purpose assurance
needs to be extended beyond the design phase, to establish ex-
plicit mappings (traceability) between designs models and code.
Model transformation could support demonstrable fitness by:

– reducing the risk of coding errors – any errors are in the
transformation rules, and are thus systematic (and perhaps
therefore easier to spot);

– providing repeatable coding — the same rules applied to
the same diagram produce the same code; by extension, the
same rules applied to an amended diagram would produce
appropriately amended code;

– enabling quality simulation creation without advanced soft-
ware engineering skills — the use of transformation (once
the transformations have been written) frees the expert
software engineer to focus on challenges such as finding
representations that optimise computational efficiency with

Developing Simulations 3

understandability (of the models) and usability (of the sim-
ulator and its results).

4. The PPSim Design: state diagram models
of cells

The original PPSim design (Alden 2012) was created in collab-
oration with domain experts led by Henrique Viega-Fernandes
(see e.g. (Veiga-Fernandes et al. 2007)). The diagrammatic
design comprises state diagrams for each of three implicated
cell types (there is also an activity diagram, but it did not offer
any additional insights to our work here)3. The simulation is a
time-stepped execution of cell-level behaviours; the emergent
behaviour that should arise is the formation of clusters. In line
with conventions in complex systems modelling, there is noth-
ing in the model that requires or programs the formation of
a cluster: a cluster arises as a consequence of the behaviour
of many cells, and can be tuned by adjusting cell characteris-
tics, thresholds, creation events, and parameters of the system
(referred to as calibration and sensitivity analysis (Stepney &
Polack 2018; Read 2011; Alden et al. 2016)).

In PPSim, the three cell types are known as LTo, LTi, LTi(n).
There is a text discussion of the representation of each concept
from the domain, and a comprehensive argument that the model
is an appropriate model of the domain, given the hypotheses to
be considered (Alden 2012). In this paper, in order to present a
coherent narrative, the labelling of the state diagrams has been
slightly simplified, but the biological labelling is retained, not
least to emphasise that these are actual design diagrams, not
academic examples.

In the simulator, the three types of cell are all located in a
continuous space representing the mouse gut. In simple terms,
the LTo cells stick to the gut wall, whilst LTi and LTi(n) cells
move within the dominant direction of flow through the gut.
LTo and LTi cells can bind a “RET Ligand”. A bound LTo pro-
duces “chemokine” which results in chemokine gradients in the
environment; LTi cells can detect the local chemokine and may
move towards higher chemokine concentrations (chemotaxis).
The notes accompanying the original state diagrams (Alden
2012) explain motion, contact and binding, the details of which
do not concern us here.

4.1. LTo Cells
Peyer’s patch formation takes place around an active LTo cell —
one which can “bind a RET Ligand” — and requires formation
of stable connections to cells around it. In the simulation, a LTo
cell is created in situ and does not move; other cells may come
in to contact with or bind to a LTo cell (Alden 2012).

Fig. 2 shows that a LTo may be in a state that allows Peyer’s
patch development (expressing RETligand) or not; there is a
3 Anonymous reviewers wondered why the transformation source is high-level

state diagrams, and why we had not developed a class diagram in parallel: the
simple answer is that the diagrams are the actual design models developed,
some eight years earlier, and are typical of design models created in related
projects. The diagrams have to be understandable to immunologists, in order
to allow crucial review and checking (validation). There is no original class
diagram: immunology comprises cells not objects, and the key feature of a
cell is its behaviour; even if a class diagram had been created, it would not
have been meaningful to the scientists, and could not have been validated.

Figure 2 State diagram of LTo cell, based on (Alden 2012).
Notations and meaning: see Section 2.1.

time-out on the former state. An active LTo can contact of bind
many other cells, and contacts are monitored by the cell: there
are various thresholds at which changes of state are identified.
The first state change occurs when the LTo binds to a LTi(n) cell
for the first time — the transition Touching LTin AND binding
changes the cell state to Bound to LTin. The next state change
occurs when the LTo cell binds to a LTi cell, transitioning the
cell to the state Bound to LTin and LTi; in this state the LTo can
react to environmental chemokine (“chemokine upregulation”).
After further non-state-changing contacts, the final transition
occurs when a sufficient strength of adhesion (binding) and
chemokine reaction is reached (though cumulated cell contacts);
the LTo is described as “mature” (Alden 2012) – in simple terms,
the cell is now in a permanent cell cluster.

4.2. LTi and LTi(n) — Mobile Cells
LTi and LTi(n) cells (Fig. 3) are mobile, and share many charac-
teristics (at least in simulation), differing only in that a LTi(n)
cell is not responsive to chemokine. Cell movement is modelled
as an action during a state — the form of movement is different
in each state, mediated by chemokine reception, when the cell
is in contact with a LTi, or when bound to a LTo cell.

4.3. Agent Simulation Environment
A platform such as Java Mason provides a customisable envi-
ronment for agent interaction. Some of the features provided
are as follows.

– The simulation has a standard time step, and every agent
is visited and updated in each step.

– There is an underlying spatial model, and agents have a
location in the space.

– Experimentation may require measurement, encoded as
data outputs.

4 Polack and Alden

Figure 3 State diagram models of LTi (Fig. 2(a)) and LTi(n) (Fig. 2(b)) cell, based on (Alden 2012). Notations and meaning: see
Section 2.1.

