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ABSTRACT Twenty years after the OCL 2.0 Request For Proposals, it is perhaps long overdue for a review as to how well the
resulting semi-formal OCL 2 specification makes the informal OCL 1 specification more precise. We briefly relate the history
that allowed an imprecise draft to be adopted by the OMG as the OCL 2.0 specification resulting in a language that was fatally
flawed from the outset. We draw on personal experience to explain why recognition of the fatality of the flaws has taken so long.
However despite these flaws, OCL remains the language of choice for specifying model constraints. Therefore armed with an
understanding of the flaws, we make practical suggestions for how an OCL 3.0 might resolve them.

KEYWORDS OCL, Object Constraint Language, Precise specification, Side effect free.

1. Introduction
The UML specification arose to resolve the ‘method wars’ that
left users confused as to whether a class should be drawn as a
cloud or rectangle. In this respect UML has been a total success,
but obviously there is more to modeling than classes, and as
soon as models become non-trivial, additional constraints are
required that cannot be sensibly expressed graphically. The
UML 1.1 (Object Management Group 1997b) suite of docu-
ments therefore includes a document defining the OCL 1.1 (Ob-
ject Management Group 1997a) textual language that can elabo-
rate UML diagrams.

The OCL language evolved from work on the Syntropy
method at IBM, and in so far as many thousands of academic
papers have successfully used OCL to express constraints, OCL
too has been a total success.

Unfortunately the prevailing state of the OCL specification
is very unsatisfactory leading to incompatibility between im-
plementations and difficulty in creating new ones. We will
argue that we need to make the credible not only to support the
full potential of OCL but also to support lightweight research
activities.

In Section 2 we relate the history of the OCL 1 to OCL 2
transition before examining the problems with OCL 2. Then in
Section 3 we examine these problems that variously emanate
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from the language, usability, the specification or typical tooling
and identify solutions to the problems. Some evolution beyond
the specification is described in Section 4 culminating in some
suggestions in Section 5 as to how to specify a much simpler
OCL 3. Finally in Section 6 we conclude.

2. OCL 1 to OCL 2 History
The software community was not satisfied to leave UML 1 (and
OCL 1) as a useful flexible semi-formal facility for communicat-
ing analysis considerations. Rather a near-formal semantics for
UML 2 (and OCL 2) was required to specify behavior precisely
and so facilitate synthesis of functional code direct from UML
diagrams.

The formality of OCL was addressed by Martin Gogolla’s
student Mark Richters whose PhD thesis (Richters 2002) was
adapted to provide the formal Annex that accompanies all the
OCL 2.x specifications. It provides a useful reference to help re-
solve issues in the main specification, however since the Annex
has not tracked all the OCL 2 evolutions, sometimes the Annex
just contributes to a contradiction for implementers and users to
reconcile.

2.1. OCL 1.5
Reviewing the final version of the OCL 1 specification embed-
ded within the UML 1.5 specification (Object Management
Group 2003b), we find a nice simple 50 page informal exposi-
tion of:
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– the language from a user perspective
– the library operations from a user perspective
– an EBNF grammar

This could be called a black box specification. It reveals
what the user sees. It imposes no limitations on how an imple-
mentation satisfies the specification. With so little detail, most
of the problems of the 210 page OCL 2.0 (Object Management
Group 2006) do not exist. However some do.

OCL 1 uses open classes in so far as let-operations and let-
attributes define new pseudo-operations and pseudo-attributes
for the exclusive use of the OCL. No clues are provided about
how pseudo-operations and pseudo-attributes are modeled by
UML’s closed classes.

OCL 1.5 claims that ‘A parser generated from this grammar
has correctly parsed all the constraints in the UML Semantics
section, a process which improved the correctness of the spec-
ifications for OCL and UML.’ This is patently untrue since,
skipping over obvious formatting typos such as the Guard in-
variant, many of the constraints have failed to track the language
evolution that mandates empty parentheses on parameterless op-
erations and replaces the # syntax for enumerations by qualified
names.

OCL 1 uses the term ‘stereotype’ to refer to the
inv/pre/post discriminant. This is confusing to any reader
who may be familiar with the UML Stereotype class and its
capabilities.

OCL 1 specifies that all collections are always flattened.
OCL 1 recognizes that non-collection values may be ‘null’,

but does not provide any clues as to what this may mean seman-
tically.

OCL 1 does not specify what happens if the index-is-in-range
precondition for Sequence::at is not satisfied. OCL 1 does
not specify a no-divide-by-zero precondition on Real::/.

OCL 1 specifies that the Standard Library is a modeled
Package and specifies how it may be extended by another
Package using an «OCL_Types» dependency. No model for
the Standard Library is provided and so the specified extension
is not practical.

2.2. UML 2.0 submissions
The two competing UML 2.0 submissions (Object Management
Group 2002),(Object Management Group 2003a) both recog-
nized the utility of OCL and also recognized that OCL had
utility beyond UML. OCL was therefore excluded from the
responses to the UML 2.0 RFP (Object Management Group
2000b) and treated as a new self-standing specification with its
own RFP (Object Management Group 2000a). This separation
was very convenient for the UML teams and in many respects
good for OCL too, but unfortunately the separation from UML
and the drive to better formality required many extra problems
to be addressed. When the UML teams ran out of enthusiasm
/ resources, the result was a work in progress draft (Object
Management Group 2003c).

The draft OCL sat on the shelf at OMG for three years
until seven out of eight of the competing QVT specification
submissions agreed that the QVT specification should exploit

OCL. The QVT specification (Object Management Group 2008)
could not be adopted until the OCL 2.0 specification had been
adopted and so the work in progress draft was dusted off, pol-
ished slightly and adopted leading to the official OCL 2.0 (Ob-
ject Management Group 2006). It is unclear how this could
have happened since the draft clearly lacked the prototyping
required by OMG, and contains many TBDs (To Be Decided)
once UML 2.0 was finalized. UML 2.0 (Object Management
Group 2003d) was of course adopted three years prior to this
OCL 2.0 adoption. The TBDs persist to this day and are even
present in OCL 2.3.1 (Object Management Group 2012) which
was adopted as an ISO standard; perhaps the only ISO standard
with explicit TBDs and prolific known inconsistencies.

2.3. OCL 2.0 aspirations
Whereas OCL 1.x was a black box specification, OCL 2.x is a
white box specification. It specifies the Abstract Syntax (AS)
model for OCL with the excellent intention that this should
facilitate interchange using XMI between alternative OCL tools.
Unfortunately this model was not provided until OCL 2.2 (Ob-
ject Management Group 2010) and even then it is not quite right
since no prototype had been built.

As an evolution of OCL 1.x, it was natural for the OCL AS
model to re-use UML metaclasses. However once the UML-
OCL connection was severed, the use of such a bloated and in
some respects inadequate foundation should have been recon-
sidered. The re-use of UML became untenable once OCL 2.0
Section 13 added the claim that EssentialOCL could work with
EMOF.

Specification of the AS model required that the conversion
between the grammar and the AS be specified as well. This is
achieved by specifying a non-normative Concrete Syntax (CS)
model that closely resembles the grammar, and a variety of
rules mapping the grammar to CS and the CS to AS. Since the
grammar is ambiguous, a further category of disambiguating
rules is required. The exposition of this conversion burden is
arranged around the non-normative CS classes, for which no
model has been provided. This avoids revealing how far from
correct the CS classes are. The coherent OCL 1.5 grammar is
replaced by CS-relevant snippets scattered throughout the chap-
ter. As a minimum this imposes a major cut and paste burden
on any developer attempting to use them. More practically, it
obfuscates to such an extent that a casual reader is impressed by
the apparent detailed formality and unaware of the total absence
of any prototyping to substantiate the unusable content.

