
Journal of Object Technology | RESEARCH ARTICLE

History of the USE Tool
20 Years of UML/OCL Modeling Made in Germany

Frank Hilken∗ and Lars Hamann†

∗Siemens Mobility, Germany
†University of Applied Sciences Hamburg, Germany

ABSTRACT The UML-based Specification Environment (USE) originated as a modeling tool for validating UML and OCL
models but has grown much larger over the years. The first version of USE was released in 1998. Since then, USE has been
applied in several projects and had lots of contributors developing it, benefiting from a university environment and open source
code basis. Its strong OCL evaluator allows for using it as a platform for other modeling projects but also applications in research
projects and teaching have made USE a significant entry in the world of UML/OCL modeling tools. Countless case studies have
been performed on the basis of USE. This contribution shows the evolution of USE by summarizing important extensions over
the years. Furthermore, noteworthy applications of USE in teaching, research and industry are presented.

KEYWORDS Tooling, UML, OCL, History, Application, USE.

1. Introduction
Much is known about the history of the Unified Modeling Lan-
guage (UML). It is a well-known story that the three amigos
someday worked together in one company and unified their dif-
ferent modeling languages. Soon after the work on a standard-
ized notation started, it was realized that some formal language
was required to express additional business rules that cannot
be visually depicted or would be ambiguous when expressed
in a natural language. Further, it was recognized that such a
language can also be used to express semantics for the UML
itself. The Object Constraint Language (OCL) was born.

Members of the working group Database Systems at the
University of Bremen used their knowledge about defining lan-
guages and language semantics (Gogolla 1990, 1992, 1993) and
started to work out semantics for OCL. To validate their pro-
found theoretical work, an application was developed in parallel,
the UML-based Specification Environment or in short: USE.

In this paper we present the more than 20 years of history
of this modeling tool. In Section 2 we highlight important

JOT reference format:
Frank Hilken and Lars Hamann. History of the USE Tool: 20 Years of
UML/OCL Modeling Made in Germany. Journal of Object Technology. Vol.
19, No. 3, 2020. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a20

milestones in its life cycle. Afterwards we present applications
of the tool in different industrial and academic areas in Sect. 3.
We end by concluding our work and giving some short thoughts
about future work.

2. The Evolution of USE
The initial 1.0 release of the Unified Modeling Language (UML)
dates back to the year 1997. At the same time OCL was al-
ready used to express additional constraints in UML models.
In (Warmer et al. 1997) the authors conclude: “A non-problem
was the lack of a formal, mathematical base for OCL. There is
no reason why one could not be created, but there is little reason
to do so”.

Fortunately, Martin Gogolla and Mark Richters had a dif-
ferent opinion (Gogolla & Richters 1997; Richters & Gogolla
1999b) and started to work on the UML-based Specification
Environment – better known as USE – soon after the first re-
leases of the UML. While first preview versions of USE were
published around the year 1998, the 1.0 version of USE was
released in the year 2000. This major release referred to the
UML specification version 1.31:

1 ∗∗ Changes since version 1.0.
2 [...]

1 https://www.omg.org/spec/UML/1.3/About-UML/ (last accessed: 16.05.2020)

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a20


3 ∗ Most of the operations of predefined types
(Sect. 7.8 of the OMG UML 1.3 document) are
now implemented.

4 [...]

In this early phase of USE the focus was to implement the
core features of OCL together with visualizing object states
and sequences. For example, the possibility to display class
diagrams was implemented only after five years after the initial
release in version 2.2 (Hamann et al. 2014).

The focused work on the core of OCL can also be unveiled by
using code visualization techniques like CodeCities as shown
in Figs. 1 to 32. In the given cities each building represents
a single class out of the USE source code. The height of the
building represents the number of operations whereas its width
is given by the number of attributes of the class. In the initial
version of USE 0.9.0 there were only a few buildings located
in the graphical user interface district at the south side of the
USE city. Most of the work was done in the UML/OCL Core
district (Gogolla & Richters 2002).

At this time USE had many features for evaluating and ex-
amining OCL expressions. Figure 4 shows the user interface of
USE at this time. Just like today, first a textual representation of
the model was loaded. For the visualized model shown in Fig. 4
the textual model in the syntax of USE is given in Listing 1.

Afterwards, users were able to instantiate system states either
by using a tiny command line language (refer Listing 2) or by
using the graphical user interface. A given system state could
be visualized by means of an object diagram and sequences of
operation calls could be shown as a sequence diagram. The
possibility to simulate operation calls further allowed for the
validation of pre- and postconditions.

These early versions of USE have been used to validate the
formal semantics described in (Richters 2002). Later, these
semantics were added as an appendix for the OCL 2.0 specifica-
tion (OMG 2006).

Given this solid base, students started to extent USE as part
of their diploma theses. One of the first extensions that made
it into a release of USE was the so-called Generator and its
language ASSL (A Snapshot Sequence Language) (Gogolla,
Richters, & Bohling 2003; Gogolla, Bohling, & Richters 2003;
Gogolla et al. 2004). In short, ASSL is a procedural language
for guided searches for model instances. The size of the search
space strongly depends on the ASSL definition. A more detailed
discussion about the size of the search space and some tweaks
that were added later to the generator can be found in (Hamann,
Büttner, et al. 2012). Listing 3 shows an ASSL procedure taken
from (Gogolla et al. 2005).

In parallel to the work on the Generator, a more declarative
approach to instantiate (valid) model instances was examined.
The USE Model Validator (Kuhlmann et al. 2011; Kuhlmann &
Gogolla 2012) translates USE models into relations and its corre-
sponding relational logic, specifically the Alloy language (Jack-
son 2019). This is done using the framework Kodkod (Torlak
& Jackson 2007). The Kodkod tool itself uses various SAT
solvers internally. Using such a declarative approach to instan-
tiate models replaces the burden of defining efficient search

2 The figures were originally published in (Hamann et al. 2014).

Figure 1 CodeCity of USE 0.9.0

Figure 2 CodeCity of USE 3.1.0

Figure 3 Districts of USE

procedures, as it is necessary in ASSL, with a simpler decla-
ration of an appropriate state space. As it is usual in bounded
model checking.

The work on the USE model validator was a major part of
the USE history. Continuous development improved usability
of the plug-in and added a GUI for the specification of veri-
fication tasks (Hilken & Gogolla 2016a). Furthermore, ways
to support the whole spectrum of OCL were explored (Hilken
et al. 2015) and common verification tasks for models were
identified (Gogolla & Hilken 2016).

