
Journal of Object Technology | RESEARCH ARTICLE

The Forgotten Interfaces: A Critique of
Component-based Models of Computing

Bran Selic∗†
∗Malina Software Corp., Canada.

†Monash University, Australia.

ABSTRACT Many theoretical methods for dealing with component-based software design have been proposed. Unfortunately,
practically all of them ignore the inconvenient fact that software-based systems need an underlying hardware and software
infrastructure to function. Consequently, all software applications are susceptible to idiosyncratic effects stemming from the
hardware as well as supporting software layers.
This layering relationship between software and its supporting hardware and software platform is unprecedented in engineering
practice, since it represents a unique blending of the conceptual and physical domains. If we are to build truly reliable
component-based software applications, it seems critical that the nature of this relationship is clearly defined and understood.
Ignoring it would be irresponsible and, more worryingly, potentially dangerous.
In this article, we first analyze the non-trivial nature of this fundamental and unique relationship and also argue what may
be the reason why it has been neglected so often. This leads to the notion of engineering correctness as something that is
fundamental to reliable software design and which, it is claimed, is inseparable from the traditional and established concept of
logical correctness. It is argued further that this requires new engineering-oriented approaches to component-based software
application design that must factor the influence of platforms. In the final part of the article, one possible approach for achieving
this is described.

KEYWORDS Component-based Software Development, Verifying and Reasoning about Programs, Formal Languages, The Physics of Software.

“All machinery is derived from nature.”
Vitruvius, 1st century BC (Pollio 1914)

NOTE: It is the author’s privilege and honour to dedicate this
article to his good friend and esteemed colleague, Prof. Martin
Gogolla, to mark his 65th birthday.

JOT reference format:
Bran Selic. The Forgotten Interfaces: A Critique of Component-based
Models of Computing. Journal of Object Technology. Vol. 19, No. 3, 2020.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a2

1. Introduction: On traditional component-
based models

Interest in the notions of software component and component-
based design was originally inspired by the inherently modular
essence behind the object paradigm of computing. As a conse-
quence, many modern software applications are based on this
approach. It has also led to the definition of a number of the-
oretical models in support of component-based design. These
were inspired primarily by the potential of component-based
design for much simpler formal treatment when compared to
more traditional computational models, e.g., (Baumeister et al.
2006; Broy & Stølen 2001; Crnkovic et al. 2011; IBM 2010;
ITU-T Z.100 2010; Ommering et al. 2000; Object Management
Group 2006).

Unsurprisingly, practically all of these theoretical models
share a common ontological framework consisting of a com-

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a2

pact set of core ideas, such as those in the typical component
metamodel shown in Fig. 1 (Baumeister et al. 2006). The key
to its conceptual simplicity is that a component can be viewed
simply as a “black box”, which fully encapsulates its internals
(the Assembly), and thus hides much of its complexity.1 Each
component can then be treated as a basic transformer of inputs
to outputs (Fig. 2).2

CompositeComponent SimpleComponent

Interface

ProtocolPort

Component

Connector

Assembly

2

0..* 0..*

0..1

1

0..* 0..*

+provided 0..* +required0..*

Figure 1 A typical theoretical component meta-
model (Baumeister et al. 2006).

A component-based system is then realized by joining to-
gether specialized components by means of communication
channels (Connectors) terminating on typed interface points
of the components (Ports). The result is a design comprising
a purpose-built network of components Fig. 3 (a). Moreover,
the internal assemblies of components can themselves be real-
ized recursively by networks of finer-grained components (i.e.,
CompositeComponent) as depicted in Fig. 3 (b).

What emerges from this is an aesthetically pleasing and
conceptually simple model. Formal analysis of such systems
can proceed either bottom-up or top-down using the exact same
basic methods at every level, with the exception of the lowest
primitive level. This incremental approach is certainly a much
simpler problem compared to analyzing an equivalent traditional
computer program.

The objective is to allow the ability to formally prove or
disprove, by mathematically-based analysis, the logical correct-
ness (or lack thereof) of a proposed design. This is based on
the desire to harness the power of formal mathematical methods
in support of software engineering, something that has proven
essential to the success in all traditional engineering disciplines.