Standardization of the AS requires that the internal awkward-
ness of OCL 1.x’s pseudo-attributes and pseudo-operations be
properly modeled. They are not and to make matters worse
the pseudo-attributes and pseudo-operations are elevated to at-
tributes and operations that can be used just as if they were
part of the original model. This is tantamount to providing
open classes and presents an unresolved challenge when the AS
model based on UML’s closed classes is serialized as XMI.

The availability of an AS model provided an opportunity to
specify the execution semantics. The exposition is semi-formal
and uses a rather obvious and incomplete ValuesPackage and
EvaluationPackage.
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The EvaluationPackage makes a first attempt at temporal
modeling using a LocalSnapshot class to maintain a history
of object states. I’m not aware of any implementation that uses
this aspect of the specification. The relatively recent work on
sequences of system snapshots (filmstrips (Desai et al. 2017)) by
Martin Gogolla’s team at Bremen1 seems much more promising.

2.4. OCL 2 Architecture
Fig 1 shows the components of the architecture implied by
the specification. Along the top row, transparent boxes show
different aspects of specified behavior that configure the shaded
concrete boxes realized by the tooling on the second row. Input
text is lexed and parsed to give a Concrete Syntax Tree that is
converted to an Abstract Syntax Graph and then validated.

The troublesome ability to interchange the ASG using XMI
is indicated.

A non-standard parser is required since it must implement
the disambiguation rules and lookup rules. The lookup rules
cannot be expressed in pure OCL since they create and mod-
ify new Environments for each construct such as a LetExp
that introduces a nested scope. The mechanism by which the
user-metamodels are imported and the construction of a root
Environment is greyed out since it is unspecified.

The bottom row shows how the parsed ASG provides a query
or constraint that an evaluator may use to provide a result, using
models whose import mechanism is again unspecified.

Before criticizing OCL 2 too harshly, it must be remembered
that there were no metamodels for OCL 1 and so the metamodels
for OCL 2 were a significant novelty. We could praise the OCL 2
metamodels for being perhaps 95% correct rather than dwelling
on the 5% wrong. However it is the 5% wrong and the lack
of a comprehensive prototype to reveal the wrongness that has
caused so much trouble for implementers whose trust in the
OMG specification was misplaced.

2.5. Author’s Background
Since parts of this paper rely on the personal observations of one
of the leading participants at OMG and Eclipse, it is appropriate
to provide a selective biography to distinguish my direct and
indirect knowledge.

My involvement started in around 2003 from providing
Eclipse support for the UMLX model transformation lan-
guage (Willink 2003) using the then planned QVTr language.
This led to participation in the Eclipse support for QVTr and
interaction with the Eclipse OCL project (Eclipse OCL Project
2020) to make it extensible for use by the Eclipse QVTd
project (Eclipse QVT Declarative Project 2020). I had no in-
volvement with OCL 2.0. I contributed a few review comments
to QVT 1.0.

Involvement with OCL and QVT at Eclipse led to the my
appointment as the Thales representative for the OMG Revision
Task Forces for OCL and QVT. I therefore contributed some
revisions for OCL 2.2 and consistent models for QVT 1.1.

As personnel at OMG and Eclipse moved on, I found himself
as chair of the OMG OCL and QVT RTFs and as project lead

1 http://useocl.sourceforge.net/w/index.php/Main_Page

of Eclipse OCL and QVTd projects. Lack of active personnel
meant that I was often the sole active participant.

I ‘retired’ from Thales in 2012. Since then I am grateful,
firstly to Tricia Balfe at Nomos Software, and then to Cory
Casanave at Model Driven Solutions, for appointing me as their
OCL and QVT RTF representatives.

At OMG, I resolved the ‘easy’ problems in OCL 2.3 and
OCL 2.4. This led to increasing awareness of the ‘hard’ prob-
lems and the issuing of a Request For Proposal to address these
via an ‘OCL 2.5’ rewrite. The RFP (Object Management Group
2014) can be read as a catalog of the serious OCL 2 problems.

At Eclipse, I inherited the Classic Eclipse OCL for
Ecore/UML whose stable APIs made significant development
almost impossible. A new fully-modeled Eclipse OCL exploited
Xtext to provide much enhanced UX and a Pivot model to unify
the competing Ecore and UML needs. Enhanced APIs and Java
code generation support extension for QVT. The Pivot-based
Eclipse OCL prototyped many solutions for OCL specification
problems. Many of the solutions have been presented to the
annual OCL Workshop. Unfortunately the need for API stability
has become a hindrance to further development.

3. Problems
The problems with OCL take many forms. In the following
subsections we categorize them to distinguish those that directly
affect users and those which only affect toolsmiths struggling
to make sense of the specification.

3.1. Language Problems
Problems with the OCL language have a very direct impact on
the user and may require users to program in an unnatural style
to circumvent the limitations.

3.1.1. Program Failure An inevitable characteristic of any
manually developed program is that it may malfunction and
consequently the program language and execution support must
accommodate failures. Failures typically take one of three
forms.

Catastrophic failure A catastrophic failure is often called a
crash. It may occur from a hardware, software, network, or I/O
system failure. Programs cannot normally recover from crashes
and so the execution launcher will attempt to provide as much
helpful diagnosis of the crash as possible before terminating
execution abruptly.

Recoverable failure A recoverable failure may occur when
the programmer finds it convenient to reuse some failure detec-
tion code and then to compensate for the failure, typically by
catching a thrown exception.

Not-a-failure Conversely a programmer may correctly antici-
pate a failure and provide a guard to direct the program control
to bypass and so avoid the failure.

In Java the two actual failure cases are separated by using
a RuntimeException or an Error for catastrophic failures
and by using Exception for recoverable failures. Exceptions
form part of a Java function signature and so there can be some
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Figure 1 OCL 2 Architecture.

static diagnosis of code that neglects to handle the recoverable
failures.

OCL 1 has preconditions but provides no indication of how
an evaluation should behave when a precondition is not satisfied.
OCL 2 is similarly vague and so OCL 2 tools often treat the
corresponding preconditions (and postconditions) as just syntax-
checked comments to document a hazard for a human reader.

OCL 2 pursues a functional approach and, in the event of a
malfunction, returns a regular invalid value rather than impos-
ing an alternative ‘return’ mechanism for an Exception. The
invalid value can be ‘caught’ by using the oclIsInvalid()
library function. This is different to many languages but is more
regular and so perhaps better.

Unfortunately the OCL 2 specification is not really concerned
with failures for which it mandates that invalid is a singleton;
all failures are the same and free from any helpful diagnostic
detail. Some OCL tools ignore this pointless restriction and
provide a rich invalid that propagates diagnostics while pre-
serving OCL semantics by ensuring that the diverse invalids
behave as one.

The lack of consideration for crashes forces an OCL 2 im-
plementer to use the invalid return for crashes.

The OCL specification provides no ability for the use of
invalid to be declared as part of a function signature, conse-
quently OCL, whose strong side effect free formality supports
strong analysis, has a gaping hole in regard to guaranteeing that
a program execution will not fail.

Resolution Elevating a crash to a strict behavior is a straight-
forward change hampered only by a perceived resistance to ex-
panding Booleans to 5-values: {true, false, null, invalid,
crash}. It should be recognized that these five values only
occur for malfunctioning programs. See Section 4.2.1 for work
on proving that these malfunctions cannot occur and so proving
that the programmed Boolean computation is indeed internally
2-valued.

3.1.2. Import, Extensibility, Modularization OCL is an
unusual language in that by itself it is almost completely useless.
It only becomes useful once embedded in an environment that
provides models upon which OCL computations can operate.