– A simulation can be run in visual or non-visual mode. In
the latter, execution is faster and can be used to gather large
sets of output data for experimental use.

5. Creating a manual transformation

The rules proposed for a manual transformation from the pub-
lished state diagrams to a class model exploit the metamodel
relationships between concepts, Fig. 1. We propose five steps.

1. Use meta-information (which diagrams exist) to identify
classes and potential generalisations.

2. Represent the named states for each class using attributes.

3. Represent references to (objects of, other) classes in transi-
tion conditions, using associations.

4. Systematically consider literals in Boolean clauses (condi-
tions) and information on actions; determine attributes of
the class or other classes.

5. Systematically review conditions, actions, and class fea-
tures already identified, deriving class operations needed
to update attribute values and enact the behaviours deter-
mined by actions.

Manually-derived class diagram features are now sum-
marised. Explanation for Steps 4 and 5 is in boxed text. Note
that any step might identify features other than its main focus.
Also, a derivation sometimes uses the explanatory text from
(Alden 2012), in addition to the state diagrams.

5.1. Step 1: Identify Classes and Generalisations
The set of models is the meta-information used to determine the
set of classes, one for each state diagram:

– LTo class
– LTi class
– LTi(n) class

However, it is easy to see that all three state diagrams relate
to types of cell that share attributes and behaviours related
to contact and binding, whilst mobile cells share movement
characteristics. We can therefore deduce generalisations: Cell
for the common features of all cells and MobileCell for the
common features of LTi and LTi(n).

5.2. Step 2: Add state attributes
There are several ways to represent state-diagram states in a
class. Each state can be represented as a separate Boolean
attribute: the attribute is true when an object is in this state.
This representation requires conditions: (a) at any time, at most
one of an object’s state attribute can be true; and (b) a partial
order is needed to define permitted state changes. Alternatively,
a single state attribute with an ordered type, such as Integer,
avoids the need for both conditions.

Here, a compromise solution, which is readable — an impor-
tant consideration when models need to be validated by domain
experts as well as software engineers — but requires an ordering
constraint, is to use enumerated types, represented in UML as
an «enum» type class (Fig. 4).

5.3. Step 3: Identify associations implied by conditions
A UML state diagram captures the lifecycle of objects of one
class but its conditions can reference properties of other objects

Developing Simulations 5

Figure 4 «enum» stereotypes defining the permitted states of
cells shown in Figs 2 and 3.

or classes. Thus, to identify associations, we systematically
review every condition on each state diagram.

The LTo transition conditions record contact and binding
with LTi(n) and/or LTi cells (Fig. 2, above), implying associa-
tions from the LTo class to each type of mobile cell, which can
be modelled as an association to the parent class, MobileCell.
Multiplicity is 1:m — one LTo may bind any number of mobile
cells; each mobile cell can bind to at most one LTo.

The documentation accompanying the state diagrams indi-
cates that factors such as binding are mediated by the number of
contacts or bindings, and thus the number of links is important:
this can be recorded in an attribute, and/or calculated by running
a function over the association links.

There are also two specific bindings that are important to
LTo state changes: the first bind to a LTi(n) and the first bind
to a LTi. These conditions map to optional 1:1 associations (an
alternative would be to model these as attributes).

Turning to the mobile cells, both the LTi and LTi(n) state
diagrams have transition conditions relating to contact (Fig. 3).
These conditions confirm the contact relationships identified for
LTo cells. The documentation also describes the various forms
of movement of these cells, from which we can deduce that the
location, and thus the identity, of a bound LTo is important.

5.4. Step 4: Identify class attributes
In addition to the state attributes (Step 2), attributes can be
deduced from the state diagram conditions; the documentation
accompanying the state diagrams helps to determine some of
the details. To avoid making arbitrary decisions, the types of
attributes are descriptive (e.g. adhesion-related attributes have a
type, AdhesionType), unless a type such as Integer or Boolean
is obvious. Systematic analysis of conditions results in four
attributes, as follows.

– LTo.time = 0
– LTo.chemoExpressionLevel
– LTi.localChemokineLevel
– Cell.adhesionExpressionLevel = 0

5.5. Step 5: Deriving class operations
The class model needs to provide operations that set, get (by
passing messages over object links) and adjust the values of
attributes, as well as operations to implement the actions and
condition evaluations in the state diagrams. Setters and getters
are straightforward, and are usually omitted from UML class
diagrams.

For the state attributes on the cell classes, operations need
to check the conditions on transitions at each time step, and

advance the state when a transition condition is true.

Step 4 Details:
The relevant conditions from the state diagrams are:

LTo: time=π;

chemokine=maxChemokine and adhesion
sufficient.

LTi: Local chemokine level triggers chemotaxis
(>= φ);

Local chemokine level not enough for
chemotaxis (>= φ);

Adhesion sufficient;

Adhesion insufficient.

LTi(n): Adhesion sufficient;

Adhesion insufficient.
time is a local timer on a LTo cell which can be incremented
to a threshold, π. The documentation states that π is a
simulation-level parameter.
The documentation also describes the derivation of
chemokine gradients and associated initial and maximum
values, using simulation parameters whose values are deter-
mined by calibration. A LTo cell’s chemoExpressionLevel
is calculated from a chemokine curve, whilst a LTi cell cal-
culates the localChemokineLevel based on the position and
chemoExpressionLevel of its nearest LTo.
The documentation explains that cells have a probability of
adhesion that increases with duration of contact; all cells
have an adhesionExpressionLevel that is initially set to
0. There are simulation parameters to establish how the
adhesion level is set and incremented.