Further, the idea of equivalent classes for UML/OCL were
brought to the model validator in the form of classifying
terms (Gogolla et al. 2015; Hilken et al. 2018). By specify-
ing criteria in OCL to categorize results, it is possible to instruct

2 Frank Hilken and Lars Hamann



Figure 4 USE in the year 2002 (Gogolla & Richters 2002)

1 model TrafficLight
2

3 class Controller
4 operations
5 createLights ()
6 switch ()
7 end
8

9 class Light
10 attributes
11 r : Integer
12 y : Integer
13 g : Integer
14

15 operations
16 ryg(pr:Integer ,py:Integer ,pg:Integer)
17 switch ()
18 showsR (): Boolean =
19 (r=1 and y=0 and g=0)
20 showsG (): Boolean =
21 (r=0 and y=0 and g=1)
22 showsYG ():Boolean =
23 (r=0 and y=1 and g=1)
24 end
25

26 association North between
27 Controller [0..1] role controllerForNorth
28 Light [1] role north
29 end

Listing 1 USE model for a traffic light

1 −− createLights.cmd
2 !create c:Controller
3 !openter c createLights ()
4 !create n:Light
5 !create s:Light
6 !create w:Light
7 !create e:Light
8 !insert (self ,n) into North
9 !insert (self ,s) into South

10 !insert (self ,w) into West
11 !insert (self ,e) into East
12 !openter n ryg(0,0,1)
13 open ryg.cmd
14 !opexit
15 !openter s ryg(0,0,1)
16 open ryg.cmd
17 !opexit
18 !openter w ryg(1,0,0)
19 open ryg.cmd
20 !opexit
21 !openter e ryg(1,0,0)
22 open ryg.cmd
23 !opexit
24 !opexit
25

26 −− ryg.cmd
27 !set self.r:=pr
28 !set self.y:=py
29 !set self.g:=pg

Listing 2 Instantiation

History of the USE Tool: 20 Years of UML/OCL Modeling Made in Germany 3



1 procedure generateJobs(count:Integer)
2 var theJobs:Sequence(Job), aPerson:Person , aCompany:Company;
3

4 begin
5 theJobs := CreateN(Job ,[ count]);
6 for j:Job in [theJobs]
7 begin
8 aPerson := Try([ Person.allInstances−>asSequence−>
9 select(p | Person.allInstances−>forAll(p2|

10 p.job−>size <= p2.job−>size))]);
11

12 aCompany := Try([ Company.allInstances−>asSequence−>
13 reject(c | aPerson.employer ()−>includes(c))−>
14 select(c|Company.allInstances−>
15 forAll(c2 | c.job−>size <=c2.job−>size))]);
16

17 Insert(PersonJob , [aPerson], [j]);
18 Insert(CompanyJob ,[ aCompany],[j]);
19 end;
20 end;

Listing 3 ASSL procedure (Gogolla et al. 2005)

the model validator to generate multiple, meaningfully different,
system states. This makes a structured exploration of models
easier than before.

From a software architectural point of view, the USE Model
Validator was one of the first non-trivial plug-ins built using
the USE plug-in framework introduced in version 2.6 which
was released in the year 2010. The district for the plug-in
architecture shown in Fig. 3 is rather small, but it has a huge
impact on USE, since now extensions to USE can be published
without changing the skyline of the city of USE.

A further development, using the previously mentioned plug-
in architecture in USE, is the filmstrip plug-in (Gogolla et al.
2014; Hilken et al. 2014). Based on a related approach in (Al-
Lail et al. 2013), the filmstrip plug-in transforms any UML
model with operations defined by OCL pre- and postconditons
into a version that explicitly contains operation call information.
Pre- and postconditions, which are usually evaluated dynam-
ically at runtime, are transformed into static class invariants.
Figure 5 shows an example system state with the additional
objects and links containing the operation call information. The
motivation for this transformation was to enable the use of static
model checking tools, like the USE model validator, to analyze
dynamic parts of models, namely operation calls. This was later
used to employ linear temporal logic in constraints to increase
the possibilites of validating operation calls (Hilken & Gogolla
2016b). Additionally, classifying terms were combined with the
filmstripping approach to gain the benefits of both (Gogolla et
al. 2017).

Besides automatic model finding, work on imperative model
execution has continued. While the use case of the first com-
mand language was to describe concrete scenarios, a Simple
OCL-based Imperative Language (SOIL) was developed (Büt-
tner 2010; Büttner & Gogolla 2014). In contrast to the command
language, SOIL provides features like loops and recursive oper-
ation calls, i. e., it defines execution semantics on a modeling
level similar to ALF (OMG 2017). SOIL, in contrast to ALF,
uses the well-defined OCL engine to query the models.

Yet another plug-in for USE developed in Bremen allows
runtime verification of Java applications (Hamann et al. 2011;
Hamann, Vidacs, et al. 2012). This plug-in adds support for
connecting to a running Java application and take a snapshot
that conforms to a provided USE model. Now the user can
focus on verifying interesting aspects of the system by using
an abstracted model, while leaving out implementation details.
This plug-in was meant to close the still existing gap between
design models and the implemented application. Later support
for different platforms was added (Hamann, Gogolla, & Honsel
2012; Hamann et al. 2015).

The application of this runtime verification approach led to
different extensions of the USE core. For example, protocol
state machines were introduced to capture application states
more easily (Hamann, Hofrichter, & Gogolla 2012b). One
notable feature, required for runtime verification, is the use of
so-called state-determination expressions (Hamann, Hofrichter,
& Gogolla 2012a). Since the runtime verification approach of
USE can connect to an application at any time, these OCL-
expressions are used to determine the current state of a state
machine. Since it is a runtime relevant concept, the support for
qualified associations was added, too.

Since its first versions, USE was applied to validate meta-
models and their well-formedness rules (Richters & Gogolla
1999a; Bauerdick et al. 2004). Starting with USE 2.5.0, con-
straints and features on association ends that are commonly used
for metamodels were supported. These features include subsets,
union, redefines and derived (Hamann & Gogolla 2013). Part
of an instance of the UML metamodel that makes use of these
features is shown in Fig. 6. The so-called virtual links are shown
as dashed lines and are automatically derived by USE. These
links are calculated as they either form a union of different ends
or are defined by derived expressions. Alongside the addition
of these features to the USE tool, later also the model validator
plugin was enhanced to support them (Hilken et al. 2016).

Countless further improvements were added to USE by sev-
eral people. Not all of them led to publications, but are still

4 Frank Hilken and Lars Hamann



sched2:Scheduler

s1:Snapshot

swap2:Swap_SchedulerOpC
aSelf=sched3

sched4:Scheduler

p5:Process
p id=1

p3:Process
p id=1

p6:Process
p id=2

sched1:Scheduler

p7:Process
p id=1

p1:Process
p id=1

p2:Process
p id=2

p8:Process
p id=2

ready1:Ready_SchedulerOpC
p=p3
aSelf=sched2

s2:Snapshot

sched3:Scheduler

s4:Snapshot

s3:Snapshot

swap1:Swap_SchedulerOpC
aSelf=sched1

p4:Process
p id=2

Active

Active

Active

Active

Ready

Ready

Waiting

Waiting

Figure 5 Example system state of a scheduler filmstrip model (Hilken et al. 2014). Bold elements constitute the original model,
other elements comprise the operation call information added by the filmstrip transformation.