1 This is an important difference from the type of encapsulation of objects
found in most traditional object-oriented programming languages. Namely, in
these languages any elements designated as “private” cannot be accessed from
outside, but, these same internal elements can still freely access any publicly
visible external element. In other words, encapsulation is unidirectional; it
only works from the outside in, but not the other way around. As a result,
classes of such objects are implicitly bound to any external entities that are
accessed by their internal elements, which greatly diminishes their potential
for reuse in different contexts.

2 Note that, in principle, it is possible for a given service type to be associated
with more than one input (output) port. For example, in cases of transaction-
type services whose access involves a multi-stage protocol, each client of
a component may require its own dedicated port, since each service access
has its own specific state. (Not all component-based systems support this
capability.)

Figure 2 Prototypical component model: component as a
services provider and an input-to-output transformer.

Figure 3 Examples of component-based design by means of
(a) binding, (b) containment.

Needless to say, the ability to harness the immense power of
mathematics —- which is key to the proven success of all tradi-
tional engineering disciplines —- is a noble and highly desirable
objective, especially given that the design and construction of
reliable software has proven to be very difficult and fraught with
risk. Unfortunately, there is an inherent and often overlooked
flaw in practically all of these theoretical component-based mod-
els. As discussed in the following sections, the source of the
flaw is the unique and idiosyncratic nature of software. How-
ever, the reason it is commonly overlooked has historical roots
in the culture of the formal methods community.

2. A historical perspective on the evolution of
software and its impact on component mod-
els

Aristotle noted that: “In order to understand something, it is nec-
essary to understand how it came to be.” We apply this dictum
here to help clarify why most current theoretical component
models came to be flawed.

The very term “computing” exposes its origins. The first
computers and most early applications were designed to deal
with numerical problems. This line of thinking eventually led
to a view that programming should be treated primarily as an
exercise in applied logic.3 Under the influence of early giants of
software theory, such as Edsger Dijkstra and C.A.R. Hoare, this
viewpoint has emerged as the dominant one –– the one that is
still being taught in most software engineering courses. This is
readily reflected in the essential nature of the vast majority of tra-
ditional programming languages and programming theory. For
example, despite the fact that much modern software involves
some form of interaction with the physical world, quantity in
most mainstream programming languages is still being treated

3 For example, Dijkstra wrote: “I see no meaningful difference between pro-
gramming methodology and mathematical methodology” (Dijkstra 1995b).

2 Selic

as a purely numeric concept, (e.g., through as integer and real,
which are based on the “pure” mathematical notion of number).
Yet, the ability to deal with physical quantities is at the core
of all engineering. In fact, attempts to address software as an
engineering problem have occasionally been deemed harmful by
some notable theoreticians of software science.4 This attitude
has led to some astonishing and expensive disasters in practice,
such as the case of the Mars Climate Orbiter spacecraft, whose
very expensive failure was traced to a simple type mismatch
of physical quantities (Stephenson et al. 1999). Detecting type
mismatches is, of course, a primary responsibility of compil-
ers; yet, because the quantities involved were stripped of their
physical dimension, the mismatch went undetected.

Since those early days, the scope and range of computer ap-
plications has increased exponentially in practically all aspects
of society, to the point where software has become central to its
successful functioning. And, as noted, an increasing proportion
of that software is intended to operate in and collaborate with
physical and social environments. Thus, it must be capable of
coping with all the complexity, physicality, and unpredictability
of those environments. Yet, paradoxically, none of this is accom-
modated in the semantics of our most widely used programming
languages.

