
Journal of Object Technology | RESEARCH ARTICLE

Systematic Engineering of Mutation Operators
Pablo Gómez-Abajo∗, Esther Guerra∗, Juan de Lara∗, and Mercedes G. Merayo†

∗Universidad Autónoma de Madrid, Spain
†Universidad Complutense de Madrid, Spain

ABSTRACT In the context of software engineering, mutation consists in injecting small changes in artefacts – like models,
programs, or data – for purposes like (mutation) testing, test data generation, and all sorts of search-based methods. These
tasks typically require defining sets of mutation operators, which are often built ad-hoc because there is currently poor support
for their development and testing. To improve this situation, we propose a methodology and corresponding tool support for the
proper engineering of mutation operators. Our proposal is model-based, representing the artefacts to be mutated as models. It
includes a domain-specific language to describe the mutation operators, facilities to synthesize models that can be used to
test the operators, different metrics to analyse operator coverage, and services to generate operators when the coverage is
insufficient. We show automated support atop the WODEL tool, and illustrate its use by defining mutation operators for UML
Class Diagrams.

KEYWORDS Model-driven engineering; model mutation; model synthesis; metrics; class diagrams; WODEL.

1. Introduction
Mutation consists in the selective introduction of changes into
collections of artefacts of a certain type, like models, programs
or data. Mutation is at the core of many activities in soft-
ware engineering, like mutation testing (where programs are
injected faults with the purpose of evaluating the quality of a test
suite) (DeMillo et al. 1978; Hamlet 1977), test data generation
(like in mutation-based fuzzing, which consists in the creation
of new input data by introducing small changes to existing test
inputs) (Zeller et al. 2019), and search-based software engineer-
ing (which applies metaheuristic search techniques to software
engineering problems, where candidate solutions are combined
and mutated) (Harman & Jones 2001).

Mutation-based methods require the creation of mutation
operators able to change the target artefacts in appropriate ways.
For example, for mutation testing, operators need to emulate
common faults made by competent developers (Papadakis et al.
2019). Such operators are typically defined over the abstract syn-
tax tree of the program, which makes them difficult to test since

JOT reference format:
Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G.
Merayo. Systematic Engineering of Mutation Operators. Journal of Object
Technology. Vol. 19, No. 3, 2020. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2020.19.3.a5

the input data of the operators are programs. Moreover, muta-
tion operators are often defined ad-hoc using general-purpose
programming languages – like Java (Just 2014) or C (Jia & Har-
man 2008) – not designed for mutating artefacts, which is costly
and error-prone. Finally, these sets of mutation operators are
usually coded by hand and designed without using a systematic
methodology, thus it becomes costly to verify their suitability.
For example in mutation testing, effective sets of mutation oper-
ators may need to mutate the most important primitives of the
language, or the most error-prone (Guerra et al. 2019). Hence,
without proper support, it is complicated to assess whether the
operator set covers the language as required.

To improve this situation, we propose an integral methodol-
ogy and supporting tool for the proper engineering of mutation
operators. The methodology is model-based to enable its appli-
cation to heterogeneous artefacts (programs, models, data). This
means that the artefacts to mutate are represented as models
conforming to a meta-model, for which we rely on injection
(artefact-to-model) and extraction (model-to-artefact) transfor-
mations. Our solution includes a domain-specific language
(DSL) called WODEL (Gómez-Abajo et al. 2016, 2017) specially
tailored to design mutation operators applicable over models.
To help in the validation of the designed operators, we offer
facilities – based on model finding (Jackson 2019) – for synthe-

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a5

sizing models over which the operators can be tested. To assess
the coverage of the operators, we provide static and dynamic
metrics evaluating the operator footprints over the meta-model
(static) and over the artefacts where they are applied (dynamic).
If the coverage is deemed insufficient, new operators that im-
prove the metrics can be synthesized automatically.

In previous works, we introduced the DSL WODEL (Gómez-
Abajo et al. 2016, 2017, 2018a) as well as its basic capabilities
for model synthesis (Gómez-Abajo et al. 2020). This paper
extends (Gómez-Abajo et al. 2020) by defining a methodology
for building operators, facilities for operator synthesis, static
and dynamic metrics, and a case study dealing with the mutation
of class diagrams.

The rest of this paper is organized as follows. First, Section 2
introduces a running example and overviews our methodology.
Then, the following sections illustrate the different ingredients
of the methodology. Section 3 describes the WODEL DSL. Sec-
tion 4 explains our method to synthesize test models for muta-
tion operators, and Section 5 describes our mutation operator
footprint metrics. Next, Section 6 shows tool support. Finally,
Section 7 analyses related work, and Section 8 presents the
conclusions and identifies future lines of work.

2. Motivation and Overview
This section introduces a running example that serves as mo-
tivation (Section 2.1), and then provides an overview of our
methodology (Section 2.2).

2.1. Running example
Various research works have applied mutation to UML mod-
els with the goal to perform mutation testing at the model
level (Aichernig et al. 2014; Granda et al. 2016; Krenn et al.
2015; Strug 2016) or to generate input models to MDE programs
(i.e., programs created using an engineering approach based on
models), as in (de Lara et al. 2019). Following these ideas,
as a running example, our goal is to define a set of mutation
operators for UML Class Diagrams (UML 2.5.1. Specification
by the OMG 2017).

Figure 1 shows part of a simplified UML Class Diagram
meta-model for our running example. A class diagram defines a
set of Classes, a set of Relations between pairs of classes, a set of
Constraints and a set of PrimitiveElements. Classes define a set of
Features, which can be Operations or Attributes. There are several
types of Relations: Dependencies, Aggregations, Compositions and
Associations. Constraints are applied on a Class and expressed
in OCL. The figure omits the definition of OCL for clarity. In
the meta-model, invariant noInhLoop ensures the absence of
inheritance cycles. To illustrate model synthesis in Section 4,
we have restricted diagrams to have between 1 and 10 classes
(see cardinality of reference ClassDiagram.classes).

Figure 2 shows a UML Class Diagram model in concrete
(left) and abstract syntax (right, partially shown). The diagram
describes a simple hierarchy of vehicles, which can be either
cars or trucks, have a brand and a price, and are made of wheels.

One of the pre-requisites of mutation-based activities is the
design of a good set of mutation operators for the given task

(e.g., reflecting typical defects of the artefacts under test for
mutation testing, or covering the modelling language for test
data generation). In this example, we tackle the design of the set
of operators proposed in (Granda et al. 2016). This set – made
of 50 operators – aims at covering the UML Class Diagram
language. However, without proper support, the coverability of
the language is challenging to assess because the meta-model
is large and one needs to produce many operators. Moreover,
once the operators have been designed, there is the need to test
whether a particular implementation of them is correct. This
task is difficult as it requires building class diagrams for testing
each of the 50 operators. To alleviate these issues, the next
subsection introduces a tool-supported methodology for the
proper engineering of model-based mutation operators.

2.2. Overview of our methodology
Figure 3 shows our process to define mutation operators for a
given language. The methodology is independent of the kind
of artefact to be mutated. For this purpose, we work with
representations of the artefacts as models conformant to a suit-
able meta-model, and rely on transformations from artefacts
to models and vice versa (step 0 in the figure). Creating this
meta-model and transformations is not needed if they already
exist, as in our running example.