Association2:Association

name='C_InCarAsFront_Wheel'
isAbstract=false
isDerived=Undefined

Property4:Property

name='front'
isOrdered=false
isUnique=true
/ lower=2
/ upper=2
isReadOnly=false
isDerived=false
isDerivedUnion=falseassociation {subsets notNavigableMember} memberEnd {ordered, subsets member}

member {union}

ownedElement {union}owner {union}

     ownedEnd {ordered, 
            subsets feature, 
subsets ownedMember, 
     subsets memberEnd}

owningAssociation
{subsets featuringClassifier,
 subsets namespace, 
 subsets association}

feature {union}featuringClassifier {union}

navigableOwnedEnd {subsets ownedEnd}

                               ownedMember {union, 
subsets ownedElement, subsets member}namespace {union, subsets owner}

Figure 6 Virtual links in USE (Hamann & Gogolla 2013)

History of the USE Tool: 20 Years of UML/OCL Modeling Made in Germany 5



noteworthy. One of the most underrated features was added
accidentally: the reload button in its current form. Initially it
was only intended as a way to reload the model of the current
session to avoid the cumbersome task of reopening the model
via typing on the shell or navigating the open file dialog after
every tweak to the model file. But the implementation was also
able to open the model from the previous USE session, quickly
making it often the first click whenever USE is started. This
memorable feature proved its usefulness so it was not corrected.

Another feature was released silently: starting with
USE 2.6.0, released in 2010, it is possible to declare and im-
plement methods in Ruby. These are then added to the OCL
engine in USE and can be used natively in OCL expressions.
This allows for an easy way to extend the OCL standard library.
For example, calendar functions or bit-operations can be defined
and used. The work presented in (Vallecillo & Gogolla 2017)
applies this feature to add random numbers and probability
distributions to USE.

Enormous work has been put into the graphical user inter-
face of USE to improve the usability. Worth mentioning is the
work on using OCL to query and control visibility of objects in
diagrams (Gogolla et al. 2011). Complex system states can be
examined by showing, hiding and cropping sub-graphs by path
lengths, object type or using OCL expressions. New types of
diagrams were also added to USE. These include the commu-
nication diagram and diagram views for the already mentioned
state machines on class and object level. With this, the possibil-
ity to display the state of an object in a sequence diagram was
added, too. Smaller improvements were related to “beautifying”
diagrams, like automatic alignment functions or an export of
views as SVGs for better usage in publications.

While all of these new features were integrated, the work on
the core functionalities of USE continued. During the past 20
years, the support of OCL features was continuously improved.
Sometimes these changes were combined with heavy discus-
sions in the working group. One notable discussion was the
refactoring of the type system in 2009 when OclVoid was added
to USE. In the end, the definition of the OCL standard won, but
only after many discussions.

To depict the previously described extensions, a screenshot
of the current USE version3 is suited best (see Fig. 7). The
presented example is an extended version of the protocol state
machine documentation published online4.

The shown model represents a simplified coffee dispenser
that can serve different kinds of coffee to users. Its structure is
defined by three classes listed in the model browser on the upper
left side of the screenshot and visualized by a class diagram
beside the model browser. The class CoffeeDispenser con-
trols the overall process. It keeps track of the money inserted
by a user (attribute amount), the selected product (association
towards Product) and the brewing process. For the latter it
owns an instance of type BrewingUnit. The structural part
of the example is completed by two invariants for the class
Product listed in the model browser and evaluated in the class

3 By the time of writing the current version of USE is 5.2.0.
4 http://useocl.sourceforge.net/w/index.php/Protocol_State_Machines (last ac-

cessed: 21.05.2020)

invariant view at the bottom center. The behavioral aspects of
the example are modeled by the following concepts available in
USE:

1. operations,

2. preconditions5 and

3. protocol state machines.

The defined operations are shown in the class diagram. The op-
eration CoffeeDispenser::accept(i:Integer) has a de-
fined precondition validCoins to illustrate the usage of pre-
conditions in USE. Its definition is shown below the model
browser. The simple precondition checks for a valid coin align-
ing with Euro coin values starting with 10 cents.

Valid call sequences to the coffee dispenser and to the brew-
ing unit are defined by two protocol state machines that are
both shown in Fig 7 in the lower left. The protocol state ma-
chine named Payment of the class CoffeeDispenser handles
the payment process. Starting in state noCoins, coins can be
accepted until the state enoughCoins is reached, either by di-
rectly inserting the right amount or by inserting multiple coins
via the intermediate state hasCoins.

The transitions and states are enriched with OCL expressions
to further constrain the usage of the operations and to make
the transitions deterministic. For example, the state noCoins
has two transitions which can be executed when then opera-
tion accept(i:Integer) is called: one transition to the state
hasCoins and one to the state enoughCoins. To determine
which transition to choose, guards are defined by OCL expres-
sions. If enough money is inserted into the coffee dispenser the
transition to the state enoughCoins is taken. Otherwise a call
to accept() will result in the state hasCoins.

Only after state enoughCoins is reached, a coffee can be
brewed. The shown example illustrates the usage of our coffee
dispenser by a concrete scenario. The sequence of operations
calls can be explored by looking at the sequence diagram in
the center of Fig. 7. It shows the operation calls and the corre-
sponding states. In the given example simulation, a user directly
inserted enough money for the first usage of the dispenser and
the beginnings of a second usage are shown. While the sequence
diagram can show the history of the object states, the visualiza-
tion of the protocol state machines focus on the current state by
highlighting it.

Another possibility to examine the call sequence of a scenario
is provided by means of a communication diagram as shown
in the top right corner of the screenshot. A notable feature of
the communication diagram is the possibility to show created,
deleted or transient objects and links as it can be seen for the
two links for the association SelectedProduct. The transient
link is the gone product selection of the first usage, whereas the
new link is the selection of the ongoing second usage.

The bottom right part of the screenshots completes the exam-
ple showing the OCL evaluation features of USE. The expres-
sion evaluator can evaluate arbitrary OCL expressions consider-
ing the model definitions and the system state and the evaluation

5 We left out postconditions in the example, but they are fully supported in USE.

6 Frank Hilken and Lars Hamann



Figure 7 USE in the year 2020; Version 5.2.0

History of the USE Tool: 20 Years of UML/OCL Modeling Made in Germany 7



browser allows for a deep dive of OCL expressions, showing
results of every single operation evaluation in the expression.
Note that OCL expressions can refer to object states, too.

This example highlights three important aspects of the history
of USE:

1. It was continuously extended with new features, e. g. the
Evaluation Browser (Brüning et al. 2012) in the lower-right
corner, state machine diagrams (Hamann, Hofrichter, &
Gogolla 2012a) and communication diagrams in upper-
right corner.

2. Existing features evolved together with the new ones as
evident by the sequence diagram, which was extended to
optionally display the current state of objects. And not to
forget: many bug fixes.

3. Much care has been taken to keep USE backward compati-
ble as much as possible. In rare cases, like saved diagram
layouts, this was too cumbersome and also the loading
commands for extra invariants introduced for the genera-
tor received an overhaul to make the usage more intuitive.
However, one can still use command files written for ver-
sion 1.0 and run them in version 5.2. This is, in fact, true
for the commands given in Listing 2. The only modifica-
tion for this paper was to change the command read from
the original paper (Gogolla & Richters 2002) to open. Not
because the read command does not work anymore, but it
is deprecated and this is reported in the shell.

