
Journal of Object Technology | RESEARCH ARTICLE

Constraints Specification Via Tool Support:
A Controlled Experiment

Azzam Maraee∗, †, Eliran Nachmani∗, and Arnon Sturm∗
∗Ben-Gurion University of the Negev, Israel

†Achva Academic College, Israel

ABSTRACT Models can be used for various purposes such as communication, documentation, design means, and for the
generation of various artifacts including code. Nevertheless, as some ambiguities still exist in models, additional languages
are required. To address this need, in the context of object-oriented modeling, the Object Constraint Language (OCL) was
devised. Alternately, other languages including programming languages can be used for constraint specification. In this work
we conducted a controlled experiment using USE and a Java framework we developed for that purpose, and compare the
effectiveness of developing model-based constraints with respect to quality, time, and confidence. The results indicate that
as Java is more familiar to the subjects than OCL, the time to develop the constraints utilizing the developed framework was
shorter whilst the confidence was higher. However, despite the greater familiarity with Java, the constraints quality was better
when using OCL and USE.

KEYWORDS OCL, USE, Java, Model-based Constraints, Controlled Experiment.

1. Introduction
Model-Based Engineering (MBE) places models as the core
artifacts of software development. Models can be used for vari-
ous purposes, including communication, documentation, design
means, and for the generation of various artifacts including code.
Nevertheless, due to the lack of formalization and ambiguities
that still exist in models, additional languages are required. To
address this need, and in particular for designing object-oriented
systems, the Object Constraint Language (OCL) was devised
(Warmer & Kleppe 2003). OCL was developed as a language
that could be attached to an existing (diagrammatic) modeling
language lacking in its expressiveness. A language that works
thus reduces the likelihood of misunderstanding when humans
read models, and facilitates the detection of errors at an early
stage of the development process. Alternately, other languages,
including programming languages, can be used for constraint
specification. However, limited attention has been devoted to

JOT reference format:
Azzam Maraee, Eliran Nachmani, and Arnon Sturm. Constraints
Specification Via Tool Support: : A Controlled Experiment . Journal of
Object Technology. Vol. 19, No. 3, 2020. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2020.19.3.a16

testing whether OCL is the best option for specifying constraints
in various contexts. Considerations under this rubric include the
impact of OCL on maintenance (Briand et al. 2004), the effect
of OCL constraint quality on understanding (Correa et al. 2007),
and the effect of improving OCL querying language to increase
its usage (Störrle 2013). Only recently, an evaluation of alter-
natives constraint specification languages was carried out (Yue
& Ali 2016). It was found that in general, the quality of con-
straints specified in Java and OCL were similar. In a previous
work (Maraee & Sturm 2019), we also examined the effective-
ness of understanding and developing constraints, using Java
(represents programming languages and imperative approaches)
and OCL (represents declarative approaches). We found out
that when applying these languages in "dry" mode, i.e., without
means to execute and check these constraints, the results are
similar. We determined that when referring to understanding
and developing simple constraints, using Java resulted in more
correct answers than when using OCL. For complex constraints,
the situation was reversed; using OCL led to more correct an-
swers. In a follow-up experiment (Maraee & Sturm 2020), we
were able to show that OCL outperformed Java with regard to
both understanding and developing constraints. In this paper,
we examine whether using tools for developing and checking

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a16

constraints affects the effectiveness of developing constraints in
OCL and in Java, and further examine the differences between
these two languages. For this purpose, we conducted a con-
trolled experiment using USE (Gogolla et al. 2007) and a Java
framework developed specifically for this purpose, comparing
the effectiveness of developing model-based constraints, with
respect to time, quality, and confidence. We further reflect upon
the subjects’ perception regarding the usage of the languages
and the tools.

The paper is organized as follows. In Section 2, we review
existing studies focusing on those that assess tool effectiveness.
In Section 3, we introduce the tools which we used in the present
experiment. In Section 4, we present the experiment design and
its execution, and in Section 5 we report on the results. In
Section 6 we discuss the results, and identify threats to validity
in Section 7. Finally, in Section 8 we conclude and outline plans
for future research.

2. Related Work

Textual modeling languages such as OCL, Alloy, and FOML are
used in MBE for a variety of purposes, such as model querying
and specifying model constraints (Balaban et al. 2016). OCL
has become a widely adopted constraint language in model-
based engineering (Cabot & Gogolla 2012). In the context of its
practical use, Ali et al. (Ali et al. 2014) showed the successful
use of OCL in six industrial case studies. They also suggested
that a subset of OCL should be sufficient for these applications.
OCL has attracted increasing attention from both academia and
industry. A variety of OCL tools and verification/validation/test-
ing techniques around OCL are currently available (Gogolla et
al. 2013; Pérez & Porres 2019; Gogolla, Hilken, & Doan 2018;
Cabot et al. 2014; Ali et al. 2013; Queralt et al. 2012; Wille et al.
2012; Gogolla et al. 2005; Brucker & Wolff 2008; Briand et al.
2004). Gogolla et al. (Gogolla et al. 2013) indicated the need
for a set of OCL benchmarks to help evaluate and compare OCL
tools, and to this end initialized an OCL repository (Gogolla et
al. 2014).