It is, therefore, not surprising that this same “purist” bias is
heavily present in modern theoretical component models. For
instance, standard formal analysis approaches used with these
kinds of models such as model checking and theorem proving,
typically take a purely qualitative approach, which we shall
refer to here as checking for logical correctness. This mostly
means determining whether or not a design will conform to the
desired specification, such as causality patterns and the like. On
the other hand, quantitative characteristics, such as response
time, availability, or security, are not covered by such analyses.5

These are relegated to separate engineering-type analyses and
only after logical correctness has been established. At first
glance this might appear reasonable. After all, until the logic
of a design is proven correct it seems superfluous to bother

4 Thus, Hoare noted in one interview: “I still feel glad to emphasize the duty, the
defining characteristic of the pure scientist — probably to be found working
in universities — who commit themselves absolutely to specialized goals,
to seek the purest manifestation of any possible phenomenon that they are
investigating, to create laboratories that are far more controlled than you
would ever find in industry, and to ignore any constraints imposed by, as it
were, realism. Further down the scale, people who understand and want to
exploit results of basic science have to do a great deal more work to adapt and
select the results, and combine the results from different sources, to produce
something that is applicable, useful, and profitable on an acceptable time
scale.” (Frana 2002)

5 A salient example of this can be seen in the various temporal logics that
have been proposed. In these statements about time are abstracted down
to “henceforth” or “eventually” (which, of course, could be a very long
time) (Manna & Pnueli 1992). Many other formalisms take the same line,
include many that adopt “zero time” assumptions, based on the view that
computation is instantaneous (Lee 2002). While this may be valid in some
cases, prudent engineering suggest that it is first necessary to validate such an
assumption before proceeding to work adopt it.

with “premature optimization”6 of any quantitative engineering
characteristics.

However, it is argued below that these engineering or “non-
functional” characteristics — as they are, unfortunately, often
called — can sometimes have a fundamental impact on the
logic of a design. In other words, the design of component-
based applications should not be merely a matter of applied
(mathematical) logic, but, instead, it should be treated as a
more general engineering problem, one that necessarily involves
quantitative reasoning and trade-offs.

3. Why it is risky to separate functional and
non-functional properties

It is widespread practice in both academia and industry to dis-
tinguish and keep separate so-called “functional” requirements
from “non-functional” ones. This too is a consequence of the
same historical bias towards a formalized mathematical view
of software. The term “functional” is generally interpreted as
to referring to the logical characteristics of a system, indepen-
dently of its engineering characteristics. The very fact that these
characteristics are referred to as “non-functional” suggests that
they are a second-order concern. Otherwise, they would have
been given a name that more accurately reflects what they are,
as opposed to one that tells us what they are not.

This term reflects an assumption that the two facets can be
dealt with separately. This is most unfortunate since experience
has shown that the so-called “non-functional” (engineering)
characteristics, such as security, performance, and availability,
are non-modular and can rarely be localized within a design.
Instead, they typically cut across many parts of a design and,
therefore, can have a major impact on the design. This means
that they are not easily modified or added post hoc. In fact, in
many cases ensuring that these requirements are satisfied may
take up the majority of the design effort (Selić 2016).

For example, the design for dealing with a “logical” require-
ment such as “messages must be delivered in the order they were
sent” is likely to be quite different than for, say, an “engineering”
type requirement such as “all messages must be delivered, in the
order sent, within 0.5 seconds with a reliability of 99%”. The
latter imposes both temporal and reliability constraints. Com-
pared to the former, it will undoubtedly require dedicated fault
detection and recovery mechanisms as well as an implemen-
tation tuned towards efficiency. Moreover, if this application
is intended to run over a physically distributed environment, it
may not even be feasible to come up with a design that fully
satisfies such a requirement due to constraints imposed by the
physics of the situation (Fischer et al. 1985). On the other hand,
such concerns are irrelevant if this same application is targeted
to a single computing node.

In a very real sense, the software and hardware technol-
ogy that underlies a software application can be considered as
the “raw material” out of which the software application is

6 The quote: “Premature optimization is the root of all evil” was originally
formulated by D. Knuth (https://en.wikiquote.org/wiki/Donald_Knuth), and
was later echoed by C.A.R. Hoare. However, Knuth was referring to time and
effort spent on low-level optimizing of algorithms rather than to system-level
design.