And USE is still being improved further. Promising ongoing
work tries to reverse the USE approach to validate models (Käst-
ner et al. 2018a,b). Instead of starting with a model definition
and instantiating it by creating objects, the idea of this approach
is to start with concrete objects and their relations as examples.
From these examples the static model is deduced. This work is
also created as a plug-in for USE, called ObjectToClass.

3. Achievements of and with USE
Presence of the USE tool can be found globally in research
projects, teaching, industry, case studies and other forms. The
contributions to the standardization of UML and OCL has al-
ready been mentioned in Sect. 2. In this section, further achieve-
ments involving USE are presented.

3.1. Model Checking
One of the main applications of USE is the verification and
validation area. From the beginning, the strong OCL evaluator
was a core feature of USE that has been continuously improved
and adapted to new features and updates of the OCL standard.
Along with a variety of validation and model finding approaches
added on top, such as ASSL and the model validator plug-in
(refer Sect. 2), the tool has been and continues to be a relevant
competitor in the world of model checking.

The importance of model checking is widely understood
and many approaches exist employing various tools and model
transformations to tackle the challenges. This landscape of tools
and approaches is regularly reviewed (González & Cabot 2014;

Gabmeyer et al. 2019) showing USE as a worthy participant in
a competitive field with 18 and 23 approaches reviewed respec-
tively (refer Table 17 in (González & Cabot 2014) and Table 1
in (Gabmeyer et al. 2019)). Constant updates and adaptations
to new technologies have kept USE relevant for its long his-
tory and capable of dealing with new features introduced in the
standards.

An observation about USE is the approach to stay close to the
UML and OCL language in its implementations. Most model
checkers employ model transformations from UML/OCL into
other languages to benefit from existing proving engines, e. g.
Alloy (Anastasakis et al. 2007), CSP (González et al. 2012)
or SAT/SMT (Soeken et al. 2010). These approaches usually
come with the disadvantage that the results have to be trans-
formed back into UML/OCL. This is not always part of the
research or tool implementation, potentially requiring the inter-
pretation of results in a different language. Other approaches
require additional setup for using the proving engine, e. g. Hen-
shin (Bill et al. 2014) requiring operation definitions as graph
transformations.

The fact that USE itself is an advanced OCL engine allows
for better integration benefiting the user. The model checking
language ASSL, included in USE, relies on the USE engine
and builds results and checks model consistency in the tools
metamodel, which is derived from the UML/OCL standards.
One benefit is the inherent support of all UML/OCL features
implemented in USE, meaning that changes in the implemen-
tation in USE automatically apply to ASSL without the need
for further model transformations to support new language ele-
ments6. This interdependence, while not as performant as other
model checkers by a long shot, allows ASSL to be one of the
most feature complete (in regards to the UML/OCL elements)
and accurate model checkers for UML/OCL to this day.

Also the newer model checking tool, the USE Model Val-
idator plug-in, benefits from the close integration into USE. It
employs a feature to validate results from the underlying proving
engine within the USE OCL engine and resumes its search for
a different solution, should the result not fulfill all constraints.
This is a way to cover missing feature implementations in the
model transformation and still yield correct results for the cost
of performance, especially in earlier versions of the plug-in.
However, with more and more transformations implemented in
the plug-in, this sanity check became less relevant but it is still
present.

The support of a rich feature set of the UML and OCL lan-
guage also allows for the construction of verification tasks
in these languages directly rather than using the lower level
languages of the proving engines. Examples are Filmstrip-
ping (Hilken et al. 2014) and Classifying Terms (Hilken et al.
2018) which are defined completely in UML/OCL.

Finally, another benefit of the seamless integrations of ASSL
and plug-ins is that results are reported back to the user in the

6 Note: ASSL relies on the user to build scripts to create their models and
define search boundaries. New UML/OCL features would require inclusion in
these scripts, but as its language largely relies on the command language of
USE, it is probable that no changes to the ASSL engine are necessary for new
UML/OCL features.

8 Frank Hilken and Lars Hamann



existing views. This means that independent of the underlying
engine, the results are presented in a homogeneous way in
the language that is most relevant for the user. Additionally,
the interactive interface of USE can then be utilized to further
investigate the result. More benefits of the integration and
other assisting characteristics have been presented in (Hilken
& Gogolla 2016a). We believe that these aspects are a large
factor in the widespread success and good perception of USE
as summarized in one of the tool reviews:

“The tool has a long history behind, since version 0.1
was created in 1999 and, compare to the rest of
tools analyzed, it is probably the most polished
one.” (González & Cabot 2014).

3.2. Teaching
The history of applying USE in teaching reaches nearly as far
back as the tool’s history itself. The first occurance in a lecture,
that we could still find online evidence today, was in 2002 by
Martin Gogolla7. Since then USE has been applied regularly
in lectures at the University of Bremen and still is in the most
recent one in 20208. Of special note may be that this year’s lec-
ture is recorded and the material can be accessed online. From
personal discussions with colleagues, we heard of more users
globally applying USE in their lectures, e. g. evident in (Bur-
gueño et al. 2018), but we could not find accessible course
information online. Further evidence of a global use of the
tool can be found, e. g., on YouTube in the form of demos and
tutorials, for example a demo showing validation of pre- and
postconditions from Federal University of Campina Grande in
Brazil9.

At the University of Bremen, the work with USE in lectures
has lead to good engagement with the students. This resulted in
many studies beyond the work in the lectures alone and plenty of
bachelor and master theses in the field. The accessibility of the
tool, whether it was just used as-is for research or extended using
the plug-in architecture or the code of the tool itself, helped to
realize all kinds of ideas. The impact of USE being open source
has further been investigated in (Hamann et al. 2014).

A recent study of tool usage in modeling educaton is pre-
sented in (Agner & Lethbridge 2017). The study includes tools
with a variety of feature sets, e. g. tools that only support defin-
ing and drawing models rather than instantiating and validating.
There exist plenty of such tools in the field, which, sadly, means
that USE was not one of the tools that is investigated in detail in
the study. However, the paper gives suggestions for features that
might make existing and new modeling tools more appreciated
in education, e. g. integration with other tools and being able to
generate code from the models. It also suggests that the ease of
use in regards to building the model is a large factor. Thus, a
graphical interface for creating class diagrams rather than the
current textual definition could help the acceptance of USE.

7 http://www.db.informatik.uni-bremen.de/teaching/courses/ss2002_oose/ (last
accessed: 16.05.2020)

8 http://www.db.informatik.uni-bremen.de/teaching/courses/ss2020_eis/ (last
accessed: 16.05.2020)

9 https://youtu.be/1RhQsNMw6sM (last accessed: 16.05.2020)

Of special note about the study is the finding that, of the
investigated tools, all were rated poorly in regards to feedback
about errors. This is a field where USE shines, as the basic ap-
proach has always been to allow for semantic errors like invalid
system states and give detailed feedback and the opportunity
to analyze what part of the model does invalidate the system
state rather than excluding invalid states outright. This gives
newcomers to UML and OCL a fair chance to better understand
the consequences of their models.

