
Journal of Object Technology | RESEARCH ARTICLE

Logic-based Software Modeling with FOML
Mira Balaban∗, Igal Khitron∗, and Michael Kifer†

∗Ben-Gurion University, Israel
†Stony Brook University, USA

ABSTRACT Models are at the heart of the emerging Model-Based Systems Engineering (MBSE) approach. MBSE is motivated
by the growing complexity of software, which requires multiple levels of abstraction that programming languages do not support.
In MBSE, models play a central role in the software evolution process. Rich model management must rely on a unifying
underlying formal framework that can support, integrate, and mediate powerful modeling services. This paper describes FOML,
a F ramework for Object Modeling with Logic, its realization in a modeling tool, proves the correctness of class modeling in
FOML, illustrates the process of software modeling with the tool, and presents the main features of the system. The FOML
framework for software modeling is compact yet powerful, formal, and is based on an underlying logic rule language called
PathLP. The combination of class-based conceptualization with a formal logical base enables clean mediation and integration of
a wide range of modeling activities and provides a provably correct formulation of class models. Our implementation of FOML
features seamless integration of multiple modeling services that simultaneously support multiple models and provide reasoning,
meta-reasoning, validation, testing, and evolution services.

KEYWORDS UML class diagrams, F-Logic, objects, constraints, types, model transformation, OCL, logic programming, model theory.

1. Introduction
Models are at the heart of the emerging Model-Based Sys-
tems Engineering (MBSE) approach. MBSE is motivated by
the growing complexity of software, which requires multiple
levels of abstraction that programming languages do not sup-
port (R. B. France et al. 2006; Schmidt 2006; R. France &
Rumpe 2007). In MBSE, models play a central role in the
software evolution process. Rich model management must rely
on a unifying underlying formal framework that can support,
integrate, and mediate powerful modeling services (Kleppe et
al. 2003; Frankel 2003; Sendall & Kozaczynski 2003).

Intensive efforts in the modeling community in the last two
decades have produced an impressive variety of tool support for
models, and frameworks like Eclipse EMF, Epsilon (Kolovos
et al. 2008), and MetaEdit, that supports Domain Specific mod-
eling (Kern & Kuhne 2007). Nevertheless, models are still not

JOT reference format:
Mira Balaban, Igal Khitron, and Michael Kifer. Logic-based Software
Modeling with FOML. Journal of Object Technology. Vol. 19, No. 3, 2020.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a19

widely used throughout the software evolution life cycle and,
in many cases, they are neglected in later stages of software
development. Moreover, users neglect specification of essential
constraints, since they are not supported by the software tools
that implement the models. To make models more useful, one
needs a powerful model-level IDE that supports a wide range
of object modeling tasks. Such IDEs must have a consistent
formal foundation.

This paper introduces FOML, a Framework for Object
Modeling with Logic,1 its realization in a modeling tool, proves
the correctness of class modeling in FOML, illustrates the pro-
cess of software modeling with the tool, and presents the main
features of the system (Khitron et al. 2011b). The FOML frame-
work for software modeling is compact yet powerful and formal.
It is based on an underlying logic rule language of guarded
path expressions, called PathLP, which is used to define objects
and their types.2 The combination of class-based conceptual-
ization and a formal logical base enables clean mediation and
integration of a wide range of modeling activities and supports

1 A preliminary version this work appeared in (Balaban & Kifer 2011).
2 It is inspired primarily by F-logic (Kifer, Lausen, & Wu 1995), and also by

HiLog (Chen et al. 1993) and Transaction Logic (Bonner & Kifer 1994).

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a19

a provably correct formulation of class models.
Our implementation of FOML features seamless integration

of multiple modeling services that simultaneously support mul-
tiple models and provides reasoning, meta-reasoning, validation,
testing, and evolution services.

This paper is organized as follows: Section 2 provides back-
ground on class and object modeling, together with a formal set-
theoretic definition, Section 3 formally introduces the PathLP
language. The FOML layer is described in Section 4, and the
FOML tool is described in Section 5. Section 6 describes related
work and Section 7 concludes the paper.

2. Background on UML Class and Object Mod-
els

Class models and object models provide static views of problem
domains. They describe system structure in terms of classes,
associations, and constraints. These models are the essence of
the Unified Modeling Language (UML) (OMG 2017), a widely
accepted standard for modeling software systems. UML con-
sists of a variety of visual modeling diagrams, each describing
a different aspect of software. Class Diagrams, the backbone
of UML, are used to visualize class models; object diagrams
visualize object models.

A class diagram consists of basic elements, descriptors, and
constraints. The basic elements are classes and associations; the
descriptors are class and association attributes, along with asso-
ciation properties; the constraints are restrictions imposed on
these elements. The constraints include constrained elements—
association classes and aggregation/composition properties,
together with constraints on these elements: (1) multiplicity
(or cardinality) constraints on properties and attributes, with or
without qualifiers; (2) class hierarchy constraints; (3) general-
ization set constraints; and (4) inter association constraints.

Figure 1 shows a class diagram for modeling computer man-
ufacturing software. It has the classes Hardware, Software,
GPU, Computer, OS, CompAppl, ComputingAPI and
GPUAPI, where GPUAPI is an association class. The as-
sociations are hardwSoftw, partParent, gUnitComp,
compOs, osCompAppl, alternative, compApplApi,
gpuApi and CompApplGApi. Each association has a pair
of properties that are inverses of each other (also termed
roles, association-ends), and each property has a multiplicity
constraint. The class diagram also includes class hierarchy
(generalization/specialization) constraints, a generalization set
constraint, and three subsetting inter-property constraints. The
diagram states (among other things) that instances of Computer
must be related (via the association compOS) to one or more
instances of class OS, which also happen to be instances of
Software. Furthermore, OS instances must be disjoint from
the instances of CompAppl due to the disjoint constraint that
involves these classes. The association class GPUAPI is related
to the gpuApi association (linking GPU and ComputingAPI),
meaning that there is a 1:1 correspondence between instances
of GPUAPI and links of gpuApi. This constraint is shown in the
figure using a dashed line. The subsetting constraint between
the os and the softw properties (and also between compG and

part) states that os is a subproperty of softw, i.e., links of os are
also links of softw.

The visual notation of class diagrams is said to be the con-
crete syntax of class models. The abstract syntax of class dia-
grams formally defines the semantically meaningful syntactical
categories, and their inter-relationships. The semantics of class
models is defined via the abstract syntax. We illustrate the
abstract syntax and its semantics using the above example.

Object models describe data for class models, which includes
objects, their content, and inter-relationships; they are visual-
ized via object diagrams. An object model of a class model is
assumed to be a legal instance, i.e., to satisfy the class diagram
constraints. Based on this assumption, the object model can
avoid explicit specification of derived information. Figure 2
presents an object diagram for a legal instance of the class model
in Figure 1. Object memberships that are implied by class hi-
erarchy (like ThinkPad being an object of Hardware) or links
that are implied by subsetting (like Linux being a softw of
ThinkPad), are not shown.

Class models can be extended with constraints, that are used
to express intended relationships between objects in legal in-
stance models of a class model. In UML, the standard con-
straint language is OCL (Object Management Group (OMG)
2012; Warmer & Kleppe 2003). It enables specification of in-
variants, queries, and pre/post conditions on operations. It is not
a standalone language: its expressions are associated with UML
diagrams.

For example, the class model in Figure 1 can be extended
with the following constraint, written in OCL:

An application that runs with a GPUAPI with some GPU card must run on
an operating system that runs on a Computer with that GPU unit:
Context CompAppl
inv: not self.applApi.apiGUnit->

intersection(self.applOs.osComp.compG)->isEmpty()

In Section 4.1 we present this same constraint for the FOML
encoding of Figure 1. In (Balaban et al. 2016), we compare
class and object modeling using OCL, Alloy (Jackson 2002b)
or FOML.

2.1. Class Models – Abstract Syntax
Class and instance models are defined over a global, sorted,
infinite vocabulary V = 〈O, C,P ,A,Attr,Dt〉 of object (O),
class (C), property3 (P), association (A), attribute (Attr) and
datatype (Dt) symbols; all these sets are disjoint.4 For compact-
ness, we omit elements like aggregation/composition, qualifiers
and most inter-association/property constraints. For a full for-
malization of UML class models see (Balaban & Maraee 2017).

A class model over a vocabulary V =
〈O, C,P ,A,Attr,Dt〉 is a tuple CM = 〈CCM,
PCM,ACM,AttrCM,DtCM, Mappings, Constraints〉,
where CCM ⊆ C, PCM ⊆ P ,ACM ⊆ A,
AttrCM ⊆ Attr,DtCM ⊆ Dt are finite sets of Class,
Property, Association, Attribute, and Datatype symbols that
3 A property denotes a multi-valued function between classes. It corresponds

to UML 2.5 binary-association end, with the descriptors isUnique=true, isOr-
dered=false.

4 In multilevel modeling O and C can intersect (Balaban et al. 2018).

2 Mira Balaban et al.

{disjoint}

alt1 0..*

0..*

alt2

alternative

0..*

gApiAppl

applGApi

apiGUnit
1..*

apiAppl

applApi

0..*

compApplApiComputingAPI

gCompcompG
(subsets
part)

GPUAPI

1..*

osComp

1..*

CompApplGApi

0..* os {subsets softw}

gApi (subsets softw)

compOs

part

gpuApi

1..*

hardwSoftw

gUnitComp

applOs osAppl

osCompAppl
0..*0..* 1..*

1..*

0..*

softwhardw

0..*

parent

partParent 0..*

1..*

0..*

GPU (Graphics
Processing Unit) Computer CompAppl

category: String

OS

Software
Hardware

tested(date): String

Figure 1 A class diagram for computer manufacturing

apiAppl

compOs

NvidiaCUDA : GPUAPI

Nvidia : GPU

applOs

osAppl

osCompAppl cuDNN : CompAppl

category: "NN"

applOs

osCompAppl

osAppl

Foxit : CompAppl

category: "pdf"

osComp

os Linux : OS

alt1

alt2

alternative

gApiAppl

applGApi

apiGUnit

applApi compApplApi

CUDA : ComputingAPI

gCompcompG

osComp

CompApplGApi

os

gApi

compOs

gpuApi

gUnitComp

applOs osAppl

osCompAppl

ThinkPad : Computer

Acrobat : CompAppl

category: "pdf"
Windows : OS

Figure 2 An object diagram for a legal instance of the computer manufacturing class model in Figure 1

actually appear in the class model. Mappings describe syntac-
tic interrelationships between the symbols, and Constraints
specify semantic requirements that can be imposed on the
symbols. These sets are defined below.
Mappings:

– Property mappings:
1. inverse : PCM → PCM is a bijective map-

ping, that assigns to every property p its unique in-
verse, denoted p−1, such that inverse(p) 6= p, and
(p−1)−1 = p.

2. source : PCM → CCM and target : PCM → CCM
are mappings such that target(p) = source(p−1),
which define the source and the target class of a prop-
erty.

In Figure 1, so f tw = hardw−1, target(so f tw) =

source(hardw) = So f tware and source(so f tw) =
target(hardw) = Hardware

– Association mappings:

1. props : ACM → PCM ×PCM is an injection such
that props(a) = {p, p−1} and every property from
PCM appears in exactly one props(a).

2. If p is a property, then assoc(p) denotes the associa-
tion such that p ∈ props(assoc(p)).

3. For a ∈ ACM, if props(a) = {p1, p2} and
target(pi) = Ci, then we define classes(a) =
{C1, C2}.

For the model in Figure 1, we have:
props(hardwSo f tw) = {hardw, so f tw},
assoc(so f tw) = assoc(hardw) = hardwSo f tw, and
classes(hardwSo f tw) = {Hardware, So f tware}.

Logic-based Software Modeling with FOML 3

Compact visual notation for associations: It is often con-
venient to use a compact notation that shows associations
along with their properties, classes, and multiplicities. We
write a(C1

p1 p2

m1..M1 m2..M2
C2) or a(C1

p1 p2 C2), if multi-
plicities are irrelevant) to denote an association a such that
props(a) = {p1, p2}, target(pi) = Ci, min(pi) = mi
and max(pi) = Mi. For instance, the compact notation
for association hardwSoftw in the schema of Figure 1, is
hardwSoftw(Hardware hardw softw

0.. ∗ 1..∗
Software).

– Association class mappings:
1. AC ⊆ CCM is the subset of classes in C that function

as association classes.

2. assocac : AC → ACM is an injective function that
maps association class symbols to association sym-
bols. For example, In Figure 1,
assocac(GPUAPI) = gpuApi.

