
Journal of Object Technology | RESEARCH ARTICLE

Towards interactive, test-driven development of model
transformations

Jesús Sánchez Cuadrado
Universidad de Murcia, Spain

ABSTRACT Developing model transformations is a complex task because it requires a deep knowledge of the semantics of the
input and output meta-models. Many times this knowledge is refined as the transformation is developed. A simple approach to
encode this knowledge is in the form of test cases, consisting of pairs of input models and expected output models. However,
creating these test cases is a time consuming and error-prone activity and it is barely used. Moreover, there is little tool support
for refining a transformation interactively at the same time that the test suite is created.
This paper explores an approach for test-driven development of model transformations based on creating test cases using
a model finder in an interactive manner. The synthesis of the input models of the test cases is driven by the results of static
analysis with respect to the coverage of the transformation, with the goal of instantiating input models which are not yet handled
by the transformation. The expected models are automatically derived using an instrumented transformation, and the user is in
charge of inspecting the result to validate them. The approach has been implemented for ATL and integrated into AnATLyzer
using USE Model Validator as the backend model finder.

KEYWORDS Model transformation, Test-driven development, Model finding, USE Model Validator.

1. Introduction
Model transformations (MT) are an essential part of Model-
Driven Engineering since they allow developers to manipulate
models automatically, for instance to achieve tool interoper-
ability, to convert models to different formalism for analysis, to
create refactorings or to animate models. Model transformations
can be developed using model transformation languages (MTL),
like ATL (Jouault et al. 2008), ETL (Kolovos et al. 2008),
QVT (OMG 2005), Henshin (Arendt et al. 2010), etc. The
design of a model transformation language typically includes
constructs specifically tailored to implement transformations
in an efficient way. At the same time, a model transformation
language can be accompanied with a development environment
(IDE) which provides productivity features such as editors with
syntax highlighting, static analysis (Cuadrado et al. 2016) and

JOT reference format:
Jesús Sánchez Cuadrado. Towards interactive, test-driven development of
model transformations. Journal of Object Technology. Vol. 19, No. 3, 2020.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a18

quick fixes (Cuadrado et al. 2018b). Moreover, there are also
approaches to automate and facilitate the creation and execution
of tests cases from transformation specifications (Gogolla &
Vallecillo 2011)(Guerra & Soeken 2015). However, despite of
these facilities, the development of model transformations is
still a complex and error-prone activity.

Using current technology model transformations are devel-
oped in a top-down fashion and with little testing (Baudry et al.
2010)(Guerra et al. 2019). There exists methods to design trans-
formations (Guerra, de Lara, Kolovos, et al. 2013) but they are
seldom used. In practice, in the author’s experience the source
to target mappings and the required transformation rules are
“discovered” incrementally by building examples of concrete
models (even if these models are constructed informally). At
the same time, building input test models manually is a tedious
and error prone activity, and therefore it is typically not carried
out. Alternatives like creating transformation contracts and gen-
erating test cases from them can also be cumbersome, since they
require a good knowledge of the semantics input and output
metamodels.

This paper proposes a method to develop model transforma-

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a18

tions incrementally and interactively, growing the set of input
test models semi-automatically as the transformation is devel-
oped. In contrast to other testing approaches (González & Cabot
2012; Fleurey et al. 2004) we aim at generating input models
which are not covered yet by the transformation. The goal
is that they serve as guidance to evolve the transformation by
inspecting concrete examples. The method is supported by a
tool for ATL, integrated into ANATLYZER1. Technically, we
combine static analysis and model finding, in particular model
synthesis and partial model completion, to suggest relevant in-
put models and help the developer understand the corner cases
of the transformation at the same time that a proper test suite is
constructed. To achieve this we make use of the USE Model Val-
idator (Kuhlmann & Gogolla 2012; Gogolla et al. 2018) (USE
MV), a robust model validator, which is integrated in Eclipse
through EFINDER2 (Cuadrado & Gogolla 2020).

Altogether, this paper makes the following contributions:

– An approach to incrementally develop a model transforma-
tion as well as its test suite by automatically synthesizing
uncovered models.

– Tool support for ATL integrated into ANATLYZER which
includes: static analys, input model synthesis, test suite
execution and maintenance, and inspection of test cases.

– This work can also been regarded as a case study about
how to use model finding, in particular USE MV features,
to enhance model transformation tooling.

Organization. This paper is organized as follows. Section 2
introduces a running example and motivates this work. Sec-
tion 3 presents the proposed development process. Section. 4
and Sect. 5 explains the details about our static analysis and
the generation of input models respectively, whereas Sect. 6
explains how test cases are inspected and maintained. Section 7
shows how the approach is implemented in practice. Finally,
Sect. 8 presents the related work and Sect. 9 concludes.

2. Background
The availability of techniques to ensure the correctness of model
transformations is essential for the success of MDE. The fact
that model transformation languages are higher-level that gen-
eral purpose language could, in principle, provide opportuni-
ties for supporting verification methods which are more dif-
ficult to provide in general-purpose language languages. For
instance, several transformation-specific analysis have been pro-
posed for different languages (Cuadrado et al. 2018a)(Cheng &
Tisi 2017)(Oakes et al. 2018), mechanisms for generating test
cases automatically (González & Cabot 2012)(Guerra & Soeken
2015)(Gogolla & Vallecillo 2011), visualizations (Guana &
Stroulia 2014), etc.

An scenario which has been less explored until now is to
enhance the development environment with features to help the
transformation developer construct meaningful transformation
rules interactively by means of (semi-)automatically generated
test cases. Instead of generating a complete test suite directly,

1 http://anatlyzer.github.io
2 https://github.com/jesusc/efinder

EPackage EClassifier
eClassifiers *

EStructuralFeatureEDataType EClass

eType 1

eStructuralFeatures *

eSubpackages *

EAttribute EReference

lowerBound : int
upperBound : int
containment : boolean

Constraint:
EPackage.allInstances()->one(p|

p.eSuperPackage.oclIsUndefined())

eSuperPackage
0..1

abstract: boolean

eSuperTypes*

Figure 1 Excerpt of the Ecore meta-model.