The Forgotten Interfaces: A Critique of Component-based Models of Computing 3

https://en.wikiquote.org/wiki/Donald_Knuth

constructed. And, as in all engineering, the properties of the
construction material will not only impact the characteristics
of the end result, but can also influence the design itself. It is
well known, for example, that one cannot guarantee that a high-
security application will be sufficiently secure if it is to execute
on top of an inherently unsecure operating system. Analogous
to traditional engineering, software applications impose a level
of “stress” on their platforms and it is therefore necessary to
determine if the platform7 (i.e., the “raw material”) has the
necessary load-bearing capacity.

This problem is exacerbated by the fact that most of these
varied engineering characteristics (e.g., execution speed, mem-
ory capacity, communications bandwidth) are idiosyncratic and
require different analysis and design strategies. In other words,
there is no universal solution that covers all of them; each one
has to be addressed individually. To make this even worse,
some of them are in direct conflict with each other. For instance,
responsiveness and performance versus security. Security typ-
ically involves careful and graduated certification steps, all of
which hinder performance and responsiveness. Similarly, high
availability generally requires some form of redundancy, which
has negative consequences on both cost and performance. This
type of design conundrum involves complex trade-off analysis
and demands deep multi-domain expertise and experience.

All of this supports the argument that software design extends
beyond mere logical correctness and that it constitutes a fully-
fledged engineering problem in the classical sense. Nevertheless,
there are some critical aspects of the relationship between soft-
ware and its platform that demand software-specific handling
that make it unique in the field of engineering.

4. On the nature of the relationship between
software applications and their platforms

Practically all component models require an underlying compo-
nent framework, which is a kind of virtual machine responsible
for executing the specification of a component-based applica-
tion (Fig. 4). This framework provides the resources and mech-
anisms required to realize the precise semantics of its specific
component model. This includes responsibility for the creation
and destruction of components and their interconnections, sup-
port for specific forms of inter-component communications, as
well as various additional services, such as timing, scheduling,
memory storage provisioning, connection to physical devices
such as sensors and actuators, etc.

A component framework also serves another key purpose:
it isolates the component model from the underlying software-
hardware platform providing, thereby, a degree of platform
independence. This is the property of a software application
that allows it to be executed on different platforms with little
or no adjustment. Needless to say, this is a very useful and
desirable capability given today’s rapid advances in technology
and a immense platform diversity.

This relationship between a component application and its

7 The platform of a software application is defined here refers not only to the
underlying hardware, but also the full complement of software that it requires
to execute successfully (see Fig. 4).

underlying platform is typically represented by a layered struc-
ture, such as the one shown in Fig. 4.

Although this kind of layered representation is frequently
used, its precise semantics are not always clear. What exactly
do we mean when we place one layer on top of another, as in
Fig. 4?

Whether the layering relationship is between software and
hardware or software and software, the semantics are the same.
In essence, it means that the elements in the upper layer take ad-
vantage of the services and resources of the lower layer to fully
realize their implementation. A direct, and often overlooked
consequence of this is that, despite their encapsulation, software
components can never fully encapsulate their implementation.
In a very concrete sense, some part of the implementation of a
component invariably “spills over” into the layer below.

For example, when a component sends a message to another
component, it does so by invoking the communications ser-
vice provided by its component framework. In fact, despite the
simple and aesthetically pleasing image suggested by typical
theoretical component models whereby components interact
directly with each other via connectors, the only direct interac-
tions that a component has are with its framework. These are the
“forgotten interfaces” alluded to in the title of this article: the
interfaces between a software component and its platform. The
culture of the formal methods community prefers to ignore this
reality, but this is precisely where all the idealized component
models fail.

The difficulty comes from the fact that supporting layers
rarely dedicate exclusive access of their resources to application-
level entities such as components and connectors. Instead,
lower-layer resources are typically shared between multiple
upper-layer elements. This is clearly evident at the hardware
layer, where multiple concurrent applications share the same
CPU, physical memory, hardware busses, etc. However, the
same typically applies in all supporting software layers.

This resource-sharing characteristic of platforms has the fol-
lowing two major consequences for component-based applica-
tions as well as theoretical component models:

(a) As already noted, a component can never fully encapsulate
its implementation, because some of that implementation
responsibility is taken over by the platform.