The only partially specified practical usage of OCL is the
Complete OCL extension that enables an OCL document to
complement some pre-existing metamodel with

– constraints for UML classes
– pre/post-conditions/bodies for UML Operations
– initializers for UML Properties
– guards for UML Transitions

Clearly the Complete OCL document must be tightly coupled
to some UML model, but unfortunately there is no ‘import’
declaration. This forces all tools to invent a proprietary solution.

Beyond the OCL specification, OCL is used as the basis
for many model transformation languages such as QVT that
provide the requisite models for the OCL queries and provide a
disciplined mechanism by which the results of side effect free
OCL queries provoke mutation of the models.

Unfortunately, the historic support for UML leaves OCL
bloated with Message functionality that few tools support and
State functionality that few users need. For pure OCL usage,
this bloat can just be ignored, but for extended applications such
as QVT this bloat is an embarrassment that should be removable.
Conversely there are research areas such as Temporal specifi-
cation for which researchers should be able to experiment with
alternative temporal expressions.

Resolution The Pivot-based Eclipse OCL prototype adds an
‘import’ declaration for use by OCL or QVT or ... The statement
can be used to declare not only the metamodel(s) which the
OCL complements but an optionally extended Standard Library
that supplies re-usable functionality.

The models provided by the overall OCL specification should
be structured in cross-cutting modules so that a tool may select
a subset of the standard modules and augment with its own mod-
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ules, thereby excluding unwanted Message and Tuple support
while adding experimental Time support.

3.1.3. Flattened Collections OCL 1 collections provide
support for UML’s multi-valued properties and since UML has
no support for nested multi-values, OCL 1 collections were spec-
ified to avoid nesting by flattening at every opportunity. This
mistake was partially recognized when OCL 2 introduced the
collectNested iteration and the flatten operation. How-
ever this leads to a confusion requiring special efforts to avoid
type corruption.

Resolution All OCL collection operations should be type con-
sistent so that a type conversion only occurs when the flatten
operation is used explicitly.

3.1.4. Collection conforms to OclAny The formalization
in the OCL 2 Annex clearly states that the formalization ap-
plies to a type system in which Collections and Objects are
distinct. It does not prohibit a unification, but observes that
extra formalization effort is needed by a unification.

The OCL 2.2 specification changed to allow a Collection
to conform to OclAny without putting in that extra effort or
indeed even providing a use case to motivate the change.

Two possible use cases involve either defining a utility op-
eration such as printf that can receive a polymorphic mix
of collections and objects or to provide a stronger type than
Collection(OclAny) for a heterogeneous nested collection.
The latter challenge is perhaps where work in needed in the
Annex.

Resolution The conformance of Collection to OclAny
does not seem to offer significant benefits, so it may be best
to revert this change until the formalization work is done to
understand its consequences.

3.2. Perceived Problem
Not all problems are really problems at all.

3.2.1. 2-valued Booleans and invalid Almost every gath-
ering of the OCL community provokes discussion of why OCL
Booleans are not 2-valued {true, false}. Clearly many OCL
users are unhappy with the prevailing 3-valued {true, false,
invalid} specification.2

But this is all a misunderstanding. In OCL, as in other lan-
guages, a non-trivial Boolean-valued calculation has three possi-
ble outcomes; success/true, failure/false and crash/invalid.
When the crash is realized as a thrown exception, the program-
mer can ignore the crash outcome and code as if there were
only two possible outcomes. Exactly the same programming
approach is possible with OCL provided the programmer en-
sures that the particular OCL tooling API that is used for the
evaluation is ‘strict’; i.e. it converts the invalid or null value
returned by OCL to a crash by throwing an exception. The
OCL tooling may offer an alternative API that returns all three
outcomes as OCL values. This alternative is useful when the

2 The extra idempotent null output in OCL 2.4 is not relevant here.

programmer really wants to exploit all three outcomes. An inap-
propriate choice of API is the probable source of unhappiness
when only two outcomes are expected.

3.3. Usability Problems
Some aspects of the OCL language, even when adequately
specified, have been found to cause undue difficulties for OCL
users.

3.3.1. Dot and Arrow Navigation operators Newcomers
to OCL are confused by the difference between dot and arrow
navigation operators. Prior to OCL 2.4, the specification was
unhelpful and so newcomers fail to discover the simple rule that
dot is for objects and arrow for collections. The availability of
the implicit-collect and implicit-as-set short-forms give the dot
and arrow operators a utility for the ‘wrong’ sources. This can
confuse even experienced OCL programmers.

myCollection->collect(name) -- explicit collect
myAggregate.name -- ?? implicit collect ??

The utility of implicit-collect is mixed. Some users like the
compact exposition of some constraints. Other users dislike
the ease with which a typo acquires an unexpected meaning.
In the second example above, the use of a singular word such
as myAggregate makes it impossible to tell locally whether
name is a property access of the myAggregate instance of a
MyAggregate class, or an implicit collect of the elements of a
myAggregate collection.

Prior to OCL 2.4, the implicit-as-set was ill-specified and not
a short-form The introduction of the explicit oclAsSet library
operation formalized the short-form

Resolution The EOL variant of OCL used by the Ep-
silon (Eclipse Epsilon Project 2020) transformation languages
demonstrates that it is possible to make do with just a dot op-
erator for both object and collection navigations. The user
confusions are eliminated.

A clearer OCL could similarly use just a dot operator. The
brevity of implicit-collect could be rescued by defining a *.
navigation operator which reads naturally as many-dot for an
implicit-collect short-form

myAggregate*.name -- short-form explicit collect

A similar .* short-form which reads as dot-to-many could
rescue the implicit-as-set, but this usage is probably too rare to
merit the short-form.

3.3.2. Implicit Source

implicit-self OCL, like many Object Oriented languages, al-
lows the self start point of a navigation to be omitted. Since
the self context is so important, this is very reasonable and can
improve readability.

name -- self.name
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implicit-source OCL, unlike other languages, has powerful
collection iteration capabilities and allows the start point of a
navigation from an iterator to be omitted.

aCol->isUnique(name) -- aCol->isUnique(e | e.name)

This again may aid readability by shortening the exposition.
Unfortunately it also adds confusion since the tool and a reader
must decide which of many possible implicit-sources in a nest
of multi-iterator iterations or an implicit-self has been omitted.
Typos and misunderstandings are too easy.

Resolution Within iterator bodies, only the first iterator of the
most nested iteration should be available as an implicit source,
self should be explicit.

3.3.3. OCL Re-Use Cases The liberation of OCL from
UML was intended to make OCL more generally useful. It
is therefore particularly irritating when a user asks ‘how can I
re-use OCL in my application?’ This is irritating because the
honest answer is that you can’t unless you devote considerable
skilled programming effort. Why is it so hard?

We first examine a couple of use cases that OCL could re-
spond to and then look at how OCL could make them much
easier.

Novel Application re-using OCL If the user has a novel appli-
cation such as using OCL as a replacement for XPath in the
XML/XSD technology space, there are two obvious choices.

Re-implement A custom implementation can obviously sat-
isfy all the user’s requirements, but it requires the user to become
familiar with all the complexities of OCL and to rediscover so-
lutions to the many inadequacies of the OCL specification.

Re-Use Re-use of existing functionality is often preferable,
particularly if a re-usable implementation is available. Unfor-
tunately the lack of a clear architecture in the specification
encourages the proprietary struggles for solutions to pervade
the implementation. It is not re-usable.

Wilke (Wilke et al. 2010) highlighted the lack of architec-
ture nicely by identifying that an OCL implementer had two
significant design choices to accommodate the user’s preferred
metamodel representation (UML, Ecore, XSD, Java, ...) and
a further two design choices for the user’s preferred model
representation (Ecore, XML, Java, ...).