Model Class
classes *

Collection Simple

Constraint:
Model.allInstances()->size() = 1

name: String
abstract: boolean

Association

name: String
kind: AssocKind

associations *

Attribute

name: String

Role

name : String
lowerBound : int
upperBound : int

roles *

attributes *

superclasses*

TypeRef
type 1

Figure 2 Excerpt of the USE meta-model.

in this proposal the test suite is grown incrementally as the
transformation is developed, thus allowing the developer to
reason over concrete example models.

2.1. Running example
As a running example let us consider an ATL transformation to
convert Ecore meta-models into USE class diagrams3. Fig. 1
shows an excerpt of the Ecore meta-model and Fig. 2 shows a
meta-model for USE.

The Ecore meta-model includes a constraint to express that a
meta-model contains a unique root package4. The USE meta-
model requires that there is only one Model element, to reflect
the fact that in USE each specification contains a single class
diagram.

2.2. Motivation
Developing a model(-to-model) transformation is typically a
complex task because the developer must know the semantics of
both the source and target domains of the transformation (in the
example, the details of Ecore and USE class diagrams) and how
they related to each other. Moreover, the developer must ensure
that the implementation handles all possible input configurations
correctly. This is done by creating transformation rules with the
appropriate input patterns or by documenting invalid configura-
tions with pre-conditions. At the same time, the target models
generated by the transformation must be both syntactically and
semantically correct by creating adequate output patterns and
relationships between rules. This includes ensuring that the
transformation satisfies the invariants of the meta-models as
3 Full transformation and meta-models available at

http://atenea.lcc.uma.es/projects/MTB.html
4 This is technically not requirement for an Ecore meta-model to be valid, but it

is a common assumption.

2 Cuadrado

https://github.com/jesusc/efinder

well as transformation post-conditions (i.e., constraints over
the target meta-models specific to the models generated by the
transformation).

A well known approach to establish the semantics of a trans-
formation is to create transformation contracts (Tracts (Gogolla
& Vallecillo 2011)(Hilken et al. 2018) is a specific instance of
this approach), which specifies the main relationships between
the input and target meta-models. For instance, the following
listing is a piece of contract for the running example, taken from
the Ecore2USE case study in (Burgueño et al. 2014). It specifies
that there must be the same number of classes in the source and
target models and it uses the class name as a way to identify
them.

1 −− Same number of classes
2 EClass.allInstances→size = Class.allInstances→size
3

4 −− Equivalent names
5 EClass.allInstances→forAll(ec |
6 Class.allInstances→exists(uc | uc.name = ec.name))

Listing 1 Contract for Ecore2USE.

From these contracts, test cases can be generated automat-
ically and used to create a test harness. As noted in (Gogolla
& Vallecillo 2011), the contracts do not need to be exhaustive
(i.e., cover all configurations), but it can be refined gradually.
Nevertheless, this approach forces the developer to have a “top-
down” knowledge of the transformation, in the sense that he
or she needs to be able to describe the mapping in an abstract
way. Actually, the proposed contract does not respect the Ecore
semantics since it assumes that the class name is not scoped
by its package name. This is a corner case, which is typically
difficult to consider upfront without seeing a concrete exam-
ple. Moreover, the original contract did not include constraints
to indicate how Ecore sub-packages are handled (i.e., in USE
nested models/packages are not allowed). Although contracts
are certainly useful to reason about transformation semantics,
it can be difficult to identify corner cases, which may require
reasoning about concrete instances.

A simpler alternative is to create pairs of input/output test
cases manually which, in the process of creating them, may help
the developer identify and showcase the corner cases. This can
be considered a “bottom-up” approach. The main advantage
is that it allows us to work with concrete examples about the
expected behaviour of the transformation, which may help in
the implementation task. Unfortunately, creating these pairs of
models can be very time consuming and this approach is seldom
used.

In this paper we propose a development process that allows
a transformation developer to create transformation in a bottom-
up manner by growing a test suite incrementally and interac-
tively, as new transformation rules are created. This approach
is not incompatible with existing approaches, like the use of
transformation contracts. On the contrary, it can also be used
to refine existing contracts and gain a better knowledge of the
transformation semantics iteratively.

2.3. A quick tour
This section provides a quick tour of our tool for the test-driven
development of ATL transformations. The goal is to give the
reader a concrete view of our proposal in order to facilitate the
understanding of the following sections.

Fig. 3 shows how a developer would start developing the
running example. The different steps are illustrated with screen-
shots from our tool. First, an initial rule is created (label 1),
from which an initial test case is derived (label 2). The devel-
oper inspects the the test case (label 3), which is a passing test
case because the output is as expected, and marks it as reviewed.
Then, the transformation is analysed to find out which elements
are not covered by the transformation (label 4). In this case,
EClass is not covered and it is choosen by the user to generate
a new test case (label 5). This implies synthesizing an input
model and executing the transformation to generate the output
model (label 6). The developer inspects the test case and find
outs that the output model should contain two objects of type
USE Class (label 7). This means that the transformation is not
behaving as expected. If we fix the transformation (labels 8 and
9) and re-run it, the output model is as expected and the devel-
oper commits the output model to the test suite by promoting it
to “expected model” (label 10).

In summary, the purpose is to avoid the burden of manually
creating test cases. The input models are automatically created,
and can be refined manually if needed. The output models are
generated automatically by running the transformation. The
developer commits the output model when it is correct, and
there is no need to manually create it.

Next section gives an overview of the proposed method and
the rest of the sections describes its technical realization.