They observed that such benchmarks would encourage the
development of new OCL tools. Similar repositories have since
appeared in (Noten et al. 2017; Mengerink et al. 2019).

There are a number of tools for Java, UML, and OCL, in-
cluding industry UML modeling tools which support the speci-
fication of OCL (Portal 2014; NoMagic 2020), or support both
OCL and Java for specifying constraints such as IBM RSA
(IBM 2019) and Papyrus (IBM 2020). However, there are rel-
atively few studies which evaluate the effectiveness of using
tools for writing constraints. While the work of Yue and Ali in
(Yue & Ali 2016) and our last study (Maraee & Sturm 2020)
evaluate the usage of Java and OCL as alternatives constraint
specifications, we are not aware of any work in the literature
that evaluates the impact of using tools for this purpose.

The remainder of this section focuses on tools that support
the specification of OCL and/or Java, studies on students’ ex-
periences with software modeling tools and their usability, and
studies on teaching modeling and OCL using these tools.

2.1. Modeling Tools
Since the introduction of OCL, a variety of software modeling
tools have been developed in academia and in industry (Portal
2014; NoMagic 2020; IBM 2019, 2020). One of the first OCL
tools to be introduced was Dresden OCL, which was developed
at the Technische Universität Dresden. The most recent ver-
sion of the toolkit provides an OCL Parser, an OCL Interpreter,
and an OCL-to-Java Code Generator, and supports constraints
specification and verification (Demuth & Wilke 2009; Software
Technology Chair 2004). HOL-OCL is a rich theorem-proving
environment, which makes it possible to reason over UML class
models annotated with OCL specifications (Brucker & Wolff
2008). Recently, (Hammad et al. 2017) presented iOCL, an
interactive tool for specifying, validating, and evaluating OCL
constraints. The tool guides the modeler to specify OCL con-
straints interactively by presenting only the relevant details for
selection at any given step in the specification, and automat-
ically correcting syntax errors. iOCL was evaluated using a
real-world case study, and was found to be useful in facilitating
the process of OCL constraint specification.

OCL has several competing textual constraint languages,
such as Alloy and FOML (Balaban et al. 2016; Jackson 2002;
Balaban & Kifer 2011). FOML is an expressive logic rule lan-
guage that provides an intentional and executable formal basis
for software models (Balaban & Kifer 2011). FOML supports
model-level activities such as constraints transformation, analy-
sis, and reasoning about models and model testing (Balaban &
Kifer 2011; Khitron et al. 2016). Alloy is a textual modeling lan-
guage based on relational logic, that employs SAT solver for the
bounded validation of user assertions (Jackson 2002). Nakajima
showed the benefit of using Alloy in teaching formal methods
in software engineering courses (Nakajima 2014). They used
Alloy to encode the core concepts, allowing for swift feedback
via the automatic analysis tool. The translation of class model-
s/OCL to Alloy (Anastasakis et al. 2010), and the work of Moas
et al. (Anastasakis et al. 2010) provide a UML/OCL analysis
tool that supports instance generation and completion.

In addition to tools developed within the academia, the in-
dustry also recognizes the importance of OCL. As mentioned
before, MagicDraw, IBM Rational Software Architect (IBM
RSA), and Papyrus are tools that support the specification of
OCL constraints (NoMagic 2020; IBM 2019, 2020). IBM RSA
(IBM 2019) and Papyrus (IBM 2020) also support the constraint
specification in Java. These also enable the validation of the
specified constraints to some extent. MagicDraw IBM RSA and
Papyrus are widely-used tools, both in industry and for teaching
modeling (Agner et al. 2019).