The state change operations are:

– LTo.changeState()
– LTi.changeState()
– LTin.changeState()

Turning to the attributes identified in the previous steps, the
attribute LTo.time has two implied operations: increment and
comparison the counter value to the simulation parameter, π:

– LTo.incrementTime()
– LTo.checkTime()

For adhesion, operations are needed to evaluate adhesion
sufficiency.

– LTo.incrementAdhesion()
– MobileCell.calculateAdhesionProbability()

Similarly, operations are needed for chemokine expression,
evaluation, and triggering chemotaxis:

– LTo.updateChemoExpressionLevel()
– LTi.calculateLocalChemoLevel()

6 Polack and Alden

Figure 5 Derived class diagram (omitting setters and getters).

– LTi.establishChemotaxis()

These operations also support many of the actions on the
states in the state diagrams.

Step 5 LTo Action Details:
The LTo action Entry: time = 0 has been accounted for by
setting the initial value of the time attribute to 0.
The LTo action, Entry: upregulate adhesion molecules
corresponds to the operation to incrementAdhesion().
The LTo action, E1: upregulates chemokine (env), is cap-
tured by updateChemoExpressionLevel().

Operations to implement motion are derived from actions on
LTi and LTi(n) cell states:

– MobileCell.calculateSpeed()
– MobileCell.moveRandomWalk()
– MobileCell.constrainedRandomWalk()
– LTi.chemotaxisRandomWalk()
– LTi.contactLTiRandomWalk()

The last derived operation, LTi.contactLTiRandomWalk()
identifies a missing association: if the movement of a LTi cell
can be influenced by another LTI cell in which it is in contact
(Fig. 3), then there must be an association recording which other
LTi cells a specific cell is in contact with.

Reviewing the operation derivation, it is apparent that many
conditions relate to contact or binding and the calculations of
adhesion and bind strength. We therefore derive two further
generic operations,

– Cell.calculateContact(Cell,Cell)
– Cell.calculateBind(LTo,MobileCell)

Step 5 Motion Details:
From the documentation accompanying the state diagrams
(Alden 2012), the speed of a mobile cell is drawn at random
from a Gaussian distribution, and determines how far the cell
moves in each time-step. The form of motion is determined
as follows:

– as a random walk (E1: random movement in Fig. 3),
until cell interactions start;

– as a chemotaxis-weighted random walk (E2: mvt with
chemotaxis) in which the probability of moving in any
direction is related to chemokine strength, calculated
from the relative location of a LTo emitting chemokine;

– as a random walk weighted by the adhesion strength
and a probability that a bound cell can move away from
the binding LTo (E4: constrained RM). The movement
of a LTi may also be constrained according to action
E3: mvt with contacted LTi, where two LTi cells are in
contact. This form of movement, like the chemotaxis-
weighted random walk, only applies to LTi cells.

Note that the scope of operation coverage here is limited;
although some aspects of composite operations can be deduced
from the notes with the state diagrams, the original design
does not include any form of sequence diagram that describes
composite operation details.

The full set of derived classes, attributes and operations is

Developing Simulations 7

shown in Fig. 5, above.

6. Validating the derived model

Manual derivation of the class diagram has carefully checked
each step against information in the state diagrams, and accom-
panying documentation in (Alden 2012). As previously noted,
manual processes are error-prone: the manual PPSim derivation
has been revisited five times, and, although the derived class
structure is consistent, the detail of each class differs depending
on how each feature of the state diagram is interpreted.

����1���'�..��
� ''.

�-/)����$")�''$)"t���/�#�$(ua1*$�
�'/ -
�$�/�/ t���/�#�$(_
�*ua1*$�
�1*$�� ''�*''$.$*)t���/�#�$(_�*0�' ua�*0�'
��'�0'�/ �����!! �/8t���/�#�$(_�*0�' ua�*0�'
+ -!*-(�*1 �!/ -�*)/��/t���/�#�$(_�*0�' ua�*0�'
+ -!*-(�*1 9t���/�#�$(_�*0�' a1*$�
!$)�� �- ./
�*t� ''._���/�#�$(ua�*0�'
��'�0'�/ � 2�*.$/$*)t�*0�' 8�_�*0�' _�*0�' _���/�#�$(
ua�*0�' 8�
'/$'/$)�*''$.$*)t�*)/$)0*0.8�ua�**' �)
0+��/
�*�/�/ t
�*_� ''._$)/_�*0�' _�*0�' ua1*$�
0+��/ �
���/�/ t�
�*)�/-*(�'ua1*$�
�*''$.$*)�# �&8t���/�#�$(ua�**' �)
$((�/0-
�*��/$1�/$*)t���/�#�$(_
�*ua1*$�
-*''�-*0)�t�*0�' _�*0�' _���/�#�$(ua�*0�' 8�
�$./�)� � /2)�2*�*$)/.t�*0�' 8�_�*0�' 8�_�
�*0�' ua�*0�'
$.�3+- ..$)"���
$"�)�tua�**' �)
c