– Attribute mappings:

1. att : CCM → AttCM is a multivalued assignment of
attribute symbols to classes.

2. For every class C ∈ CCM, there is a partial mapping,
dtC : att(C) → DtCM that assigns datatypes to the
attributes of C. Note that multiple classes can have
the same attribute.

In Figure 1, att(Hardware) = {tested(date)} and
dtHardware(tested(date)) = String.

Constraints:

The class model constraints presented here are prop-
erty and attribute multiplicities, class hierarchy, and
property subsetting. We omit aggregation/composition,
generalization-sets, and the inter-association/property
constraints redefinition, union, association-hierarchy,
association-class hierarchy and xor.

– Multiplicity constraints – for properties and at-
tributes:

1. min : PCM → N ∪ {0} and max : PCM → N ∪
{∗} assign minimum and maximum multiplicities
to property symbols so that min(p) ≤ max(p) (∗
denotes positive infinity).

2. For every class C ∈ CCM, there are partial mappings,
minC : att(C) → N ∪ {0}, and maxC : att(C) →
N ∪ {∗}, as above.

– Class hierarchy: is an acyclic binary relation on class
symbols in CCM: C2 ≺ C1, means that C2 is a subclass of
C1. The relation≺+ is a transitive closure of≺ and C2 �∗
C1 stands for C2 = C1 or C2 ≺+ C1. In Figure 1, class
Computer is a subclass of Hardware, i.e., Computer ≺
Hardware.

– Property subsetting (subproperties): is an acyclic binary
relation ≺ on property symbols:5 p1 ≺ p2 says that p1
subsets (is a subproperty of) p2. As for classes, ≺+ is the

5 ≺ is overloaded for subproperties and subclasses.

transitive closure of ≺ and p1 �∗ p2 stands for p1 = p2
or p1 ≺+ p2.
The relation p1 ≺ p2 satisfies these conditions:
(i) source(p1) ≺∗ source(p2), (ii) target(p1) ≺∗
target(p2), and (iii) max(p1) ≤ max(p2).6 In Figure 1,
sysSo f t ≺ so f tw means that if a System object s and
a Hardware object h are linked by the sysSoft relation,
then they are also linked by the softw relation.

2.2. Object Models (Instances) – Set-theoretic Seman-
tics for Class Models

The standard set-theoretic semantics of class models associates
such models with instances I, which consist of a semantic do-
main and a denotation mapping “· I” that assigns meaning to
syntactic elements. Given a class model, class symbols are
mapped to sets of objects in the domain, property symbols are
mapped to multi-valued functions over these sets, and associ-
ation symbols are mapped to relationships between these sets.
The sets denoted by class and association symbols are called
extensions. Attribute symbols are mapped to higher-order func-
tions from class symbols to other functions from class exten-
sions to data-type domains. For a symbol x, ·(x), its denotation
in I, is shortened into xI .

Given a class model CM = 〈CCM,PCM,ACM,AttrCM,
DtCM, Mappings, Constraints〉. The formal specification for
a restricted class model presented in this paper is defined as
follows:7

Symbol denotations:

1. Classes: For c ∈ CCM, the extension of c in I, denoted cI ,
is a set of elements in the semantic domain. The elements
of class extensions are called objects.

2. Properties: For p ∈ PCM, its denotation is a multivalued
function
pI : source(p)I → target(p)I such that (p−1)I =
(pI)−1.

3. Associations: For a ∈ ACM, aI is a binary relationship
over the extensions of the classes of a. If props(a) =
{p, p−1} (enforced by the syntactic mappings), then the
association denotes all object pairs that are related by its
properties: aI = {e ∈ source(p)I , pI(e)}. Elements of
association extensions are called links.

4. Datatypes: Each data-type symbol T is associated with a
known domain of values, denoted domain(T).

5. Attributes: The denotation of an attribute is a higher-order
function that maps a class symbol to a function from the
class extension to the domain of the data-type of the at-
tribute. That is, for attr ∈ AttrCM, attrI is a partial func-
tion on CCM, such that for class C ∈ CCM, where attribute
attr ∈ att(C), attrI(C) : CI → domain(dtC(attr)) is a
multi-valued function.

6 Note that since the meaning of ≺ is subset of links, there is no restriction on
minimum multiplicity.

7 A full specification appears online in (Balaban & Maraee 2017).

4 Mira Balaban et al.

Constraints:

1. Multiplicity constraints on properties and attributes:

(a) Properties: For a property p, for every e ∈
source(p)I , min(p) ≤ |pI(e)| ≤ max(p). The
upper bound is ignored if max(p) = ∗.

(b) Attributes: For a class C and attribute attr ∈
att(C), for every object e ∈ CI , minC(attr) ≤
|attrI(C)(e)| ≤ maxC(attr). The upper bound is
ignored if maxC(attr) = ∗.

2. Association classes: The association class constraint iden-
tifies the objects in the extension CI of an association class
C with the links in the extension of its associated asso-
ciation assocac(C). That is, there exists a 1:1 and onto
semantic mapping pairsC : CI → (assocac(C))

I , that
maps every object in CI to a single link in the relation
(assocac(C))I .

3. Class-hierarchy constraints: A constraint C1 ≺ C2
denotes a subset relation between the class extension:
C1

I ⊆ C2
I .

4. Subsetting constraint: For p1, p2 ∈ P , p1 ≺ p2 states
that p1 is a sub-mapping of p2, i.e., for e ∈ source(p1)

I ,
p1

I(e) ⊆ p2
I(e).

The semantics of subsetting requires the syntactic restric-
tions that for p1 ≺ p2, the source and target classes of p1
are descendant subclasses of the source and target classes
of p2, respectively, and the maximum multiplicity of p1
can only restrict that of p2. Moreover, in (Maraee & Bala-
ban 2012) we show that the subsetting constraint is sym-
metric with respect to the inverse properties. That is, if
p1 ≺ p2 then also p−1

1 ≺ p−1
2 .

Class model instances and semantic relationships: For a
class model CM, its instances are denoted CMI .

Objects and links: An object of CMI is an element in the do-
main of I that belongs to the extension of some class. A link of
CMI is a pair of objects o1, o2 of CMI , such that for some prop-
erty p, o2 ∈ pI(o1). Links are visualized as a(o1

p1 p2
o2),

i.e., as labeled inverse edges between nodes o1, o2, where
props(a) = {p1, p2}, and o1 ∈ pI1(o2), o2 ∈ pI2(o1).

Instances: An instance I of a class model CM is empty if
all its class extensions are empty; it is non-empty if all of its
classes have non-empty extensions:8 it is finite if all class ex-
tensions are finite; and it is infinite if some class extension is
infinite. An instance I of a class model might or might not
satisfy the constraints in the class model CM. If I satisfies all
constraints in CM, denoted I |= CM, I is a legal instance of
CM. I is a partial instance if it can be completed into a legal
instance by addition of objects and links to class and associ-
ation extensions. A class model is satisfiable if it has a legal

8 Finer distinctions between instances with at least one class with non-empty
extension exist, but they do not affect finite satisfiability and its complexity in
UML class models (Balaban & Maraee 2013; Artale et al. 2010)

instance, and is finitely satisfiable if it has a finite, non-empty
legal instance (Berardi et al. 2005; Balaban & Maraee 2013). In
software modeling we are interested in finitely satisfiable class
models.
Compact instance representation: Instances of a class model
can be represented as collections of their object memberships
with their attributes, and of their links. This is the standard
representation in object diagrams, as shown in Figure 2. How-
ever, object memberships and links that are implied by the class
model semantics do not need to be specified. When some or
all of the implied information is omitted in an instance, we call
it a compact instance specification. For example, in Figure 2,
the membership of ThinkPad in Hardware, which is implied
from the class hierarchy constraint Computer ≺ Hardware in
Figure 1, is not specified. Likewise, the subsetting constraint
os ≺ softw (os subsets softw), in Figure 1, implies the
missing link HardwSoftw(ThinkPad

hardw softw
Linux). On

the other hand, the convention of object diagrams is that object
memberships are always explicitly specified, although they are
implied from the definition of associations in which objects are
involved.

Herbrand instances: A Herbrand instance9 of a class model
CM over a global vocabulary V = 〈O, C,P ,A,Attr,Dt〉
is an instance of CM over the domain O. Herbrand in-
stances can be written using a set notation, that explicitly
lists objects and links, i.e., {Ci = {oi

1, . . . , oi
ni
}Ci∈CCM , ai =

{a(oi1
p1 p2

ui1), . . . , a(oini
p1 p2

uini)}ai∈ACM
}. This writ-

ing saves explicit specification of property mappings and of
empty extensions. The importance of Herbrand instances is in
providing a convenient textual syntax for representing object
diagrams.

Example 1. A compact specification of the legal Herbrand
instance H of the class model in Figure 1, that corresponds to
the object diagram in Figure 2:

H = {OS = {Linux, Windows},

CompAppl = {Foxit, Acrobat, cuDNN},

Computer = {ThinkPad},

GPU = {Nvidia},

ComputingAPI = {CUDA},

GPUAPI = {NvidiaCUDA},

category(Foxit) = ”pdf”,

category(Acrobat) = ”pdf”,

category(cuDNN) = ”NN”

9 By analogy with Herbrand interpretations in classical logic.

Logic-based Software Modeling with FOML 5

osCompAppl = {osCompAppl(Linux applOs osAppl
Foxit),

osCompAppl(Windows
applOs osAppl

Acrobat),

osCompAppl(Linux
applOs osAppl

cuDNN)},

alternative = {alternative(Acrobat alt1 alt2
Foxit)},

compOs = {compOs(ThinkPad osComp os
Linux),

compOs(ThinkPad
osComp os

Windows)},

gUnitComp = {gUnitCompl(NvidiacompG Gcomp
ThinkPad)},

gpuApi = {gpuApi(NvidiaapiGUnit gApi
CUDA)},

compApplGApi =

{compApplGApi(cuDNNgApiAppl applGApi
NvidiaCUDA)},

compApplApi = {

{compApplApi(cuDNNapiAppl applApi
CUDA)}}

Besides objects and links, a legal instance of the class model in
Figure 1 must specify the mapping pairsGPUAPI between objects
of the association class GPUAPI and links of the association
gpuApi. In the object model of Figure 2 this mapping is:
pairsGPUAPI(NvidiaCUDA) =

gpuApi(Nvidia
apiGUnit gApi

CUDA) �

Finite instances I of CM over arbitrary semantic domains
can be translated into corresponding Herbrand instances IH ,
using a 1 : 1 mapping IH of the objects of CMI to object
symbols from the vocabulary O. For a given I, IH is obtained
by replacing every object e in a class extension CI by its symbol
translation IH(e). The legal status of I with respect to CM can
be checked by checking the legal status of IH:

Claim 1. For a finite instance I of CM and a corresponding
Herbrand instance IH , I is legal for CM if and only if IH is
legal.

Proof. By building a correspondence between IH and I, as in
first-order logic.

Semantic relationships: A class model constraint can be ex-
plicitly specified in the class model specification, or implied
(derived) from other constraints. For example, transitivity of
class hierarchy implies class hierarchy between a super class
and all of its descendants; unspecified multiplicity constraints
can derive from combinations of class hierarchy and property
subsetting (Balaban & Maraee 2019); disjoint constraints can
propagate from declared GS constraints (Balaban & Maraee
2013).

For a constraint γ, and an instance I, I |= γ stands for "γ
holds in I". If γ holds in every legal instance of a class model
CM, we say that γ is entailed from CM, denoted CM |= γ.
Clearly, all declared constraints are entailed from a class model.
A class model CM2 is entailed by a class model CM1, denoted
CM1 |= CM2, if every legal instance of CM1 is a legal instance
of CM2. Class models are equivalent, denoted CM1 ≡ CM2,
if they have the same set of legal instances.

Object-oriented characteristics of class modeling: The seman-
tics of class model constraints satisfies the essential characteris-
tics of object-oriented modeling:

1. Transitivity of class hierarchy: If C1 ≺ C2 and C2 ≺ C3,
then C1 ≺ C3.

2. Supertype inheritance for properties and attributes: For
p ∈ PCM, if target(p) = D and D ≺∗ SuperD then in
every legal instance I of the class model, pI has also type
SuperD, i.e., for e ∈ source(p)I , pI(e) ∈ SuperDI .
The same holds for attributes of classes.

3. Property and attribute inheritance for subtypes: For p ∈
PCM, if source(p) = C and SubC ≺∗ C then in every
legal instance I of the class model, pI is also defined on
objects of SubC, i.e., for e ∈ SubCI , pI(e) ∈ target(p)I .
The same holds for attributes of classes.