Denormalized metamodels If the OCL functionality is to
specify expressions for a particular metamodel representation,
the OCL tooling can be coded specifically for that represen-
tation. In practice this means substantial re-tooling for each
new metamodel representation. When the Classic Eclipse OCL
support for Ecore was enhanced to support UML as well, an
attempt was made to mitigate the costs of this re-tooling by
introducing long (ten) template parameter lists and a reflective
class to polymorphize the non-polymorphic Ecore/UML classes.
This led to unpleasant code for all representations and probably
made the prospect of supporting a third representation even
more daunting.

Normalized metamodels Alternatively, the OCL functional-
ity can be defined for a normalized metamodel representation.
There is then no need to re-tool for another metamodel represen-
tation since the OCL tooling using the normalized metamodel is
unaffected. It is just necessary to convert the user’s new repre-
sentation to the normalized representation. Dresden OCL (Dres-
den OCL Project 2020) coined the term Pivot model and realized
it by a family of adapter classes. The Pivot-based Eclipse OCL
performs a full model transformation from Ecore or UML to
Pivot taking advantage of the transformation stage to normal-
ize bloated irregular UML concepts such as Stereotypes and
AssociationClasses.

The cost of providing a new normalization for a new meta-
model representation is much less than the cost of re-tooling
to denormalize OCL. Since there are comparatively few meta-
model objects in an application, the extra memory cost of dual
metamodel objects is acceptable.

Denormalized models When evaluating OCL expressions, it
is necessary to access the user models which naturally exist in a
denormalized form. This could require re-tooling the evaluator
to use the denormalized representation.

Normalized models Alternatively each user object could be
translated to a normalized form for use by a normalized evalua-
tor.

For the potentially very large numbers of user objects, creat-
ing a normalized version of each is unattractive since it is liable
to double memory consumption. Conversely re-tooling to denor-
malize all the OCL library routines that support Boolean, Inte-
ger, Real and String calculations is also unattractive. A halfway
house is much more practical; use the normalized representation
for all the built-in values and the denormalized representation
for the user objects. It is then only necessary to perform normal-
izing conversions as part of the property call evaluation facility
that fetches a value from the slot of a user object.

From these considerations we can see that a user with a novel
metamodel and model representation could hope to get away
with coding

– a custom metamodel to normalized pivot metamodel trans-
formation

– custom model property access conversions

Bigger OCL Alternatively a user may be interested in using
OCL as part of a bigger system such as a model transformation
language. This is the use case that caused QVT to rescue the
OCL 2 draft from oblivion.

It is desirable that the bigger system can re-use as much of
the basic OCL as possible and one would certainly hope that the
basic evaluation functionality would be reusable; only minor
extension should be needed for additional library routines. Ex-
tension is self-evidently easier if the specification provides neu-
tral extensible machine readable expositions such as grammars,
metamodels and rules rather than pseudo-code or code. Tool
quality is also much improved since code that is auto-generated
from grammars, metamodels and rules shares the debugging
efforts of other auto-generators. Residual auto-generation bugs
tend to have really obvious catastrophic effects.
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Resolution The OCL specification must be demonstrably
clear, re-usable and structured to encourage an exemplary archi-
tecture using a Pivot-based metamodel.

3.4. Specification Problems
Problems with the specification are mostly a concern for tool-
smiths, since they must work hard to find workarounds for the
difficulties. The problems are only apparent to users when the
workarounds lead to disappointing or confusing functionality or
incompatibility between alternative tools.

Sadly the two oldest and best OCL implementations, USE
and Eclipse OCL, are seriously incompatible and address very
different use cases. USE has sensibly stuck with OCL 1 cherry-
picking only a little OCL 2 functionality. The Classic Eclipse
OCL developers adhered almost mindlessly to the letter of the
OCL 2 specification. It is only with the Pivot-based Eclipse
OCL that the inadequacies of OCL 2 start to be addressed.

3.4.1. Obsolete terminology, inadequate exposition
The truncated development process for the OCL 2 specifica-
tion left it with many editorial problems, such as the continu-
ing OCL 1 usage of ‘property’ to refer generically to UML
1’s AssociationEnd, Attribute, Method or Operation.
Unfortunately when UML 2 unified AssociationEnd and
Attribute as Property, the failure of OCL 2 to track makes
for an ambiguity; does a ‘property’ refer to just a Property or
to an Operation too? Following UML, ‘feature’ is the correct
term for a Property or Operation.

The lack of an OCL 2 prototype to demonstrate the many new
specified capabilities means that many of them are not realizable
as specified and the grammars and models that underpin them
do not exist.

Resolution The inadequate specification can be remedied
once a prototype has been evaluated. The missing grammars
and models should be provided by that prototype.

The Pivot-based variant of the Eclipse OCL project has spent
the last ten years attempting to prototype to satisfy this goal,
This paper is in part a report on the successes and failures of
that prototype.

The OCL specification makes extensive use of class names
as part of its exposition, but each is an independently typed best
endeavor. Unfortunately the VariableDeclaration class,
which abstracts the commonality of Parameter and Variable,
is missing. Auto-generation of large parts of the specification
from the models, as has been done for UML 2.5, should avoid
such oversights and also avoid numerous cases of failure to track
refactorings.

3.4.2. UML alignment / EMOF support The liberation of
OCL 2 from the shackles of UML 1 should have provoked some
consideration of what the ‘aligned with UML’ statement in the
OCL specification actually means. For UML 1, it seems obvious
that an OCL 1 tool must re-use classes such UML::Class and
UML::Association and UML::Constraint. But OCL 1 had no
metamodels so this was never specified.

For UML 2, it is specified that OCL may also be used with
EMOF even though there is no corresponding Association or

Constraint class. Is an OCL 2 tool expected to introduce an
OCL::Constraint for use with EMOF but use a UML::Constraint
when working with UML? Does an OCL tool really have
to struggle with the complexities of UML Associations and
association/class-owned Properties when EMOF (and Ecore)
only have the equivalent of class-owned Properties?

Resolution It is appropriate to step back and see what is ap-
propriate for an executable specification, as defined by OCL,
rather than an analysis specification, uncomfortably bloated to
a design specification, as provided by UML.

It should be noted that since OCL code is really executed,
an OCL tool encounters all the difficulties that this entails. In
practice UML models require significant and often very stylized
conversions to make their models executable and so the many
deficiencies of UML modeling are remedied by this stylized
tooling.

The enduring success of OCL despite its limitations is proba-
bly due to its fundamental simplicity. The state of a system can
be represented as a graph comprising classifier-typed nodes and
feature-typed edges.

The classifier-typed nodes may be DataType-typed-values
whose value may be used directly or Class-typed objects that
provide transitive access to values.

The feature-typed edges may be simple Properties accessing
values, often known as attributes, references to other objects,
operation calls, iteration calls, references to stereotypes, access
to static properties, access to stereotype properties, ... Each
modeling concern may introduce a new flavor of feature.

Evaluation of an OCL query starts at some privileged node
identified as self and then traverses edges to gather whatever
values are required by the query.

Figure 2 shows a system comprising some arbitrary instances
p, q, ... with correspondingly arbitrary types P, Q, .... In the
center row, four objects of interest to an example expression
are given more meaningful names and types to show how the
example expression steps from node to node in a regular way
even though the expression involves collection, operation and
datatype complexities.

To keep OCL simple, we want to exploit this fundamen-
tal simplicity by providing a metamodel that suits OCL rather
than contorting to accommodate the eccentricities of UML.
The problem of OCL::Constraint or UML::Constraint is solved.
There is always an OCL::Constraint, and an OCL::Class and
an OCL::Feature that is the basis for an OCL::Property and
OCL::Operation and OCL::Iteration ... OCL has its own meta-
model that is designed to suit OCL free from the limitations of
UML or EMOF or Ecore or XSD.