�")/
��/$)�a��*0�' 8�
�")/�- 1$*0.
��/$)�a��*0�' 8�
�")/�-��&�/�-/
��/$)�a��*0�' 8�
�")/�-��&�)�
��/$)�a��*0�' 8�
/-��&
)"/#�a��*0�'
/-��&
)"/#���' ��a��*0�'
/-��& �� '*�$/4�a��*0�'
� ''�$.+'�� ()/�a��*0�'
�$./�*� �- ./
���/�$(�)��a��*0�'
/$(�-��& ��a�$)/
./*++ ��a��**' �)
� ''�/�/ �a�$)/
� ''�+ ��a��*0�'
� ''�+ ����' ��a��*0�'
� ''�+ �� �*)��a��*0�'
.$(��-�(.�a��$(��-�(/ -.8
�*)/��/ �� ''�a�� ''.
1��(��# .$*)�!! �/�a�����f��# .$*)f�!! �/
 3+- ..$)"���
$"�)��a��**' �)

����1���'�..��

�*

��/$1�/ ���
$"�)�tua1*$�
- (*1 ���
$"�)�tua1*$�
./��' �*)/��/t� ''._$)/_�*0�' _�*0�' ua1*$�
c

�# (*�$"�#- .#*'��a��*0�'
�# (*
$) �-��%0./�a��*0�'
$(
�*� ''�*)/��/�*0)/�a�$)/
��/$1 �$(�a�$)/
./*++ ��a��**' �)
+�/�#�0(�a�$)/
"-$�
*��a�
)/8�
./�-/$)"�# (*
$) �-��%0./�a��*0�'
)�$)"�# (*
$) �-��%0./�a��*0�'
./�-/$)"�����3+- ..$*)
 1 '�a��*0�'
)�$)"�����3+- ..$*)
 1 '�a��*0�'
'�$)�*)/��/�/�/ �#�)" �$(�*$)/�a�$)/
'�$�*)/��/�/�/ �#�)" �$(�*$)/�a�$)/
(�/0-
�*�*)/��/�/�/ �#�)" �$(�*$)/�

�������a�$)/

����1���'�..��

�$

�# (*� � +/*-�a��# (*&$) � � +/*-

����1���'�..��

�$)

Figure 6 Cells superclass generated from PPSim code (omit-
ting setters, getters and features needed to run Java Mason)

Since the Java Mason PPSim code exists, we can apply a
more independent validation check, by comparing the class dia-
gram derived manually (referred to as the derived model) and
the class structure of the existing PPSim code (the code model),
which can be extracted by any development environment capa-

ble of representing code structure as a UML-style class model4.
The code model extracted from the PPSim code includes setters
and getters, making the image too large to reproduce clearly.
The key agent features are reproduced in Figs 6 and 7.

����1���'�..��

�*

��/$1�/ ���
$"�)�tua1*$�
- (*1 ���
$"�)�tua1*$�
./��' �*)/��/t� ''._$)/_�*0�' _�*0�' ua1*$�
c

�# (*�$"�#- .#*'��a��*0�'
�# (*
$) �-��%0./�a��*0�'
$(
�*� ''�*)/��/�*0)/�a�$)/
��/$1 �$(�a�$)/
./*++ ��a��**' �)
+�/�#�0(�a�$)/
"-$�
*��a�
)/8�
./�-/$)"�# (*
$) �-��%0./�a��*0�'
)�$)"�# (*
$) �-��%0./�a��*0�'
./�-/$)"�����3+- ..$*)
 1 '�a��*0�'
)�$)"�����3+- ..$*)
 1 '�a��*0�'
'�$)�*)/��/�/�/ �#�)" �$(�*$)/�a�$)/
'�$�*)/��/�/�/ �#�)" �$(�*$)/�a�$)/
(�/0-
�*�*)/��/�/�/ �#�)" �$(�*$)/�

�������a�$)/

����1���'�..��

�$

�# (*� � +/*-�a��# (*&$) � � +/*-

����1���'�..��

�$)

Figure 7 Cell Classes generated from PPSim code (omitting
setters, getters and features needed to run Java Mason)

6.1. Comparing the derived model and the code model
The most obvious difference between the derived and code mod-
els is that the code only uses one generalisation, Cells (sic).
This means that many attributes and operations appear in differ-
ent places and some have wider scope than in the derived model.
The different placement complicates class-by-class comparison
between the derived and code models. Instead, the following ad-
dresses the generic concepts in turn: state and time, chemokines

4 An anonymous reviewer makes the excellent point that it is also important to
ensure that the behaviour represented in the models matches the behaviour
of the code. Because the case study is an existing laboratory simulator, this
has been extensively studied as part of the original development: PPSim was
subject to extensive calibration and sensitivity analysis (Alden 2012; Alden et
al. 2012), using Alden’s open-source simulation analysis tools (Alden et al.
2016).

8 Polack and Alden

and adhesion, movement, contact and binding. Again, deriva-
tion details are presented in boxed text.

6.2. Derived and code models of state and time
The code model has a generic integer state variable
Cells.cellState, whereas the derived model has a state at-
tribute, with an enumerated type, on each cell subclass. Whilst
neither model is inherently wrong, the derived model allows
traceability to the design and the biological domain, whilst the
specific state change operation on each cell class facilitates call-
ing the class operations to execute checks and run actions. The
inherently ordered integer type used in the code model helps
in coding state change, but the code model does not cleanly
map to the state changes in the state diagrams — there are
many operations encoding behaviour that causes or arises from
state changes, which seem to be coding aspects of biological
descriptions, rather than the design in the state diagrams.