In step 1, the engineer defines the mutation operators. While
any programming language can be used to define the operators,
we rely on a DSL called WODEL as it provides facilities for defin-
ing and performing mutations, as well as support for traceability
and analysis. We describe this DSL in Section 3.

In step 2, the engineer validates the defined operators using
testing. The goal is to detect possible errors in the operators’
implementation by executing them over test models, and check-
ing whether the result is correct. Since creating test models by
hand is costly, we provide a facility to synthesize test cases, i.e.,
models over which the operators are applicable (this seed model
synthesis is fully explained in Section 4). This model synthesis
is automated by using model finding techniques, and in addition,
the engineer can also add manually created test cases.

In step 3, the engineer assesses whether more mutation oper-
ators are needed. For this purpose, we offer a suite of dynamic
and static footprint metrics that provide a detailed indication of
the degree of coverage of the meta-model by the operators. If
the coverage is considered insufficient, then, in step 4, the engi-
neer can use our operator synthesizer to automatically generate
new operators that increase the coverage. These operators may
need to be manually refined, and then tested.

In the following sections, we explain each ingredient of the
methodology.

3. The WODEL DSL
WODEL (Gómez-Abajo et al. 2016, 2017) is a DSL targeted to
specify mutation operators. The execution of a WODEL program
applies the specified operators to a given set of seed models
to yield a set of mutant models. For traceability, the execution
also produces a registry of the mutations used to produce each
mutant. WODEL is domain-independent, and so it can be applied

2 Gómez-Abajo et al.

Modifier

visibility: VisibilityType
scope: ScopeType

ClassDiagram

*

classes

relations

*

PrimitiveElement

type: DataType

types

*

Constraint

id: String

*

constraints

«enumerate»
DataType

boolean
integer
string
double
date

«enumerate»
VisibilityType

private
public
protected
package

«enumerate»
ScopeType

instance
classifier

NamedElement

name: String

Parameter

type

Feature

name: String
visibility: VisibilityType
scope: ScopeType

type

features

1..10

Class

super
*

Attribute

derived: Boolean

Classifier

abstract: Boolean
derived: Boolean

Operation

params
*

Operator

type: OperatorType

*

«enumerate»
OperatorType
add
subtract
multiply
divide
…

Relation

derived: Boolean

src

tar

Dependency Association

Aggregation Composition

operators

type

0..1

0..1

noInhLoop:
self.super->closure(super)

->excludes(self)

Figure 1 Excerpt of the simplified UML Class Diagram meta-model.

Vehicle

+brand: string
+price: double

Car Truck

Wheel

*wheels

:Class

name= “Vehicle”
abstract= true
derived= false
...

:Class

name= “Car”
abstract= false
derived= false
...

:Composition

name= “wheels”
derived= false
...

:super

:src

:Attribute

name= “brand”
visibility= public
scope= instance
...

:PrimitiveElement

type= string

:features
...

:type

:Class

name= “Wheel”
abstract= false
derived= false
...

:tar

Figure 2 An example UML Class Diagram model using the
standard concrete syntax on the left, and a part of the abstract
syntax on the right.

[errors]

(0). create injector/
extractor/MM

1. define mutation
operators

2. test
operators

3. evaluate
coverage

[ok]

[ok]

[insufficient]

Domain meta-model +
transformations operators

validation
report

coverage
metrics4. automated

operator
synthesis

manual activity

(0) optional activity

Legend:

seed model
synthesis

Figure 3 Process for the engineering of mutation operators.

to arbitrary languages, to any kind of artefact which is injected
to a model, or to other kinds of artefacts like data. For this
purpose, it relies on the provision of a domain meta-model
specifying the structure of the artefacts to be mutated. WODEL

ensures that the created mutant models conform to the domain
meta-model and satisfy its invariants.

WODEL provides mutation primitives to select, modify, create,
delete, clone and retype objects; and to create, modify and
delete references. In addition, its mutation engine has built-
in functionalities to ease the definition of mutation operators.

For example, new objects are automatically added to a suitable
container reference, and mandatory attributes and references
without an explicit value are automatically initialized.

Table 1 illustrates the primitives of WODEL by means of their
application to the meta-model of Figure 1. The select operator
(row 1) selects a random object with some given feature values.
The create operator (row 2) creates an object and initializes
its features. If no container reference is specified for the new
object, as in the example, then a suitable container is selected
at random. The remove operator (row 3) deletes an object and
all its incoming and outgoing references. The clone operator
(row 4) has two variants: the shallow version clones an object
but not its contained objects, while the deep variant (in the
table) clones an object and the elements it contains. In both
cases, the object clone is automatically placed in a suitable
container. Objects can be retyped (row 5), and the compatible
attributes and references are preserved after the retyping. The
retype mutation primitive can be applied to sibling objects, or
to objects that share any inheritance relation. The objects to be
deleted, cloned and retyped can be chosen at random (as in the
examples of the table) or according to some matching criteria.
In case of retyping, the selection criteria can be based on the
object type. As an illustration, the example in row 5 selects an
object of one of the types Aggregation, Association, Composition
or Dependency, and retypes the object to another of these four
types, different from the original type. Object features can be
changed using the modify operator (row 6). As for references,
they can be created (row 7, which creates a reference of type tar
from any Relation object to any Class object), modified (row 8)
or deleted (row 9).

Listing 1 shows a simple WODEL program for the mutation of
UML Class Diagrams. Line 1 declares the strategy for mutant
synthesis, which in this case is exhaustive (i.e., generating all

Systematic Engineering of Mutation Operators 3

Mutation operator Example

1 Object selection c = select one Class

2 Object creation create Constraint with {type = one Class, id = random−string(1, 4)}

3 Object deletion remove one Association

4 Object cloning deep clone one Class

5 Object retyping retype one [Aggregation, Association, Composition, Dependency]
as [Aggregation, Association, Composition, Dependency]

6 Feature modification modify one Association with {swap(src, tar)}

7 Reference creation create reference tar to one Class in one Relation

8 Reference modification modify target tar from one Relation to other Class

9 Reference deletion a = select one Association where {tar <> null}
remove a→tar

Table 1 Mutation operators provided by WODEL.

possible mutants by the application of the mutation operators as
often as possible). Instead, it is possible to specify a maximum
number of mutants. Line 2 specifies the output folder to store the
mutants, and the input folder that contains the seed models. Our
implementation is based on EMF (i.e., the Eclipse Modeling
Framework), and hence, line 3 indicates the URI or location of
the Ecore meta-model in use. The remainder of the program
defines the mutation operators. In this example, the operator
rel2rel retypes an Aggregation, Association or Composition into
another of these three types (lines 6–9). This operator only
uses a mutation primitive, but in general, operators can use any
number of primitives and instructions. Mutation primitives can
be scheduled to be applied a random number of times within
a given interval; if they do not define an interval (as in the
example), they are applied once. Finally, a WODEL program may
include OCL invariants that any generated mutant must satisfy.
The appendix contains the encoding of other more complex
operators for UML Class Diagrams proposed in (Granda et al.
2016).

1 generate exhaustive mutants
2 in "out/" from "model/"
3 metamodel "http://umlcd.com"
4
5 with blocks {
6 rel2rel {
7 retype one [Aggregation, Association, Composition]
8 as [Aggregation, Association, Composition]
9 }

10 }

Listing 1 WODEL program for the UML Class Diagram meta-
model in Figure 1.