In order for OCL to co-exist with another technology such as
UML, it is obviously necessary to perform a transformation of
the user’s UML metamodel into the equivalent OCL metamodel,
for which the term Pivot was coined by the Dresden OCL team
and endorsed by the Pivot-based Eclipse OCL prototype.

The need for this transformation may seem like a burden, but
it proves to be a major simplification. Without such a transfor-
mation, support for OCL for N different technologies requires
N variants of the OCL tooling each adjusted to the eccentrici-
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Figure 2 OCL Navigation.

ties of that technology. In contrast a single variant of the Pivot
OCL tooling is possible supported by N transformations each
of which normalizes the eccentricities of its technology to the
Pivot OCL formulation. UML stereotypes no longer pollute
the whole of OCL, rather a Stereotype is converted to a regular
OCL classifier with regular OCL features.

A further complexity arises with unidirectional edges for
which, given a known starting instance, it is only necessary to
identify the far edge. EMOF and Ecore may therefore have
a property contained by the source instance and referencing
the remote instance. UML also supports unidirectional edges,
but changes the containment of the unnavigable end to the
association.

As a specification language, it is important for OCL expres-
sions to be able to navigate in both directions (Willink 2016).
But this was not possible using EMOF (or Ecore) until I caused
a Tag (or EAnnotation) solution to be adopted.

The diverse UML, EMOF or Ecore modeling of edges are
all clumsy and a poor basis for a friendly OCL representation.
The irregularities are easily normalized away during a trans-
formation to the normalized Pivot metamodel which always
has a pair of Property instances to define a bidirectional link
between Classes and a single Property instance to define the
unidirectional link from a Class to a DataType value.

3.4.3. XMI The OCL 2 specification calls for model inter-
change between OCL tools using XMI but provides no clues as
to how this is achieved. There appears to be a naive assumption
that if there is an OCL metamodel, XMI will just work. Not so.

XMI elaborates XML’s ability to serialize a tree-structure by
introducing the xmi:id element and corresponding references
to support the graph-structures formed by cross-references in
a model. But a reference requires the xmi:id to exist. Un-
fortunately, when an OCL expression traverses an unnavigable
opposite, the serialization of the PropertyCallExp needs to
reference a property that does not exist in EMOF (or Ecore) and
which exploits the unusual association-containment in UML.

The ability to extend classes with additional operations and
properties poses a further challenge for XMI serialization, since
the additional features are not available to be referenced as part
of the original class.

More fundamentally, when a type, corresponding to for in-
stance Set(String), is referenced that reference must resolve
to the same definition as a similar reference from elsewhere. No
overall pool of shared definitions is specified. In UML, tem-
plate instantiations are performed on demand so that there may
be both My::Set(String) and Your::Set(String) without
any clarity as to whether they are distinct types or not.

Resolution Since OCL 2 has survived without XMI for 20
years, we could just eliminate this specification point, but given
a sensibly designed metamodel, XMI should be easy. Efficient
tooling for OCL-based languages such as MOFM2T or QVT
will however suffer if XMI support for OCL is not possible.

The problem with serialization of the non-existent un-
navigable opposite may be resolved by introducing an
OppositePropertyCallExp class to the metamodel whose
reference is to the navigable property in the other direction.
Internally the normalization to the Pivot OCL metamodel can
ensure that all such opposites do exist. Similar opposite model-
ing extensions are needed in QVT.

The Pivot-based Eclipse OCL solves the problem of locating
additional features in closed classes by introducing the concept
of a Complete Class that is an overlay of same-hierarchically-
named closed classes. This supports open classes by overlaying
as many closed classes as required. Unfortunately it has the
unpleasant corollary for the tooling that accesses to Classes must
redirect to their Complete Classes to ensure that any additions
from sibling Classes are not overlooked.

The Pivot-based Eclipse OCL solves the problem of unique
definitions by ‘clarifying’ UML semantics to specify that
the namespace hierarchy of collection, lambda, primitive,
tuple types and template specializations are to be ignored.
My::Set(My::String) and Your::Set(Your::String)
are therefore the same type. Saving a model to XMI relocates all
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the shared definitions by adding an $orphanage$ package to host
e.g. $orphanage$::Set(String). Loading from XMI relocates
the contents of the many incoming $orphanage$ packages to a
single global internal $orphanage$ package. Each distinct type
is modeled by a distinct singleton in the Pivot representation.

3.5. Tooling Problems
Some aspects of the OCL language / specification cause difficul-
ties for tooling that far exceed any convenience they may afford
to users.

3.5.1. Coherent Grammar Just about the first thing any
toolsmith will look for when tooling a language is its grammar.

OCL 1.1 Grammar In the early days of language tooling, it
was understandable that languages could have bad properties
such as the notorious dangling-else ambiguity which all C/-
Java programmers learn about the hard way. However that
all changed with the advent of LALR support tools such as
yacc (Stephen Johnson 1975) which diagnose parsing problems
as well as generating an efficient parser.

With the availability of yacc, it is inexcusable for any lan-
guage to fail to provide a yacc grammar. The OCL 1.1 grammar
dates from 1997 (22 years post-yacc). It is an EBNF grammar
that can be converted to LALR form without too much trou-
ble. Converting to LALR form reveals a multiplicity bug, a
name conflict and lexer comments that are easily resolved. It
also reveals a shift/reduce conflict for the expression/declaration
ambiguity that we consider in Section 3.5.2.

The OCL 1.1 grammar is bad; it is incompatible with stan-
dard tooling. If LALR tooling had been used, the OCL syntax
would have been adjusted.

The free parser advertised by the specification is no longer
available from the IBM website. It is no longer possible to
determine how the ambiguity was resolved.

OCL 2.1 Grammar At least the OCL 1.1 grammar exists as
a nearly coherent whole; it can be cleaned up from a cut and
paste from the specification PDF. For OCL 2.0, which is only a
draft, the grammar was split up and interleaved with inherited
and synthesized attribute rules. Distinct rules ‘clarify’ each
different form of navigation. This introduces many ambiguities
necessitating some disambiguation rules. These difficulties are
aggravated by partial name refactorings corresponding to work
in progress tracking UML 1 to 2 evolution. Further difficul-
ties arise from incomplete evolution to accommodate qualified
names and static operations.

Eventually I have come to accept that the OCL 2.x grammar
and CS rule specifications are not fit for purpose. Each imple-
menter is obliged to empathize with the spirit of the specification
and code accordingly. It is not surprising that few tools fully
support the complexities of unnavigable opposite navigation or
association classes.

I developed a yaccable version of the OCL 2 grammar for
inclusion in the OCL 2.3 revision, but retracted it at the last
moment when it became clear that it was biased in favor of the
left recursion typical of LALR tools and against LL tools such
as Xtext (Eclipse Xtext Project 2020).

Resolution Obviously there should be a grammar that accu-
rately specifies the language and which is demonstrably com-
patible with standard tools.

3.5.2. Expression/Declaration syntax ambiguity The
OCL syntax is primarily an expression language that elaborates
external declarations with constraints or bodies; the declarations
come from outside.

However OCL may provide a local declaration using the
distinctive let...in... syntax or embedded with an iterator
call: isUnique(n | n).

The let...in... syntax has an irritating
dangling-in difficulty for an LALR grammar parsing
let...let...in...in.... This can be solved by duplicat-
ing the expression grammar to ensure that the recursion takes
precedence.

The iteration syntax poses a potentially infinite look-ahead
challenge to distinguish the first and second n’s in isUnique(n
| n). The first (declaration) n may be elaborated as multiple
iterators with non-trivial type declarations. The second (ex-
pression) n may be elaborated with arithmetic operations and
recursive iterations.

The look-ahead must traverse the entire declaration to detect
the | separator to distinguish the explicit iterator isUnique(n
| n) from the implicit iterator short-form isUnique(n).