4. Polymorphic object typing, due to class hierarchy: An
object is multiply typed by all of its class ancestors. That
is, in a legal instance I, e ∈ CI and C ≺∗ SuperC imply
e ∈ SuperCI . The same holds for attributes of classes.

5. Object well typing: A property (or attribute) is defined on
all and only objects of its source class, and its values are
objects (values) of its target class (type).

The five object-oriented characteristics of class modeling are
used in Section 4 for showing the correctness of FOML encod-
ing of class models and their instances.

3. PathLP – The Underlying Logic of FOML
This section describes the PathLP programming language (Bal-
aban & Kifer 2011; Khitron et al. 2011a,b), an elegant logic
programming language of guarded path expressions, inspired by
F-logic (Kifer, Lausen, & Wu 1995). PathLP has three distinc-
tive features that make it a particularly powerful tool for object
modeling: (1) polymorphism of language expressions and of
class hierarchies; (2) multilevel object modeling; (3) executable
model instantiation.

3.1. Syntax of PathLP
PathLP is a Logic Programming language, whose main feature
is a construct called path expression. This construct describes
object-attribute access, in the style of object-oriented paradigms.
Following this intuition we use a node-edge metaphor in the
presentation of PathLP. PathLP’s path expressions generalize
similar expressions in traditional imperative object-oriented
languages. They extend a similar notion in XSQL (Kifer et al.
1992), an F-logic (Kifer, Lausen, & Wu 1995) based language
designed for querying object-oriented databases, in the direction
of the more general path expressions in the F-logic systems
like FLORID and FLORA-2 (Frohn et al. 1998; Kifer 2007).
PathLP expressions also have certain similarities with XPath
(Deutsch et al. 1999).

3.1.1. Terms A PathLP term is a constant, a variable, or a
composite term.

6 Mira Balaban et al.

A constant symbol denotes an element in the domain of
discourse, like a node, an edge, or a class in an object model.
For example, Person, child, John, or teach. Constants are
also known as 0-ary functor symbols, i.e., they take no ar-
guments. The language of PathLP also has n-ary functors (or
function symbols), n > 0, which take n arguments. They
are used to define composite terms, as defined below.

A variable symbol is prefixed with a question mark "?",
e.g., ?accountNumber, ?aPerson. Variables get instantiated
with concrete constants from a database in the course of query
evaluation (cf. the FROM-variables in SQL). Sometimes the
name of a variable is immaterial in which case we write just
"?" and let the compiler invent a unique name.

A composite term specifies a tree-
shaped data structure, like mother_of(John),
semester(term(Spring),year(2020)), or course(Math,
1, 235, Mira). These terms are formally defined in
Section 3.1.5.

3.1.2. Object and Type Path Expressions The main
PathLP construct is a Path expression. Using the graph (node-
edge) metaphor, path expressions represent queries over graphs.
There are two kinds of path expressions: Object and Type. The
building blocks of path expressions are terms, guards, cardinali-
ties, and two operators: “.” and “!”. Intuitively, the “.” operator
provides navigation along value paths, while the operator “!”
yields a type of an edge, rather than its value.

Object Path Expression: An object path expression is a ba-
sic formula in PathLP that selects a set of paths in an object-
attribute graph. The general form of such an expression is

root.link1[grd1].link2[grd2].linkn[grdn];
where root, linki are terms that denote semantic entities,
and grdi is a comma-separated list of such terms. The intuitive
meaning is that link1 applied at root evaluates to a set that
contains all the terms in grd1, link2 applied at the result con-
tains all the term listed in grd2, etc. For example,

John.teach[graphics,algorithms];
if stated as a fact, says that both graphics and algorithms
belong to the set of courses that John teaches. If stated as a
query, the above asks if it is true that John teaches both of those
courses. The target set and its size can be constrained by type
path expression that are described below.

The general form of object path expressions allows for suc-
cessive application of the "." operator, both in the base and in
the guard parts. For example,

John.teach[Mary.study, Jack.TA, ?h]
is a query that asks whether John teaches courses that Mary
studies, and also the courses in which Jack is a teaching assis-
tant. It will also bind the variable ?h to the courses taught by
John. The expression

John.study.teacher.age[?age],
asks for the age of the teacher of the course that John studies.
The expression

a.b[?c].d.e[?f]
asks for the middle and end nodes of paths going from node a
through edges b, d, e.

An expression a.b (without a guard) denotes the set of end-
nodes of edges b that start in a. The addition of a guard selects
the end-nodes that are denoted by the guard. A path expression
without a guard at the end can appear in a guard of another
path expression, but it cannot be used as a fact or a query. An
expression with a guard at the end can be used as a fact or a
query, but not in a guard of another expression. An edge, node,
or a guard in a path expression can be a variable. Intermediate
(non-guard) terms that denote edges may or may not have guards.
The first term cannot have a guard since it does not denote an
edge.

Type Path Expression: This kind of path expression is
intended to enforce types and size of node attribute values.
They can also be used to query the type system. Type path
expressions are similar to object path expressions except that
they use “!" instead of “.": term!term1[guard1]! ...
!termn[guardn];. For example,

Lecturer!teach[Course];
says (if stated as a fact) that if a lecturer (an object in class
Lecturer) teaches something then that something must be
an object in class Course. When posed as a query, the above
asks if it is true that the type of the property teach in class
Lecturer is declared to be Course. The syntax of type path
expressions is similar to that of object path expressions with
similar restrictions. A type path expression can have an optional
guard, middle edges and internal guards. For example,

Lecturer!teach[?course]!teaching_assistant[?TA]
binds ?course and ?TA to the types declared for the properties
teach and teaching_assistant in the appropriate classes.

Type path expressions introduce a new feature of a multiplic-
ity constraint. A multiplicity constraint includes two natural
numbers in non-decreasing order, and the last can also be *
(infinity):

term!term[guard]{multiplicity}
For example,

Lecturer!teach[Course]{3..4}
states that every lecturer must teach at least 3 and at most 4
courses. A multiplicity constraint is optional, and its absence
means unconstrained multiplicity.

3.1.3. Membership and Subtyping The PathLP language
provides two special predicates, ":" and "::", to account for
the class membership and subtyping relations, respectively. For
example,

beatles:popgroup;
popgroup::musicgroup;
musicgroup::artgroup;
artgroup::artmaker;
artmaker:somethingmaker;
somethingmaker::somethingdoer;

The semantics of "::" and ":" have the transitivity of subtyping
and transitivity of membership over subtyping properties, so
that the above implies:

beatles:musicgroup, musicgroup:artmaker, and
popgroup::artgroup
PathLP is partially typed in the sense that not all typing

Logic-based Software Modeling with FOML 7

information must be explicitly specified. The language is
polymorphic since a language construct might belong to
multiple types.

3.1.4. Rules, Facts, and Queries The sentences of
PathLP are the facts, rules, and queries, as usual in Logic Pro-
gramming languages. In addition, PathLP has constraints.

A fact asserts an unconditioned snippet of knowledge. For
example, these facts

a.b[c];
d:e;

assert that there is an edge labeled b from node a to node c and
that object d is included in type e. Some more examples:

John.teach[chemistry];
John.teach[algebra];

is the same as the single fact using multiple guards:
John.teach[chemistry,algebra];

It says that there are two edges labeled teach; one connecting
John to chemistry and another to algebra.

A rule specifies conditional knowledge. For example,
?c.e[f]:-?c:?d, ?d.e[f]

means that if an object ?c is a member of a type ?d that has an
attribute e whose value is f, then ?c also has attribute e with
value f.

The head of a rule (the part left of :-) is an atomic formula
and the body (the part right of :-) is a comma-separated
sequence of atomic formulas, which is interpreted as a conjunc-
tion of those formulas. These atomic formulas can be including
path expressions, membership, and subtyping assertions. The
precise syntax of the rules is given in Section 3.1.5. Another
example:
John.study[?course] :-

Jack.study[?course], not Jorge.study[?course];
This states that John takes all courses that Jack takes except
from those that Jorge takes also.

A query is a statement that starts with the symbol “?-” fol-
lowed by a body—a conjunction of atomic formulas, which thus
has the same syntax as a rule body. For example,

?- ?x:?c, ?c:d
asks a given set of facts and rules whether there is an instantia-
tion for the variables ?x and ?c such that ?x belongs to ?c, and
?c belongs to d. The results are returned as a set of tuples—each
providing a requested instantiation. Another example:

?- ?person.study[chemistry, graphics];
The answer to this query is the set of all people (instantiations
for ?person) that study either chemistry or graphics.

Constraints are used to enforce semantic correctness in a
domain and to reject illegal states. Constraints are formulated
as formulas that characterize states that violate the intended
semantics of a knowledge base. In PathLP, constraint check-
ing is done on demand rather than in real time, but this is an
implementation decision, not a semantic one. Constraints are
distinguished by a special symbol “!-” followed by a body of
the constraint. The latter has the same structure as the bodies of
rules and queries. For example:

!- ?.b[?c], ?.d[?c]
specifies that an object ?c cannot be the value of both attributes
b and d of some objects; or using the graph view, a node ?c
cannot be the target of both edges b and d. The singleton symbol
? denotes a “don’t care variable.” Each occurrence of such a
symbol represents a new variable (whose name is immaterial).

Constraints are checked by presenting them as queries to a
knowledge base of facts and rules. Since they specify forbidden
situations, a constraint-query is expected to fail. Success of a
constraint query means that the illegal situation is detected in the
given knowledge base, and each answer to the query provides a
witness for the violation. A more complex example:

!- ?person.study(?year1)[?course],
?person.teach(?year2)[?course],
?year2 < ?year1;

states that a person cannot teach a course before she studied it.

3.1.5. Formal syntax The alphabet of the PathLP language
includes countably many constant symbols, (e.g., Foo_123) and
variables (designated with the “?” prefix, e.g., ?x), plus the
auxiliary symbols “!”, “:”, “::”, “[”, “]”, “(”, “)”, “:-”, “>”, “=”,
and so on.

A term is defined recursively as either a variable, a constant,
or an expression of the form c(t1, ..., tn), where c is a constant
and t1, ..., tn, n ≥ 1, are terms. The latter kind of a term is
called a composite term.

Path expressions: The following BNF productions de-
fine path expressions where the meta-symbols Var, Term,
NonNegativeInteger denote variables, terms, and non-
negative integers, respectively.

GuardedPE := GuardedObjPE | GuardedTypePE
UnguardedPE := UnguardedObjPE | UnguardedTypePE
GuardedObjPE := UnguardedObjPE ’[’ Guard ’]’
UnguardedObjPE := UnguardedExpr ’.’ (Expr ’.’)* UnguardedExpr
GuardedTypePE :=

UnguardedTypePE ’[’ Guard ’]’ [’{’ Multiplicity ’}’]
UnguardedTypePE := UnguardedExpr ’!’ (Expr ’!’)* UnguardedExpr
Guard := Guard (’,’ Guard)* | UnguardedExpr | UnguardedPE
Expr := GuardedExpr | UnguardedExpr
GuardedExpr := UnguardedExpr ’[’ Guard ’]’
UnguardedExpr := Term
Multiplicity := (NonNegativeInteger) ’..’ (NaturalNumber|’*’)

Query formulas in PathLP are used as bodies of PathLP in-
ference rules, queries, and constraints. They are defined as
follows:

QueryFormula := ElementaryFormula
| ’(’ QueryFormula ’)’ | ’not’ QueryFormula
| (QueryFormula (’and’ | ’,’ | ’or’) QueryFormula)

ElementaryFormula :=
Membership | Subtype | GuardedPE | Comparison

Membership := Term ’:’ Term
Subtype := Term ’::’ Term
Comparison := Term Op Term
Op := ’=’ | ’!=’ | ’>’ | ’<’ | ’>=’ | ’=<’

Rules, queries, and constraints: Finally, we define PathLP
rules, facts, constraints, and queries via the following BNF:

Query := ’?-’ QueryFormula ’;’

8 Mira Balaban et al.

Constraint := ’!-’ QueryFormula ’;’
Fact := Consequent ’;’
Rule := Consequent ’:-’ QueryFormula ’;’

A Consequent is an ElementaryFormula that can oc-
cur as a fact or rule head consequence. These are
ElementaryFormulas that satisfy the following restric-
tions:

– They are not comparisons.
– Path expressions can have only one connective “.” or “!”

and only terms as guards (no path expressions in guards).

That is, only the following forms are allowed as rule
heads or facts: Term:Term, Term::Term, Term.Term[Term],
Term!Term[Term], or
Term!Term[Term]{Multiplicity}.

3.2. Semantics
Universes. The universe U of PathLP includes a domain
of entities D, over which various structures are defined: value
graphs, type graphs, membership, inclusion relations, and mul-
tiplicity constraints.