Figure 4 shows an application of the mutation operator in
Listing 1 to a UML Class Diagram. In the resulting mutant, the
Composition ‘wheels’ becomes replaced by an equally named
Association.

Vehicle

+brand: string
+price: double

Car Truck

Wheel* Vehicle

+brand: string
+price: double

Car Truck

Wheel*

wheels wheels

Figure 4 Application of mutation operator to a UML Class
Diagram model.

4. Seed Model Synthesis

To ease the testing of the operators defined in WODEL programs,
we enable an automated synthesis of seed models over which all
instructions of the given program are applicable (if such models
exist in the given search scope).

Figure 5 outlines the seed model synthesis process. It relies
on model search, a technique which applies constraint resolu-
tion over models (Jackson 2019). In particular, the synthesizer
enriches the description of the domain meta-model and its invari-
ants with additional OCL constraints derived from the WODEL

program. These constraints express the requirements that a seed
model must fulfil to allow the application of each mutation oper-
ator included in the program. Next, the enriched meta-model is
loaded into a model finder (like the USE Validator (Kuhlmann
et al. 2011; Kuhlmann & Gogolla 2012)) which performs a
bounded search of instances of the meta-model satisfying the
OCL constraints. If a model is found, then it ensures full state-
ment coverage of the WODEL program when executed with the
model.

Table 2 shows the templates used to generate the OCL con-
straints for each mutation primitive, and illustrative examples.
For instance, the OCL template for the object deletion primitive
demands the existence of an object with the specified type and
feature values, and included in a container reference that would
not violate its lower cardinality bound if the object deletion

4 Gómez-Abajo et al.

OUTPUT

domain mm
+ OCL

OCL

Wodel
operators

seed model

INPUT

enriched mm

model finder

Figure 5 Automated model synthesis for testing mutation
operators.

takes place. The table shows as an example the deletion of
a Class: the derived OCL constraint checks that there exists
some Class, and the ClassDiagram to which it belongs contains
other classes in addition to this one (i.e., the size of reference
ClassDiagram.classes is bigger than 1, and deleting the Class
would still satisfy the reference cardinality). Other OCL tem-
plates deal with object creation (which requires the existence of
a suitable container reference with enough space for the object),
object cloning (which in addition requires the existence of a
candidate object to be cloned), object retyping (which requires
conditions equivalent to those for deleting and creating objects
for every container or regular reference that is not source- or
target-compatible with the new type), reference modification
(which requires the existence of an object of the target class),
reference creation (which in addition requires a reference with
space to add the object of the target class), and reference deletion
(which requires that the reference fulfils its lower cardinality
after taking one of its objects out).

For readability, Table 2 shows the template associated to
one occurrence of a mutation primitive. However, a program
may apply the same primitive with the same parameters more
than once. This may occur because the primitive is repeated,
or because it defines an interval of applications bigger than
one. Hence, in the general case, we count how many times a
same instruction appears (i.e., is to be executed), and generate a
slightly more complex constraint where each such occurrence
is represented as a variable. For instance, if the mutation create
Class appears twice in a program, we generate the following
constraint (cf. Table 2):

ClassDiagram.allInstances()→exists(c1,c2 |
(c1 <> c2 and c1.classes→size() < 10
and c2.classes→size() < 10)
or c1.classes→size() < 9)

Overall, the model synthesis process starts with the domain
meta-model and its invariants. The meta-model is added an
auxiliary mandatory class named Dummy. Then, the process
uses the templates of Table 2 to generate the OCL constraints for
each mutation operator in the provided WODEL program. These
constraints are added as invariants of the Dummy class. Finally,
the model finder is invoked with this enriched meta-model as
input.

As an example, Listing 2 shows the OCL constraint generated
from the program in Listing 1. As the retype operation considers
the retyping of objects of three different types, an or with three
cases is generated. Figure 6 shows a seed model returned by
the model finder. This conforms to the original meta-model and
satisfies the constraint of Listing 2.

1 context Dummy
2
3 inv mut1 :
4 Aggregation.allInstances()→exists(a | true) or
5 Association.allInstances()→exists(a | true) or
6 Composition.allInstances()→exists(a | true)

Listing 2 Constraint derived from Listing 1.

*

Class-1

Class-2

rel-1

Figure 6 Generated seed model.

Note that the synthesized seed models enable the application
of all statements in the WODEL program. However, they do not
guarantee that, after applying the program, the resulting mutant
satisfies the invariants of the domain meta-model. This would
require from techniques for advancing constraints to model
operations (Sánchez Cuadrado et al. 2017), which is left for
future work.

5. Mutation Operator Footprints
In order to assess the coverage of the designed mutation operator
set, we support two kinds of footprints: static (cf. Section 5.1)
and dynamic (cf. Section 5.2).

5.1. Static footprints

Static footprints collect which meta-model elements can be-
come affected by a WODEL program, and which kind of actions
(creation, modification, or deletion) can be performed on them.
This is useful to statically analyse whether a set of mutation
operations is complete with respect to the meta-model, or at
least covers the mutation of all meta-model elements of interest
for a given application domain. This help is very valuable when
the meta-model is large or there are many mutation operations
to consider.

The static footprint information can be aggregated according
to two criteria. On the one hand, meta-model static footprints
aggregate the information for each meta-model element (class
or feature). On the other, operator static footprints aggregate
the information for each mutation operator defined in a program.
In this way, the footprint reports on the number of times each
kind of element is created, modified or deleted by some code
sentence, and percentages with respect to the total number of
elements are calculated as well.

Regarding the collected information, we distinguish between
explicit and implicit actions. The former are actions explicitly

Systematic Engineering of Mutation Operators 5

Conditions to check OCL template Example

Object filter:
Auxiliary template used to check that an object has
the given feature values.

o.〈feat1〉 = 〈val1〉 ... and
o.〈featn〉 = 〈valn〉

Object selection,
object modification:
There is an object with the given type and feature
values.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉)

Wodel:
modify one Class
where {name = ’InitialName’}
with {name = ’ModifiedName’}

OCL:
Class.allInstances()
→exists(c | c.name = ’InitialName’)

Object creation:
There is a container reference of the object’s type
with space to add more objects.

〈Container〉.allInstances()
→exists(o |
o.〈ref〉→size() < 〈upB〉)

Wodel:
c = create Class

OCL:
ClassDiagram.allInstances()
→exists(d |
d.classes→size() < 10)

Object deletion:
There is an object with the given type and feature
values, and its deletion does not violate the lower
bound of any reference of the object’s type.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉 and
〈Container〉.allInstances()
→forAll(c |
c.〈ref〉→includes(o) implies
c.〈ref〉→size() > 〈lowB〉))

Wodel:
remove one Class

OCL:
Class.allInstances()→exists(c |
ClassDiagram.allInstances()
→forAll(d |
d.classes→includes(c) implies
d.classes→size() > 1))

Object cloning:
There is an object with the given type and feature
values, and a container reference of that type with
space to add more objects.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉) and
〈Container〉.allInstances()
→exists(o |
o.〈ref〉→size() < 〈upB〉)

Wodel:
deep clone one Class

OCL:
Class.allInstances()
→exists(c | true) and

ClassDiagram.allInstances()
→exists(d |
d.classes→size() < 10)

Object retyping:
There is an object with the given source type and fea-
ture values. If the target type is not compatible with
the container of the source type, conditions to delete
a source object and create a target one are required
(and similar for refs not compatible with target type).
Or-catenate for each considered source/target type.