2.2. Experience with software modeling tools
Several studies have explored the usability of UML modeling
tools, mainly by comparing their different features (Auer et al.
2007; Khaled 2009; Safdar et al. 2015; Agner et al. 2019; Planas
& Cabot 2020). Usability is a core issue in Human-Computer
Interaction (HCI). It is defined as “The extent to which a prod-
uct can be used by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction in a specified
context of use.” (Dix 2009). Most studies employed empirical

2 Mareee et al.

approaches, analyzing usability issues in a number of ways such
as comparing usage between two different tools and assessing
the productivity of the software engineers when modeling with
these tools. For example, a recent study of Planas and Cabot
examined the usability of two modeling tools, MagicDraw and
Papyrus, by analyzing 12 hours of video recordings of students
using the tools (Planas & Cabot 2020). They analyzed the usabil-
ity of the tools from three perspectives: the modeling process,
the modeling effort, and the modeling obstacles that the students
encountered during the process. The study found that there were
no notable differences regarding the usability of MagicDraw
and Papyrus. They also presented several recommendations for
improving the usability of the two modeling tools. Furthermore,
(Planas & Cabot 2020) provides a comprehensive review of
usability studies related to modeling tools. Whilst the studies
under review compared the usability of UML modeling tools,
they overlooked the quality or correctness of the developed
models. We are not aware of studies comparing different tools
when the modeling languages are different. But certainly, these
studies indicate the effect of a tool on the performance of the
subjects using them. Tool usability is beyond the scope of this
paper. Nevertheless, we do refer to a few studies that took the
usability aspect into consideration, and that are relevant to the
current study.

Safdar et al. (Safdar et al. 2015) conducted a controlled
experiment comparing the productivity and the quality of the
work produced by software engineers while modeling with RSA,
MagicDraw, and Papyrus. They measured the productivity of
the engineers in terms of modeling effort required to correctly
complete a task; learnability; time and number of clicks re-
quired; and memory load required for a software engineer to
complete a task. They measured completeness as the percentage
of modeling elements modeled correctly by the user for a partic-
ular task, compared to the total number of modeling elements
in the reference model for that task, where correctness refers
to choosing the right model elements. The results showed that
there was no significant difference between RSA-MagicDraw
and MagicDraw-Papyrus in terms of completeness for model-
ing class diagrams, although RSA was significantly better than
Papyrus in this regard.

Anger et al. surveyed the use of modeling tools by 117
students in software engineering courses in different countries
(Agner et al. 2019). The result showed that students consid-
ered features such as code generation and model validation as a
key benefit. Tools such as MagicDraw, Papyrus, and UMPLE
yielded the greatest perceived benefits from the students’ per-
spective in terms of code generation, while USE stood out from
the other tools for users who were motivated by the validation
and “support to edit models textually” features. In addition,
students considered the lack of feedback about models, the
slowness, and the difficulty experienced in drawing diagrams,
as drawbacks.

Burgueño et al. discussed some of the issues we also faced
when teaching modeling to software engineers, presenting a
case study modeled with UML and OCL/USE that has been
used successfully to teach modeling in class (Burgueño et al.
2018). Students specified a system and its views, verified their

relations, and performed several analyses on the overall sys-
tem specifications. Even though during the course students
were exposed to three modeling tools—MagicDraw, Papyrus,
and USE—for OCL validation, students only used USE. The
paper noted that many students highly appreciated the object
generation and model validity checking features in USE.

3. Background

3.1. The UML Specification Environment (USE) tool
The UML-based Specification Environment (USE) tool is a
plugin modeling tool that supports the specification of a subset
of UML models augmented with OCL constraints (Gogolla et
al. 2007; Database Systems Group 2020). The development of
USE began with the work of Richters and Gogolla on defining
the formal semantics of OCL based on the OCL metamodel (the
first version appeared in 1998) (Richters & Gogolla 2002). USE
versions were developed further by diploma theses and other
student projects (Gogolla et al. 2007). The latest version is 5.2
(Database Systems Group 2020), which is also the version used
in this study. This version enables working with class, object,
sequence, statechart, and communication models. USE supports
developers in analyzing model structure and behavior, and in
exploring properties of models (Gogolla et al. 2007). It supports
the validation of UML/OCL models; verification tasks such
as proving satisfiability of OCL invariants by constructing a
positive test; checking independence of invariants, which means
that no single invariant can be concluded from other stated
invariants; and checking consequences (Gogolla et al. 2005,
2009, 2010; Gogolla, Burgueno, & Vallecillo 2018; Gogolla,
Hilken, & Doan 2018). For more detail, we refer the readers to
(Gogolla, Hilken, & Doan 2018).

USE is a textual modeling tool. It offers a simple language
to describe a class model extended with the OCL constraints.
Using USE, one can render a diagrammatic version of the tex-
tual model. However, USE is not intended for use in visualizing
the models; rather it aims to help designers develop high-quality
models using the validation and verification capabilities de-
scribed earlier.

One of the most important features of USE is its capacity
to verify whether a given instance is legal or not. This feature
enables the validation of the model, determining whether it con-
forms to the requirements (“Are we building the right product?”)
or not. Creating an instance can be done (1) directly using the
graphical user interface, or (2) using the Simple OCL-based
Imperative Language (SOIL) in the command-line version of
USE, or defining an operation that includes SOIL instructions
in the USE environment. SOIL is the imperative programming
language of USE (Büttner & Gogolla 2014). It enables creating
and modifying system states of a USE specification (i.e., creat-
ing and modifying an instance), and specifying the behavior of
operations in a USE environment. This enables executing the
system by providing a sequence of SOIL commands that create
the initial objects of the system, and their links (Burgueño et al.
2018).