Both derived and code models have an attribute on LTo
expressing its local timer. However, where the derived
model provides distinct operations for the time attribute
(LTo.incrementTime() and LTo.checkTime()), checking time
in the code model is conflated with the effect of exceeding the
time limit.
Details of cell state change, code model:
The code model Cells operations that change the state are:

– alterLTiState(): the condition and effect of a LTi
binding to a LTo;

– updateLToState(): one state change, captured as
part of the LTo.changeState() in the derived model;

– updateRLNSState(): the effect of a non-stromal (i.e.
mobile) cell expressing RET-ligand – the state diagrams
do not have any corresponding terminology;

– artnRETSignalling() and isExpressing-
RETLigand(): LTo and LTi RET signalling,
implicated in state changes – encodes an interpretation
of the biology rather than the behaviour modelled in
the state diagrams;

– immatureLToActivation(): part of the LTo lifecy-
cle – immature is a biological label for a LTo that is still
undergoing contact and binding.

Details of time, code model:
Code model operations that reference LTo.activeTime are
activateRETLigand() and removeRETLigand(): the
checking of time is conflated with state changes.
The code model also has three timing attributes to record
contact duration, which are used in calculating bindings (e.g.
by the operation LTo.stableContact()). This is below
the level of detail shown in state diagrams.

– LTo.lTinContactStateChangeTimePoint,
– LTo.lTiContactStateChangeTimePoint,
– LTo.matureLToStateChangeTimePoint.

The code model also includes Cells.timeTracked:int
and LTi.getTimeTracked(), which support experimental
data collection.

6.3. Derived and code model chemokine representa-
tions

The code model again encodes details of chemokine handling
which are not taken from the design diagrams, whereas the
derived model proposes ChemokineType as a placeholder for
an abstract data type which, conventionally, would capture the
basic chemokine operations as well as the attribute type.

The derived model provides clear traceability and separa-
tion of concerns, though we do not explore here whether this
conceptual clarity would complicate the encoding of low-level
behaviours in the OO agent platform. In software engineering
terms, the use of an abstract data type would generally be con-
sidered to be a more appropriate solution than a direct encoding
of type-related behaviours.

Details of chemokine handling, code model:
The code model LTo captures chemokine levels at both
cell and system level, in attributes chemoSigThreshold,
chemoLinearAdjust, startingChemoLinearAdjust
and endingChemoLinearAdjust.
The evaluation of local chemokine by LTi cells is captured in
the movement operations, which are on the Cells superclass
in the code model.

6.4. Derived and code models of contact and binding

Binding is fundamental to Peyer’s patch formation. PPSim uses
the concept of adhesion to encode binding strength and, since it
is common to all cells, both the derived and code models place
adhesion-related features in the Cell superclass. In the derived
model, AdhesionType is again a place holder for an abstract
data type, whereas the code model again provides operations
that express detail from the documentation.

Details of adhesion:
In the derived model, MobileCell.calculateAdhesion-
Probability() calculates the adhesion probability
factor. Operation Cell.calculateBind() compares
this to the Cell.adhesionExpressionLevel to deter-
mine whether adhesion is sufficient to maintain a
bind. Cell.adhesionExpressionLevel is updated by
LTo.incrementAdhesion().
In the code model, the encoding captures the biochemistry
of binding, referring to “VCAM expression”: attributes
LTo.startingVCAMExpressionLevel, LTo.ending-
VCAMExpressionLevel, Cells.vcamAdhesionEffect,
and operation Cells.calculateVCAMEffect(). The
type VCAMAdhesionEffect suggests that the code uses an
abstract data type for adhesion, but the detail is lower-level
than in the derived model.

The approaches to recording contact and binding, and the
associated calculation structures, follow different design ap-
proaches but support a similar computation. In the derived
model, the Cell superclass has the operations to calculate con-
tact and binding (calculateContact(), calculateBind()), Whilst
the code model provides Cells.contactedCell to identify
the cells that are in contact with a particular cell.

Developing Simulations 9

Details of contact and binding:
The derived model records that a LTo has the achieved re-
quired bindings using attributes, LTo.boundLTi:Boolean
and LTo.boundLTin:Boolean, providing operations to
check bindings; associations allow interrogation of the link
to find which cell(s) are bound.
The code model has a generic operation which allows any
cell to find its nearest LTo cell, Cells.findNearestLTo().
The approach avoids the need to record that a cell is in
contact, and subsequently to determine which LTo cell is
the current focus of movement. In the code model, the
encoding of contact follows the documentation (Alden 2012)
— cell centres must be within the sum of half their respective
diameters; the code model also captures the documented
calculation of binding strength for any cells in contact with
a LTo, using adhesion level and a generated random number
(to maintain stochasticity of binding).
The code model attribute, LTo.imLToCellContactCount
plays the same role as LTo.countBinds in the derived model.
The im prefix is a reference to the biological term, immature,
which describes RET-ligand LTo cells before maturity. The
behaviour associated with immaturity is to record contact
and binding to mobile cells, which is captured in Fig. 2 as
the ability to undergo a non-state-changing transitions.