Another study of teaching UML/OCL modeling (Burgueño et
al. 2018) suggests tools, that support formal aspects of modeling,
might be better suited in teaching. These tools make it easier
to understand wrongly specified models and help discover that
models are more than just lifeless boxes and lines. In the survey,
focussing on three modeling tools, USE fairs very well, getting
similar ratings as the commercially developed tool MagicDraw,
yet the tools have different strengths. Where MagicDraw has a
high rating in usability, USE outweighs in the possibilities for
verification and validation.

3.3. Applications of USE
USE has been utilized in various projects – more than a single
paper is able to list. Nevertheless, a selection of few examples
shall give a sense of the variety of applications the USE tool
was a part of.

3.3.1. Application of USE to Strengthen eGovernment in
Germany One of the most successful and longest collabora-
tion based on USE is a model driven standardization approach
for data exchange in the area of eGovernment (Büttner et al.
2014). In 2001, a project to standardize the data exchange
between registry offices in Germany was started. Due to the fed-
eral nature of Germany, each federal state used to communicate
differently with other federal states.

One part of this project was to estimate a model-driven pro-
cess to define such data exchange standards. The goal was
to have domain experts work on a model level and afterwards
technical details were generated. One can see this as an early
application of Domain-Driven Design (Evans 2003). For the
required model-driven tool set, an Eclipse application based on
EMF was built. USE was integrated as the evaluation engine
for OCL, since no OCL parser for EMF existed, yet (Willink
2019). The resulting application is called XGenerator and is
still used to develop data exchange standards in the context of
eGovernment.

Admittedly, starting in 2019 OCL was replaced by Schema-
tron and XSLT (KoSIT 2020) to support the definition of busi-
ness rules. Unfortunately, we do not have any information about
the exact reasons why OCL was replaced. From an outside view
it looks weird that OCL, which was invented to specify busi-
ness rules on an abstract level, is replaced by a language of one
specific target platform for exactly that purpose. Examining the
answer to this question could be interesting in further research
for the OCL community.

3.3.2. Benchmarking Bound Tightening in USE
In (Clarisó et al. 2019), again model checking is the
topic. Here the authors present work on improving the selection

History of the USE Tool: 20 Years of UML/OCL Modeling Made in Germany 9



process of model bounds by analysis of the class diagram
with CSP trying to minimize overhead for verification tasks.
These bounds are required for bounded model checking as used
by several UML/OCL model checking approaches including
the USE model validator, which is applied to validate the
presented approach. The challenge is to choose the bounds as
restrictive and small as possible to reduce the runtime of the
model checker without being too restrictive, so that a satisfying
model instance still exists within the bounds. Without a tool for
systematic bound selection, the process is often done by hand
on the basis of best guesses.

Class diagrams in UML with class invariants defined in OCL
contain many dependencies, e. g. structural dependencies given
by multiplicities or semantics of elements and arbitrary logical
dependencies defined in OCL. With a model transformation
into CSP, these dependencies can be analyzed and used in con-
junction with model bounds to improve on the tightness thereof,
i. e. reducing the amount of values a verification engine has to
generate and consider. The execution time of the tightening
process is compared to the savings in runtime of the verification
engine on the basis of the USE model validator. The authors
do not only suggest their work for automatic bound tightening
before verification tasks but also for interactively aiding in the
first determination of adequate bounds.

3.3.3. Validation of Laws of Correct Nutrition in USE
The authors of (Chávez-Bosquez & Pozos Parra 2016) created
“a bridge between computing and health sciences” by presenting
a formalization of the Latin American laws of correct nutrition
in the form of a USE model to enable formal checking of the
adherence to the laws of meals described in the model.

The laws of correct nutrition, namely law of quantity, law
of quality, law of harmony and law of adequacy, describe – in
natural language – the concepts of a balanced diet, e. g. amounts
of energy and variety of food consumed. In order to get a better
grasp of the laws, they were formalized in a sophisticated USE
model with 9 classes, 7 associations and 133 query operations to
implement the calculations required. Further, 10 class invariants
check the adherence to the laws by the meals created as part of
the system states in the model. The model does not only consider
calories and sugar or fat, but goes as far as to the level of
vitamins, mineral nutrients, macro nutrients and considers meal
costs on an ingredient basis. Additionally, the model allows
attribution of people regarding age, gender, amount of physical
exercise and existing diseases which influence the calculation
to get accurate results.

This data allows creating recipes and meals in USE and
getting real time feedback of the nutritional values and whether
the laws of correct nutrition are adhered to. Violations of the
laws would be evaluated by USE via class invariants and can be
analyzed and corrected. The example instantiation shown in the
paper presents a system state with 114 objects and 74 links.

Besides the research, the authors provide a short explanation
for the application of USE:

“However, USE was selected since it is a constantly
evolving platform, it is open source, and it supports

most of the elements of the latest version of OCL
standard.” (Chávez-Bosquez & Pozos Parra 2016).

4. Conclusion
The past 20 years of the USE tool are rich of topics. We have
summarized the tools development, covering contributions to,
e. g., the OCL standard, along the way. Furthermore, achieve-
ments in the form of research, applications and teaching were
presented. Due to the sheer amount of users of the USE tool,
known and unknown, it is not possible to mention all and the
presentation was limited to a few topics. However we can only
appreciate this demonstration of the success of the tool and
every bit of work contributing to it.

Finally, the story of USE is not at an end. USE and its
sources remain available freely and are open-source. We hope
that this contribution might inspire new users to pick up the tool,
use it as a basis for their own work or even develop it further.
Some potential improvements have already been commented on
throughout the paper, but we envision also to ease the creation of
class diagrams, maybe using a graphical user interface instead of
the current textual form. This could reduce the initial barrier for
new users, as discussed in Sect. 3. This work is partly addressed
by the ObjectToClass plug-in mentioned earlier, but could be
integrated into the USE core.

Acknowledgments
We would like to thank Martin for the opportunity to work in his
group. His motivating support for the members of the working
group and USE has been inspiring. Also highlighted must be
his tireless examining of all new functions added to USE and
feedback given for them leading to many fruitful discussions.
Both of us had a great time in the group. Special thanks goes to
all contributors and users of USE, in particular Mark Richters
for laying the foundations of such a successful product.