Resolution The bad grammar should have been detected by a
yacc-like tool. The ambiguous declaration syntax should have
been redesigned before it was released to the world. Now we
have to introduce a probably breaking change to cure it.

The easiest solution is to use a distinctive ‘here-comes-a-
declaration’ keyword. To some extent let already does this.

One possibility is therefore to require the long form
isUnique(n | n) to be rewritten as isUnique(let n in
n) so that a let without an initializer defines an iterator and a
let with an initializer is the conventional local let variable.

Another possibility is to introduce a new var keyword sup-
porting a prefix declaration as in isUnique(var n; n). This
ability to prefix a declaration to an OCL expression could render
the let-expression redundant by rewriting

let x = ... in let y = ... in ...

as

var x := ...; var y := ...; ...

The above are two suggestions for eliminating the declara-
tion/expression ambiguity. There are no doubt others.

Any change should support the pattern matching evolution
discussed at Aachen (Brucker et al. 2013) and in Section 4.2.3.

3.5.3. Short-circuit operators In many C-based program-
ming languages short-circuit Boolean and-or operators support a
guard idiom to ensure that the evaluation of a first term converts
the crash that would result from evaluating the second term to
not-a-failure.

(x != null) && x.doSomething()
(x == null) || x.doSomething()

Reflections on OCL 2 9



OCL appears to be much the same:

(x <> null) and x.doSomething()
(x = null) or x.doSomething()

but since the operators are commutative the following must
return the same results

x.doSomething() and (x <> null)
x.doSomething() or (x = null)

An optimizing or a multi-processor implementation may
therefore evaluate the two commutative terms in arbitrary order
and so be unable to avoid the crash. so the implementation must
instead catch the crash from the ‘wrong’ term and suppress it
once the guard from the ‘right’ term is determined. The not-a-
failure is not necessarily avoided.

This is not what was intended when the Amsterdam Man-
ifesto (Cook et al. 1999) adopted the Kleene logic to support
short-circuit rather than ‘strict’ Boolean operators. The extended
Truth Table for the and operation was and is.

Use Case Input 1 Input 2 Output

2-valued false false false

false true false

true false false

true true true

Normal Short-Circuit false X false

Commutated Short-Circuit X false false

Residue true X X

X true X

X X X

The table has been redrawn here to distinguish the four 2-
valued Boolean cases, the two short-circuit cases and three
residual cases.

In the Amsterdam Manifesto, ‘X’ was spelled as ‘undefined’
and was clearly described as a virtual value meaning not-yet-
computed in order to explain how the two short-circuit cases
yield a useful result without needing to compute a redundant
and quite possibly uncomputable term.

In OCL 2.0 and 2.2, ‘X’ is spelled as ‘⊥’ to represent a null
or invalid value. Whether the output is null or invalid was
unclear.

In OCL 2.3, ‘X’ is spelled as ‘ε’ or ‘⊥’ respectively for a
null or invalid Input value and explicitly just invalid as an
Output.

In OCL 2.4, ‘X’ is again spelled as ‘ε’ or ‘⊥’ for an Input
value but as an idempotent ‘ε’ or ‘⊥’ as an Output.

The 2-valued cases are uncontroversial.
The Short-Circuit cases solve the problem of choosing a

Truth Table row when one of the input values cannot be com-
puted since the short-circuit rows are available for use by not-
yet-computed inputs. There is no need to attempt to compute
what cannot be computed.

In so far as the Residual Use Cases describe the propagation
of the virtual not-yet-computed value there is nothing wrong
with them. However program execution does not normally
reify the not-yet-computed result; rather we twiddle our thumbs
waiting for the computation to complete or fail.

The virtual not-yet-computed meaning of ‘undefined’ in the
Amsterdam Manifesto evolved to the actual values of invalid
and null in OCL 2 so that the Residual Use Cases no longer
describe not-computations but failure propagation.

Similarly the commutative and short-circuit characteristics
of the Boolean operators, when implemented, conflict with the
not-a-failure intent of the Amsterdam Manifesto. This causes
surprise to the user of a debugging or tracing tool who may
observe the chaos of a failing redundant computation, and a
further surprise to a user who finds that a crashing first term is
rescued by a second term.

Resolution This potential of the commutated short-circuit
for surprise, inefficiency and implementation difficulty may
justify a change to a traditional non-commutative short-circuit.
It is not clear that the mathematical elegance of commutative
and-or operations provide any practical benefits; they certainly
provide considerable implementation difficulties. Specify that
evaluation of the first term must guard the second.

4. Evolution

This section summarizes successful and planned work that goes
beyond the narrow limitations of the specification before draw-
ing on experience of what has failed or is at least unduly com-
plex to make some radical suggestions as to how an OCL 3
might be specified more usefully.

4.1. Prototyped Evolution

We first identify functionality that has been successfully proto-
typed by Eclipse OCL.

4.1.1. Map library type The Map type is familiar to OO
programmers but sadly missing from OCL.

Resolution Implemented (Willink 2019). Provision of Map
literals and joint key/value iterators is useful.

4.1.2. Safe navigation The side effect-free characteristics
of OCL make an OCL program much easier to analyze than
many other languages. However many constraints suffer from
problems with null navigation.

Resolution The prototype exploits the [1] and [?] multi-
plicities of UML to distinguish not-null from maybe-null and
so identify statically which expressions have a null-hazard. A ?.
safe navigation operator is introduced. The first implementation
of this was almost useless for collections and so some elabo-
rations that include specifying distinct collection and element
multiplicities as in Set(String)[*|1] were required (Willink
2015b).
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4.1.3. Type construction / shadow types Users find it
inconvenient that an OCL expression cannot create an instance
of a type. The OCL specification also finds this inconvenient
and introduces make operations. At first sight this is an insoluble
problem because creation of a new instance creates a side effect
in the memory system and OCL is side effect free.

Resolution The prototype introduces the concept of shadow
objects (Willink 2018) in which the ‘created’ object is a shared
immutable re-use from a notionally infinite pre-existing pool
of all possible instances. There is no side effect even though a
practical implementation no doubt populates the infinite pool
lazily. Once extended to a model transformation environment
supporting mutations, assignment of a container to a shadow
object must clone to preserve the immutability.

4.1.4. Templates, Lambdas and Reflection The OCL
specification uses many facilities without properly specifying
them.

The collections are specified using a magic T that has more
akin to a textual macro than a type argument. Clearly the T in
Set(T) is a template parameter. If it isn’t, then how does it
relate to the missing support for UML template parameters?

The body of an OCL iteration call is an expression to be eval-
uated for each iteration. This is clearly an anonymous function
definition well known to the computer science community as a
lambda expression. The contorted specification of the closure
iteration using the language of textual macro substitution is clear
evidence that lambda expressions are in use.

Reflection is little used in OCL, perhaps because the
OCL 2 specification has repeatedly changed the semantics of
oclType() seemingly in an effort to find a valid way of provid-
ing access to the name of a type without imposing the baggage
of a fully reflective type system.

The reflective OCL 1 seems much clearer and supports the
usage within some of the OCL 2 flatten() constraints.

post: result =
if self.oclType().elementType.oclIsKindOf(CollectionType)
then ...

Resolution An implementation that fully supports templates,
lambdas and reflection avoids the need for clumsy workarounds
to provide the half-baked functionality that fails to satisfy user
expectations. Once lambda expressions exist, lambda types
and so lambda variables follow, allowing function bodies to
be passed arbitrarily rather than just as the special case of an
iterator body.