〈Class〉.allInstances()
→exists(o | 〈object−filter〉 [and
〈SrcContainer〉.allInstances()
→forAll(c |
c.〈ref〉→includes(o) implies
c.〈ref〉→size() > 〈lowB〉)
and
〈TrgContainer〉.allInstances()
→exists(c |
c.〈ref〉→size() < 〈upB〉)]1)

1add condition if
〈SrcContainer〉.〈ref〉 is not
compatible with target type

Wodel:
retype one Composition
as Association

OCL:
Composition.allInstances()
→exists(c | true)

Reference creation:
There is an object of the reference type, and a refer-
ence to which we can add the object without violating
the upper bound.

〈TgtClass〉.allInstances()
→exists(o | 〈object−filter〉) and
〈SrcClass〉.allInstances()
→exists(o |
〈object−filter〉 and
o.〈ref〉→size() < 〈upB〉)

Wodel:
create reference src

to one Class
in one Composition

OCL:
Class.allInstances()
→exists(c | true) and

Composition.allInstances()
→exists(c | c.src→size() < 1)

Reference modification:
There is a non-empty reference of the given kind, and
more than one object of the reference target type.

〈SrcClass〉.allInstances()
→exists(o | o.〈ref〉→notEmpty())

and
〈TgtClass〉.allInstances()
→size() > 1

Wodel:
modify target tar

from one Composition
to other Class

OCL:
Composition.allInstances()
→exists(c | c.tar→notEmpty())

and Class.allInstances()
→size() > 1

Reference deletion:
There is a reference from which we can remove an
object without violating the lower bound.

〈Class〉.allInstances()
→exists(o |
〈object−filter〉 and
o.〈ref〉→size() > 〈lowB〉)

Wodel:
c = select one Composition
remove c→tar

OCL:
Composition.allInstances()
→exists(c | c.tar→size() > 0)

Table 2 Templates to generate OCL constraints from mutation primitives.

6 Gómez-Abajo et al.

Explicit action Derived implicit actions

Creation of object of class C – creation of superclasses of C
– creation of mandatory attributes defined by C or a supertype
– creation of mandatory references defined by C or a supertype
– modification of containers of C or a supertype

Modification of object of class C none

Deletion of object of class C – deletion of subclasses of C
– deletion of attributes defined by C or a supertype
– deletion of references defined by C or a supertype
– modification of references that point to C or a supertype

Cloning of object of class C Shallow cloning:
– creation of superclasses of C
– creation of mandatory attributes defined by C or a supertype
– creation of mandatory references defined by C or a supertype
– modification of containers of C or a supertype

Deep cloning:
– shallow cloning of C
– for each class C’ reachable from C, shallow cloning of C’

Retyping of object of class C – implicit actions for creation of object of class C
– implicit actions for deletion of object of class C

Creation of feature none

Modification of feature none

Deletion of feature none

Table 3 Rules to calculate implicit actions.

defined in a WODEL program, encoded as mutation primitives
acting on the instances of some meta-model element. For exam-
ple, the instruction remove one Class from assoc→src explicitly
removes an object from reference Association.src, and hence,
the static footprint would count an explicit modification of this
reference. If there are other explicit modifications of the refer-
ence in the same program, this counter is increased accordingly.
In contrast, implicit actions are side effects on the models due
to explicit actions. For example, mutation remove one Compo-
sition removes an object of type Composition explicitly, but in
addition, it implicitly removes its references Compositon.src and
Composition.tar, and modifies the container reference ClassDi-
agram.relations by taking the removed composition object out.
This way, this information uncovers hidden actions of mutation
operators.

Table 3 lists the implicit actions that may occur as a result
of an explicit action. Only the creation, deletion, cloning and
retyping of objects may entail implicit actions. The computation
of the implicit actions takes into account the inheritance rela-
tions in the domain meta-model. For instance, when an operator
specifies the creation of an object of type C, we increase the
implicit creation count for all superclasses of C because objects
of type C are compatible with the ancestors of C. Likewise,
when an operator deletes objects of type C, we increase the
implicit deletion count for all subclasses of C, as the operator

could delete objects of the subclasses of C as well. As explained
in Section 3, WODEL automatically initializes the mandatory fea-
tures of created objects for which no explicit value is specified.
For this reason, creating an object implies the implicit creation
of its owned and inherited mandatory features, if they lack an
explicit value. The retyping of objects is considered as an object
deletion followed by an object creation, so it entails the implicit
actions of both. Finally, if a WODEL program specifies an action
explicitly, then it is counted as explicit but not as implicit.

Table 4 shows the meta-model static footprint of the set
of UML Class Diagram mutation operators in the Appendix.
This static footprint shows the meta-model coverage by this
set of mutation operators. The table columns show the explicit
and implicit creation, modification and deletion actions over
each meta-model class and feature. The rows corresponding
to classes show the number of actions performed on the class,
as well as the aggregated actions on its features. For instance,
there are two explicit creations of class Parameter, and one
explicit creation of its features; therefore, the cell for the explicit
creation of class Parameter contains 2c 1f. The third row of the
table (Class coverage in bold) shows the average class coverage
for each type of action. For example, the explicit creation
percentage is 22% because the program explicitly creates 11 out
of the 49 existing meta-model concrete classes.

Overall, these metrics provide information about possible

Systematic Engineering of Mutation Operators 7

Explicit Implicit

Classes C M D C M D

Features

Class coverage 22% 16% 26% 26% 22% 63%

� ClassDiagram 42c 42f

� PrimitiveElement

H Parameter 2c 1f 1c 1f 1c 0f 1c 5f 2c 6f

(a) name 1 2 3

(r) type 1 3 3

� Class 3c 1f 6c 6f 2c 0f 0c 14f 0c 16f

� Attribute 2c 2f 5c 4f 1c 0f 0c 8f 0c 5f

� Constraint 2c 2f 1c 0f 0c 2f 2c 2f 0c 3f

� Operation 2c 2f 4c 4f 2c 0f 0c 6f 9c 9f 0c 12f

� Operator 1c 1f 2c 2f

� Dependency 3c 0f 3c 0f 0c 18f 0c 24f

� Association 7c 13f 2c 3f 4c 0f 0c 31f 0c 32f

� Aggregation 3c 0f 3c 0f 0c 18f 0c 24f

� Composition 3c 0f 3c 0f 0c 18f 0c 24f

Table 4 Meta-model static footprint excerpt of the UML
Class Diagram mutation operators set. C=Creation,
M=Modification, D=Deletion, (a)=attribute, (r)=reference.

language coverage gaps in the operator set. In our example,
we can realize that there are no operators explicitly targeting
classes ClassDiagram, PrimitiveElement or Operator.

5.2. Dynamic footprints

Static footprinting provides an over-approximation of the possi-
ble effects of a mutation program. It is an over-approximation
because some effects will depend on the particular seed model
the program is applied to. For example, when a mutation deletes
an object, the static footprint reports that all reference types that
might include the object are implicitly modified; however, in a
particular model, the object may be included only in some of
them.