3. Interactive, test-driven development trans-
formations

Our proposal for interactive, test-driven model transformations
is based on three ingredients: the use of static analysis including
a coverage analysis, model finding to enhance static analysis
and to automatically extend the test suite with new test cases,
and finally, automated execution of the test suite so that user can
inspect the output of new test cases and identify transformation
refinement needs.

In the case of the running example, to start developing the
transformation from scratch, we could begin by writing the
simplest rule that we could come up with. For instance, we
could write a rule to map Ecore packages to USE models, and
set simple properties like name and classes. The following
listing shows the initial version of the transformation.

1 rule package2model {
2 from e : Ecore!EPackage
3 to c : Use!Model (
4 name <− e.name,
5 classes <− e.eClassifiers
6)
7 }

Listing 2 Ecore2USE transformation (version #1)

Towards interactive, test-driven development of model transformations 3

1

2

Inital rule
3 Review example Mark valid

4

5 Identify next element

6

7

8

Generate
test case &
run transformationReview test case

Fixed transformation

Create seed
test case

Analysis

9

Fix

Re-run

10

Figure 3 Usage of the interactive transformation tool.

: EPackage

name=“test”

: EPackage

name=“test”

: EClass

name=“Person”

: Model

name=“test”

Test
case #1
(seed)

Test
case #2

eClassifiers

: Model

name=“test”

package2model

package2model

uncovered

Input Output Expected

: Model

name=“test”

: Model

name=“test”

: Class

name=“Person”
classes

Pass

Fail

Figure 4 Test suite examples. Input models (left), expected
models (right) and transformation output (middle).

We can start testing the transformation by writing a simple
test case. Figure 4 shows the seed test case of our test suite.
From this we woud like to know which input configurations
have not been handled yet and to create new test cases which
include these elements. For instance, in Listing 2, there are not
any rule to handle EClass elements. This information can be
extracted by analysing the coverage of the transformation rules
with respect to the meta-model elements.

In an ATL transformation we can find three scenarios of
“lack of coverage”. (1) there might be rules yet to be written
(missing rules), (2) existing rules might have missing bindings
(e.g., target features not yet assigned), and (3) it might be that
some of the bindings are not fully covered by existing rules. To
analyse the coverage of the transformation rules with respect
to the input meta-model, we have implemented a new analysis
in ANATLYZER, called Uncovered elements. It checks which
meta-model elements have not been handled by the transforma-
tion. For instance, elements like EClass, EClass.abstract and
EAttribute have not been handled yet by the transformation. This

is described in more details in the next section. In addition to
this analysis, it is possible to use existing analysis provided by
ANATLYZER in order to generate example input models, namely:

– Unresolved bindings. Checks whether a binding is com-
pletely covered by the transformation rules. If a binding
is not resolved, the element right-hand side of the binding
will not be resolved into an element assignable to the target
feature. For instance, the binding in line 5 will be unre-
solved because there is no rule with EClassifier as input
pattern (or two rules for covering EClass and EDataType
which are the direct subtypes of EClassifier).

– Invariant analysis. It checks whether any possible output
model of a transformation will satisfy the post-conditions,
target meta-model invariants and transformation contracts
expressed in OCL (Cuadrado et al. 2017). In the running
example, the invariant in the USE meta-model will be
violated by the transformation. The analysis generates a
counter example which can be used as a test case as well.

– Unconnected components. Checks if all the target elements
generated by the transformation form a connected graph.
If this is not the case, then it might be sign of missing
bindings or rules. For instance, with the current version
of the transformation, a model with a root EPackage and a
children EPackage element will in result an unconnected
graph (i.e., two unlinked Model elements). This model
will also be discovered by the invariant analysis in this
case because the USE meta-model has a precise constraint
about this.

The goal is then to devise a development process driven by
the results of these analysis. The process would help the de-
veloper construct the transformation by incrementally covering
more input meta-model elements and by examining new pairs of

4 Cuadrado

input/output models (i.e., a generated test case). We propose the
development process depicted in Fig. 5. For simplicity, the pro-
cess assumes that the transformation is going to be developed
from scratch and using a deterministic transformation language.
It has the following steps:

1. A new transformation is created. To begin with, a simple
rule is created. Typically, to transform the root element. In
the running example we have started with package2model.

2. Create one or more initial test cases. This step can be
performed manually or automatically by generating a seed
input model which covers all the elements of the transfor-
mation, and then execute automatically the transformation
to generate the corresponding output model. The initial test
case is a seed test case to start growing the test suite. The
test suite is formed by pairs of input and output models.
Given that the initial rule is very simple, it is assumed to be
correct and the output model is therefore a valid expected
output model.

3. We use ANATLYZER to analyse the transformation and iden-
tify a number of elements that are not covered by the
current set of rules by using the coverage analysis men-
tioned above. For instance, elements like EClass, EPack-
age.eSubPackages are not covered in the current version
of the transformation.

4. The user inspects the results of the analysis and choose a
meta-model element to cover in the next iteration. For in-
stance, in the example a natural selection would be EClass.

5. The system synthesizes one or more input models which
include the choosen meta-model element. The synthesis is
constrained to produce models that do not include the paths
for which the transformation already cover the element.
If we choose EClass the resulting input model could be
similar to the test case #2 of Fig. 4.

6. The transformation is executed automatically to show the
user both the input and outputs of the transformation. The
input model can be refined manually if needed. The user
inspects the output model to determine if this is what it
is expected. If not, then it means that the transformation
needs to be fixed. If the output model is considered a
valid expected model (w.r.t. to the input model), then the
input/output pair is added to the test suite, and the process
continues. In the example, test case #2 is not yet valid
because its output model is not as expected. We need
to add a rule for EClass to generate the expected output
model.

7. The test suite is run continously as part of the process,
to ensure that fixing a specific test case does not break
existing ones (or alternatively, to fix existing test cases).
Running the test suite consists of executing the transforma-
tion using the input model of each test case, and comparing
the resulting output model with the expected model of the
test case.