(b) Since platform resources are shared, there is a definite
possibility of contention. As a critical and highly undesir-
able consequence, components sharing the same platform
resources can interfere with each in unpredictable ways.

For example, a scheduling delay in processing of an arriving
message for a component could lead to a missed deadline. Or, a
message may be lost due to temporary lack of buffer space, and
so on. The severity of such incidents depends on the applications
and circumstances, but there cannot be any doubt that they open
up the possibility of defects that cannot be uncovered by logical
analysis of just the top-level component model.

This problem is further complicated if a platform simultane-
ously supports multiple, independently-designed applications —
a very common situation in computing. If such applications are
indeed designed independently (i.e., without knowledge of each

4 Selic

Figure 4 A component-based application, its supporting component framework, and its platform.

Figure 5 Total Correctness = Logical Correctness ∩ Engi-
neering Correctness.

other), it may not even be feasible to predict in advance what
kind of mutual interference to expect and what consequences
that might bring about.

5. On design correctness

A design is deemed to be correct if it always performs accord-
ing to its specification. This unquestionably includes meeting
or exceeding all of its engineering quality of service require-
ments. We refer to the latter condition as engineering correct-
ness. (Note that these characteristics are becoming of increas-
ingly greater concern, as modern society becomes fundamen-
tally dependent on software for its day-to-day functioning.8)

From a pragmatic point of view, what is needed is total
correctness, which means both logical and engineering correct-
ness (Fig. 5). And, as discussed above, because of possible
inter-dependencies between a system’s logic and its engineering
qualities, the only safe approach is to start from the intersection
of the two, rather than focusing on and solving one them first
and only then dealing with the other.

8 The truth of this statement was dramatically illustrated by the recent coron-
avirus pandemic that enveloped the globe at the beginning of 2020. Without
the support of the Internet and related telecommunications software, its conse-
quences on society would undoubtedly have been orders of magnitude more
devastating.

6. A potential engineering solution to platform
independence

Because of the interdependence between logic and engineering
concerns, it may seem at first that we may have to abandon the
highly desirable goal of platform independent design. However,
this is only if we interpret that term in an absolute sense, which,
by the way, is how it is typically understood by many practition-
ers. Such an interpretation equates to expecting that a “platform
independent” application will execute correctly on any platform,
large or small, new or old, distributed or not. While there may
be some simple software applications where such a property
holds, they are likely to be trivial.

Instead, we choose to interpret that term in a conditional
sense. That is, we constrain platform independence by qual-
ifying it with a range of platforms on which the application
in question can perform successfully. We refer to these as
the acceptable platforms of the platform-independent applica-
tion. These platforms have the necessary resources and with the
necessary engineering characteristics that are required by the
application.

Clearly, it would not be practical to explicitly list all possible
individual platforms that might fall into the acceptable platform
category for a given application, especially since new platforms
appear all the time. However, it is possible instead to define an
acceptable platform for an application in a generic way as a set
of resource and quality of service constraints that an acceptable
platform must satisfy.

One way of realizing this is to define the relationship between
an application and its platform in terms of explicit interfaces
between the application and its platform. This is partly already
in place: every platform has a defined application programming
interface (API), which is what applications running on that plat-
form use to access its services.9 But this is not enough, since we
are also interested in engineering characteristics such as perfor-
mance, security, and the like. This means associating relevant
quantitative characteristics with every API, for example, worst
case execution times for time-critical API calls. In addition, the
notion of interface should be extended to other properties, such

9 In the well-known 7-layer model of Open Systems Interconnection (OSI),
these interface points are referred to as Service-Acess-Points (SAPs) (ITU-T
X.200 1994).

The Forgotten Interfaces: A Critique of Component-based Models of Computing 5

as, say, a “CPU interface” that specifies the necessary minimum
speed and other critical CPU characteristics, or a “memory inter-
face” that identifies the type and capacity of required hardware
memory, etc.