Hence, we introduce dynamic footprints to analyse the actual
effects that a mutation program has on specific seed models.
We distinguish two kinds of dynamic footprints. On the one
hand, net dynamic footprints summarize the net effect of a mu-
tation program by differencing the seed model and the resulting
mutant. On the other hand, debug dynamic footprints are more
detailed, as they record the specific mutation operators applied
by the program. This is useful to detect situations where a mu-
tation operator cancels the effects of previous operators (e.g.,
an object is created by an operator and then deleted by a sub-
sequent operator). In such cases, debug footprints will reflect
the mutations being cancelled, while net footprints do not pro-
vide such a level of detail. Thus, we can consider that the net
dynamic footprints reflect a state-based comparison of models,
and the debug dynamic footprints reflect an operation-based
comparison, as explained in detail in (Brosch et al. 2012).

6. Tool Support

The development environment for WODEL is available as an
Eclipse plugin at http://miso.es/tools/Wodel.html, together
with examples and videos. The implementation is based on
EMF (Steinberg et al. 2008), and expects the meta-models of
the artefacts to be mutated to be specified using Ecore. The
environment (Gómez-Abajo et al. 2018a) features code comple-
tion and type checking, and the semantics of WODEL programs
is given by their compilation into Java code. The environment
can be extended with post-processing applications. We have
developed two such extensions for the automated generation
of exercises (Gómez-Abajo et al. 2017) and the creation of
mutation testing tools (Gómez-Abajo et al. 2019).

To support the contributions presented in this paper, we have
extended the WODEL IDE to support the synthesis of seed models
for testing mutation programs, the computation and visualiza-
tion of mutation footprints, and the automated generation of
mutation operators that improve the footprints.

The synthesis of seed models for a given program is config-
ured by means of the wizard shown in Figure 7. This allows
setting the maximum number of seed models to be generated,
the mutation operators used in the seed model generation pro-
cess (either all operators in the program or a subset), additional
model requirements expressed by OCL, and optionally, an EMF
model to be used as seed of the model search. Moreover, a pref-
erence page allows customizing the minimum and maximum
number of objects and references that the produced seed models
should have. The search of seed models is performed with the
USE Validator (Kuhlmann & Gogolla 2012) model finder.

The IDE provides four views for the footprints introduced
in Section 5: meta-model static, operator static, net dynamic,
and debug dynamic. Figure 8 shows a screenshot of the tool
with these views at the bottom, for the set of mutation oper-
ators in the Appendix. The views contain drill-drown tables
with the footprint information, and use different cell colours
to distinguish between creation, modification and deletion of
classes and features. The table headers show a percentage that
aggregates the information in the table. For meta-model static
footprints, this is the percentage of classes whose instances are
created, modified or deleted by the WODEL program, and can
be calculated either relative to all meta-model classes, or only
to concrete classes in order to better convey the meta-model
coverage.

Meta-model static footprints can also be visualized on the
meta-model (specifically, on top of a Sirius-based (Sirius 2017)
visualization of the Ecore meta-model). Figure 9 shows the
running example meta-model annotated with the footprint in-
formation. We use a traffic light metaphor where classes and
attributes include icons with different colours to indicate the ex-
plicit creation (green), modification (amber) or deletion (red) of
their instances. These colours are the same used in the footprint
views (see Figure 8). In the example, classes Class, Operation,
Attribute, Constraint, Parameter, Dependency, Aggregation, Com-
position and Association are explicitly mutated, and hence, only
these classes are annotated with icons. Likewise, explicitly mu-
tated references are shown with a different colour. This is the

8 Gómez-Abajo et al.

http://miso.es/tools/Wodel.html

Figure 7 Seed model synthesizer.

case for references Constraint.type and Operation.params.
If the footprint evinces a missing that some mutation operator

is missing, then its semi-automatic creation is possible. For this
purpose, the view for meta-model static footprints integrates a
wizard that can be launched by double-clicking on a meta-model
class or feature name, or on a cell of the footprint table. The
wizard allows selecting one among the mutation primitives that
solve the missing coverage, together with its execution details.
Then, the wizard automatically extends the original WODEL

program with the new mutation operation. Figure 8 shows the
wizard on the right-top being used to create a mutation operator
for the uncovered meta-model class PrimitiveElement.

7. Related Work
To the best of our knowledge, there is no comprehensive solution
for the engineering of mutation operators. Hence, in the follow-
ing, we review works related to the four main ingredients of our
methodology: languages tailored to define mutation operators,
operator synthesis, model synthesis from requirements, and ap-
proaches to calculate static metrics of transformations. Finally,
we also review works applying mutation to UML diagrams.

DSLs for mutation operators. Some model-based mutation ap-
proaches use general-purpose model transformation languages
to define mutation operators. In (González et al. 2018), the
authors present an MDE approach to define mutation testing
tools, where programs are represented as models, and operators
are encoded in QVT-o. The approach introduced in (Mottu et
al. 2006) uses mutation analysis to select an appropriate set
of mutation operators for model transformation. The authors
establish a criteria based on semantic faults in the navigation,

the filtering, the output model creation, and the input model
modification to create such set. Mutation operators have also
been defined using Henshin in (Burdusel et al. 2019), and ATL
in (Troya et al. 2015). Instead, WODEL is a DSL targeted to
define mutation operators, giving support for specific mutation
actions (e.g., retyping, cloning), the automatic initialization of
object features and containers, and the configuration of the num-
ber of mutants to generate. Works like (Troya et al. 2015) miss
such policies and only produce one mutant per input model.

Major (Just 2014) is a mutation testing tool for Java that
includes a scripting language to perform small customizations
in mutation operators. For example, it allows configuring the
replacement lists of mutation operators like Arithmetic Oper-
ator Replacement (AOR). Instead, WODEL is more expressive
as it enables the selection, creation, deletion and retyping of
elements. Moreover, WODEL is language-independent, as one
can define operators for arbitrary meta-models. WODEL can
also be used to mutate Java programs as we introduced in our
previous work (Gómez-Abajo et al. 2018b).

Mutation operator synthesis. In (Alhwikem et al. 2016), the
authors propose a set of mutation primitives to define mutation
operators for Ecore meta-models. However, it is not a full-
fledged DSL, missing essential features like the possibility of
selecting elements, and there is no tool support for execution.
The approach in (Burdusel et al. 2019) generates operators that
guarantee the consistency of the mutated models with the meta-
model multiplicity constraints. The methodology presented
in (Kehrer et al. 2016) automatically generates a set of mutation
operators according to given patterns based on the meta-model
types and relations. In both of these works, the operators are
encoded as graph transformation rules. In comparison, WODEL

Systematic Engineering of Mutation Operators 9

Figure 8 Footprint views and wizard for automated mutation operator creation.