8. The process finishes when the input meta-model is com-
pletely covered, or when the developer determines that the
uncovered elements are not of interest for the transforma-
tion.

A key element is to provide comprehensive tool support for
the process. The developer should be able to perform all manual
steps with the less possible effort. In particular, the inspection
of the generated test case must be easy and fast. To this end,
test cases tend to be small and focused on the new elements to
be tested. In addition, the model transformation is instrumented
to generate a trace model (as a secondary target model) which
includes information about which meta-model elements has
been “touched” by the transformation. This information allows
us to display runtime coverage information from the test cases
and the explicit mapping between the input and output models.

The next section presents the analysis that we perform and
Sect. 5 describes how to use model finding to generate new test
cases.

4. Transformation analysis
In the proposed process, we make use of several analysis which
have been briefly discussed above. In this section we discuss
the uncovered elements analysis, which is particularly useful for
the interactive process. First, we discuss the analysis for classes
and then we extend it for structural features.

4.1. Uncovered classes
This analysis is in charge of checking which classes of the input
meta-models are not handled by any rule, or if there are some
instances of a class which are handled but others not. We say
that a class is covered when, for each valid input model, each
instance of the class is matched by at least one input pattern5.

Our approach to identify which classes are not covered by
a transformation is based on two steps. In the first step we
identify classes that are fully covered or partially covered, and
in a second step we use model finding to reason about the rule
filters.

Gathering initial coverage information. Algorithm 1 shows
the first step, which classifies input metamodel classes into fully
and partially covered. A class is fully covered when there is
an input pattern whose type is the same class or a super type,
and there is no condition involved in its matching. A class is
partially covered when there is also a matching input pattern, but
it includes conditions (e.g., in rule filters). In addition, abstract
classes requires special treatment since they are covered only
when all its concrete subclasses are also covered (lines 14 – 19).

Listing 3 shows an evolution of the running example. In this
transformation class EClass is fully covered by rule class2class,
whereas class EPackage is partially covered by rule pack-
age2model. To determine whether EPackage is not actually
fully covered (e.g., if there are pre-conditions which comple-
ments the rule filter to cover the whole input configuration)
we need to resort to model finding to reason about the OCL
expressions.

5 We say “at least” instead of “exactly one” because we also consider lazy rules.

Towards interactive, test-driven development of model transformations 5

Create initial
transformation

Derive root
test case

Test suiteTest suiteTest suite

Transformation
analysis

Choose uncovered
element

Generate new
input model(s)

Modify
transformation

yes

Is output
model valid?

initalize

add

Run
transformation

Mark output
model as expected

no

More elements
to consider?

no

yes

Regression testing is continously
executed for early detection of
regressions.

Figure 5 Activities in the proposed development process.

1 rule package2model {
2 from e : Ecore!EPackage (e.eSuperPackage.oclIsUndefined())
3 to c : Use!Model (
4 name <− e.name,
5 classes <− e.eClassifiers
6)
7 }
8

9 rule class2class {
10 from e : Ecore!EClass
11 to c : Use!EClass (
12 name <− e.name
13)
14 }

Listing 3 Ecore2USE transformation (version #2).

Reasoning about OCL expressions. We use model finding to
determine if a class, initiallly deemed as partially covered, is
actually fully covered. To this end, we need to construct a for-
mula which aggregates all possible path conditions for partially
covering the class (in the example there is only one path), and
we check if the union of the paths is not equal to the full set of
objects of the class. A path condition is an expression which
describes the features of the input models which will make the
transformation execution reach the desired execution point. The
details about how to construct path conditions in ATL are de-
tailed in (Cuadrado et al. 2016). In this case, if there is a model
that satisfies the path condition, it means there is at least one ex-
ecution path that is not considered by the transformation. More-
over, we need to consider the transformation pre-conditions and
the input meta-model invariants. For instance, to determine if
EPackage is covered, we feed USE MV with the following set
of constraints (Listing 4). In this case, USE MV answers with a
counter-example, indicating that EPackage is not fully covered
(i.e., a package with nested packages is not covered).

1 −− Invariant
2 EPackage.allInstances()→one(p |
3 p.eSuperPackage.oclIsUndefined())

4

5 −− Coverage criteria
6 EPackage.allInstances()→select(p |
7 p.eSuperPackage.oclIsUndefined()) <> EPackage.allInstances()

Listing 4 Constraints to determine the coverage of EPackage
in the running example.

In practice, if an object of a given type is not matched by
any input pattern, it means that such object is not transformed.
There are three scenarios:

– It can be a smell that the transformation is incomplete, and
our system helps the developer identify these cases and
add new logic to handle them.

– It can be the case that such input configuration is not in-
tended to be handled by the transformation, and thus must
be forbidden. Writing a pre-condition is an adequate way to
document this situation. In this example, we could restrict
the transformation to work with metamodels with a single
package using this pre-condition: EPackage.allInstances()-
>size() = 1. In this case, EPackage would be fully covered.

– An alternative situation is that the developer wants to de-
liberately ignore these objects, because they do not belong
to scope of the transformation but they are valid input ele-
ments. For instance, a transformation that only transform
UML Activity Diagrams. In ATL there is not a way to
create rules that “ignore” elements. In other languages,
notably RubyTL (Cuadrado et al. 2006), it is possible to
write “ignore rules” to make this knowlege explicit.