6.5. Derived and code models of movement
The basics of movement (moving a mobile cell to a new location,
according to its speed and the constraints imposed by binding)
are similar in both models. In the derived model, we follow
the state diagrams in assigning movement only to MobileCell
classes, providing operations for each form of cell movement.
These operations need to access cell locations, binding, and
adhesion data. By contrast, the code model again encodes lower-
level calculations described in documentation; all the movement
behaviours are on the superclass, Cells, even though LTo cells
do not move.

7. Discussion
The first point to be made in discussing the manual derivation
of the class model is that, whilst the derivation is an academic
exercise, both the state diagrams that are the starting point for
derivation, and the Java Mason code that is the target are real.
The fact that the source and target are part of a documented
project with published research results. It is easy to assert
that a different starting point would have produced a cleaner
derivation, but our goal here is to explore transformation from
existing diagrams. One issue that this highlights is just how
many inconsistencies arise when using software engineering
techniques such as UML modelling without tool support.

The derivation shows that, in principle, state diagrams (even
quite abstract ones) can be mapped into at least a partial class
diagram, with the structure and features needed to express cell
agents and behaviours. However, the validation of the derived
class model shows that the derived class model is not sufficient
to support transformation to code, and does not provide the

agent-implementation information that would be needed to de-
rive a Java Mason implementation. This is unsurprising, since
we made no attempt to model the Java Mason “agent language”,
or to analyse how the platform encodes the agent concepts,
behaviour, parameterisation, visualisation and data collection.

Details of movement: code model:
In the code mode, the key movement-related at-
tribute is CellSpeed, but there are additional speed at-
tributes, Cells.cellSpeedScaled, Cells.cellSpeed-
Second and Cells.trackedVelocity for use in experi-
ments.
The code operations are at a lower level than those in the
derived model, and focus on the effect of movement (to
relocate the cell) rather than the movement itself:
performMoveAfterContact(),
performMove(),
calculateNewPosition(),
rollAround() and
distanceBetweenTwoPoints(). The code model’s
performMove(), performMoveAfterContact() and
rollAround() implement the unconstrained random walk,
a random walk constrained by contact, and the movement of
a bound cell that cannot break contact, respectively.
The code model has some additional
movement-related operations for detecting and
avoiding cell collisions (Cells.lTiLTin-
CellCollision(), Cells.collisionCheck() and
Cells.avoidCellCollision()), behaviour that is not
expressed in the state diagrams.

Taking a different perspective on the insufficiency of the
derived class model, we can envisage potential next steps to
include developing a metamodel for Java Mason, and explor-
ing transformation workflows with intermediate models. How-
ever, we can also draw insight into the engineering ideal for
behavioural design models. The PPSim state diagrams do not
provide sufficient detail for code generation, whilst the accompa-
nying documentation does not have the formal structure needed
to support model-management. To develop MDE support for
simulation development — at least in the context of the wider
CoSMoS process with its emphasis on demonstrable fitness for
purpose — it would be useful to record some more explicit
conventions and guidance on the software engineering detail
that software engineers need to provide in behavioural design
models. CoSMoS has focused on assuring the expression of do-
main information in the design; automated coding would need
to additionally assure the inclusion of sufficient computational
detail in design.

The attempt to validate the manually derived class model
highlights the creativity of manual coding. In PPSim, the pro-
grammer has created code that maps to the domain model, but
does not always follow the design expressed in the state di-
agrams. Use of MDE model transformation would force a
fundamental change, potentially facilitating traceability and
demonstration of the fitness for purpose at the cost of removing
most opportunities for creative coding. However, it is also likely
that transformation could improve code quality and facilitate

10 Polack and Alden

creation, maintenance and reuse of code. A side-effect of re-
moving creativity from coding is to enable creative modelling
and transformation solutions that are reusable across simulation
designs.

Looking in more detail at the steps of the manual derivation,
the systematic approach relies on meta-information such as the
existence of state diagrams, and on intuition (in generalisation).
However, it is arguable that, for code generation, the class struc-
ture could be derived without reference to meta-information
and that generalisation can be retro-fitted by post-hoc review
of features that classes have in common (as is often done in
manual coding).

A challenge that the derivation faces, but the native coder
did not, concerns associations. It is straightforward to identify
the need for an association, but there is no direct way to en-
code associations: object linkage cannot be captured in code
at class level. We might conclude, therefore, that there is no
point in deriving associations. Indeed, observing that the hand-
crafted code uses the (unstructured) documentation to create
many of the computational details, rather than the (well-defined)
state diagrams, we would recommend that effort should focus
on systematically identifying message passing to support the
calling of derived operations. Indeed, it seems that sequence
diagrams, or similar, that express the message flows that enact
behaviour might be necessary for transformation. This should
not be surprising, since software engineering has long recog-
nised that early effort in modelling and validation facilitates
quality software development outcomes. Tying down the be-
haviour specification early in development leaves fewer open
options in coding, and makes design decisions easier to record
and analyse.