The domain is uniform, and does not differentiate en-
tities by their roles: Node, edge, or type. The same
entity can play different roles depending on the syn-
tactic context. For example, for an application deal-
ing with university courses, D can include such entities
as Graphics, Algorithms, study, student, examine,
teacher, John, Bradly, course, teach, and so on. In
the above, some entities are intended as attributes of other enti-
ties, and some might be types. For example, study can be an at-
tribute of the student John, i.e., John might study Algorithms,
and teacher can be the type of all individual teachers. At the
same time, teacher can also be an attribute of courses, denot-
ing the teachers of a given course. In sum, D is a set of entities
that might play different roles in a variety of contexts. It is
structured by the relations and functions that are defined on it,
as described below.

A universe U includes a number of relations over its domain
D: a binary relation ∈D, a partial order ≺D plus two ternary
relations Rval , Rtype. The relation ∈D stands for membership,
and the partial order ≺D is a weak version of subtyping. That
is, a∈Db means that a is a member of b, when b plays the role
of a type, and a≺Db means that a is a subtype of b. In the
university-courses domain, we can have

Graphics ∈D cs_course ≺D course,
course ∈D interactive_teaching_tool ∈D

educational_ f ramework.
Note that this flexible structuring of membership and subtyping
allows for multi-level domains, where types can be members of
types in more abstract levels (Atkinson & Kühne 2001, 2008;
Henderson-Sellers 2012).

As partial order, the subtype relation is transitive. In addition,
the membership and subtype relations satisfy the transitivity of
membership over subtyping constraint:

For any n, n′, where n ∈D n′, if n′ ≺D n′′ then n ∈D n′′.

That is, the set of members of n′ is a subset of the set of members
of n′′. Thus, the relations ∈D and ≺D form a multi-level,
intensional typed domain.

The ternary relation Rval represents the links that connect
entities to properties and attributes, so one can view Rval as a
directed graph over D. Rval(n, e, v) means that the attribute e
of the object n has the value v. For a given node n and edge e,
there can be multiple such triples, i.e., the value graph allows
multiple edges with the same label for a node. For example, in
the university-courses domain, Rval(John, study, Algorithms)
means that the value of the attribute study of John includes
Algorithms.

The ternary relation Rtype specifies the types of entity
attributes. Rtype(n, e, v) means that for every entity n’
∈D n, the values of the attribute e of n′ are members of the
type v. That is, for every n′ ∈D n, Rval(n, e, v′) implies
v′ ∈D v. For example, in the university-courses domain, if
John ∈D student, and Rtype(student, study, cs_course) then
Algorithms ∈D cs_course.

Closure properties of Rtype with respect to the subtype rela-
tion:

– Upward-closure: If attribute e of n has type t, then every
supertype t′ of t is also a type of e on n. That is, If
(n, e, t) ∈ Rtype and t ≺D t′ then also (n, e, t′) ∈ Rtype.

– Inheritance: If attribute e of n has type t then it has type t
for every subtype n′ of n, i.e., e is inherited. In other words,
If n′ ≺D n and (n, e, t) ∈ Rtype then (n′, e, t) ∈ Rtype.

The typing of an entity-attribute can be strengthened to in-
clude attribute size, i.e., the cardinality of attribute values. This
is achieved with partial functions Dmin : D× D −→ Integer
and Dmax : D× D −→ (Integer ∪ {∗}), which provide con-
straints on the size of attribute values. Given a pair of entities n
and e, these functions are either both defined or both undefined
and they satisfy the constraint 0 ≤ Dmin(n, e) ≤ Dmax(n, e)
(where i < ∗ for any integer i). The size restrictions are
imposed by the requirement of well-typing for universes, as
described below.

Well-typed universes. So far, Rval and Rtype have not been
related to each other. There can be triplets (n, e, v) ∈ Rval for
which no type restriction exists, i.e., there may be no n′ such
that n ∈D n′ and (n′, e, v) /∈ Rtype. The well-typing constraint,
which was first introduced in (Kifer, Lausen, & Wu 1995),
characterizes universes in which all attribute values are typed.
Well typing has two aspects: typing restriction on attribute
values and multiplicity restrictions.
A universe U is well-typed if

– Full typing: For every value-triple (n, e, v) ∈ Rval , there
is a type-triple (n′, e, t) ∈ Rtype, such that n ∈D n′ is
satisfied.

– Type inheritance: For every value and type triples
(n, e, v) ∈ Rval , (n′, e, t) ∈ Rtype, if n ∈D n′ then
v ∈D t.

– Multiplicity restriction: For every n′ and e for which
Dmin(n′, e), Dmax(n′, e) are both defined, and for ev-

Logic-based Software Modeling with FOML 9

ery n ∈D n′, the number of edges going out of e is
at least Dmin(n′, e) and at most Dmax(n′, e). That is,
Dmin(n′, e) ≤ |{v | Rval(n, e, v)}| ≤ Dmax(n′, e).

If the first restriction above is omitted, the universe U is said to
be partially well-typed.

For example, in the university-courses domain,
Dmin(student, study) = 2 and Dmax(student, study) = 6,
means that a student can study between 2 to 6 courses a
semester.

In addition, there is a mapping FD : D −→ (×∞
n=1D −→

D) that associates every entity in D with a variadic function
on D. This is used to interpret the functors in the language of
PathLP as functions over D. Variadic functions are used here be-
cause functors with variable numbers of arguments is a common
feature in Logic Programming languages, and it was found ben-
eficial in PathLP as well. For example, in the university-courses
domain, the entity study might be associated with a variadic
function that maps Spring2020 to the attribute “courses of
semester Spring 2020” of students, so there might be a triple
like this: Rval(John, FD(study)(Spring2020), Algorithms).
In terms of the directed graph view of the PathLP domain of
discourse, we interpret FD(study)(Spring2020) as an element
of D, and in the last example, as an attribute of John.

Summary: A universe U is a tuple {D,∈D,≺D
, Rval , Rtype, Dmin, Dmax, FD}. The membership and
subtyping relations partially simulate the properties of the
membership and subset relations of set theory. They represent
intensional but not extensional set relations. This means
that PathLP sets that have exactly the same members are not
necessarily the same sets, which is common in object-oriented
languages. Likewise, if all members of type t are also members
of t′ then it still is not guaranteed that t ≺D t′.

Interpretations
A PathLP interpretation, I , is a triple of the form 〈U, IC, IV〉,
where U = {D,∈D,≺D, Rval , Rtype, Dmin, Dmax, FD} is a
well-typed universe, as described earlier in this section, IC
is a mapping for constant symbols in PathLP, i.e., IC :
Constant −→ D, and IV is a variable assignment for vari-
able symbols of PathLP, i.e., IV : Var −→ D.

The meaning of PathLP constructs:
Given an interpretation I , we define the notion of satisfaction
by interpretation for PathLP query formulas, facts, rules, and
constraints. We first define the denotation mapping associated
with I . The purpose of that mapping is to interpret path expres-
sions as subsets of the domain of I . It is common to use the
same symbol I both for the interpretation and for its associated
denotation mapping, since the context disambiguates the uses.
The definitions of the denotation mapping and of satisfaction of
formulas by interpretation are inductive on the structure of the
formulas and are mutually dependent.

Denotation of path expressions:

– Constant: If c is a constant then I(c) = {IC(c)}.
– Variable: If ?x is variable then I(?x) = {IV(?x)}.

– Unguarded expression: If τ is a composite term c(t1, ..., tn)
(an unguarded expression) with zero or more arguments
then:
I(τ) = {IFD (IC(c))(t′1, ..., t′n)}, where t′i ∈ I(ti), for
i = 1, ..., n.

The above three cases form the basis for the inductive definition
of I(τ), where τ is a path expression. The inductive part of the
definition now follows.

– Object path expression:

- Unguarded object path expression: if τ has the form
objpathexp . expr, where objpathexp is an object
path expression and expr is a term then:

I(τ) = {v | ∃n ∈ I(objpathexp), ∃e ∈ I(expr),

where (n, e, v) ∈ Rval}.

That is, obj . expr1 . expr2. exprn denotes the
set of nodes reachable from node I(obj) by a path
labeled I(expr1), I(expr2), . . . , I(exprn).
Note that I(τ) can be empty.

- Guarded object path expression: if τ is
ungobjpathexp[grd], where ungobjpathexp is
an unguarded object path expression and grd is a
guard of the form ungpathexp1, ..., ungpathexpn
then:

I(τ) = I(ungobjpathexp)∩I(grd, ungobjpathexp)

where

I(grd, ungobjpathexp) =

i f for each i = 1, ..., n,

I(ungobjpathexp) ∩ I(ungpathexpi) 6= ∅

then I(ungpathexp1) ∪ . . . ∪ I(ungpathexpn)

else ∅

This definition ensures that obj.pathexp[val1, val2]
holds if and only if obj.pathexp[val1] and
obj.pathexp[val2] both hold.

– Type path expression:

- Unguarded type path expression: If τ is
tpathexp ! expr, where tpathexp is a type path ex-
pression and expr is an expression, then:

I(τ) = {v | ∃n ∈ I(tpathexp), ∃e ∈ I(expr),

such that (n, e, v) ∈ Rtype}.

- Guarded type path expression: Similar to guarded
object path expressions, but with a multiplicity
constraint (the default is {0..∗}):
If τ is ungtpathexp[grd]{lo..hi}, where ungt-
pathexp is an unguarded type path expression, expr

10 Mira Balaban et al.

is an expression, and grd is a guard of the form grd1,
..., grdn, then:

I(τ) = I(ungtpathexp) ∩ I(grd, ungtpathexp)

where

I(grd, ungtpathexp) =

i f for each i = 1, ..., n,

I(ungtpathexp) ∩ I(grdi) 6= ∅,

cardmin(ungtpathexp) ≥ lo, and

cardmax(ungtpathexp) ≤ hi

then I(grd1) ∪ . . . ∪ I(grdn)

else ∅

Here cardmin and cardmax are defined as follows
(where ungtpathexp = tpexp!expr):

cardmin(tpexp!expr) =

min{Dmin(n, e) | n ∈ I(tpexp), e ∈ I(expr)}

cardmax(tpexp!expr) =

max{Dmax(n, e) | n ∈ I(tpexp), e ∈ I(expr)}

Satisfaction by interpretations:
We now define the logical satisfaction relation I |= φ be-

tween PathLP interpretations I and formulas φ recursively as
follows:

1. Elementary formulas:

– Membership: I |= t : s, where t, s are terms, if and
only if I(t) ∈D I(s).

– Subtyping: I |= t :: s, where t, s are terms, if and
only if I(t) ≺D I(s).

– Guarded path expression with or without a multiplic-
ity constraint: I |= p, where p is a guarded path
expression, if and only if I(p) is non-empty.

– Comparison formulas: I |= (t = s), where t, s
are terms, if and only if I(t) = I(s). Likewise,
I |= t < s, if and only if I(t) < I(s) (assuming
I(t), I(s) evaluate to numbers). The definition of
satisfaction for the remaining comparisons is similar.

2. Query formulas:

– And: I |= t and s if and only if I |= t and
I |= s.

– Or: I |= t or s if and only if ei-
ther I |= t or I |= s.

– Not: I |= not t if and only if it is not the case
that I |= t.

3. Rules and facts: I |= (t : − s) if and only if either I |= t
or I 6|= s. This also covers the case of satisfaction for
PathLP facts, since we can view any fact t as a rule of the
form t : − true.

4. Constraints: I |= (!− query f ormula) iff I 6|=
query f ormula.

A PathLP interpretation that satisfies the facts, rules, and con-
straints of a PathLP specification is a legal interpretation (or
a “model” in the logic terminology) of that specification. As
usual in logic programming, we focus on canonical legal inter-
pretations. Without negation (not) and constraints, there is a
unique least interpretation (Lloyd 1987), which is taken as the
canonical interpretation. With negation (but ignoring the con-
straints), canonical interpretations are defined as three-valued
well-founded interpretations (Van Gelder et al. 1991), which
generalizes the concept of a least interpretation. Any PathLP
specification (leaving aside the constraints) has a unique well-
founded interpretation. We will not define such interpretations
here because this is quite involved and is not needed for un-
derstanding the rest of the paper. If a canonical interpretation
satisfies the constraints of a PathLP interpretation then it is also
a legal canonical interpretation. Note that even though a canoni-
cal interpretation always exists and is unique, it may not satisfy
the constraints and thus no legal canonical interpretation may
exists.