4.2. Uncovered structural features
The analysis for structural features that is proposed in this work
is simple and just relies on the previous analysis. If a class is
uncovered all its structural features are uncovered as well. If a
class is fully or partially covered, we need to detect the usages
of the structural features of the class within the rule. If a feature

6 Cuadrado

Algorithm 1 Identification of uncovered elements.
Input: Input meta-model classes
Output: Set of pairs (class, rules) with partial coverage
Output: Set of pairs (class, rules) with full coverage

1 concreteClasses← {c ∈ classes | not c.isAbstract}
foreach r in rules do

2 inClass← r.inPattern
foreach c in concreteClasses do

3 if c = inClass or c is a subtype of inClass then
4 if r has filter then
5 add (c, r) to partial coverage
6 else
7 add (c, r) to full coverage

break
8 end
9 end

10 abstractClasses← {c ∈ classes | c.isAbstract}
foreach c in abstractClasses do

11 if if all concrete subclasses of c are in full coverage then
12 rules← rules associated to subclasses add (c, rules) to

full coverage
13 else if if all concrete subclasses of c are in full or partial

coverage then
14 rules← rules associated to subclasses add (c, rules) to

partial coverage
15 end

is used as part of the rule we consider it covered, otherwise
uncovered. This analysis can be more precise by considering
path conditions as above, but this is left for future work

5. Creating new test cases
Given the analysis described in the previous sections, the next
step is to use the information about which elements have not
been covered yet as a means to construct new test cases. Our
goal is to both incrementally evolve the transformation and
to improve the test suite. The rationale is as follows: if the
developer is provided with a new test case, then he or she has a
concrete instance to reason about, and this will help in the task
of creating new rules or refine existing ones in order to evolve
the transformation in the direction of increasing the coverage.

5.1. Generating input models
In this step, the user is presented with the list of uncovered
classes. He or she has to select one of the classes to create a
new test case which covers it. Our basic approach is to create
new input models which contain at least one object not covered
by the transformation.

For fully uncovered classes this is relatively straightfor-
ward. For instance, to consider EAttribute, we just need to use
EAttribute.allInstances()->size() > 1.

For partially uncovered classes, we need to generate path con-
ditions in which the filter conditions are negated. For instance,
for EPackage we would generate the following constraint.

1 EPackage.allInstances()→exists(p | not p.eSuperPackage.
oclIsUndefined())

Listing 5 Constraint to generate a new input model with
nested EPackage elements.

To create models which are structurally more meaningful
we need to add constraints to enfore the containment hierarchy
given by the meta-model. This means, that an object must only
exists within its container if its class is not a root class. In this
case, we would add to the previous constraint:

1 EClass.allInstances()→forAll(c |
2 EPackage.allInstances()→exists(p | p.eClassifiers→includes(c)))
3 and
4 EDataType.allInstances()→forAll(c |
5 EPackage.allInstances()→exists(p | p.eClassifiers→includes(c)))
6 and
7 EStructuralFeature.allInstances()→forAll(c |
8 EClass.allInstances()→exists(p |
9 p.eStructuralFeatures→includes(c)));

Listing 6 Constraints to consider the containment hierarchy.

Finally, to consider structural features and to give more di-
versity to the generated models, we could extend the path condi-
tions with additional constraints over the features of interest. For
instance, the original constraint for EPackage could be extended
in several ways to generate different models:

1 −− Several subpackages in a nested package
2 EPackage.allInstances()→exists(p |
3 not p.eSuperPackage.oclIsUndefined() and
4 p.eSubPackages→size() > 2)
5

6 −− Enforce a value in nsURI value
7 EPackage.allInstances()→exists(p |
8 not p.eSuperPackage.oclIsUndefined() and
9 p.nsURI = ’test’)

Listing 7 Constraints to generate diverse models with nested
EPackage elements.

5.2. Extending test cases
The generated test cases can be manually modified, for instance
to introduce more meaningful attribute values (e.g., for names)
or to consider additional cases. This means that, when we
generate a new test case, we might be interested on extending
the existing test cases as a way to reuse the knowledge that has
been manually introduced. The newly generated test case may
replace the extended case or become a new test case on its own.

To achieve this we proceed in two steps. First, we find test
cases which are relevant for the coverage goal. Second, we use
model completion to generate test cases based on the ones that
have been found.

Finding relevant test cases. Given a class of interest c, in this
step we identify existing test cases with two properties. First,
they must not contain objects of type c. Second, they contain
at least one object which can be connected to new new objects
of type c. Algorithm 2 is in charge of identifying potential
extension points for test cases. Given a class c, the output is
a list of tuples (testcase, object, re f erence) in which the first
component is a test case, the second a container object and

Towards interactive, test-driven development of model transformations 7

the third a reference that can be used to initialize a slot in the
container object with an object of type c.

Algorithm 2 Identification of extendable test cases.
Input: test cases in the test suite (testcases)
Input: class choosen by the user (c)
Output: list of potential test cases to be extended (testcase,

object, reference)
16 // Identify potentially relevant references
17 links← empty list

foreach cc in classes of the input meta-models do
18 foreach re f in references of cc do
19 // Is it possible to set the reference with an object of type

c?
20 if ref.type = c or ref.type.isSuperTypeOf(c) then
21 add (cc, ref) to links
22 end
23 end
24 // Identify relevant test cases by looking for objects whose class
25 // is a “container class” (cc)
26 foreach t in testcases do
27 foreach o in objects contained in input models of t do
28 class← o.class

if class = c then
29 continue
30 foreach re f such that exists (cc, ref) in links where cc

= class do
31 add (t, o, re f) to tests cases
32 end
33 end
34 end

Model completion. The algorithm produces a list of potential
test cases to be extended, along with the container and the
feature to be extended. Let us suppose that we choose EPackage
(which is partially covered in version #2 of the transformation).
The second test case in Fig. 4 would be choosen since it already
has an object which is extendable by an EPackage, which is the
root EPackage through the eSubpackages reference. Thus, we
generate the following formula.

1 EPackage.allInstances()→
2 select(p | p.eSuperpackage.oclIsUndefined())→
3 exists(p | p.eSubpackages→notEmpty())

Listing 8 Input for USE MV.