References
Agner, L. T. W., & Lethbridge, T. C. (2017). A survey of

tool use in modeling education. In 20th ACM/IEEE interna-
tional conference on model driven engineering languages
and systems, MODELS 2017, austin, tx, usa, september
17-22, 2017 (pp. 303–311). IEEE Computer Society. doi:
10.1109/MODELS.2017.1

Al-Lail, M., Abdunabi, R., France, R. B., & Ray, I. (2013).
An approach to analyzing temporal properties in UML class
models. In F. Boulanger, M. Famelis, & D. Ratiu (Eds.),
Proceedings of the 10th international workshop on model
driven engineering, verification and validation modevva
2013, co-located with 16th international conference on model
driven engineering languages and systems (models 2013), mi-
ami, florida, usa, october 1st, 2013 (Vol. 1069, pp. 77–86).
CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-1069/
11-paper.pdf

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2007).
Uml2alloy: A challenging model transformation. In G. En-
gels, B. Opdyke, D. C. Schmidt, & F. Weil (Eds.), Model
driven engineering languages and systems, 10th international

10 Frank Hilken and Lars Hamann



conference, models 2007, nashville, usa, september 30 - octo-
ber 5, 2007, proceedings (Vol. 4735, pp. 436–450). Springer.
doi: 10.1007/978-3-540-75209-7_30

Bauerdick, H., Gogolla, M., & Gutsche, F. (2004). Detect-
ing OCL Traps in the UML 2.0 Superstructure: An Ex-
perience Report. In T. Baar, A. Strohmeier, A. Moreira,
& S. J. Mellor (Eds.), Proc. 7th Int. Conf. Unified Model-
ing Language (UML’2004) (pp. 188–197). Springer, Berlin,
LNCS 3273. doi: 10.1007/978-3-540-30187-5_14

Bill, R., Gabmeyer, S., Kaufmann, P., & Seidl, M. (2014).
Model checking of ctl-extended OCL specifications. In
B. Combemale, D. J. Pearce, O. Barais, & J. J. Vinju (Eds.),
Software language engineering, SLE 2014 (Vol. 8706, pp.
221–240). Springer. doi: 10.1007/978-3-319-11245-9_13

Brüning, J., Gogolla, M., Hamann, L., & Kuhlmann, M. (2012).
Evaluating and Debugging OCL Expressions in UML Models.
In A. D. Brucker & J. Julliand (Eds.), Proc. 6th Int. Conf.
Tests and Proofs (TAP 2012) (pp. 156–162). Springer, Berlin,
LNCS 7305. doi: 10.1007/978-3-642-30473-6_13

Burgueño, L., Vallecillo, A., & Gogolla, M. (2018). Teach-
ing UML and OCL models and their validation to software
engineering students: an experience report. Computer Sci-
ence Education, 28(1), 23–41. doi: 10.1080/08993408.2018
.1462000

Büttner, F. (2010). Reusing OCL in the Definition of Imperative
Languages (Unpublished doctoral dissertation). Universität
Bremen, Fachbereich Mathematik und Informatik.

Büttner, F., Bartels, U., Hamann, L., Hofrichter, O., Kuhlmann,
M., Gogolla, M., . . . Stosiek, A. (2014). Model-Driven
Standardization of Public Authority Data Interchange. Jour-
nal on Science of Computer Programming, Elsevier, NL, 89,
162–175. doi: 10.1016/j.scico.2013.03.009

Büttner, F., & Gogolla, M. (2014). On OCL-Based Imperative
Languages. Journal on Science of Computer Programming,
Elsevier, NL, 92, 162–178. doi: 10.1016/j.scico.2013.10.003

Chávez-Bosquez, O., & Pozos Parra, P. (2016). The latin amer-
ican laws of correct nutrition: Review, unified interpretation,
model and tools. Comp. in Bio. and Med., 70, 67–79. doi:
10.1016/j.compbiomed.2015.12.019

Clarisó, R., González, C. A., & Cabot, J. (2019). Smart bound
selection for the verification of UML/OCL class diagrams.
IEEE Trans. Software Eng., 45(4), 412–426. doi: 10.1109/
TSE.2017.2777830

Evans, E. (2003). Domain-driven design: Tacking complexity
in the heart of software. USA: Addison-Wesley Longman
Publishing Co., Inc.

Gabmeyer, S., Kaufmann, P., Seidl, M., Gogolla, M., & Kappel,
G. (2019). A feature-based classification of formal verifica-
tion techniques for software models. Software and Systems
Modeling, 18(1), 473–498. doi: 10.1007/s10270-017-0591-z

Gogolla, M. (1990). A Note on the Translation of SQL to
Tuple Calculus. ACM SIGMOD Record, 19(1), 18–22. doi:
10.1145/382274.382398

Gogolla, M. (1992). Fundamentals and Pragmatics of an
Entity-Relationship Approach (Habilitation thesis). Tech-
nische Universität Braunschweig, Naturwissenschaftliche
Fakultät. (Submitted November 1992, Accepted May 1993)

Gogolla, M. (1993). TROLL light - A Core Language for
Specifying Objects. In C. Beeri, A. Heuer, G. Saake, &
S. Urban (Eds.), Formal Aspects of Object Base Dynamics.
Dagstuhl-Seminar-Report Nr. 62.

Gogolla, M., Bohling, J., & Richters, M. (2003). Validation of
UML and OCL Models by Automatic Snapshot Generation.
In G. Booch, P. Stevens, & J. Whittle (Eds.), Proc. 6th Int.
Conf. Unified Modeling Language (UML’2003) (pp. 265–
279). Springer, Berlin, LNCS 2863. doi: 10.1007/978-3-540
-45221-8_23

Gogolla, M., Bohling, J., & Richters, M. (2005). Validating
UML and OCL Models in USE by Automatic Snapshot Gen-
eration. Journal on Software and System Modeling, Springer,
DE, 4(4), 386–398. doi: 10.1007/s10270-005-0089-y

Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., & France,
R. B. (2014). From Application Models to Filmstrip Mod-
els: An Approach to Automatic Validation of Model Dynam-
ics. In H. Fill, D. Karagiannis, & U. Reimer (Eds.), Proc.
Modellierung (MODELLIERUNG’2014) (pp. 273–288). GI,
LNI 225.

Gogolla, M., Hamann, L., Xu, J., & Zhang, J. (2011). Ex-
ploring (Meta-)Model Snapshots by Combining Visual and
Textual Techniques. In F. Gadducci & L. Mariani (Eds.),
Proc. Workshop Graph Transformation and Visual Mod-
eling Techniques (GTVMT’2011). Electronic Communi-
cations, journal.ub.tu-berlin.de/eceasst/issue/view/41. doi:
10.14279/tuj.eceasst.41.573

Gogolla, M., & Hilken, F. (2016). Model Validation and Veri-
fication Options in a Contemporary UML and OCL Anal-
ysis Tool. In A. Oberweis & R. Reussner (Eds.), Proc.
Modellierung (MODELLIERUNG’2016) (pp. 203–218). GI,
LNI 254.

Gogolla, M., Hilken, F., Doan, K.-H., & Desai, N. (2017).
Checking UML and OCL Model Behavior with Filmstripping
and Classifying Terms. In S. Gabmeyer & E. B. Johnsen
(Eds.), Proc. 11th Int. Conf. Tests and Proofs (TAP 2017) (pp.
119–128). Springer, LNCS 10375. doi: 10.1007/978-3-319
-61467-0_7

Gogolla, M., & Richters, M. (1997). On Constraints and
Queries in UML. In M. Schader & A. Korthaus (Eds.), Proc.
UML’97 Workshop ‘The Unified Modeling Language - Techni-
cal Aspects and Applications’ (pp. 109–121). Physica-Verlag,
Heidelberg.