considers more advanced primitives, like cloning, modifying
the source or target of references, and retyping. Our techniques
for model synthesis (for testing) could be a complement to these
two approaches.
Model synthesis. The MDE community has used model find-
ers (like USE (Kuhlmann & Gogolla 2012) or Alloy (Jackson
2019)) for activities like model completion, test model gener-
ation, or transformation analysis. For example, model finding
is used in (Guerra & Soeken 2015; Hilken et al. 2018) to gen-
erate test models for model transformations by translating the
transformation specifications into OCL, while (Guerra et al.
2020) uses model finding to efficiently analyse product lines of
meta-models. The approach proposed in (Fleurey et al. 2004)
selects the test models for a given model transformation from a
set of models generated by a bounded search of all the possible
combinations of the input meta-model elements. However, this
methodology does not assure the program applicability over the
generated models. In our case, the novelty yields in the encod-
ing of the semantics of WODEL programs into OCL, ensuring
full statement coverage of the program.
Static metrics for transformations. In the model transformation

area, static metrics have been used to ease the maintainability
of transformations (van Amstel & van den Brand 2011). Model
transformations have also been analysed statically to detect
rule conflicts (Ehrig et al. 2006), violations of transformation
contracts (Burgueño et al. 2015), or typing errors (Sánchez
Cuadrado et al. 2017; Ujhelyi et al. 2011). Our static footprints
are a kind of static analysis tool to detect meta-model elements
not covered by a mutation program, as well as missing muta-
tion operators. Further static analyses, like detecting operator
conflicts, are future work.

Mutation for UML. Some approaches have proposed model-
level mutation for UML. For example, (Granda et al. 2016)
proposes 50 mutation operators for class diagrams, which we
have used in our running example. The approach is backed by a
tool, called mutUML, which is specific to UML. Instead, WODEL

is applicable to arbitrary modelling languages, and provides
metrics and facilities for input model synthesis.

MoMuT::UML (Aichernig et al. 2014; Krenn et al. 2015) is
a tool to mutate UML models (class, state charts and instance
diagrams). It is a black-box test case generation tool that spe-
cialises in fault-based test case generation. More precisely, the

10 Gómez-Abajo et al.

Figure 9 Meta-model with static footprint.

tool generates model mutants and is able to find test cases that
reveal them. Again, it is specific to UML, but we believe that an
approach like the one we propose here would ease its extension
with new operators.

In (Strug 2016), the author compares the reliability of mu-
tation testing at the model and implementation levels. For
this purpose, at the model level, the author developed a set
of mutation operators for UML/OCL, and used USE command
scripts (Gogolla et al. 2007) for testing. At the implementa-
tion level, the author used the muJava mutation tool (Ma et al.
2006). Overall, the study revealed that assessing the quality of
a test suite at the implementation level can already be made at
the model level. In this setting, our approach could be used to
facilitate the creation of model mutation operators.

8. Conclusions and Future Work

Given the recurrent need to develop sets of mutation operators,
this paper has proposed a methodology and tool support for
their proper engineering. Specifically, we provide a DSL for
describing mutation operators, model synthesis capabilities for
their testing and validation, metrics for the measurement of their
completeness, and automated mutation operator generation to
augment the operator set. We have illustrated the approach in
the context of UML Class Diagrams.

We are currently extending the model synthesis process in
two ways. First, to generate models where the operators are
not applicable but are close to being applicable, so called near
misses (Montaghami & Rayside 2017). Second, to generate seed
models ensuring that the execution of the WODEL program yields
a mutant model that satisfies all invariants in the domain meta-
model. For this purpose, we may use techniques to advance OCL
constraints as preconditions, based on (Sánchez Cuadrado et al.
2017). We plan to work on further static analysis techniques,
e.g., to detect operator conflicts and dependencies. Finally, we
aim at developing techniques for reusing mutation operators for

other meta-models different from the one they were designed
for, in the style of some of the techniques compared in (Bruel et
al. 2020). This would allow, for example, applying the operators
of the running example for Ecore meta-models.

Acknowledgments
This work has been partially funded by the Spanish Ministry
of Science (RTI2018-095255-B-I00), by the R&D programme
of the Madrid Region (S2018/TCS-4314) and by the Spanish
MINECO-FEDER (grant number FAME RTI2018-093608-B-
C31).

We are grateful to Martin Gogolla and his team for the con-
tinued maintenance and improvement of the USE modelling
tool (Gogolla et al. 2007, 2020), which has been widely used by
the modelling community and our team, and has been a crucial
part of the work presented in this paper.

References
Aichernig, B. K., Auer, J., Jöbstl, E., Korosec, R., Krenn, W.,

Schlick, R., & Schmidt, B. V. (2014). Model-based mutation
testing of an industrial measurement device. In Tap (Vol.
8570, pp. 1–19). Springer.

Alhwikem, F., Paige, R. F., Rose, L., & Alexander, R. (2016).
A systematic approach for designing mutation operators for
MDE languages. In MODEVA (Vol. 1713, pp. 54–59). CEUR-
WS.org.

Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., &
Wimmer, M. (2012). An introduction to model versioning.
In 12th international conference on formal methods for the
design of computer, communication, and software systems
(p. 336–398). Springer-Verlag.

Bruel, J., Combemale, B., Guerra, E., Jézéquel, J., Kienzle, J.,
de Lara, J., . . . Vangheluwe, H. (2020). Comparing and
classifying model transformation reuse approaches across
metamodels. Software and Systems Modeling, 19(2), 441–
465.

Systematic Engineering of Mutation Operators 11

Burdusel, A., Zschaler, S., & John, S. (2019). Automatic
generation of atomic consistency preserving search operators
for search-based model engineering. In MODELS (pp. 106–
116). IEEE.

Burgueño, L., Troya, J., Wimmer, M., & Vallecillo, A. (2015).
Static fault localization in model transformations. IEEE Trans.
Software Eng., 41(5), 490–506.

de Lara, J., Guerra, E., Ruscio, D. D., Rocco, J. D., Sánchez
Cuadrado, J., Iovino, L., & Pierantonio, A. (2019). Auto-
mated reuse of model transformations through typing require-
ments models. ACM Trans. Softw. Eng. Methodol., 28(4),
21:1–21:62.

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). Hints
on test data selection: Help for the practicing programmer.
IEEE Computer, 11(4), 34–41.

Ehrig, H., Ehrig, K., Prange, U., & Taentzer, G. (2006). Funda-
mentals of algebraic graph transformation. Springer-Verlag.

Fleurey, F., Steel, J., & Baudry, B. (2004). Validation in
model-driven engineering: testing model transformations. In
First international workshop on model, design and validation
(p. 29-40).

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A
UML-based specification environment for validating UML
and OCL. Sci. Comput. Program., 69(1-3), 27–34.

Gogolla, M., Havakili, H., & Schipke, C. (2020). Advanced
features for model visualization in the UML and OCL tool
USE. In Companion proceedings of modellierung 2020 (Vol.
2542, pp. 203–207). CEUR-WS.org.

Gómez-Abajo, P., Guerra, E., & de Lara, J. (2016). Wodel: a
domain-specific language for model mutation. In Sac (pp.
1968–1973). ACM.

Gómez-Abajo, P., Guerra, E., & de Lara, J. (2017). A domain-
specific language for model mutation and its application to
the automated generation of exercises. Computer Languages,
Systems & Structures, 49, 152 - 173.

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. (2020).
Seed model synthesis for testing model-based mutation oper-
ators. In CAISE FORUM (pp. 1–12).

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G.
(2018a). A tool for domain-independent model mutation. Sci.
Comput. Program., 163, 85–92.