A PathLP specification is satisfiable if it has a canonical
legal interpretation. An answer to a query ?- queryformula is
the set of all instantiations of variables in queryformula, such
that it is satisfied in the canonical legal interpretation.

Without negation, PathLP reduces to classical logic anal-
ogously to the reduction of F-logic to classical logic (Kifer,
Lausen, & Wu 1995), and it is semi-decidable. With negation, it
reduces to logic programs with the well-founded semantics (Van
Gelder et al. 1991) and can be implemented on top of a tabling
deductive engine, like XSB (Swift & Warren 2011), similarly
to the Flora-2 implementation of F-logic (Kifer 2007; Yang &
Kifer 2003). Without function symbols, PathLP is decidable
and has polynomial data complexity, even with negation.

Object-oriented characteristics of PathLP: The semantics of
PathLP satisfies the essential characteristics of object-oriented
modeling (note the analogy with the object-oriented characteri-
zation of class modeling, at the end of Section 2.2):

1. transitivity of subtyping:
?Sub ::?C : − ?Sub ::?MidC, ?MidC ::?C;

2. inheritance of supertypes by properties and attributes:
?C!?prop[?SuperT] : − ?C!?prop[?T], ?T ::?SuperT;

3. property/attribute inheritance by subtypes:
?SubC!?prop[?T] : − ?C!?prop[?T], ?SubC ::?C;

4. type membership through subtyping:
?obj :?C : − ?obj :?MidC, ?MidC ::?C;

5. the well-typing constraints from Section 3.2:
!− ?obj.?prop[?val], not (?C!?p[?T], ?obj :?C);
!− ?C!?prop[?Type], ?obj :?C, ?obj.?prop[?val],

not ?val :?Type;

Logic-based Software Modeling with FOML 11

4. FOML – A Language for Class and Object
Modeling

FOML is a conceptual layer on top of PathLP that is intended
to support object modeling. It is built to directly represent
class and object models, and to support metamodeling. It can
represent multilevel and domain specific modeling (Balaban
et al. 2018) and can also support multiple conceptual models.
This section describes the FOML language, its capabilities as a
modeling language, and proves the correctness of its class and
object modeling.

FOML (Khitron et al. 2017) naturally supports model-level
activities, such as constraints and inference rules, extending
explicit class modeling with UML diagrams, dynamic compo-
sitional modeling (intensional and transformational), reason-
ing about models (e.g., on-the-fly querying), model testing,
meta-reasoning, which is used for analysis of models, and meta-
modeling which can be used for Domain Specific Modeling.
Meta-modeling in FOML relies on the uniform status of types
and instances in PathLP, and it is being used for multilevel mod-
eling. As an executable modeling language, FOML can express
and reason about multiple crosscutting multilevel dimensions.

As a modeling language, FOML can support both model and
metalevel modeling. At the model level, FOML can account
for modeling diagrams, reasoning extensions, constraints, and
query-answering. At the meta-level, FOML can be used for
model analysis, for reasoning about model properties, and for
checking structure and inter-relationships of models.

4.1. Model Level Modeling with FOML
FOML provides a textual encoding for class and object models,
using PathLP statements, mainly type and object path expres-
sions, and subtyping and membership facts.
Class model encoding in FOML: A class model consists of
declarations of classes, their attributes, properties and associa-
tions, plus optional class-model constraints. PathLP type path
expressions are used to specify classes with their properties and
attributes, and the associated multiplicities. PathLP subtyping
is used for class hierarchy constraints. All other class model
constraints, and declaration of associations and their properties
are specified using PathLP object path expressions, together
with FOML reserved keywords, which are marked with the "$"
prefix. The FOML account for the additional constraints is
formulated within PathLP. Section 4.2.2 defines the three class
model constraints in Figure 1: generalization-set, association
class and subsetting.

As a reasoning system, FOML can infer derived status of
elements. Therefore, derived elements are not explicitly de-
clared in the encoding. In particular, inverse properties can
be inferred from association declaration, default multiplicities
({0..∗}) and default types ($Any) can be inferred and omitted,
class hierarchy can be inferred from GS (generalization-set)
constraints, and multiplicity can be inferred from subsetting
constraints. The FOML encoding of the class model in Figure 1
is shown in Listing 1. In the meta modeling section below, we
show how FOML accounts for the intended meaning of the
builtin constraints.

1 GPU:: Hardware;
2 Computer :: Hardware;
3 % generalization set constraint
4 Software.$GS(OS,CompAppl)[disjoint];
5 ComputingAPI :: CompAppl;
6

7 Hardware!tested(date)[$String];
8 Hardware!part[Hardware];
9 partParent.$assocProperty[part ,parent];

10 Hardware!softw[Software]{1..∗};
11 hardwSoftw.$assocProperty[hardw ,softw];
12

13 GPU!gComp[Computer]{1..∗};
14 gUnitComp.$assocProperty[gComp ,compG];
15 % subsetting constraint
16 compG.$subsets[part];
17

18 GPU!gApi[ComputingAPI]{1..∗};
19 gpuApi.$assocProperty[gApi ,apiGUnit];
20 % subsetting constraint
21 gApi.$subsets[softw];
22 % association class constraint
23 gpuApi.$assocClass[GPUAPI];
24

25 Computer!os[OS]{1..∗};
26 compOs.$assocProperty[os,osComp];
27 % subsetting constraint
28 os.$subsets[softw];
29

30 CompAppl!applOs[OS]{1..∗};
31 osCompAppl.$assocProperty[osAppl ,applOs];
32 CompAppl!alt1[CompAppl];
33 alternative.$assocProperty[alt1 ,alt2];
34 CompAppl!category[$String];
35

36 CompAppl!applApi[ComputingAPI]{1..∗};
37 compApplApi.$assocProperty[apiAppl ,applApi];
38 GPUAPI!applGApi[CompAppl]{1..∗};
39 compApplGApi.$assocProperty[gApiAppl ,applGApi];

Listing 1 Example of FOML encoding of the class model of
Figure 2

Object model encoding in FOML: An object model (in-
stance) for a class model CM consists of object memberships
of classes of CM, their attribute values, and their links. In
Herbrand instances, the objects are symbols from O. FOML
encodes finite Herbrand object models, using: (1) PathLP mem-
bership facts for object membership encodings, and (2) PathLP
object path expressions for link and attribute encodings. Like
the compact representation of object models, the FOML en-
coding is compact, i.e., relying on the inference capabilities
of FOML, it avoids declaration of derived object memberships
and links. For example, inverse links are not declared, object
memberships are declared only if they are not part of any link.
Moreover, object memberships and links are inferred from class
model constraints like class hierarchy and subsetting, and also
based on user inference rules that are associated with the class
model.

A compact FOML encoding of the object model from Fig-
ure 2 is shown in Listing 2. The object-level mapping of an
association class constraint, enables the direct path between
the NvidiaCUDA object of the association class GPUAPI and its
associated objects CUDA, Nvidia.

12 Mira Balaban et al.

1 ThinkPad.os[Linux ,Windows];
2 ThinkPad.compG[Nvidia];
3

4 Linux.osAppl[Foxit];
5 Windows.osAppl[Acrobat];
6

7 Acrobat.category ["pdf"];
8 Acrobat.alt2[Foxit];
9

10 NvidiaCUDA:GPUAPI;
11 NvidiaCUDA.gApi[CUDA]; % association−class
12 NvidiaCUDA.apiGUnit[Nvidia]; % links
13

14 cuDNN.applOs[Linux];
15 cuDNN.category ["NN"];
16 cuDNN.applGApi[NvidiaCUDA];

Listing 2 Example of FOML encoding of the object model of
Figure 2

This compact encoding leaves out multiple derived object mem-
berships and links. For example, the link Nvidia.gApi[CUDA]
is implied from the $assocClass mapping of NvidiaCUDA
to the link (Nvidia,CUDA) of association gpuApi, and as-
sociation class rule (4) in Section 4.2.2 (page 15). The link
ThinkPad.softw[Linux] is implied from the subsetting
constraint on os. Class memberships of objects derive from
property specification in the class model, and from class hierar-
chies.

Two links in the compact encoding, are missing, since they
are derived from user rules, in Subsection 4.1.1 (page 14):
cuDNN.applApi[CUDA] is implied from user inference rule (2)
on page 14, and Foxit.category["pdf"] is implied from the
user inference rule that infers a common category for alternative
computer applications, also on page 14.

Correctness of FOML modeling of class and object mod-
els: We show that for basic class models, that include only
classes, properties, and multiplicity and class hierarchy con-
straints, the FOML encoding preserves the legal status of an
instance. Extension to include attributes can be similarly proved.
Extension for additional class model constraints depend on their
FOML axiomatization (see Section 4.2.2) and is beyond the
scope of this paper.

Definition 1 (FOML encoding for basic class models and Her-
brand instances). The FOML encodings of a class model CM
and of a finite Herbrand instance H, are denoted CMFOML and
HFOML, respectively.
Let CM be a basic class model and H be its valid Herbrand
instance.

– Construction of CMFOML:

- If CM includes an association a(C
q p

n..N m..M
D)

then CMFOML includes type path expressions
C!p[D]{m..M}, D!q[C]{n..N}, and the rules

?o.p[?u] : −?u.q[?o];
?o.q[?u] : −?u.p[?o];

- If CM includes a class hierarchy constraint C ≺ D,
then CMFOML includes the subtyping fact C :: D,

– Construction of HFOML:

- for any object symbol o such that o ∈ CH , HFOML

includes the membership fact o : C.
- if a link a(o

p q
u) is in H then HFOML in-

cludes the object path expression facts: o.q[u] and
u.p[o].

As an application of Logic Programming, the semantics of
FOML is determined with respect to the canonical interpreta-
tion of HFOML ∪CMFOML. In general, the definition of canon-
ical interpretation is quite involved (FOML uses Herbrand well-
founded interpretations (Van Gelder et al. 1991)), but for basic
class models the canonical interpretation is simply the least Her-
brand interpretation that satisfies HFOML ∪ CMFOML (Lloyd
1987). A canonical interpretation always exists, is unique, and
has a number of convenient properties.

We say that HFOML is a valid FOML instance for CMFOML

if HFOML ∪CMFOML has a well-typed (see Section 3.2) canon-
ical interpretation. Note that even though a canonical interpre-
tation always exists, a well-typed canonical interpretation may
not. The following claim states that the encoding of basic class
models is correct with respect to finite instances.

Claim 2 (Correctness of FOML encoding for basic class mod-
els).
Let CM be a basic class model and H be a finite Herbrand
instance of CM. Then HFOML is a valid FOML instance of
CMFOML if and only if H |= CM.

Proof. (Sketch) CMFOML and HFOML are constructed by the
rules shown in Definition 1. This construction guarantees the
following:

1. property typing, their multiplicity constraints and class
hierarchy constraints stand in 1:1 correspondence with
type path expressions and subtyping facts in CMFOML

2. object memberships and links in H stand in 1:1 correspon-
dence with object path expressions and membership facts
in HFOML.

Based on the construction of the FOML encoding, and the
common object-oriented characteristics of legal PathLP inter-
pretations (listed at the end of Section 3) and of class modeling,
it can be shown that H satisfies the constraints in CM if and
only if HFOML ∪ CMFOML has a well typed canonical inter-
pretation.

An important aspect of FOML involves querying and in-
ference. Since the semantics of FOML is defined through
the canonical interpretation of HFOML ∪ CMFOML, query an-
swering reduces to the evaluation of queries in that canonical
interpretation. It can also be shown that for a variable-free
FOML query γ, if it holds in the canonical interpretation of
HFOML ∪ CMFOML then γ holds in H.

4.1.1. Querying, constraining and extending class mod-
els. A modeler can query a given object model of a class
model and can extend a declared class model using inference
rules written in PathLP under FOML conventions. Such rules

Logic-based Software Modeling with FOML 13

can infer new data elements for an object model, like new links
between objects, infer missing attribute values, or derive class
memberships. The rules can also define new intensional ele-
ments, i.e., model elements that are constructed based on explic-
itly declared ones.

Query-answering. Find GPU units and their computers:

?- ?gpu.gComp[?c], ?c:Computer;
Answer:

?gpu = Nvidia,
?c = ThinkPad.

Find all Software objects that have a related hardware:

?- ?soft.hardw[?hard];

Answers:

?soft=Linux, %% Answer 1
?hard=ThinkPad;
?soft=Windows, %% Answer 2
?hard=ThinkPad;
?soft=CUDA, %% Answer 3
?hard=Nvidia.

The first query is answered, based on the inverse property and
property declaration in the class model specification. The sec-
ond query is answered based on the semantics of the subsetting
constraint.