There is an additional practical issue to consider. In USE
MV the model completion functionality requires the user to set
the object bounds to, at least, the number of objects of each
class. This is done automatically by our system. In this case, for
instance, we set EPackage = 2 (the original package plus one)
and EClass = 1 (the original EClass in the model). If no model
can be synthesized (e.g., some constraint cannot be satisfied with
these bounds), we apply the heuristic of iteratively increment
the number of objects, up to 5. This is the same approach
used in AnATLyzer (Cuadrado et al. 2016). As future work we

aim at using recent results in model diversity to generate better
models (Semeráth & Varró 2018; Burgueño et al. 2019).

6. Inspecting test cases
Each time that we generate a new input model (either from
scratch or extending an existing one), our system automatically
runs the transformation and generates a new output model. In
our process, which is interactive, it is the user’s task to check
if the new output model is as expected or not. Thus, the output
model of a test case has two states:

– Unreviewed. The output model has been automatically
generated but it has not been reviewed by the developer.
The model stays in this state until it is a valid output model
(i.e., it is what the developer expects to get obtain from the
input model).

– Commited. The test case has been reviewed and the user
considers that the output model can be promoted to become
an expected model. From now on, the test case can be
passing or failing. We use EMF Compare to check if the
generated output model is the same as the expected model.

The underlying idea is to avoid the burden of creating test
models manually. On the one hand, input models are auto-
matically synthesized and, if manual modification is required,
it is expected that only a few elements or properties need to
be edited. On other hand, the expected models are just cre-
ated when the transformation is run, and the user only needs to
inspect them. To facilitate this process, our tool shows the cor-
respondences between the input and output models, along with
which elements of the input meta-model has been dynamically
covered (see Fig. 3 and Fig. 6). This is done by instrumenting
the transformation.

6.1. Transformation instrumentation
The transformation is instrumented in order to generate a fine-
grained model gathering dynamic coverage data. It is imple-
mented as a higher-order transformation which generates an ad-
ditional output model which records the coverage data. Listing 9
shows an excerpt of the instrumented transformation. Every
rule is added an imperative block to create a Record object with
the information about the execution of the rule. Then, for every
feature access, the recordH helper is executed over the source
object. This helper returns the same object and as a side effect
generates a Record object to register the execution of this piece
of code.

1 module Ecore2Use;
2 create OUT : Use, COV : COVERAGE from IN : Ecore;
3

4 rule package2model {
5 from e : Ecore!EPackage
6 to c : Use!Model (
7 classes <− e.recordH(’12:14−12−20’,
8 ’navigation’, ’EPackage::eClassifiers’, e).eClassifiers
9)

10 do {
11 thisModule.record(’9:1−14:2’, ’matched−rule’, ’package2model’,

Sequence{e}, Sequence{c});
12 }
13 }

8 Cuadrado

14 ...
15 rule record(location : String, kind : String, info : String,
16 sources : Sequence(OclAny), targets : Sequence(OclAny)) {
17 to tgt : COVERAGE!Record (
18 location <− location,
19 kind <− kind,
20 info <− info
21)
22 do {
23 tgt.sources <− sources;
24 tgt.targets <− targets;
25 tgt;
26 }
27 }
28

29 helper context OclAny def: recordH(location : String,
30 kind : String, info : String, object : OclAny) : OclAny=
31 −− Force a side effect
32 let dummy : OclAny = thisModule.recordPath(location, kind, info,
33 Sequence {object}, Sequence { })
34 in self;

Listing 9 Instrumented transformation.

The resulting coverage model is a flat model with Record ob-
jects. From this, it is straightforward to reconstruct the coverage
information, for instance to show source-target relationships
graphically.

7. Tool support

To support the development process described in this paper we
have implemented a prototype tool as an Eclipse plug-in inte-
grated into ANATLYZER, which is an IDE for ATL model trans-
formations (Cuadrado et al. 2018a)6. To connect USE Model
Validator with EMF we use EFINDER (Cuadrado & Gogolla
2020) which provides an interface to apply model finding with
several OCL variants, including ATL, EMF/OCL and AQL7.

Figure 6 shows some screenshots of the tool. Model trans-
formations are developed in the regular ATL/AnATLyzer editor
(label 1). The results of the static analysis to detect transfor-
mation problems can be inspected in the Analysis View (label
2). In the prototype tool that has been implemented for this
paper, we have added a Coverage view (label 3) which includes
information about which classes are covered and by which rules.
From this, the synthesis of new test cases can be invoked. The
test cases associated to a transformation are maintained in a
configuration file, with extension .itrafo. There is a dedicated
editor to mantain the configuration file easily. The test suite
editor (label 4) shows the test cases and allows the developer to
run them and to inspect their state. By double-clicking on a test
case the user can jump to the test case inspector (label 5) which
shows the results of executing the transformation. A test case is
commited (or uncommited) by cliking on the Valid check box.
The effect is that the generated output model becomes an ex-
pected model and the system copies the output model to the test
suite folder, in which the input/expected models are stored. This
view also offers some information about the dynamic coverage
of the transformation.

6 http://anatlyzer.github.io
7 https://github.com/jesusc/efinder

8. Related work

There exists a large variety of works dealing with different
aspects of model transformation testing (Selim et al. 2012). In
this section we review works related to white-box testing, black-
box testing based on contracts and test-driven development
methods.

Our approach is based on analysing the transformation rules
in order to synthesize relevant test cases. Thus, approaches
for white box testing of transformations are very related to our
approach. One approach is to use an iterative algorithm based
on instantiating the classes in the transformation footprint. To
instantiate attribute values representative values can be extracted
from the transformation (Fleurey et al. 2004). A similar line of
work is presented in (Mottu et al. 2012) in which the transfor-
mation footprint is also used to drive test generation, but using
Alloy to generate more diverse models. The work in (Küster &
Abd-El-Razik 2006) reports the experience of testing several
model transformation in the business modelling domain. The
authors discuss several types of errors (in our setting, some of
them are statically detected by ANATLYZER) and discuss how
to use coverage for testing, including an heuristic approach for
generating test cases that violate transformation constraints. In
our case, we use model finding which may provide more accu-
rate results. ATLTest (González & Cabot 2012) is a white-box
test generation tool for ATL. It generates input models trying
to maximize the coverage of the transformation. However, this
approach does not handle the need of oracles (e.g., valid ex-
pected models). Our approach does consider the construction
and maintenance of the test suite by doing the generation of
input models interactively. An important difference of our pro-
posal with respect to these works is that we try to instantiate
models which are not covered yet by the transformation. This
is because our approach is interactive and it assumes that the
transformation is incomplete. Thus, the coverage criteria is
achieved as the transformation is fixed to address the test cases.