The derivation of classes exploits all the abstract concepts
of the state diagrams, and applies the conceptual equivalences
defined in the metamodel. However, the manual derivation also
needs an intuitive understanding of how conditions and actions
reference object features. The manual approach is relatively
easy to describe, but, because a condition may access almost any
possible value, attribute, object or class, it would be challenging
to capture the process as a set of discrete transformation rules.
Furthermore, the documentation accompanying the original
state diagrams was repeatedly used to complement the state
diagrams, and this would not be available to an automated
transformation. The derivation has not addressed the detail of
operations, or even the pre- and post-conditions, which would
be an important part of a code implementation.

Looking in more detail at the code model, there are clear
reasons why the code includes detail that is not, and cannot
be, captured in the design models. The code-model classes
include attributes and operations used to: (a) record attributes
and operations needed for experimental results; (b) operate the
simulator (stop and start runs); and (c) support different experi-
mental set-ups of the simulator. An automated transformation
assumes that only the design models are required to derive code,
so further work is needed, using patterns, templates or other
transformation models, to support code generation. There are
simulation platforms that encapsulate the simulator code, e.g.
through application program interfaces. However, such plat-

forms tend to have significantly reduced flexibility: the power
of the OO platforms is their ability to support any behaviour and
representation that can be expressed in OO terms. This trade-off
between flexibility and convenience is again a common issue in
software engineering.

In attempting to validate the derived model against the code
model, the effect of open design decisions is very evident. It
is arguable that code derived from the diagrams would be bet-
ter structured than that manually coded — it would certainly
have better traceability and maintainability. Transformation
would also remove some of the terminology issues, where the
code-model naming differs from the state-diagram naming con-
ventions. More specifically, transformation would eliminate the
possibility of a concept having different names in design models
and code.

It is interesting to note that the detailed documentation ac-
companying the design and the PPSim code model (Alden 2012)
both facilitate code-level validation by the domain expert (biolo-
gists): the domain expert is reassured that the code captures the
calculations that they understand. If a full model transformation
were possible, however, there would be no need for the domain
expert to re-validate at implementation: fitness for purpose ar-
gued at the domain and platform model levels would pertain by
transformation to the code.

8. Conclusions
A premise of the work presented here is that, for complex sys-
tems simulation, model transformation would allow the software
engineer to focus on solving design problems rather than just
creating code. We have confirmed by manual transformation
that the design contains a part of the information needed to
create code. Ideally we would like to have more algorithmic
behavioural models (sequence diagrams) that formalise the de-
tail of behaviours captured in the documentation, making it
accessible to transformation. If the designers know that this
is desirable, effort could be put into converting documented
calculations into transformable diagrams. There are, however,
still aspects where it is not clear whether the human interpre-
tation used in the manual transformation could be captured as
transformation rules.

The attempt to validate the derived class model against the
class structure of the PPSim code shows that, at a sufficiently
abstract level, the models have similar coverage, although the
manual transformation made different design decisions and
used different approaches to supporting the same behaviours.
We speculate that code created by transformation might have
better structure than code created variously from biological
detail, platform and domain modules. A clear conclusion is
that, by using model transformation of validated models, effort
could be focused on fitness-for-purpose and trustworthiness
at domain and platform levels, rather than on code validation.
However, it is also clear that we cannot simply map our manual
transformations into a transformation model; we either need
richer design models or we need intermediate models to build
up to code-level information.

We are starting to investigate modelling and model-

Developing Simulations 11

management support not only for model-to-code transforma-
tions, but also for the process of deriving models of complex
systems that will be simulated, and of modelling the experimen-
tation.

A caveat on the current work on model transformation sup-
port is that, with the increasing recognition of agent simulation
as a tool for research on complex systems, the widely-used OO
(Java-based) platforms will be replaced by media more suited
to representing systems dominated by behaviour.

The discussion has not addressed the wider aspects of simula-
tion validation. In practice, a research simulation is designed by
modelling and coding what is essentially the best-guess design.
Because the simulation is complex, the actual behaviour of the
simulation is only discovered through running it. In order to
align the simulation with the real system, calibration is used, and
this may lead to adjustment of parameter values, or even adjust-
ments to the code. Once a calibrated model produces acceptable
behaviour, at least within the intended operational scope, sen-
sitivity analysis is used to ensure that the observed behaviours
arise from appropriate parameter values and behaviours. Better
engineering support for simulation validation could include not
only automated model-to-code transformation, but also bidirec-
tional transformation, or round-trip engineering, to ensure that
platform models and code are mutually consistent.

Acknowledgments
Our work on simulation engineering is part of a long-running
effort involving many people. In particular, we would like
to acknowledge the contributions of Susan Stepney and Jon
Timmis and the CoSMoS project team (EP/E049419/1). We
would like to thank the two anonymous reviewers of this paper,
for their very insightful comments, and their acceptance of our
detailed description of how not to go about designing a model
transformation. We hope that Martin Gogolla will appreciate our
attempts at MDE on behavioural models, and our discussion of
validation, both of behavioural models and of our final product.

References
Alden, K. (2012). Simulation and statistical techniques to

explore lymphoid tissue organogenesis (Doctoral dissertation,
University of York). Retrieved from etheses.whiterose.ac.uk/
3220/

Alden, K., Andrews, P., Timmis, J., Veiga-Fernandes, H., &
Coles., M. C. (2011). Towards argument-driven validation
of an in-silico model of immune tissue organogenesis. In
Icaris (Vol. 6825, pp. 66–70). Springer. doi: doi.org/10.1007/
978-3-642-22371-6_7

Alden, K., Timmis, J., Andrews, P. S., Veiga-Fernandes, H., &
Coles, M. C. (2012). Pairing experimentation and compu-
tational modelling to understand the role of tissue inducer
cells in the development of lymphoid organs. Frontiers in
Immunology, 3(172).