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G.
(2018b). Towards a model-driven engineering solution for
language independent mutation testing. In Jisbd (p. 4pps).
Biblioteca digital SISTEDES.

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G.
(2019). Mutation testing for DSLs (tool demo). In Dsm (pp.
60–62). ACM.

González, A., Luna, C., & Bressan, G. (2018). Mutation testing
for Java based on model-driven development (in spanish). In
Clei-slisw.

Granda, M. F., Condori-Fernández, N., Vos, T. E. J., & Pastor,
O. (2016). Mutation operators for UML Class Diagrams.
In Advanced information systems engineering (pp. 325–341).
Springer International Publishing.

Guerra, E., de Lara, J., Chechik, M., & Salay, R. (2020).
Property satisfiability analysis for product lines of mod-

elling languages. IEEE Trans. Software Eng., In press. doi:
http://dx.doi.org/10.1109/TSE.2020.2989506

Guerra, E., Sánchez Cuadrado, J., & de Lara, J. (2019). Towards
effective mutation testing for ATL. In Models (pp. 78–88).
IEEE.

Guerra, E., & Soeken, M. (2015). Specification-driven model
transformation testing. Software and Systems Modeling,
14(2), 623–644.

Hamlet, R. G. (1977). Testing programs with the aid of a
compiler. IEEE Trans. Software Eng., 3(4), 279–290.

Harman, M., & Jones, B. F. (2001). Search-based software
engineering. Information & Software Technology, 43(14),
833–839.

Hilken, F., Gogolla, M., Burgueño, L., & Vallecillo, A. (2018).
Testing models and model transformations using classifying
terms. Software and Systems Modeling, 17(3), 885–912.

Jackson, D. (2019). Alloy: a language and tool for exploring
software designs. Commun. ACM, 62(9), 66–76.

Jia, Y., & Harman, M. (2008). MILU: A customizable, runtime-
optimized higher order mutation testing tool for the full C
language. In Taicpart (pp. 94–98).

Just, R. (2014). The Major mutation framework: Efficient and
scalable mutation analysis for Java. In Issta (pp. 433–436).
ACM.

Kehrer, T., Taentzer, G., Rindt, M., & Kelter, U. (2016). Auto-
matically deriving the specification of model editing opera-
tions from meta-models. In P. V. Gorp & G. Engels (Eds.),
Theory and practice of model transformations (pp. 173–188).
Springer International Publishing.

Krenn, W., Schlick, R., Tiran, S., Aichernig, B. K., Jöbstl, E.,
& Brandl, H. (2015). Momut: UML model-based mutation
testing for UML. In Icst (pp. 1–8). IEEE Computer Society.

Kuhlmann, M., & Gogolla, M. (2012). From UML and OCL
to relational logic and back. In MODELS (Vol. 7590, pp.
415–431). Springer.

Kuhlmann, M., Hamann, L., & Gogolla, M. (2011). Exten-
sive validation of OCL models by integrating SAT solving
into USE. In Objects, models, components, patterns - 49th
international conference, TOOLS (Vol. 6705, pp. 290–306).
Springer.

Ma, Y.-S., Offutt, A. J., & Kwon, Y. R. (2006). MuJava: a
mutation system for Java. In Icse (pp. 827–830).

Montaghami, V., & Rayside, D. (2017). Bordeaux: A tool for
thinking outside the box. In FASE (Vol. 10202, pp. 22–39).
Springer.

Mottu, J.-M., Baudry, B., & Traon, Y. L. (2006). Mutation
analysis testing for model transformations. In A. Rensink &
J. Warmer (Eds.), Model driven architecture – foundations
and applications (pp. 376–390). Springer Berlin Heidelberg.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y. L., &
Harman, M. (2019). Chapter six - mutation testing advances:
An analysis and survey. Advances in Computers, 112, 275–
378.

Sánchez Cuadrado, J., Guerra, E., & de Lara, J. (2017). Static
analysis of model transformations. IEEE Trans. Software
Eng., 43(9), 868–897.

Sánchez Cuadrado, J., Guerra, E., de Lara, J., Clarisó, R., &

12 Gómez-Abajo et al.

Cabot, J. (2017). Translating target to source constraints in
model-to-model transformations. In MODELS (pp. 12–22).
IEEE Computer Society.

Sirius. (2017). https://eclipse.org/sirius/.
Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008).

EMF: Eclipse Modeling Framework, 2nd edition. Addison-
Wesley Professional.

Strug, J. (2016). Applying mutation testing for assessing test
suites quality at model level. In Fedcsis (Vol. 8, pp. 1593–
1596). IEEE.

Troya, J., Bergmayr, A., Burgueño, L., & Wimmer, M. (2015).
Towards systematic mutations for and with ATL model trans-
formations. In ICST workshops (pp. 1–10).

Ujhelyi, Z., Horváth, Á., & Varró, D. (2011). Static type
checking of model transformation programs. ECEASST , 38.

UML 2.5.1. Specification by the OMG. (2017).
https://www.omg.org/spec/UML/About-UML/.

van Amstel, M., & van den Brand, M. G. J. (2011). Model
transformation analysis: Staying ahead of the maintenance
nightmare. In Icmt (Vol. 6707). Springer.

Zeller, A., Gopinath, R., Böhme, M., Fraser, G., & Holler,
C. (2019). Mutation-based fuzzing. In The fuzzing
book. Saarland University. https://www.fuzzingbook.org/
html/MutationFuzzer.html. Retrieved from https://www
.fuzzingbook.org/html/MutationFuzzer.html (Retrieved Oct
2019)

A. Mutation Operators for UML Class Dia-
grams

This appendix contains the definition the UML Class Diagram
mutation operators proposed in (Granda et al. 2016) using
WODEL.

UML CD
mutation

WODEL code

Adds a redundant
constraint to the
CD

cd = select one ClassDiagram where {^constraints <> null}
c = select one Constraint in cd→^constraints
deep clone one c in cd→^constraints

Adds an extrane-
ous constraint to
the CD

create Constraint
with {type = one Class, id = random−string(1, 4)}

Adds a redundant
association to the
CD

cd = select one ClassDiagram
where {relations is typed Association}

a = select one Association in cd→relations
deep clone a in cd→relations

Adds a redundant
derived associa-
tion to the CD

cd = select one ClassDiagram
where {relations is typed Association}

a1 = select one Association in cd→relations
a2 = select one Association in cd→relations
where {src = a1→tar}

create Association in cd→relations with {
name = random−string(1, 4),
src = a1→src, tar = a2→tar,
derived = true}

Continued on next column...