An alternative to deriving test cases from the transformation
is to use transformation specifications, typically in the form of
transformation contracts. Tracts (Gogolla & Vallecillo 2011)
are a generalization of transformation contracts, based on estab-
lishing relationships between the source and target metamodels
using OCL expressions. From this, test cases can be automati-
cally generated. Visual constracts (Guerra, de Lara, Wimmer, et
al. 2013) has been proposed to develop transformation contracts.
This work is extended in (Guerra & Soeken 2015) to generate
input test models and oracle functions.

Tools to analyse and enrich the test suite are also of interest.
For instance, there are tools to analyze the coverage of the test
suite (Küster et al. 2013) and method to create test cases that
increase the quality of the test suite is presented in (Kovács &
Küster n.d.). Also, the work in (Gerking et al. 2015) uses a
domain-specific language to help in the design of model trans-
formation tests. Classifying terms (Hilken et al. 2018) is a
technique which allows the space of possible input models to
be partitioned into equivalence classes using OCL expressions,
so that more meaningful test cases can be automatically derived
using USE Model Validator.

Towards interactive, test-driven development of model transformations 9

http://anatlyzer.github.io
https://github.com/jesusc/efinder

1 Editor

2 Static analysis

3 Coverage

4 Test suite
5 Test case inspection

Figure 6 Screenshots of the tool.

Another related line of work is development process for
model transformations. The work in (Candel et al. 2019)
presents a practical approach for migrating PL/SQL code us-
ing model transformations. It proposes a test-driven method in
which input models (created by writing pieces of PL/SQL pro-
grams) are created manually and output models are inspected to
check if they are valid. However, the notion of expected model
does not seem to be considered, therefore the process is not au-
tomated. In (Küster et al. 2009) a process is proposed to develop
model transformation chains using automated testing. It is simi-
lar to our process, but the construction of the test cases is fully
manual. In our case, the construction is semi-automatic and the
output models can be automatically “commited” as test cases
by our dedicated tool. The transML (Guerra, de Lara, Kolovos,
et al. 2013) development method includes the so-called “trans-
formation cases” which are pairs of concrete source and target
models. These cases are transformed into validation code. The
creation of these transformation cases can be costly, and our
system is intended to reduce the cost of creating them.

9. Conclusions
Model transformation technology still needs from effective test-
ing strategies which are applicable in practice. This paper has
presented our initial work to support a test-driven process for
model transformation, in which a dedicated tool helps the de-
veloper create and mantain the test suite interactively. The tool

has been implemented as part of ANATLYZER. Even though the
proposed development process is simple, our hope is that its
own simplicity helps to increase the use of test cases in the
development of ATL transformations. Finally, the paper show-
cases the use of the capabilities of USE MV to enhance a model
transformation development tool.

As future work we plan to investigate how to synthesize more
realistic and diverse models (e.g., reusing recent advances (Bur-
gueño et al. 2019; Semeráth & Varró 2018)). This includes
being able to generate adequate attribute values according to the
domain of the model. Moreover, we would like to carry out an
empirical study to understand better the advantages and disad-
vantages of this approach and to improve the tool accordingly.
Another interesting line of work is to try to synthesize rules
from the test cases validated by the user, using search-based
techniques.

Acknowledgments
I am thankful to Martin Gogolla for being a source of inspiration
for all the modelling community. Notably, all the work around
USE Model Validator has been particularly inspiring to me, and
I am grateful for all the effort that has been put in making USE
such a robust and usable tool.

References
Arendt, T., Biermann, E., Jurack, S., Krause, C., & Taentzer, G.

10 Cuadrado

(2010). Henshin: advanced concepts and tools for in-place
emf model transformations. In International conference on
model driven engineering languages and systems (pp. 121–
135).

Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., &
Mottu, J.-M. (2010). Barriers to systematic model transforma-
tion testing. Communications of the ACM, 53(6), 139–143.

Burgueño, L., Cabot, J., Clarisó, R., & Gogolla, M. (2019). A
systematic approach to generate diverse instantiations for con-
ceptual schemas. In International conference on conceptual
modeling (pp. 513–521).

Burgueño, L., Troya, J., Wimmer, M., & Vallecillo, A. (2014).
Static fault localization in model transformations. IEEE
Transactions on Software Engineering, 41(5), 490–506.

Candel, C. J. F., Molina, J. G., Ruiz, F. J. B., Barceló, J. R. H.,
Ruiz, D. S., & Viera, B. J. C. (2019). Developing a model-
driven reengineering approach for migrating pl/sql triggers
to java: A practical experience. Journal of Systems and
Software, 151, 38–64.

Cheng, Z., & Tisi, M. (2017). A deductive approach for fault
localization in atl model transformations. In International
conference on fundamental approaches to software engineer-
ing (pp. 300–317).

Cuadrado, J. S., & Gogolla, M. (2020). Model finding in the
emf ecosystem. In 16th european conference on modelling
foundations and applications (pp. 1–20).

Cuadrado, J. S., Guerra, E., & de Lara, J. (2016). Static analysis
of model transformations. IEEE Transactions on Software
Engineering, 43(9), 868–897.

Cuadrado, J. S., Guerra, E., & de Lara, J. (2018a). Anatlyzer: an
advanced ide for atl model transformations. In Proceedings
of the 40th international conference on software engineering:
Companion proceeedings (pp. 85–88).