Alden, K., Timmis, J., Andrews, P. S., Veiga-Fernandes, H.,
& Coles, M. C. (2016). Extending and applying Spartan to
perform temporal sensitivity analyses for predicting changes
in influential biological pathways in computational models.
IEEE Trans. Comp. Bio., 14(2), 431–422.

Czarnecki, K., & Helsen, S. (2006). Feature-based survey
of model transformation approaches. IBM Systems Journal,
45(3), 621–645. doi: doi.org/10.1147/sj.453.0621

Ghetiu, T., Alexander, R. D., Andrews, P. S., Polack, F. A. C.,
& Bown, J. (2009). Equivalence arguments for complex
systems simulations - a case-study. In Complex systems
simulation and modelling workshop (pp. 101–129). Luniver
Press. (ISBN: 978-1-905986-32-3)

Greaves, R. B., Read, M., Timmis, J., Andrews, P. S., But-
ler, J. A., Gerckens, B., & Kumar, V. (2013). In sil-
ico investigation of novel biological pathways: the role of
CD200 in regulation of T cell priming in experimental au-
toimmune encephalomyelitis. Biosystems, 112(2), 107–121.
doi: 10.1016/j.biosystems.2013.03.007

Moore, J. W. J., Moyo, D., Beattie, L., Andrews, P. S., Tim-
mis, J., & Kaye, P. M. (2013). Functional complex-
ity of the Leishmania granuloma and the potential of in
silico modelling. Frontiers in Immunology, 4(35). doi:
10.3389/fimmu.2013.00035

Polack, F. A. C. (2012). Choosing and adapting design no-
tations in the principled development of complex systems
simulations for research. In Modelling the physical world
at models. ACM Digitial Library. doi: doi.org/10.1145/
2491617.2491623

Polack, F. A. C. (2015). Filling gaps in simulation of
complex systems: the background and motivation for CoS-
MoS. Natural Computing, 14(1), 49–62. doi: 10.1007/
s11047-014-9462-5

Polack, F. A. C., Andrews, P. S., & Sampson, A. T. (2009). The
engineering of concurrent simulations of complex systems.
In Cec (pp. 217–224). IEEE Press. doi: 10.1109/CEC.2009
.4982951

Read, M. N. (2011). Statistical and modelling techniques to
build confidence in the investigation of immunology through
agent-based simulation (Doctoral dissertation, University
of York). Retrieved from /etheses.whiterose.ac.uk/id/eprint/
2174

Stepney, S., & Polack, F. A. C. (2018). Engineering simulations
as scientific instruments: A pattern language. Springer. doi:
10.1007/978-3-030-01938-9

Veiga-Fernandes, H., Coles, M., Foster, K., Foster, K. E., Patel,
A., Williams, A., . . . Kioussiset, D. (2007). Tyrosine kinase
receptor RET is a key regulator of Peyer’s Patch organo-
genesis. Nature, 446, 547 – 551. doi: doi.org/10.1038/
nature05597

Williams, R. A., Greaves, R., Read, M., Timmis, J., An-
drews, P. S., & Kumar, V. (2013). In silico investiga-
tion into dendritic cell regulation of CD8Treg mediated
killing of Th1 cells in murine experimental autoimmune
encephalomyelitis. BMC Bioinformatics, 14, S6–S9. doi:
10.1186%2F1471-2105-14-S6-S9

About the authors
Fiona Polack is Professor of Software Engineering at Keele
University, and a former member of the York Computational
Immunology Lab at University of York. While at York, she was

12 Polack and Alden

etheses.whiterose.ac.uk/3220/
etheses.whiterose.ac.uk/3220/
/etheses.whiterose.ac.uk/id/eprint/2174
/etheses.whiterose.ac.uk/id/eprint/2174

a member of the software engineering team, now led by Profes-
sor Dimitris Kolovos, responsible for the development of the
Eclipse Epsilon model management tool suite, co-supervising
many model management PhDs in the group. She works on
software engineering of demonstrably fit-for-purpose simula-
tions of complex systems, building on the work of the CoSMoS
Project. You can contact him at f.a.c.polack@keele.ac.uk or
visit https://www.keele.ac.uk/scm/staff/fionapolack/.

Kieran Alden was a post-doctoral researcher in the University of
York, Department of Electronic Engineering, having completed
his PhD in the York Computational Immunology Lab; he has co-
supervised many simulation projects in both immunology and
robotics. His work includes open-source tool support for simu-
lation including calibration, sensitivity analysis and statistical
analysis (Spartan, Robospartan, Aspasia). Dr Alden is now Lead
Data Scientist for Vianet Group plc. You can contact him at
kieran.alden@gmail.com or visit https://www.kieranalden.info/.

Developing Simulations 13

mailto:f.a.c.polack@keele.ac.uk?subject=Your paper "On developing and validating dynamic systems: simulation engineering"
https://www.keele.ac.uk/scm/staff/fionapolack/
mailto:kieran.alden@gmail.com?subject=Your paper "On developing and validating dynamic systems: simulation engineering"
https://www.kieranalden.info/