...continued from previous column

UML CD
mutation

WODEL code

Adds an extrane-
ous association
to the CD

create Association with {src = one Class, tar = one Class,
name = random−string(1, 4)}

Adds an extrane-
ous derived asso-
ciation to the CD

create Association with {src = one Class, tar = one Class,
name = random−string(1, 4), derived = true}

Adds a redundant
generalization to
the CD

c = select one Class
where {super <> null and super→super <> null}

s1 = select one Class in cl→super where {super <> null}
s2 = select one Class in s1→super
where {self <> c→super}

modify c with {super = s2}

Adds an extra-
neous generaliza-
tion to the CD

c1 = select one Class where {super <> null}
s = select all Class in closure(c1→super)
c2 = select one Class where {self <> s}
modify c1 with {super = c2}

Adds a redundant
class to the CD

cd = select one ClassDiagram
where {classes is typed Class}

c = select one Class in cd→classes
deep clone c in cd→classes

Adds an extrane-
ous class to the
CD

create Class with {name = random−string(1, 4)}

Adds a redundant
association class
to the CD

cd = select one ClassDiagram
where {classes is typed AssociationClass}

ac = select one AssociationClass in cd→classes
clone one ac in cd→classes

Adds an extrane-
ous association
class to the CD

create AssociationClass
with {name = random−string(1, 4)}

Adds a redun-
dant attribute to
a class

c = select one Class where {features is typed Attribute}
att = select one Attribute in c→features
deep clone att in c→features

Adds an extrane-
ous attribute to a
class

create Attribute
with {type = one Class, name = random−string(1, 4)}

Adds a redun-
dant operation to
a class

c = select one Class where {features is typed Operation}
op = select one Operation in c→features
deep clone op in c→features

Adds an extrane-
ous operation to
a class

create Operation
with {type = one Class, name = random−string(1, 4)}

Adds a redundant
parameter to an
operation

op = select one Operation where {params <> null}
p = select one Parameter in op→params
clone p in op→params

Adds an extrane-
ous parameter to
an operation

create Parameter with {name = random−string(1, 4)}

Changes a
constraint by
deleting the
references to a
class attribute

remove one PathElementCS
where {pathName = one Attribute}

Changes at-
tribute data type
in a constraint

p = select one PathElementCS
where {pathName = one Attribute}

a = select one Attribute in path→pathName
modify a with {type = other Class}

Changes a
constraint by
deleting the
calls to specific
operation

remove one OperationCS

Continued on next column...

Systematic Engineering of Mutation Operators 13

https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html

...continued from previous column

UML CD
mutation

WODEL code

Changes an
arithmetic oper-
ator for another
and supports
binary operators:
add, subtract,
multiply, divide

modify one IntLiteralExpCS
with {op in [’add’, ’subtract’, ’multiply’, ’divide’]}

Changes a con-
straint by adding
the conditional
operator ‘not’

inv = select one InvariantCS where {exp <> null}
create LogicExpCS in inv→exp with {op = ’not’}

Changes a con-
ditional operator
‘and’ for a con-
ditional operator
‘or’

modify one BooleanExpCS
where {op = ’and’} with {op = ’or’}

Changes a con-
ditional operator
‘or’ for a con-
ditional operator
‘and’

modify one BooleanExpCS
where {op = ’or’} with {op = ’and’}

Changes a
constraint by
deleting the con-
ditional operator
‘not’

remove one LogicExpCS where {op = ’not’}

Changes a rela-
tional operator
for a different
one

modify one BooleanExpCS
where {op in [’lt’, ’lte’, ’gt’, ’gte’, ’equals’, ’distinct’]}
with {op in [’lt’, ’lte’, ’gt’, ’gte’, ’equals’, ’distinct’]}

Changes a
constraint by
deleting a unary
arithmetic opera-
tor ‘negative’

modify one IntLiteralExpCS where {op = ’negative’}
with {op = ’’}

Interchanges the
members (src
and tar) of an
association

modify one Association with {swap(src, tar)}

Changes the as-
sociation type

retype
one [Aggregation, Association, Composition, Dependency]
as [Aggregation, Association, Composition, Dependency]

Changes the tar
multiplicity of an
association

modify one Association with {ntar in [’∗’, ’0..1’, ’1..1’, ’1..∗’]}

Changes the gen-
eralization mem-
ber ends

modify one Class with {super = other Class}

Changes visibil-
ity kind of the
class

modify one Class
with {visitibility in {public, private, protected, package}}

Changes class by
an association
class

retype one Class as AssociationClass
with {association = one Association}

Changes associa-
tion class for a
class

retype one AssociationClass as Class

Changes the
class feature
‘abstract’ to true

modify one Class where {abstract = false}
with {abstract = true}

Continued on next column...

...concluded from previous column

UML CD
mutation

WODEL code

Changes the
attribute feature
‘derived’ to true

modify one Attribute where {derived = false}
with {derived = true}

Changes the
attribute property
‘derived’ to false

modify one Attribute where {derived = true}
with {derived = false}

Changes the at-
tribute data type

modify one Attribute with {type = other NamedElement}

Changes the at-
tribute visibility
property

modify one Attribute
with {visibility in {public, private, protected, package}}

Changes the or-
der of the param-
eters

op = select one Operation where {params <> null}
p = select one Parameter in op→params
modify op with {params −= p, params += p}

Changes the visi-
bility kind of an
operation

modify one Operation
with {visibility in {public, private, protected, package}}

Changes the data
type returned by
an operation

modify one Operation with {type = other NamedElement}

Changes the pa-
rameter data type

modify one Parameter with {type = other NamedElement}

Deletes a con-
straint

remove one Constraint

Deletes an asso-
ciation

remove one Association

Deletes a gener-
alization relation

c = select one Class where {super <> null}
remove one Class from c→super

Deletes a class c = select one Class
remove all Relation where {src = c or tar = c}
remove all [Operation, Feature] where {type = c}
remove all AssociationClass where {association = null}
remove c

Deletes an
attribute

remove one Attribute

Deletes an opera-
tion

remove one Operation

Deletes a param-
eter from an oper-
ation

remove one Parameter

About the authors
Pablo Gómez-Abajo is Assistant Professor at the computer sci-
ence department of the Universidad Autónoma de Madrid. After
around 8 years working in the industry, he returned to Academia
and joined the modelling and software engineering research
group in 2015. Contact him at pablo.gomeza@uam.es, or visit
https://www.gomezabajo.es.

Esther Guerra is Associate Professor at the computer science
department of the Universidad Autónoma de Madrid. Together
with J. de Lara, she leads the modelling and software engi-
neering research group (http://miso.es). She is interested in
flexible modelling, meta-modelling, domain specific languages
and model transformation. Contact her at esther.guerra@uam.es,
or visit http://www.eps.uam.es/~eguerra.

Juan de Lara is Full professor at the computer science depart-
ment of the Universidad Autónoma de Madrid. Together with
E. Guerra, he leads the modelling and software engineering
research group. His research interests are in model-driven engi-

14 Gómez-Abajo et al.

mailto:pablo.gomeza@uam.es
https://www.gomezabajo.es
http://miso.es
mailto:esther.guerra@uam.es
http://www.eps.uam.es/~eguerra

neering and automated software development. Contact him at
juan.delara@uam.es, or visit http://www.eps.uam.es/~jlara/.

Mercedes G. Merayo holds an Associate Professor position in
the Computer Systems and Computation Department of the
Universidad Complutense de Madrid. She leads, together with
Manuel Núñez, the Design and Testing of Reliable Systems
research group. Her current research interests include model
based testing, distributed testing, asynchronous testing, muta-
tion testing and timed extensions in formal testing. Contact
her at mgmerayo@fdi.ucm.es, or visit http://antares.sip.ucm.es/
mercedes/.

Systematic Engineering of Mutation Operators 15

mailto:juan.delara@uam.es
http://www.eps.uam.es/~jlara/
mailto:mgmerayo@fdi.ucm.es
http://antares.sip.ucm.es/mercedes/
http://antares.sip.ucm.es/mercedes/