Cuadrado, J. S., Guerra, E., & de Lara, J. (2018b). Quick fixing
atl transformations with speculative analysis. Software &
Systems Modeling, 17(3), 779–813.

Cuadrado, J. S., Guerra, E., de Lara, J., Clarisó, R., & Cabot, J.
(2017). Translating target to source constraints in model-to-
model transformations. In 2017 acm/ieee 20th international
conference on model driven engineering languages and sys-
tems (models) (pp. 12–22).

Cuadrado, J. S., Molina, J. G., & Tortosa, M. M. (2006). Rubytl:
A practical, extensible transformation language. In European
conference on model driven architecture-foundations and
applications (pp. 158–172).

Fleurey, F., Steel, J., & Baudry, B. (2004). Validation in model-
driven engineering: testing model transformations. In Pro-
ceedings. 2004 first international workshop on model, design
and validation, 2004. (pp. 29–40).

Gerking, C., Ladleif, J., & Schäfer, W. (2015). Model-driven test
case design for model-to-model semantics preservation. In
Proceedings of the 6th international workshop on automating
test case design, selection and evaluation (pp. 1–7).

Gogolla, M., Hilken, F., & Doan, K.-H. (2018). Achieving
model quality through model validation, verification and ex-
ploration. Computer Languages, Systems & Structures, 54,
474–511.

Gogolla, M., & Vallecillo, A. (2011). Tractable model trans-
formation testing. In European conference on modelling
foundations and applications (pp. 221–235).

González, C. A., & Cabot, J. (2012). Atltest: a white-box
test generation approach for atl transformations. In Interna-
tional conference on model driven engineering languages
and systems (pp. 449–464).

Guana, V., & Stroulia, E. (2014). Chaintracker, a model-
transformation trace analysis tool for code-generation envi-
ronments. In International conference on theory and practice
of model transformations (pp. 146–153).

Guerra, E., Cuadrado, J. S., & de Lara, J. (2019). Towards
effective mutation testing for atl. In 2019 acm/ieee 22nd
international conference on model driven engineering lan-
guages and systems (models) (pp. 78–88).

Guerra, E., de Lara, J., Kolovos, D. S., Paige, R. F., & dos
Santos, O. M. (2013). Engineering model transformations
with transml. Software & Systems Modeling, 12(3), 555–577.

Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A.,
Retschitzegger, W., . . . Schwinger, W. (2013). Automated
verification of model transformations based on visual con-
tracts. Automated Software Engineering, 20(1), 5–46.

Guerra, E., & Soeken, M. (2015). Specification-driven model
transformation testing. Software & Systems Modeling, 14(2),
623–644.

Hilken, F., Gogolla, M., Burgueño, L., & Vallecillo, A. (2018).
Testing models and model transformations using classifying
terms. Software & Systems Modeling, 17(3), 885–912.

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL:
A model transformation tool. Science of Computer Program-
ming, 72(1-2), 31–39.

Kolovos, D. S., Paige, R. F., & Polack, F. (2008). The epsilon
transformation language. In Proc. of the 1st international
conference in theory and practice of model transformations
(icmt’08) (pp. 46–60). doi: 10.1007/978-3-540-69927-9_4

Kovács, D., & Küster, J. M. (n.d.). A method for creating a test
case set to achieve maximum specification coverage in model
transformation testing.

Kuhlmann, M., & Gogolla, M. (2012). From uml and ocl to
relational logic and back. In International conference on
model driven engineering languages and systems (pp. 415–
431).

Küster, J. M., & Abd-El-Razik, M. (2006). Validation of model
transformations–first experiences using a white box approach.
In International conference on model driven engineering
languages and systems (pp. 193–204).

Küster, J. M., Gschwind, T., & Zimmermann, O. (2009). In-
cremental development of model transformation chains using
automated testing. In International conference on model
driven engineering languages and systems (pp. 733–747).

Küster, J. M., Kovacs, D., Bauer, E., & Gerth, C. (2013).
Integrating coverage analysis into test-driven development of
model transformations (Tech. Rep.). IBM Research Report
RZ 3846, IBM Research-Zurich.

Mottu, J.-M., Sen, S., Tisi, M., & Cabot, J. (2012). Static
analysis of model transformations for effective test genera-
tion. In 2012 ieee 23rd international symposium on software

Towards interactive, test-driven development of model transformations 11

reliability engineering (pp. 291–300).
Oakes, B. J., Troya, J., Lúcio, L., & Wimmer, M. (2018).

Full contract verification for atl using symbolic execution.
Software & Systems Modeling, 17(3), 815–849.

OMG. (2005). Mof qvt final adopted specification (Computer
software manual No. ptc/05-11-01). (OMG doc. ptc/05-11-
01)

Selim, G. M., Cordy, J. R., & Dingel, J. (2012). Model trans-
formation testing: The state of the art. In Proceedings of the
first workshop on the analysis of model transformations (pp.
21–26).

Semeráth, O., & Varró, D. (2018). Iterative generation of
diverse models for testing specifications of dsl tools. In Fase
(Vol. 18, pp. 227–245).

About the author
Jesús Sánchez Cuadrado is a Ramón y Cajal researcher at
Universidad de Murcia. Earlier he was Assistant Professor
at Universidad Autónoma de Madrid. His research has been
focused on Model-Driven Engineering, in particular model
transformations and Domain-Specific Languages. He has cre-
ated a number of tools, among others RubyTL, AnATLyzer,
EFinder, and http://mar-search.org. They are available at
http://github.com/jesusc. You can contact the author at je-
susc@um.es or visit http://sanchezcuadrado.es.

12 Cuadrado

http://mar-search.org
http://github.com/jesusc
mailto:jesusc@um.es?subject=Your paper "Towards interactive, test-driven development of model transformations"
mailto:jesusc@um.es?subject=Your paper "Towards interactive, test-driven development of model transformations"
http://sanchezcuadrado.es