4.2. Pending Evolution
Some problems have been tackled but not completed.

4.2.1. Fail-safe execution Safe navigation, as described in
4.1.2, prevents the most common OCL execution failures but not
all. Divide-by-zero is very rare in OCL, but index-out-of-bounds
with ordered collections is far from rare, particularly for users
who accidentally use the 0-based indexing of implementation
languages rather than the 1-based specification policy. With
these problems detected, an OCL expression can be guaranteed

not to require the complexities of null or invalid; a Boolean
expression is provably two-valued.

Resolution This is work in progress to support code genera-
tion for QVTr where run-time handling failures is very undesir-
able; a failure during a transformation is a failure and obscure
when it happens. A compile-time check that proves that a failure
is impossible is more useful for the user and allows for simpler
and faster generated code.

A little integer value flow analysis is needed to prove that e.g.
x->at(x->size()-1) is safe only if x is provably not empty.

A form of assertion will be needed for expressions that are
too complicated for practical symbolic analysis.

4.2.2. Precision As a specification language, OCL specifies
unbounded precision for its ideal Integer and Real calculations.
This is clearly unrealistic and inefficient for many practical
applications where 16 bits is often enough for counters and
sequence indexes.

In practice, the type declarations of the model slots from
which values are read provides a strong clue as to what precision
is appropriate, but it is only a clue. To avoid implementation
guesswork, there should be a mechanism for OCL evaluations
to specify precision, overflow and underflow behavior.

Resolution Executable UML (Mellor & Balcer 2002) pro-
vided a plausible mechanism to model precision, but it was not
adopted by UML 2. It did however influence the OCLforUML
profile (Willink 2015a) that users apply to their UML models.

The precision aspects of the profile are mostly a documen-
tation convenience. The profile was developed primarily to
identify null-free Collections in support of the safe navigation
work. See Section 4.1.2.

4.2.3. Patterns At the Aachen (Brucker et al. 2013) work-
shop, an OCL enhancement to support pattern matching was
discussed. At its most trivial, this would allow the verbose
idiomatic test-and-cast usage

if x.oclIsKindOf(CastX)
then x.oclAsType(CastX).doSomething()
else null
endif

which requires two library calls and two specifications of the
CastX type to be simplified as a pattern-match-guarded action:

if var castX : CastX := x
then castX.doSomething()
else null
endif

The success, or failure of the match of the value of x ex-
pression against the castX : CastX pattern determines the
direction taken by the if. Within the then branch, the success-
fully bound castX variable can be used with its matched CastX
type.
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Resolution Some work has been done on this, but it
foundered on the Expression/Declaration syntax ambiguity dis-
cussed in Section 3.5.2. Elaborating the declaration syntax was
too hard. Introduction of the var keyword could unblock this
impediment.

The work also identified that the QVTr template syntax was
probably suitable for re-use as a pattern syntax and that con-
versely introducing a different syntax for OCL would be very
damaging to the QVTr grammar as a whole.

4.2.4. Libraries One of the most impressive characteristics
of Java is how its Object polymorphism enabled it to launch
with powerful Collection libraries that have grown and grown.
C++ lagged horribly. OCL still lacks support for standard or
user libraries, the most obvious of which would be a maths
library.

Resolution The OCL and QVTr Standard Libraries are imple-
mented by models for the Pivot-based Eclipse OCL and QVTd,
however an attempt to provide a tutorial demonstrating a maths
library proved much harder than expected. Allowing a user to
write atan2(x, y) challenges the support for static operations
whereas Maths::atan2(x, y) is familiar to Java users but
hardly worthy of a specification language.

5. An OCL 3 tooling Proposal
If OCL is to be easy to extend, it must have a clear specifica-
tion with a clear architecture. Once these are clear there are
opportunities for an implementation to exploit this clarity to
produce a correspondingly clear tooling implementation. The
clear implementation facilitates selective ‘borrowing’ by a user
who really wants to rewrite, and selective overriding by a user
who is interested in re-use.

Unfortunately the significant omissions from the OCL speci-
fication result in the rather vague architecture shown in Fig 1 that
practical implementations may ignore completely or revise in
proprietary fashion. The net result is poor quality incompatible
tools that discourage re-use.

5.1. The big problems
A solution to many of the problems has been suggested above
and successfully prototyped as part of the Pivot-based Eclipse
OCL. However there are two areas where the prototype solution
is unpleasant; the prototype has tried too hard to maximize
conformance to a perhaps over-enthusiastic interpretation of the
letter of the specification.

5.1.1. Open classes The ability to add attributes and op-
erations to open classes is difficult to support when their AS
representation is to be just like similar attributes and operations
defined in a model based on closed classes.

Many modeling capabilities such as Acceleo (Eclipse Ac-
celeo Project 2020), ATL (Eclipse ATL Project 2020) and
QVTo (Eclipse QVT Operational Mappings Project 2020) sup-
port additional features as helper operations and helper at-
tributes. They are clearly useful and an important aid to modular-
ization of non-trivial OCL constraints. The deliberate avoidance

of such helpers by the UML 2.5 (Object Management Group
2015) specification leads to some long unreadable repetitive
OCL expressions. This clearly demonstrates their utility.

However we only need helper features and so a reversion to
the OCL 1.x pseudo-features would suffice. Once the need for
fully open classes goes, the inconvenience of the prototype’s
Complete Class overlay of closed classes in the prototype can
be resolved; externally the user’s metamodel may use a closed
class semantics. Internally the normalized Pivot model may
open the class to inject the additional features.

5.1.2. Two metamodels The main complexity comes from
the two distinct CST and ASG metamodels aggravated by the
poorly designed grammar that mandates non-standard tooling
to support disambiguation with untimely semantic insights. The
grammar can be improved to solve the aggravations, but two
metamodels seem unavoidable since the CST is similar to the
grammar to ease parsing. The ASG is a compact and sensible
information model to facilitate efficient use for execution and
analysis.

The two metamodels are mostly isomorphic with AS classes
such as IfExp with condition/then/else children replicated by
a IfExpCS CS class with three equivalent children. Many of
the differences arise from the need for the CS to accommodate
ambiguities until there is sufficient context to select the unam-
biguous AS variant. Other difficulties arise from the way in
which references to elements such as types are modeled.

Exactly the same problems occur in the QVT specifica-
tions and so I sponsored Adolfo Sanchez-Barbudo Herrera’s
EngD (Sanchez-Barbudo Herrera 2017) to provide automated
tooling to assist in the awkward CS2AS conversion. This work
started in 2013 and so at that time we still lacked the confi-
dence or insight to call out the OCL 2 specification approach as
fundamentally unsound.

We can now challenge the presumption that two metamodels
are necessary. Once we follow the resolution of Section 3.5.2
to revise the grammar and eliminate ambiguities we are left
with just the element referencing issue, which we can resolve
by trimming our two metamodels not quite to one metamodel,
but to one and a bit.

5.2. Modeling a Type Reference
The ability to make one and a bit metamodels work relies on a
seemingly trivial aspect of the metamodeling.

In the concrete syntax of many languages the letter-sequence
for a built-in type such as String may occur many many times.
This does not mean that there are many copies of the built-in
type, rather that there are many descriptions of the built-in type.
It is the responsibility of the tooling to ensure that only one such
type does exist so that each reflective usage of the type shares a
single definition.

Similarly the letter-sequence for a synthesized type such as
Set<String> may occur many times. Once again, it is the
responsibility of the tooling to ensure that only one underlying
type definition exists.

When UML models a type, it uses TypedElement as the
abstraction of all model elements that have types, Type as the
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Figure 3 OCL 2 Type Reference.

abstraction of all types and the TypedElement::type prop-
erty as the mechanism by which the TypedElement refer-
ences its Type. Fig 3 shows how the OCL metamodel uses
this property to associate String as the primitive type of a
VariableDeclaration. Since the String primitive type may
be used by many definitions, it cannot be contained by the
VariableDeclaration rather it must be contained elsewhere.
For a built-in type we can ignore the problem as a bit of imple-
mentation magic.