Constraining Class Models: Class models can be constrained,
similarly to the way they are constrained using OCL. Class
model constraints in FOML describe forbidden states (following
PathLP). Constraints are checked offline, in a separate correct-
ness testing, and not during regular runs.

An application that runs with a GPUAPI with some GPU card must run on
an operating system that runs on a Computer with that GPU unit:

!- ?appl.applGApi[?gApi], ?gApi.apiGUnit[?Gpu],
not (?appl.applOs[?Os], ?Os.osComp[?C], ?C.compG[?Gpu]);

The corresponding OCL constraint was shown in Section 2, just
before the start of subsection 2.1.

A computer must have at least one operating system on which a "pdf"
application runs:

!- ?c.os[?os], not (?os.osAppl[?appl],
not ?appl.category["pdf"]);

An equivalent OCL constraint:
Context Computer
inv: self.os.osAppl.category->includes("pdf")

An object cannot be simultaneously an API and an operating system:
!- ?o:OS, ?o:ComputingAPI;

An equivalent OCL constraint:
Context OS
inv: OS.allInstances()->intersection

(ComputingAPI.allInstances())-> isEmpty()

Intensional extension of object models:
Computer applications with a common category are alternative to each other:

?appl1.alt1[?appl2] :-
?appl1.category[?cat], ?appl2.category[?cat];

Alternative computer applications have a common category:
?appl1.category[?cat] :-

?appl1.alt1[?appl2],?appl2.category[?cat];

This rule implies the missing attribute link
Foxit.category["pdf"] in the object model of Exam-
ple 2, in Listing 2.

The alternative association is symmetric:
?appl1.alt1[?appl2] :- ?appl2.alt1[?appl1];

If an application runs on an operating system that runs on some computer,
then the application is a software on that computer:

?C.softw[?Appl]:- ?C.os[?OS], ?OS.osAppl[?Appl]; (1)

If a computer application runs using a pair of GPU and Computing API
element (the applGApi property), then it implements that API (the
applApi property):

?appl.applApi[?compAPI] :- (2)
?appl.applGApi.gApi[?compAPI];

The latter rule implies the other missing link,
cuDNN.applApi[CUDA] in the object model of Exam-
ple 2. Without that, the instance is illegal, as the multiplicity
constraint of property applApi is not satisfied for object
cuDNN.

User rules that add derived (new) intensional properties or
attributes:

If an application runs on an operating system that runs on a computer,
then the application can be installed on that computer:

?appl.install[?C] :- (3)
?appl.applOs[?Os], ?os.osComp[?C];

API objects that are linked to GPU objects can be classified as
graphics APIs:

?api.graphics[true] :- ?api.apiGUnit[?];
?api.graphics[false] :- ?api: ComputingAPI, not ?api.apiGUnit[?];

4.2. Metalevel Modeling with FOML
The FOML meta-modeling capability enables specification of
intensional structures of model elements, definitions of model-
ing meta-constraints, analysis of class and object models, and
supporting general software engineering activities like testing
and syntactic correctness validation. Below, we shortly describe
the meta-modeling capabilities. The actual FOML system is
described in Section 5.

4.2.1. Higher-order Intensional Elements of Models

FOML enables specification of new inductive, parameterized,
intensional model elements, constructed on top of declared
properties, associations and classes. The most useful ones are
intensional parameterized properties, which are described using
graph-inspired terminology of edges, paths, and cycles in model
diagrams. FOML provides a library of higher-order constructors
for such elements. We describe some such structures below, in
order to provide a taste of this powerful capability.

Property composition: objects ?o and ?v are related via the
intensional property compose(?p1,?p2) if there is a "property
path" ?p1.?p2 from ?o to ?v (or via compose(?p1,?mid,?p2),
if there is a "property path" ?p1.?p2 from ?o to ?mid to ?v):

14 Mira Balaban et al.

?o.compose(?p1,?mid,?p2)[?v] :-
?o.?p1[?mid].?p2[?v];

For example, rules (1) and (3) above can be rewritten more
succinctly as follows:
?C.softw[?Appl]:- ?C.compose(os,osAppl)[?Appl]; (1’)
?appl.install[?C] :- ?appl.compose(applOs,osComp)[?C]; (3’)

Transitive closure: The parameterized property closure(?p)
describes the transitive closure of the reflexive property ?p:

?o.closure(?p)[?v] :- ?o.?p[?v];
?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v];

The transitive closure can be used to identify circularity of
reflexive properties, i.e., characterizing a circular path of ?p
related objects:

?p.circular[true] :- ?o.closure(?p)[?o];

For example, in the class model in Figure 1, association
partParent between Hardware objects can be constrained to
be non-circular:
!- part.circular[true];

A modeler can extend that class model with a new intensional
association that computes the parts of a Hardware object:
?o.hardware_parts[?partslist] :-

setof(?part,
(?o:Hardware, ?o.closure(part)[?part]),
?partlist);

Here, setof is an aggregate operator, which collects
all ?parts that satisfy the condition (?o:Hardware,
?o.closure(part)[?part]), and returns the list of these
?parts.

The metamodel of class models, which FOML uses for check-
ing correctness of a user model (see Section 5), uses closure and
circular to specify that class hierarchies are not circular. The
metamodel includes the following constraint:
!- $subclass.circular[true]; % a forbidden state

Property composition and circularity can be extended to
inductively defined property paths and cycles:
Paths parameterized property: ?o and ?v are connected via
a chain of properties

?o.path([?p])[?v] :- ?o.?p[?v];
?o.path([?p|?chain])[?v] :- ?o.?p.path(?chain)[?v];

For example, a query for finding all objects accessible from
ThinkPad in the object model in Figure 2:

?- ThinkPad.path(?path)[?o];

On the metalevel, a class model can be queried for property
paths between classes. For example, Figure 1 can be queried
for property paths that end in class Computer:

?- ?Class.path(?path)[Computer];

or for property cycles:
?- ?Class.path(?path)[?Class];

Moreover, class models can be restricted not to have property
cycles:

!- ?Class.path(?path)[?Class];

4.2.2. Defining Meta-Constraints

FOML supports UML constraints using meta-classes, whose
semantics is built into PathLP. We show here the encoding of
the three constraints included in the class model of Figure 1:
Generalization set, association class, and subsetting.
Generalization-set constraint: A generalization set constraint
has the form

C.$GS(C1, . . . , Cn)[kind];
where n > 1 and kind can be disjoint, complete,
overlapping, incomplete or some subset of these. The
semantics is subtyping Ci :: C, for i = 1, . . . , n, plus the kind
relation between any Ci, Cj, where i, j = 1, . . . , n.

?sub::?super :-
?super.$GS(?cls_lst)[?],?cls_lst._member[?sub];

?sub1.$disjoint[?sub2l] :-
?super.$GS(?cls_lst)[disjoint],
?cls_lst._member[?sub1],?cls_lst._member[?sub2],
?sub1 != ?sub2;

!- ?C.$disjoint[?D], ?o:?C,?o:?D;

Association class: An association class constraint has the form
a.$assocClass[C];

where a is an association and C its association class. The se-
mantics requires a bijective mapping between objects of the
association class and links of the association. The mapping is
encoded by direct navigation from an association class object to
the objects of its associated link:

In the class model: gpuApi.$assocClass[GPUAPI];
In the object model: NvidiaCUDA:GPUAPI;

NvidiaCUDA.gApi[CUDA];
NvidiaCUDA.apiGUnit[Nvidia];

The bijective restriction on association class mappings are ex-
pressed using these PathLP constraints:

A link of an association has a single corresponding object in its associa-
tion class:
!- ?a.$assocClass[?AC], ?a.$assocProperty[?p1,?p2], ?o1.?p1[?o2],

not (?ac:?AC, ?ac.?p1[?o1], ?ac.?p2[?o2]);
!- ?a.$assocClass[?AC], ?a.$assocProperty[?p1,?p2], ?o1.?p1[?o2],

?ac:?AC, ?ac.?p1[?o1], ?ac.?p2[?o2],
?ac’:?AC, ?ac’.?p1[?o1], ?ac’.?p2[?o2],
?ac != ?ac’;

An association class object has a single corresponding link in the associa-
tion of that class:
!- ?a.$assocClass[?AC], ?a.$assocProperty[?p1,?p2], ?ac:?AC,

not (?ac.?p1[?o1], ?ac.?p2[?o2]);
!- ?a.$assocClass[?AC], ?a.$assocProperty[?p1,?p2], ?ac:?AC,

?ac.?p1[?o1], ?ac.?p2[?o2],
?ac.?p1[?o1’], ?ac.?p2[?o2’],
(?o1 != ?o1’ or ?o2 != ?o2’);

In addition, an association class object implies the relevant
associated link:

?o1.?p2[?o2] :- (4)
?a.$assocClass[?AC], ?a.$assocProperty[?p1,?p2], ?ac:?AC
?ac.?p1[?o1], ?ac.?p2[?o2];

The last rule accounts for the “missing” link
Nvidia.gApi[CUDA] in the FOML encoding of Figure 2, in
Listing 2.

Logic-based Software Modeling with FOML 15

Subsetting: A subsetting statement has the form
p.$subsets[q];

where p, q are properties. The semantics is property subtyping,
i.e., links of p are also links of q. The semantics can be encoded
in FOML by the rule:

?o1.?q[?o2] :- ?o1.?p[?o2], ?p.$subsets[?q];

Using this rule, the object model encoding in Listing 2 infers
the necessary link ThinkPad.softw[linux].

4.2.3. Analysis of Models

FOML metamodeling base includes metaclasses like
$Class, $Attribute, $Association, $Property, and
accounts for their inter-relationships, dependencies, and con-
straints. Using these facilities, FOML can analyze and control
class and object models. Here are some examples of model
querying:

Find all properties whose minimum multiplicity is 1:
?- ?prop:$Property,

?SrcClass!?prop[?TrgClass]{1 .. ?};
Find pairs of properties of the same association:

?- ?assoc.$assocProperty[?prop1,?prop2], ?prop1 != ?prop2;
Find reflexive properties:

?- ?Class!?prop[?Class];
Find classes that are accessible from class Computer:

?- Computer.path(?proplst)[?target];

Meta-facilities can be used to introduce a fine characterization
of properties:

?p.kind[injective] :-
?p:$Property,inverse(?p).min[0],inverse(?p).max[1];

?p.kind[surjective] :-
?p:$Property,inverse(?p).min[1],inverse(?p).max[*];

?p.kind[bijective] :-
?p.kind[injective],?p.kind[surjective];

?o2.?p[?o1] :- ?p.symmetric[true],?o1.?p[?o2];

Other software engineering activities that analyze and test
models, are described in the next section.

5. The FOML Tool
The FOML querying and verification tool (Khitron et al. 2017)
is implemented in PathLP and also uses PathLP to specify class
and object models as well as to query them. For example, both
class model constraints like association class or property subset-
ting, and metamodel constraints, and model verification queries
are expressed in PathLP. A modeling activity, like instance
checking, which is largely based on the concept of well-typed
instances from Section 3, is implemented as a set of PathLP
constraints.

The underlying language of the PathLP subsystem of the
FOML tool consists of the “pure” part, as described in Sec-
tion 3, and for practical reasons it is augmented with support
for arithmetic, aggregate functions (e.g., sum, count), I/O, and
other useful builtins. It is also supported by various libraries for
traversing graphs of linked objects and types, some written in
PathLP and some in Prolog. The examples in Section 4.2.1 rely
on these libraries.

The interface of the FOML tool provides several contexts,
each tailored to a different software modeling activity that an
end user might be engaged in.

1. Meta-reasoning and analysis of class and object mod-
els:

– Class models: In this context, a user can load and
then query the content of a class model. Analy-
sis queries in this context are demonstrated in Sec-
tions 4.2.1 and 4.2.3. The meta-analysis of class mod-
els relies on an internal PathLP library that captures
the inter-relationships and constraints, as described
in Section 2.1. This library accounts also for implied
elements and default values that are not explicitly
declared, like missing association or property names.
For example, if in Listing 1, in Section 4.1, the as-
sociation name partParent is omitted, the FOML
tool complements it as $assoc(parent,part), or
if property gComp is not specified, the tool adds it
as inverse(compG). Moreover, the tool adds miss-
ing default specifications, like 0..* multiplicity con-
straints or $Any as the value type of an attribute.
Meta-analysis of class models provides also metric
information like size (e.g., number of classes), struc-
ture (e.g., property cycles in the model), and class-
hierarchy structure (e.g., multiple inheritance).

– Object models: This context supports similar anal-
ysis of an object model. That is, a user can load an
object model for an already loaded class model, and
query its content and structure. As we have already
seen in querying the object model in Listing 2, in
Section 4.1, the encoding does not declare implicit
information. The meta-analysis context knows to
infer implied data like implied links and object mem-
berships.