Gogolla, M., & Richters, M. (2002). Development of UML
Descriptions with USE. In H. Shafazand & A. M. Tjoa (Eds.),
Proc. 1st Eurasian Conf. Information and Communication
Technology (EURASIA’2002) (pp. 228–238). Springer, Berlin,
LNCS 2510. doi: 10.1007/3-540-36087-5_27

Gogolla, M., Richters, M., & Bohling, J. (2003). Tool Support
for Validating UML and OCL Models through Automatic
Snapshot Generation. In J. Eloff, A. Engelbrecht, P. Kotze, &
M. Eloff (Eds.), Proc. Annual Research Conf. South African
Institute of Computer Scientists and Information Technol-
ogists on Enablement through Technology (SAICSIT’2003)
(pp. 248–257). ACM International Conference Proceedings
Series.

Gogolla, M., Richters, M., Bohling, J., Lindow, A., Büttner,

History of the USE Tool: 20 Years of UML/OCL Modeling Made in Germany 11



F., & Ziemann, P. (2004). Werkzeugunterstützung für die
Validierung von UML- und OCL-Modellen durch automatis-
che Snapshot-Generierung. In B. Rumpe & W. Hesse (Eds.),
Proc. Modellierung’2004 (pp. 281–282). Gesellschaft für
Informatik, LNI P-45.

Gogolla, M., Vallecillo, A., Burgueno, L., & Hilken, F. (2015).
Employing Classifying Terms for Testing Model Transforma-
tions. In J. Cabot & A. Egyed (Eds.), Proc. 18th Int. Conf.
Model Driven Engineering Languages and Systems (MoD-
ELS’2015) (pp. 312–321). ACM. doi: 10.1109/MODELS
.2015.7338262

González, C. A., Büttner, F., Clarisó, R., & Cabot, J. (2012).
Emftocsp: a tool for the lightweight verification of EMF
models. In S. Gnesi, S. Gruner, N. Plat, & B. Rumpe (Eds.),
Proceedings of the first international workshop on formal
methods in software engineering - rigorous and agile ap-
proaches, formsera 2012, zurich, switzerland, june 2, 2012
(pp. 44–50). IEEE. doi: 10.1109/FormSERA.2012.6229788

González, C. A., & Cabot, J. (2014). Formal verification of
static software models in MDE: A systematic review. Inf.
Softw. Technol., 56(8), 821–838. doi: 10.1016/j.infsof.2014
.03.003

Hamann, L., Büttner, F., Kuhlmann, M., & Gogolla, M. (2012).
Optimierte Suche von Modellinstanzen für UML/OCL-
Beschreibungen in USE. In E. J. Sinz & A. Schürr (Eds.),
Proc. Modellierung (MODELLIERUNG’2012) (pp. 155–170).
Springer, LNI 201.

Hamann, L., & Gogolla, M. (2013). Endogenous Metamodeling
Semantics for Structural UML2 Concepts. In A. Moreira,
B. Schätz, J. Gray, A. Vallecillo, & P. J. Clarke (Eds.), Proc.
16th Int. Conf. Model Driven Engineering Languages and
Systems (MoDELS’2013) (pp. 488–504). Springer, Berlin,
LNCS 8107. doi: 10.1007/978-3-642-41533-3_30

Hamann, L., Gogolla, M., & Honsel, D. (2012). Towards
Supporting Multiple Execution Environments for UML/OCL
Models at Runtime. In N. Bencomo, G. Blair, S. Götz,
B. Morin, & B. Rumpe (Eds.), Proc. 7th Int. Workshop Mod-
els at Runtime (MRT 2012) (pp. 46–51). ACM Digital Library.
doi: 10.1145/2422518.2422526

Hamann, L., Gogolla, M., & Kuhlmann, M. (2011).
OCL-Based Runtime Monitoring of JVM Hosted Ap-
plications. In J. Cabot, R. Clariso, M. Gogolla, &
B. Wolff (Eds.), Proc. Workshop OCL and Textual
Modelling (OCL’2011). Electronic Communications,
journal.ub.tu-berlin.de/eceasst/issue/view/56. doi: 10.14279/
tuj.eceasst.44.623

Hamann, L., Gogolla, M., & Sohr, K. (2015). Monitoring
Database Access Constraints with an RBAC Metamodel: A
Feasibility Study. In F. Piessens, J. Caballero, & N. Bielova
(Eds.), Proc. 7th Int. Conf. Engineering Secure Software and
Systems (ESSOS 2015) (pp. 211–226). Springer, LNCS 8978.
doi: 10.1007/978-3-319-15618-7_16

Hamann, L., Hilken, F., & Gogolla, M. (2014). Collected
Experience and Thoughts on Long Term Development of an
Open Source MDE Tool. In F. Bordelau, J. Dingel, S. Gerard,
& S. Voss (Eds.), Proc. Int. Workshop on Open Source Soft-
ware for Model Driven Engineering (OSS4MDE’2014) (pp.

42–52). http://ceur-ws.org/Vol-1290/: CEUR Proceedings,
Vol. 1290.

Hamann, L., Hofrichter, O., & Gogolla, M. (2012a). OCL-
Based Runtime Monitoring of Applications with Protocol
State Machines. In A. Vallecillo & J.-P. Tolvanen (Eds.),
Proc. 8th European Conf. Modelling Foundations and Ap-
plications (ECMFA 2012) (pp. 384–399). Springer, Berlin,
LNCS 7349. doi: 10.1007/978-3-642-31491-9_29

Hamann, L., Hofrichter, O., & Gogolla, M. (2012b). On
Integrating Structure and Behavior Modeling with OCL. In
R. France, J. Kazmeier, R. Breu, & C. Atkinson (Eds.), Proc.
15th Int. Conf. Model Driven Engineering Languages and
Systems (MoDELS’2012) (pp. 235–251). Springer, Berlin,
LNCS 7590. doi: 10.1007/978-3-642-33666-9_16

Hamann, L., Vidacs, L., Gogolla, M., & Kuhlmann, M. (2012).
Abstract Runtime Monitoring with USE. In T. Mens,
A. Cleve, & R. Ferenc (Eds.), Proc. European Conf. Soft-
ware Maintenance and Reengineering (CSMR’2012) (pp.
549–552). IEEE. doi: 10.1109/CSMR.2012.73

Hilken, F., & Gogolla, M. (2016a). User Assistance Charac-
teristics of the USE Model Checking Tool. In C. Dubois,
P. Masci, & D. Mery (Eds.), Proc. Workshop Formal Inte-
grated Development Environments (FIDE 2016) (pp. 91–97).
EPTCS 240. doi: 10.4204/EPTCS.240.7

Hilken, F., & Gogolla, M. (2016b). Verifying Linear Tem-
poral Logic Properties in UML/OCL Class Diagrams Us-
ing Filmstripping. In P. Kitsos (Ed.), Proc. Digital System
Design (DSD’2016) (pp. 708–713). IEEE. doi: 10.1109/
DSD.2016.42

Hilken, F., Gogolla, M., Burgueño, L., & Vallecillo, A. (2018).
Testing models and model transformations using classifying
terms. Software and Systems Modeling, 17(3), 885–912. doi:
10.1007/s10270-016-0568-3

Hilken, F., Hamann, L., & Gogolla, M. (2014). Transfor-
mation of UML and OCL Models into Filmstrip Models.
In D. D. Ruscio & D. Varró (Eds.), Proc. 7th Int. Conf.
Model Transformation (ICMT 2014) (pp. 170–185). Springer,
LNCS 8568. doi: 10.1007/978-3-319-08789-4_13

Hilken, F., Niemann, P., Gogolla, M., & Wille, R. (2015).
From UML/OCL to Base Models: Transformation Concepts
for Generic Validation and Verification. In D. Kolovos &
M. Wimmer (Eds.), Proc. 8th Int. Conf. Model Transforma-
tion (ICMT 2015) (pp. 1–17). Springer, LNCS 9152. doi:
10.1007/978-3-319-21155-8_12

Hilken, F., Schuster, M., Sohr, K., & Gogolla, M. (2016). In-
tegrating UML/OCL Derived Properties into Validation and
Verification Processes. In A. D. Brucker, J. Cabot, & A. S.-
B. Herrera (Eds.), Proc. Workshop OCL and Textual Mod-
elling (2016) (pp. 89–104). CEUR WS Proceedings 1756.