Once the full set of such required “interfaces” and their char-
acteristics is defined for an application, it becomes possible to
do a very precise analysis to determine the suitability of any
given platform relative to a particular application. Naturally,
this also requires that the corresponding engineering parame-
ters of a candidate platform are known and explicitly stated.
Unfortunately, this type of information is rarely available in
full, so it may have to be derived through experimentation or
by other means. International standards such as the MARTE
standard from the Object Management Group (OMG) provide
a conceptual framework for this purpose (Object Management
Group 2008). A detailed description of how this framework can
be used to realize the “acceptable platform” design pattern is
provided in Section 6.5.4 of reference (Selić & Gérard 2014).

7. Summary

The inherently modular nature of the object concept as defined
within the object-oriented approach to computing provided the
inspiration behind the emergence of a number of theoretical
models of component-based systems. These were primarily
motivated by the conceptual simplicity of the component con-
cept, which stands in contrast to the unavoidable complexity
of traditional code-based approaches to computer software de-
sign. Published empirical and theoretical research of these
approaches, e.g., (Baumeister et al. 2006; Broy & Stølen 2001;
Crnkovic et al. 2011; IBM 2010; ITU-T Z.100 2010; Ommering
et al. 2000; Object Management Group 2006), has shown that
they can indeed greatly simplify formal mathematical analysis.

However, motivated primarily by the desire for simplicity and
conceptual purity, most of these theoretical models are imperfect
because they abstract away key real-world phenomena that could
invalidate the results of formal analyses. The phenomena in
question stem from the limitations imposed by the physical
constraints of the underlying platform (i.e., the “raw material”
out of which an application is ultimately constructed) as well as
the sharing of platform resources, neither of which is under the
direct control of the application.

Consequently, any conclusions drawn through formal analy-
ses about the logical correctness of a component-based design
using these oversimplified models may not be reliable and may
lead to a false sense of security. It is, therefore, argued here that
(a) pure logical correctness is insufficient and must be comple-
mented with engineering correctness, which takes into account
the limitations of the underlying platform, and (b) that platform
constraints can fundamentally alter the “logical” design of an
application. Given that society is increasingly more dependent
on highly interactive and complex software-based systems, we
must extend our theoretical models of component-based sys-
tems to accommodate this reality, regardless of how much it
may corrupt their conceptual mathematical simplicity (based
on the famous saying attributed to Einstein that: “Everything
should be made as simple as possible, but no simpler”.)

One possible approach for addressing this issue is outlined
in Section 6, based on the “acceptable platform” design pat-
tern. It proposes to make explicit the interfaces between that
an application and its platform (i.e., the “hidden interfaces”).
This includes more than just the set of all API signatures of the
platform used by the application, but also explicit declaration of
their individual required quality of service (i.e., “engineering”)
properties. In other words, these interfaces capture explicitly
the type and characteristics of the platform for which the appli-
cation is designed. These can then be directly matched against
the corresponding interfaces (including their declared provided
qualities of service) of a potential platform to reliably determine
its ability to support the application. In essence, the issue is
reduced to a type-compatibility analysis.

In summary, what is called for is a new approach to
component-based models that goes beyond just mathematical
logic. The design of software applications is, in fact, an engi-
neering problem requiring engineering methods.

Appendix: Is Software Fundamentally Mathe-
matical?
In his book, Mathematics: The Loss of Certainty, the math-
ematician Morris Kline describes the evolution of mankind’s
relationship with mathematics (Kline 1982) An early view is ex-
emplified by the Pythagorean school of Ancient Greece, where
it was theorized that the essence of the Universe was rooted
in the concept of natural number. To their chagrin, this early
“theory of everything” was fatally contradicted when they un-
covered irrational numbers. (In fact, they were so distressed
by this discovery, that they kept it secret from the rest of the
world.) Kline then describes a series of subsequent mathe-
matical inventions (or discoveries?), such as non-Euclidean
geometries, which suggested that the relationship between the
physical world and mathematics was not necessarily homomor-
phic, since mathematics was capable of constructs that had no
equivalent in physical experience. The culmination of this pro-
gression came with Gödel’s incompleteness theorems (Gödel
1986), which exposed a fundamental limitation of formal ax-
iomatic (i.e., mathematical) systems to fully describe physical
reality (Hawking 2002).