However once we model use of a Set<String> this ap-
proach does not work since not all possible template specializa-
tions can be built-in, rather a shared instance of Set<String>
must be modeled. The UML metamodel provides two so-
lutions to this problem. For types, the user is required to
create an explicit specialization somewhere so that it can
be referenced as many times as necessary. This approach
is fine for an informal specification but fails when my sub-
system has one definition of Set<String> and your subsys-
tem has another. For non-types, where creation of an in-
stance elsewhere is too inconvenient, UML has another id-
iom. There may be two alternative references such as the non-
containment TemplateParameterSubstitution::actual
and the sibling containment TemplateParameterSubsti-
tution::ownedActual giving the modeler the freedom to use
whichever is convenient and the user the inconvenience of a
derived property to select the appropriate property.

The UML approach is ‘right’ in so far as it attempts to force
the singleton existence of type definitions, but ‘wrong’ in that
the enforcement is incomplete and inappropriate for a speci-
fication language. A unique definition is only a necessity for
an implementation. A specification language may refer many
times to the unique type.

In contrast if we examine the modeling for the same problem
in Ecore, we find that ETypedElement::eType is very sim-
ilar to UML’s TypedElement::type. However when Ecore
evolved to support Java generics, an EGenericType rag-bag
was added. Each EGenericType is a descriptor for a required
type contained by the new ETypedElement::eGenericType
property. Ecore, although practically an implementation lan-
guage, evolved to support type descriptions. The OCL meta-
model, emulating UML, is cursed with UML’s inappropriate
modeling of type singletons.

Recognizing the different ways in which a type reference can

be modeled, we can see that the ‘CS’ metamodel must model
the multiple descriptions of a type whereas the ‘AS’ must model
the single definition of that type. We do not however need two
metamodels if our one and a bit metamodels provides a pair of
properties; a primary type description property for use by con-
sumers of the ‘CS’ metamodel such as parsers, and a secondary
derived type definition property for the ‘AS’ consumers such as
code generators and validators.

We are left with a design decision to make in regard to inter-
change using XMI. If the interchange exposes the ‘AS’ content,
we can interchange fully resolved definitions but have difficul-
ties ensuring that the two parties to the interchange are able to
share globally unique definitions. If instead the interchange is
limited to the ‘CS’ content only, type descriptions are shared
and each party is free to use its own policies to resolve the
descriptions to its own locally unique definitions.

Since the ‘CS’ content is exchanged with other tools we will
refer to this as the ‘external’ perspective of our one and a bit
metamodels, and to the private ‘AS’ content as ‘internal’

Fig 4 shows the ‘external’ and ‘internal’ modeling for our
Set<String> example. On the bottom row we show the exter-
nal type description in which the VariableDeclaration owns
a description comprising a TemplatedTypeDesc named Set
which in turn owns a SimpleTypeDesc named String. On the
middle row we show the internal type definitions comprising the
singleton PrimitiveType named String that is referenced
by the singleton SetType named SetOfString. The derived
resolvedType properties of the many external perspective des-
criptions reference the singletons of the internal perspective.

The package and model ownership of the singletons is
omitted in the interests of clarity. Transitively a single
MetamodelManager is the container of all singleton defini-
tions.

5.3. Overall OCL 3 Architecture
Having solved the problem of two metamodels, we can now see
how the various components of the Overall architecture shown
in Fig 5 collaborate to provide a satisfactory solution to many
of the problems in Fig 1.

MetamodelManager At the heart of the architecture is the
MetamodelManager that is responsible for the normalized sin-
gleton Pivot representations within the Pivot Metamodels.

When an ‘import’ is required, the MetamodelManager lo-
cates the referenced user metamodel, and activates the appropri-
ate Loader to convert it to the normalized Pivot form ensuring
that any shared declarations use the appropriate singleton defini-
tions. As part of the loading process, any esoteric user elements
such as UML’s Stereotype or AssocationClass are normalized
to the simple classifier-feature internal representation.

When a ‘lookup’ is required by a Derivation Rule to resolve
an element description to its unique element definition, the
lookup is performed by querying the Metamodel Manager.

OCL 2 neglects to specify how metamodels are imported,
but it does specify an Environment class to perform queries at
a particular scope. Unfortunately a new Environment instance
is created and then modified for each nested scope created by
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Figure 4 Possible OCL 3 Type Descriptor.

Figure 5 Possible simplified OCL 3 Architecture.

for instance a let-expression. This is clearly not OCL. The
Environment instances are passed down the CST so that each
node has its own instance with all possible definitions. This is
very inefficient and involves many mutations and so side effects.

Between imports, the Metamodel Manager is logically im-
mutable lazily exposing only what is required from a nationally
infinite pool of all possible definitions. A lookup is therefore
much more easily resolved by an immutable search up the AS
for what is required rather than a churning push down of every-
thing that could be required.

In addition to the imported user metamodels, the Metamodel
Manager supervises the loading of the standard Pivot meta-
model, if the user requires reflective functionality, and the OCL
Standard Library. Each of these loads may be overridden to

support use of a customized Pivot or Library.

Specification The transparent boxes show the functionality
to be provided by grammars and models in the specification. In
contrast to Fig 1 we see that the Disambiguation Rules have
vanished since the grammar ambiguities are removed. This
allows standard parser tooling to be used. The lookup Rules
have also vanished, or rather migrated to the Derivation Rules
that perform a simple query to convert the element description
parsed from the source text to the element definition required
by the internal AS.

There is just one (and a bit) metamodels.

The Well-formedness rules are substantially unchanged.
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Basic Parsing The second row of Fig 5 shows the OCL text
input model being parsed by standard lexer and parser tooling
configured by the specified grammar. The resulting External
perspective of the Pivot AS is suitable for interchange using
XMI.

This basic parsing can potentially be performed without the
aid of a MetmodelManager. This may be convenient for some
novel OCL re-use cases, but in practice the services of the
advanced tooling will be essential for any form of validation or
completion assist in an editor.

Advanced Tooling Advanced tooling activates the Metamod-
elManager to covert all the references in the external AS to the
unique definitions of the internal AS. This enables tools that
exploit the OCL such as Validators or Evaluators to provide
enhanced capabilities.

Model Manager Analogously to the use of the Metamodel-
Manager to supervise all metamodels, the ModelManager su-
pervises the models for use by the evaluator. In addition to the
obvious task of loading required models, it also supports all
the possible forms of feature access that may be used in those
models. For the simplest form of property access this may just
require that a value be obtained from a slot and converted to
the appropriate Boolean/Integer/Real/String representation. In
more complex cases the reified form of an applied stereotype
may need to be navigated to obtain a slot value from the instance
of the stereotype.

6. Conclusion

We have shown how the well-intentioned upgrade of the simple
but useful OCL 1 specification went astray as part of the UML 2
activities. We have identified that draft work-in-progress was
accidentally adopted as the OMG OCL 2 specification.

We have drawn on personal experiences to explain why OCL
tool implementers treated the OCL 2 specification with unwar-
ranted reverence and struggled to implement it as faithfully as
possible.

It is a pity that it has taken so long to recognize the OCL 2
specification for the disaster that it is.

We make proposals for an OCL 3 that can almost be seen as
going back to OCL 1 and then moving forwards again to avoid
the mistakes of OCL 2.

This appears to leave the OCL community with a three-way
choice:

– Do nothing. USE and Eclipse OCL and so OCL will fade
away.

– Evolve existing OCL tool(s). Current teams are inadequate.
– Develop a new OCL. There is no team.

Any future progress surely depends on a credible specifica-
tion. This requires significant work, which may be mitigated if
some simplifications are made.

Eclipse OCL could evolve to prototype the simplifications,
but only if that is what the community wants.
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