2. Querying class and object models: In this context, a user
can load an object model for an already loaded class model,
and query inferred information. Querying and inferences
in this context is demonstrated in Section 4.1.1.

3. Verification and validation of class models: In this con-
text, a user can load an object model for an already loaded
class model, and check whether the object model is a legal
instance of the class model, i.e., satisfies all class model
constraints. This context is for testing and validation. Neg-
ative tests, i.e., tests to find illegal instances, can be used
to find constraint violations.

4. Syntactic correctness: This context enables checking the
syntactic correctness of class and object models, i.e., check-
ing whether a user model satisfies the constraints of its
metamodel. To apply this context a user first loads the tex-
tual representation of a class model or of an object model
for a syntactically correct class model.

– Class models: A syntactically correct class model is
a legal instance of the metamodel of class models, de-
noted MMCM. To check this correctness the FOML

16 Mira Balaban et al.

tool creates a representation of the class model as an
instance of MMCM. This object model representa-
tion is created as a PathLP model transformation from
a class model to the concrete syntax of object mod-
els. Once this object model of MMCM is created, it
is validated in the above verification and validation
context.

– Object models: In this context, simple meta rules
like requirements that an object model includes only
objects and links of classes and properties of the
class model are checked. Similarly, object attributes
should refer to appropriate class attributes. Yet, the
syntactic check must rely on the meta-reasoning con-
text, for inference of implied data that is not explicitly
declared, as we have seen in Listing 2, in Section 4.1
.

The FOML tool can simultaneously support multiple class
and object models. Each context can switch between models
at will. This unique feature allows one to reason about several
models simultaneously. For example, class models for different
viewpoints of a domain can be queried for common classes, or
agreement (or lack of) of common attribute types of common
classes. This feature enables support in multilevel modeling.
Indeed, there is in-progress project that aims to develop a multi-
level modeling component for the FOML tool, along the lines
of (Balaban et al. 2018).

Below, we present a sample session with the FOML tool. To
help focus on the important, we remove some inessential chatter
from the session. In this sample session, we assume that the
class model of Listing 1 is in the file computer.cls and the ob-
ject model of Listing 2 is in a file like computerˆmodel1.obj.
Commands entered by the user are shown in boldface, while
mono-font is reserved for the chatter coming from the tool. The
regular roman font is used for our in-line clarifications. For
easier understanding, we use a menu-driven interface, which
provides high-level functions of FOML, like loading and verifi-
cation. To ask queries, we escape to the “expert” mode, which
is essentially the PathLP command line mode. An experienced
user can conduct the entire dialog via the expert mode.

cmd> pathlp ## start PathLP in OS command window

PathLP > ?- foml; %% start FOML
1 - load class model
2 - load class and object models
3 - check class model syntax
4 - check object model syntax
5 - check legality of instance
6 - list folder
7 - switch to FOML expert mode
8 - exit PathLP

foml > 1 %% choose option 1
Class model file name: computer.cls
the current model is ’computer.cls’

foml> 7 %% let’s ask some class model queries

PathLP computer.cls > ?- Computer!?prop[?type];
?prop = os %% answers
?type = OS

?prop = softw
?type = Software

?prop = part
?type = Hardware

?prop = tested(date)
?type = String

PathLP {computer.cls} > ?- foml; %% back to FOML menu inter-
face

foml> 2 %% now choose option 2
Class model file name: computer.cls
Object model file name: computer.obj
the current model is ’computer.obj’

foml> 5 %% let’s check legality
Checking object model ’computer.obj’
All constraints are satisfied.

foml> 7 %% let’s ask some object queries

PathLP {computer.obj} > ?- ThinkPad.os[?X];
?X = Linux %% answers
?X = Windows

PathLP {computer.obj} > ?- halt; %% going home now

cmd> ## back to OS command window

6. Related Work

Development and study of software modeling frameworks and
tools has been the focus of intensive research over the last
decade. On the practical level, many frameworks, environments
and tools have been developed and used, with the goals rang-
ing from education, to academic research, to experimental and
commercial tools. In industrial-strength software, we find pro-
fessional modeling tools like EMF (Steinberg et al. 2008; EMF
2017) with its Papyrus modeling environment (IBM 2020a),
RSA (IBM 2020b), Magicdraw (Magic 2020), and the Epsilon
family of model management languages (Kolovos et al. 2008;
Epsilon 2017). These systems support activities like model
specification, investigation using model metrics, transformation
and code generation.

Theoretical study of software models concentrate on for-
mal aspects of their properties and management procedures.
The need for semantics of class models has led to multiple ap-
proaches concerning desirable interpretations and extensions,
including (1) translational approaches, mainly to logic (Berardi
et al. 2005); (2) graph-based approaches (Kleppe & Rensink
2008), and direct set-based approaches (Calvanese et al. 1998;
Balaban & Maraee 2013). The main theoretical questions con-
cerning correctness of class models focus on issues of their
consistency (Satoh et al. 2006), finite satisfility (Calvanese 1996;
Balaban & Maraee 2013; Feinerer & Salzer 2013) and simpli-
fication (Feinerer et al. 2011; Taupe et al. 2016; Balaban &
Maraee 2019).

While deciding correctness problems of UML class models

Logic-based Software Modeling with FOML 17

is hard (EXPTIME-complete (Berardi et al. 2005; Lutz et al.
2005; Artale et al. 2010)), it is nevertheless decidable. With the
addition of OCL, all problems turn undecidable (yet EXPTIME-
complete for the UML/OCL-lite fragment (Queralt et al. 2012)).
UML/OCL applications usually rely on off-the-shelf solvers
and theorem provers for validating and checking correctness of
models. Most applications use bounded inference, i.e., size of
model instances is restricted in advance.

UMLtoCSP (Cabot et al. 2007, 2014) translates UML/OCL
models into Constraint Satisfaction Problems (CSP) for check-
ing correctness properties, including consistency, bounded finite
satisfiability, independence of invariants and instance comple-
tion. Alloy (Jackson 2002a, 2006), a relational-logic modeling
language that is built on top of a SAT solver, is frequently used
for verification of small models via instance generation and
completion. Such applications rely on translation of UML/OCL
specifications into Alloy (Anastasakis et al. 2010; Maoz et al.
2011). HOL-OCL (Brucker & Wolff 2008) is a theorem prov-
ing environment that supports interactive proofs of consistency,
instance validation and query answering for UML/OCL models.

USE is a modeling environment that supports validation and
verification of UML/OCL models (Gogolla et al. 2005; Gogolla
et al. 2009; Kuhlmann et al. 2011). USE is also popular as
an education system for teaching software modeling. Another
popular educational system is Umple (Forward et al. 2012),
which supports model-based code generation.

Logic programming-based approaches use logic rule-based
encodings of class models for supporting inference and answer
querying. In (Cali et al. 2012), Datalog± (Calì et al. 2012) is
used for characterizing Lean UCD, a set of class models with
a restricted subset of OCL constraints, for which conjunctive
query answering of instances is tractable (measured in the size
of instances). In (Malgouyres & Motet 2006), a syntax verifi-
cation approach for UML models is described, which encodes
UML metamodels in Constraint Logic Programming. Similar,
but more general, verification is part of FOML (the syntactic
correctness reasoning context, see Section 5). F-logic (Kifer,
G., & Wu 1995), which lies at the origin of FOML, is used
in (Igamberdiev et al. 2014, 2016; Neumayr et al. 2016) as a
basis for multilevel modeling of software.

The FOML approach is quite different from those mentioned
above. It is based on PathLP, which offers a simple, intuitive
object-oriented syntax. It has a number of advantages and dis-
advantages with respect to SAT-based tools, like Alloy, which
support OCL. The main disadvantage of FOML is that SAT-
based tools can complete partial instances to full instances that
satisfy all constraints. In contrast, FOML can only check if
constraints are satisfied in a particular instance and therefore
combining FOML with SAT-based tools is highly desirable.
On the other hand, the strong points of FOML include support
for meta-modeling, patterns, recursion, model querying, anal-
ysis, and testing. The model analysis and the testing features
of FOML are made possible due to FOML being a Turing-
complete executable logic language. Other logic programming
based approaches to software modeling, like Datalog± (Calì
et al. 2012), tend to sacrifice expressivity and functionality for
gains in decidability and guarantees on efficiency.

7. Conclusion and Future Work

We have presented FOML, an expressive logic-based executable
modeling language and tool (Khitron et al. 2017), that could ben-
efit intelligent software modeling systems. FOML is designed
as a conceptual layer on top of the PathLP path expression lan-
guage. PathLP already has a functioning implementation, and
most of FOML has been implemented and is usable for experi-
mentation as well. Moreover, support for multilevel modeling
is also on the way.

The FOML tool offers a unique combination of contexts for
software modeling activities, including support for model level
querying and inference, meta-level analysis, validation (testing),
and syntactic correctness checking. It is unique in its ability
to simultaneously handle multiple models, which opens up the
possibility to support activities like model merging, comparison,
and dealing with model inter-relationships.

A planned future development of the FOML tool involves
extending the underlying PathLP language in the direction of
HiLog and Transaction Logic (Chen et al. 1993; Bonner &
Kifer 1998, 1994). Such extensions can add further flexibility to
the PathLP language, and would enable support for behavioral
models. In addition, we plan on adding a visual UI to the tool,
preferably, via integration with an existing visual open source
application for UML models.

We furthermore plan on extending the FOML tool by integrat-
ing it with other modeling software to complement the existing
capabilities. One such possible tool is FiniteSatUSE (BGU
Modeling Group 2018), which detects, identifies and provides
advice for finite satisfiability problems in class models, and also
performs optimization of multiplicity constraints (Balaban &
Maraee 2019).

A different promising direction involves integration with
software modeling tools like USE (Gogolla et al. 2005) or
Umple (Forward et al. 2012), which also complement the func-
tionality of FOML. USE is now integrated with SAT solvers
that can determine satisfiability of a UML/OCL class model
and support instance creation and completion (Kuhlmann et
al. 2011). Umple adds the capability of code generation, and
FOML can be integrated as a reasoning system, on top.

Acknowledgments

We would like to thank Azzam Maraee for helpful discussions.
This work is supported in part by the BSF Grant 2017742 and
NSF Grant 1814457.

References

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2010). On
Challenges of Model Transformation from UML to Alloy.
Software and Systems Modeling, 9(1), 69–86.

Artale, A., Calvanese, D., & Ibánez-Garcıa, A. (2010). Full
satisfiability of UML class diagrams. In Proc. of the 29th int.
conf. on conceptual modeling (er 2010).

Atkinson, C., & Kühne, T. (2001). The essence of multilevel
metamodeling. In Uml (pp. 19–33). Springer.

18 Mira Balaban et al.

Atkinson, C., & Kühne, T. (2008). Reducing accidental com-
plexity in domain models. Software & Systems Modeling,
7(3), 345–359.

Balaban, M., Bennett, P., Doan, K. H., Georg, G., Gogolla, M.,
Khitron, I., & Kifer, M. (2016). A Comparison of Textual
Modeling Languages: OCL, Alloy, FOML. In 16th interna-
tional workshop on OCL and textual modeling, models.

Balaban, M., Khitron, I., Kifer, M., & Maraee, A. (2018).
Formal executable theory of multilevel modeling. In Caise.

Balaban, M., & Kifer, M. (2011). Logic-Based Model-Level
Software Development with F-OML. In Models 2011.

Balaban, M., & Maraee, A. (2013). Finite Satisfiability of UML
Class Diagrams with Constrained Class Hierarchy. ACM
TOSEM, 22(3), 24:1–24:42.

Balaban, M., & Maraee, A. (2017). UML Class Diagram:
Abstract syntax and Semantics. https://goo.gl/UJzsjb.

Balaban, M., & Maraee, A. (2019). Removing redundant
multiplicity constraints in UML class models. Software &
Systems Modeling, 18, 2717–2751. Retrieved from https://
doi.org/10.1007/s10270-018-0696-z

Berardi, D., Calvanese, D., & Giacomo, D. (2005). Reasoning
on UML class diagrams. Artificial Intelligence, 168, 70-118.

BGU Modeling Group. (2018). FiniteSatUSE – A Class Model
Correctness Tool. https://goo.gl/svXQwj.

Bonner, A., & Kifer, M. (1994, October). An Overview of
Transaction Logic. Theoretical Computer Science, 133, 205–
265.

Bonner, A., & Kifer, M. (1998). A logic for programming
database transactions. In J. Chomicki & G. Saake (Eds.),
Logics for databases and information systems (pp. 117–166).
Kluwer Academic Publishers.