Nevertheless, the notion that mathematics was somehow
at the very core of physical reality persisted in the scientific
community and is still a mainstay with many. This line of
thinking was further supported by the accuracy of predictions
made using early mathematical models of physical phenomena
in astronomy and physics. Eugene Wigner pointed out (Wigner
1960) that even if mathematics is not a direct reflection of reality,
it is surprisingly accurate at modeling some important aspects
of it –– the only difficulty being is that we can never be sure at
what point it ceases being trustworthy. The trustworthiness of
mathematical analyses of physical systems is at the core of the
issue discussed in this article.

This persistent belief in the power of mathematics has found
its way into the domain of computer programming. The fact
that computers are at their core a mechanization of Boolean
logic, naturally suggests that mathematical methods can and

6 Selic

do play a central role in the field. One of the most prominent
proponents of this view, Edsger Dijkstra, a true giant of soft-
ware science, argued that software design should be a matter of
applied mathematics claimed and that, consequently, program
design should align with mathematical methodology (see foot-
note 3 on page 4). Consequently, he bemoaned the introduction
of the interrupts into computers:

“[The interrupt] was a great invention, but also a
Pandora’s Box ... essentially, for the sake of efficiency,
concurrency [became] visible ... and then, all Hell
broke loose.” (Dijkstra 1995a)

Specifically, Dijkstra was lamenting the loss of determinism
and predictability that would result from the interference caused
by unpredictable interruptions of computations performed on
an otherwise predictable machine. But, what he seems to have
missed is that the purpose of interrupts goes far beyond mere ef-
ficiency (why “mere” efficiency — is efficiency not important?).
In fact, interrupts are a fundamental means by which computers
interact with the external (physical) world in real time. This
may not have been so obvious in the early days of computing,
but a large proportion of modern software applications involve
some degree of asynchronous interactions with that world. And,
experience has shown that these are probably the most difficult
applications to get right, since we know that the physical world
is highly diverse, concurrent, and unpredictable. Yet, we are
demanding that software not only to recognize this complexity
but also cope with it safely and reliably.

As argued in this article, it should be clear by now that
computers and computing and software applications are not
separable from the physical world. Therefore, software de-
sign cannot and should not be reduced to “mere” mathematical
methodology.

Acknowledgments
The author expresses his gratitude to Prof. Antonio Vallecillo for
his helpful and encouraging feedback as well as his invaluable
assistance in the preparation of the LATEX version.

References
Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., &

Wirsing, M. (2006). A component model for architectural
programming. Electron. Notes Theor. Comput. Sci., 160,
75–96. doi: 10.1016/j.entcs.2006.05.015

Broy, M., & Stølen, K. (2001). Specification and development
of interactive systems. Springer. doi: 10.1007/978-1-4613
-0091-5

Crnkovic, I., Sentilles, S., Vulgarakis, A., & Chaudron, M. R. V.
(2011). A classification framework for software component
models. IEEE Trans. Software Eng., 37(5), 593–615. doi:
10.1109/TSE.2010.83

Dijkstra, E. W. (1995a). My recollections of operating sys-
tem design. Retrieved from https://www.cs.utexas.edu/users/
EWD/ewd13xx/EWD1303.PDF (ED 1303)

Dijkstra, E. W. (1995b). Why american computer science seems
incurable. Retrieved from https://www.cs.utexas.edu/users/
EWD/ewd12xx/EWD1209.PDF (ED 1209)

Fischer, M. J., Lynch, N. A., & Paterson, M. (1985). Impos-
sibility of distributed consensus with one faulty process. J.
ACM, 32(2), 374–382. doi: 10.1145/3149.214121

Frana, P. (2002, July). An interview with charles antony richard
hoare. oral history 357. Retrieved from https://conservancy
.umn.edu/bitstream/handle/11299/107362/oh357th.pdf

Gödel, K. (1986). Some basic theorems on the foundations of
mathematics and their implications. In Kurt gödel collected
works (Vol. I, p. 144-195). Oxford University Press.