Jackson, D. (2019). Alloy: a language and tool for exploring
software designs. Commun. ACM, 62(9), 66–76. doi: 10
.1145/3338843

Kästner, A., Gogolla, M., & Selic, B. (2018a). From (Imper-
fect) Object Diagrams to (Imperfect) Class Diagrams: New
Ideas and Vision Paper. In A. Wasowski, R. F. Paige, &
Ø. Haugen (Eds.), Proc. 21th Int. Conf. Model Driven Engi-
neering Languages and Systems (MoDELS’2018) (pp. 13–22).

12 Frank Hilken and Lars Hamann



ACM/IEEE. doi: 10.1145/3239372.3239381
Kästner, A., Gogolla, M., & Selic, B. (2018b). Towards Flexible

Object and Class Modeling Tools: An Experience Report. In
D. di Ruscio, J. de Lara, & A. Pierantonio (Eds.), Proc. 4th
Flexible MDE Workshop (FlexMDE 2018) (pp. 233–242).
CEUR Proceedings 2245.

Koordinierungsstelle für IT-Standards (KoSIT). (2020). XGen-
erator. Online. Retrieved from https://www.xoev.de/xoev
_produkte/xgenerator-11551

Kuhlmann, M., & Gogolla, M. (2012). From UML and OCL
to Relational Logic and Back. In R. France, J. Kazmeier,
R. Breu, & C. Atkinson (Eds.), Proc. 15th Int. Conf. Model
Driven Engineering Languages and Systems (MoDELS’2012)
(pp. 415–431). Springer, Berlin, LNCS 7590. doi: 10.1007/
978-3-642-33666-9_27

Kuhlmann, M., Hamann, L., & Gogolla, M. (2011). Extensive
Validation of OCL Models by Integrating SAT Solving into
USE. In J. Bishop & A. Vallecillo (Eds.), Proc. 49th Int. Conf.
Objects, Models, Components, and Patterns (TOOLS’2011)
(pp. 289–305). Springer, Berlin, LNCS 6705. doi: 10.1007/
978-3-642-21952-8_21

Object Management Group (OMG). (2006, May). Object
Constraint Language 2.0. Retrieved from http://www.omg
.org/spec/OCL/2.0

Object Management Group (OMG). (2017, June). Action
Language for Foundational UML. Retrieved from https://
www.omg.org/spec/ALF/About-ALF/

Richters, M. (2002). A Precise Approach to Validating UML
Models and OCL Constraints (Unpublished doctoral disser-
tation). Universität Bremen, Fachbereich Mathematik und
Informatik, Logos Verlag, Berlin, BISS Monographs, No. 14.

Richters, M., & Gogolla, M. (1999a). A Metamodel for OCL.
In R. France & B. Rumpe (Eds.), Proc. 2nd Int. Conf. Uni-
fied Modeling Language (UML’99) (pp. 156–171). Springer,
Berlin, LNCS 1723. doi: 10.1007/3-540-46852-8_12

Richters, M., & Gogolla, M. (1999b). On the Need for a Precise
OCL Semantics. In R. France, B. Rumpe, B. Henderson-
Sellers, J.-M. Bruel, & A. Moreira (Eds.), Proc. OOPSLA
Workshop “Rigorous Modeling and Analysis with the UML:
Challenges and Limitations”. Colorado State University, Fort
Collins, Colorado.

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., & Drechsler,
R. (2010). Verifying UML/OCL models using boolean
satisfiability. In G. D. Micheli, B. M. Al-Hashimi, W. Müller,
& E. Macii (Eds.), Design, automation and test in europe,
DATE 2010, dresden, germany, march 8-12, 2010 (pp. 1341–
1344). IEEE Computer Society. doi: 10.1109/DATE.2010
.5457017

Torlak, E., & Jackson, D. (2007). Kodkod: A relational
model finder. In O. Grumberg & M. Huth (Eds.), Tools
and algorithms for the construction and analysis of systems,
13th international conference, TACAS 2007, held as part of
the joint european conferences on theory and practice of
software, ETAPS 2007 braga, portugal, march 24 - april 1,
2007, proceedings (Vol. 4424, pp. 632–647). Springer. doi:
10.1007/978-3-540-71209-1_49

Vallecillo, A., & Gogolla, M. (2017). Adding random operations

to OCL. In Proc. of modevva’17 (Vol. 2019, pp. 324–328).
CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-2019/
modevva_5.pdf

Warmer, J., Hogg, J., Cook, S., & Selic, B. (1997). Experience
with formal specification of CMM and UML. In J. Bosch
& S. Mitchell (Eds.), Object-oriented technology, ecoop’97
workshop reader, ecoop’97 workshops, jyväskylä, finland,
june 9-13, 1997 (Vol. 1357, pp. 216–220). Springer. doi:
10.1007/3-540-69687-3_44

Willink, E. (2019). OCL 2019 keynote: Retrospective and
prospective. Online. Retrieved from https://oclworkshop
.github.io/2019/slides/OCL2019_slides_keynote.pdf

About the Authors
Frank Hilken is currently RAMS manager in the railway in-
dustry. Formerly he was research assistant in the Database
Systems Group at the University of Bremen. His interests
and former work focus on formalizing UML and OCL mod-
els as well as model checking, with many contributions to
USE and the model validator plugin. You can contact him
at frank.hilken@siemens.com.

Lars Hamann is a full professor at the University of Apllied Sci-
enes Hamburg (HAW Hamburg). He is a former member of the
database systems group at the University Bremen let by Martin
Gogolla. His research interests include modelling and soft-
ware quality. You can contact the author at lars.hamann@haw-
hamburg.de.

History of the USE Tool: 20 Years of UML/OCL Modeling Made in Germany 13

mailto:frank.hilken@siemens.com?subject=Your paper "History of the USE Tool\ 20 Years of UML/OCL Modeling Made in Germany"
mailto:lars.hamann@haw-hamburg.de?subject=Your paper "History of the USE Tool\ 20 Years of UML/OCL Modeling Made in Germany"
mailto:lars.hamann@haw-hamburg.de?subject=Your paper "History of the USE Tool\ 20 Years of UML/OCL Modeling Made in Germany"