Brucker, A., & Wolff, B. (2008). HOL-OCL: A Formal Proof
Environment for UML/OCL. In Fundamental approaches
to software engineering (Vol. 4961, p. 97-100). Springer-
Verlag.

Cabot, J., Claris, R., & Riera, D. (2007). Umltocsp: a tool for
the formal verification of UML OCL models using constraint
programming. In Ase 07, the twenty-second ieee-acm inter-
national conference on automated software engineering (pp.
547–548). New York, NY, USA.

Cabot, J., Clariso, J., & Riera, D. (2014). On the Verification of
UML/OCL Class Diagrams Using Constraint Programming .
Journal of Systems and Software, 93(0), 1 - 23.

Calì, A., Gottlob, G., & Lukasiewicz, T. (2012). A general
datalog-based framework for tractable query answering over
ontologies. Web Semantics: Science, Services and Agents on
the World Wide Web, 14, 57–83.

Cali, A., Gottlob, G., Orsi, G., & Pieris, A. (2012). Querying
UML Class Diagrams. In Foundations of software science
and computational structures (p. 1-25). Springer Berlin Hei-
delberg.

Calvanese, D. (1996). Finite model reasoning in description
logics. In The 5th int. conf. on the principles of knowledge
representation and reasoning (kr-96).

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., &
Rosati, R. (1998). Description logic framework for infor-
mation integration. In 6th intl. conf. on the principles of

knowledge representation and reasoning (kr’98) (p. 2-13).
Chen, W., Kifer, M., & Warren, D. (1993, February). HiLog: A

foundation for higher-order logic programming. Journal of
Logic Programming, 15(3), 187–230.

Deutsch, A., Sui, L., & Vianu, V. (1999). Xml path language
(xpath) version 1.0. w3c recommendation, the world wide
web consortium. In Journal of computer and system sciences
(jcss) 2007; 73(3):442–474.

EMF. (2017). Eclipse modeling framework (emf). https://
www.eclipse.org/modeling/emf.

Epsilon. (2017). Epsilon. https://www.eclipse.org/epsilon/.
Feinerer, I., & Salzer, G. (2013). Numeric Semantics of Class

Diagrams with Multiplicity and Uniqueness Constraints. Soft-
ware and Systems Modeling (SoSyM).

Feinerer, I., Salzer, G., & Sisel, T. (2011). Reducing Multi-
plicities in Class Diagrams. In Model driven engineering
languages and systems (pp. 379–393).

Forward, A., Badreddin, O., Lethbridge, T. C., & Solano, J.
(2012). Model-driven rapid prototyping with umple. Soft-
ware: Practice and Experience, 42(7), 781-797.

France, R., & Rumpe, B. (2007). Model-Driven Development of
Complex Software: A Research Roadmap. In International
conference on software engineering (pp. 37–54).

France, R. B., Ghosh, S., Dinh-Trong, T., & Solberg, A.
(2006). Model-Driven Development Using UML 2.0:
Promises and Pitfalls. Computer, 39, 59-66. doi: http://
doi.ieeecomputersociety.org/10.1109/MC.2006.65

Frankel, D. (2003). Model Driven Architecture: Applying MDA
to Enterprise Computing. Wiley-India.

Frohn, J., Himmeröder, R., Lausen, G., May, W., & Schlep-
phorst, C. (1998). Managing semistructured data with
FLORID: A deductive object-oriented perspective. Infor-
mation Systems, 23(8), 589–613.

Gogolla, M., Kuhlmann, M., & Hamann, L. (2009). Consistency,
Independence and Consequences in UML and OCL Models.
In Proceedings of the 3rd international conference on tests
and proofs (pp. 90–104). Springer-Verlag.

Gogolla , M., Bohling, J., & Richters, M. (2005). Validat-
ing UML and OCL models in USE by automatic snapshot
generation. Journal on Software and System Modeling, 4,
386-398.

Henderson-Sellers, B. (2012). On the mathematics of mod-
elling, metamodelling, ontologies and modelling languages.
Springer Science & Business Media.

IBM. (2020a). Eclipse papyrus. https://www.eclipse.org/
papyrus/.

IBM. (2020b). Ibm rational software architect de-
signer. https://www.ibm.com/developerworks/downloads/
r/architect/index.html.

Igamberdiev, M., Grossmann, G., Selway, M., & Stumptner,
M. (2016). An integrated multi-level modeling approach
for industrial-scale data interoperability. Software & Systems
Modeling, 1–26. Retrieved from http://dx.doi.org/10.1007/
s10270-016-0520-6 doi: 10.1007/s10270-016-0520-6

Igamberdiev, M., Grossmann, G., & Stumptner, M. (2014). An
Implementation of Multi-Level Modelling in F-Logic. In 1st
international workshop on multi-level modeling (multi 2014)

Logic-based Software Modeling with FOML 19

https://goo.gl/UJzsjb
https://doi.org/10.1007/s10270-018-0696-z
https://doi.org/10.1007/s10270-018-0696-z
https://goo.gl/svXQwj
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/epsilon/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.ibm.com/developerworks/downloads/r/architect/index.html
https://www.ibm.com/developerworks/downloads/r/architect/index.html
http://dx.doi.org/10.1007/s10270-016-0520-6
http://dx.doi.org/10.1007/s10270-016-0520-6

(pp. 33–42).
Jackson, D. (2002a). Alloy: A Lightweight Object Modelling

Notation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2), 256–290.

Jackson, D. (2002b). Alloy: A new technology for software
modelling. In Tacas ’02.

Jackson, D. (2006). Software Abstractions: Logic, Language
and Analysis. The MIT Press.

Kern, H., & Kuhne, S. (2007). Model interchange between aris
and eclipse emf. In 7th oopsla workshop on domain-specific
modeling at oopsla (Vol. 2007).

Khitron, I., Balaban, M., & Kifer, M. (2017). The FOML Site.
https://goo.gl/AgxmMc.

Khitron, I., Kifer, M., & Balaban, M. (2011a, November).
An Overview of PathLP: A Logic Programming Language
of Path Expressions. In Ibm programming languages and
development environments seminar. Haifa, Israel.

Khitron, I., Kifer, M., & Balaban, M. (2011b). PathLP: A
Path-oriented Logic Programming Language. The PathLP
Web Site. (http://pathlp.sourceforge.net)

Kifer, M. (2007). FLORA-2: An object-oriented
knowledge base language. The FLORA-2 Web Site.
(http://flora.sourceforge.net)

Kifer, M., G., L., & Wu, J. (1995). Logical foundations of
object-oriented and frame-based languages. Journal of the
ACM, 42(4), 741–843.

Kifer, M., Kim, W., & Sagiv, Y. (1992, June). Querying object-
oriented databases. In Acm sigmod conf. on management of
data (p. 393-402). NY: ACM.

Kifer, M., Lausen, G., & Wu, J. (1995, July). Logical founda-
tions of object-oriented and frame-based languages. Journal
of ACM, 42, 741–843.

Kleppe, A., Warmer, J., & Bast, W. (2003). Mda explained:
The model driven architecture(tm): Practice and promise.
Addison-Wesley Professional.

Kleppe , A., & Rensink, A. (2008). On a graph-based semantics
for UML class and object diagrams. In C. Ermel, J. D. Lara, &
R. Heckel (Eds.), Graph transformation and visual modeling
techniques (Vol. 10). EASST.

Kolovos, D., Paige, R., & Polack, F. (2008). The epsilon
transformation language. In In international conference on
model transformation.

Kuhlmann, M., Hamann, L., & Gogolla, M. (2011). Extensive
Validation of OCL Models by Integrating SAT Solving into
USE. In Tools europe 2011 (Vol. 6705, p. 290-306). Springer.

Lloyd, J. (1987). Foundations of logic programming (second
edition). Springer-Verlag.

Lutz, C., Sattler, U., & Tendera, L. (2005). The complexity of
finite model reasoning in description logics. Information and
Computation, 199, 132-171.

Magic, N. (2020). Magicdraw. https://www.nomagic.com/.
Malgouyres, H., & Motet, G. (2006). A uml model consistency

verification approach based on meta-modeling formalization.
In Proc. acm symp. on applied computing (p. 1804-1809).

Maoz, S., Ringert, J., & Rumpe, B. (2011). CD2Alloy: Class
Diagrams Analysis Using Alloy Revisited. In J. Whittle,
T. Clark, & T. Kühne (Eds.), Model driven engineering lan-

guages and systems (Vol. 6981, pp. 592–607). Springer-
Verlag.

Maraee, A., & Balaban, M. (2012). Inter-association Constraints
in UML2: Comparative Analysis, Usage Recommendations,
and Modeling Guidelines. In Models 2012.

Neumayr, B., Schuetz, C. G., Jeusfeld, M. A., & Schrefl, M.
(2016). Dual deep modeling: MLM with dual potencies and
its formalization in F-Logic. SoSyM, 1–36. Retrieved from
http://dx.doi.org/10.1007/s10270-016-0519-z doi: 10.1007/
s10270-016-0519-z

Object Management Group (OMG). (2012). Object Constraint
Language (OCL) (Specification No. Version 2.3.1). OMG.
Retrieved from http://www.omg.org/spec/OCL/2.3.1/PDF/

OMG. (2017). UML 2.5.1 (Specification No. Version 2.5.1).
http://www.omg.org/spec/UML/2.5.1/PDF.

Queralt, A., Artale, A., Calvanese, D., & Teniente, E. (2012).
OCL-Lite: Finite Reasoning on UML/OCL Conceptual
Schemas. Data & Knowledge Engineering, 73, 1 - 22.

Satoh, K., Kaneiwa, K., & Uno, T. (2006). Contradiction
finding and minimal recovery for UML class diagrams. In
The 21st ieee intl. conf. on automated software engineering
(pp. 277–280).

Schmidt, D. (2006). Model-driven engineering. IEEE computer,
39(2), 25–31.

Sendall, S., & Kozaczynski, W. (2003, sep.). Model trans-
formation: the heart and soul of model-driven software de-
velopment. Software, IEEE, 20(5), 42 - 45. doi: 10.1109/
MS.2003.1231150

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
Emf: eclipse modeling framework. Pearson Education.

Swift, T., & Warren, D. (2011). Xsb: Extending the power of
prolog using tabling. Theory and Practice of Logic Program-
ming.

Taupe, R., Falkner, A., & Schenner, G. (2016). Deriving tighter
component cardinality bounds for product configuration. In
18th international configuration workshop, (8 pages).

Van Gelder, A., Ross, K., & Schlipf, J. (1991). The well-
founded semantics for general logic programs. Journal of
ACM, 38(3), 620–650.

Warmer, J., & Kleppe, A. (2003). The object constraint lan-
guage: Getting your models ready for mda. Addison-Wesley
Publishing Co., Inc.

Yang, G., & Kifer, M. (2003). Inheritance in rule-based frame
systems: Semantics and inference. Journal on Data Seman-
tics, 2800, 69–97.

About the authors

Mira Balaban is a Professor Emerita in the Computer Science
Department at Ben Gurion University, Israel. She is also a grad-
uate of music performance from the Rubin Academy of Music
in Tel-Aviv. Her research interests include software modeling,
with emphasis on correctness, optimization, languages and infer-
ence of models, programming languages, and Computer Music.
Contact her at mira@cs.bg.ac.il.

20 Mira Balaban et al.

https://goo.gl/AgxmMc
https://www.nomagic.com/
http://dx.doi.org/10.1007/s10270-016-0519-z
http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.omg.org/spec/UML/2.5.1/PDF
mira@cs.bg.ac.il

Igal Khitron is a Ph.D. candidate in the Department of Computer
Science at the Ben Gurion University in Israel. Contact him at
khitron@cs.bg.ac.il.

Michael Kifer is a Professor with the Department of Computer
Science, Stony Brook University, USA. His work spans the
areas of knowledge representation and reasoning (KRR), logic
programming, Web information systems, and databases. He
published four text books and numerous articles in these areas
as well as co-invented F-logic, HiLog, Annotated Logic, and
Transaction Logic. In 1999 and 2002, Kifer was a recipient
of the prestigious ACM-SIGMOD "Test of Time" awards for
his works on F-logic and object-oriented database languages
and in 2013 he received a 20-year "Test of Time" award from
the Association for Logic Programming (ALP) for his work
on Transaction Logic. Kifer is also a recipient of Chancellor’s
Award for Excellence in Scholarship. To contact the author,
visit http://www.cs.stonybrook.edu/~kifer.

Logic-based Software Modeling with FOML 21

khitron@cs.bg.ac.il
http://www.cs.stonybrook.edu/~kifer