Hawking, S. (2002). Gödel and the end of the universe. Re-
trieved from http://www.hawking.org.uk/godel-and-the-end
-of-physics.html (Stephen Hawking Public Lectures)

IBM. (2010). Service Component Architecture (SCA), Docu-
ment Version 1.0.

ITU-T X.200. (1994). Data Networks and Open System Com-
munications: Open Systems Interconnection — Model and
Notation – Basic Reference Model: The Basic Model (version
07/94).

ITU-T Z.100. (2010). Specification and Description Language
-– Overview of SDL-2010.

Kline, M. (1982). Mathematics: The loss of certainty. Oxford
University Press.

Lee, E. A. (2002). Embedded software. Advances in Computers,
56, 55–95. doi: 10.1016/S0065-2458(02)80004-3

Manna, Z., & Pnueli, A. (1992). The temporal logic of reactive
and concurrent systems - specification. Springer. doi: 10
.1007/978-1-4612-0931-7

Object Management Group. (2006, April). CORBA Component
Model, Version 4.0. (OMG Document formal/06-04-01)

Object Management Group. (2008, June). A UML Profile for
MARTE: Modeling and Analysis of Real-Time Embedded
Systems. Beta2. (OMG Document ptc/2008-06-09)

Ommering, R., van der Linden, F., Kramer, J., & Magee, J.
(2000). The koala component model for consumer electronics
software. IEEE Computer, 33(3), 78–85. doi: 10.1109/
2.825699

Pollio, V. (1914). The ten books on architecture. Dover Publi-
cations Inc. (Morgan, M.H. translator)

Selić, B. (2016). Programming ⊂ modeling ⊂ engineering. In
Proc. of isola 2016 (Vol. 9953, pp. 11–26). doi: 10.1007/
978-3-319-47169-3_2

Selić, B., & Gérard, S. (2014). Modeling and Analysis of
Real-Time and Embedded Systems with UML and MARTE.
Morgan Kaufmann.

Stephenson, A. G., LaPiana, L. S., Mulville, D. R., Rutledge,
P. J., Bauer, F. H., Folta, D., . . . Norvig, P. (1999, November).
Mars Climate Orbiter Mishap Investigation Board Phase
1 Report. Retrieved from https://llis.nasa.gov/llis_lib/pdf/
1009464main1_0641-mr.pdf

Wigner, E. (1960). The unreasonable effectiveness of mathemat-
ics in natural sciences. Communications on Pure and Applied
Mathematics, 13(1), 1–14. doi: 10.1002/cpa.3160130102

About the author
Branislav (Bran) Selić is President and Founder of Malina Soft-
ware Corp., a Canadian company providing IT consulting and

The Forgotten Interfaces: A Critique of Component-based Models of Computing 7

https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1303.PDF
https://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1303.PDF
https://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1209.PDF
https://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1209.PDF
https://conservancy.umn.edu/bitstream/handle/11299/107362/oh357th.pdf
https://conservancy.umn.edu/bitstream/handle/11299/107362/oh357th.pdf
http://www.hawking.org.uk/godel-and-the-end-of-physics.html
http://www.hawking.org.uk/godel-and-the-end-of-physics.html
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf

training services to industry. He is also Director of Advanced
Technology at Zeligsoft (2009) Limited in Canada. On the
academic side, he is currently adjunct professor at Monash Uni-
versity (Australia) and a visiting researcher at the University of
Sydney (Australia). In the course of 45+ years of direct pro-
fessional experience in industry, he was involved in the design
and implementation of a variety of large-scale software systems
primarily in the cyber-physical systems domain. Bran is the
principal author of two technical textbooks, editor of seven oth-
ers, and has over 100 publications in various technical journals
and conferences. He holds a Mag. Ing. degree in Systems The-
ory (1974) and a Dipl. Ing degree and Electrical Engineering
(1972), both from the University of Belgrade.

8 Selic