Figure 1 demonstrates the use of USE for checking the va-
lidity of an instance of a class model extended with an OCL

Constraints Specification Via Tool Support 3

Figure 1 A demonstration of using USE for the validation of a class model extended with OCL constraints

Copy

loanPeriod : Integer
electronic : Boolean

LibraryItem

title : String
reserved : Boolean

context User

	inv requestedCopy:

		self.reqCopy->intersection(self.myCopy)->isEmpty()...
User

id : Integer

borrower

loan

myCopy

copyphysicalItemlibraryItem

reqCopy

requests

userReq

(a) A class diagram with OCL constraint

c1:Copy

loanPeriod=7

electronic=false

mari:User

id=11111

--SOIL Specification

!new User('mari')

!new LibraryItem('ocl')

!new Copy('c1')

!mari.id := 11111

!ocl.reserved := false

!ocl.title := 'OCL'

!c1.loanPeriod := 7

!insert (ocl,c1) into physicalIt...

!c1.electronic := false

!insert (c1,mari) into loan

!insert (mari,c1) into request...

ocl:LibraryItem

title='OCL'

reserved=false

borrower

myCopy

copylibraryItem

reqCopy

userReq

(b) An illegal object diagram with its SOIL
specification

mari:User

id=11111

ocl:LibraryItem

title='OCL'

reserved=false

--SOIL specification

!new User('mari')

!new LibraryItem('ocl')

!new Copy('c1')

!mari.id := 11111

!ocl.reserved := false

!ocl.title := 'OCL'

!c1.loanPeriod := 7

!insert (ocl,c1) into physicalItem

!c1.electronic := false

!insert (c1,mari) into loan

!insert (mari,c1) into requests

!delete (mari,c1) from requests

c1:Copy

loanPeriod=7

electronic=false

borrower

myCopy

copylibraryItem

(c) A legal object diagram with its SOIL specification

Figure 2 A class model with an OCL constraint, two instances, illegal and legal with their SOIL specifications

constraint. The middle-upper view introduces the class model;
the middle-lower view introduces a SOIL specification of a le-
gal instance; the left-upper view presents a graphical version of
the same instance using the Create object diagram view feature
of the GUI version; and the left-lower view presents the OCL
invariants, with an indication for each constraint of whether it
satisfied by the instance or not.

To further demonstrate the USE capabilities, Figure 2
presents a small class model extracted from a Library Man-
agement System model. The OCL constraint states that "For
each User, the currently borrowed copies (myCopy) could not
appear in his ordered copies (reqCopy)". Figures 2b and 2c
present two instances with their SOIL specifications included
in the comment boxes. The instance in Figure 2b is illegal since
it violates the OCL constraint. The intersection between the
object set resulting from the myCopy property and the object set
resulting from the reqCopy property yields {c1}. Using USE to
check the validity of the instance (via the Create class invari-

ants view feature) results with the message shown in Figure 3a,
showing that the constraint has not been satisfied. The SOIL
specification of Figure 2c updates the SOIL specification of Fig-
ure 2b with the operation !delete (mari, c1) f rom requests,
which appears in the last line, removing the link between the
association requests and turning the instance in Figures 2b into
a legal one. Indeed, verifying the validity of this instance yields
the message presented in Figure 3b, which shows that the OCL
constraint has been satisfied.

3.2. The Java Framework - JavaCL
Java is a general-purpose object-oriented programming lan-
guage. It is considered one of the most popular language for
developers and programmers to learn (IEEE Spectrum 2020;
RedMonk 2020; Carbonnelle 2020; Ezenwoye 2019). Further-
more, Java has many libraries with rich API, which makes the
development process faster and easier (Schildt 2014). Java is
supported by numerous integrated development environments

4 Mareee et al.

(a) A USE message that show the OCL constraint is not
satisfied

(b) A USE message that show the OCL constraint is
satisfied

Figure 3 Use Messages

 Mapping to Java

JavaCL

...

UML class model

LibraryItem

- title : String
- reserved : Boolean

...

«Java Class»
LibraryItem

- title : String
- reserved : Boolean

Java Classes

«Java Class»
Model

+ testConstraint(constraintNum : Integer) : Boolean
+ addObjectToModel(object : Atestable)
+ CreateLink_borrower_myCopy(c: Copy, u: User)
+ CreateLink_reqCopy_userReq(c: Copy, u: User)
+ CreateLink_libraryItem_copy(li: LibraryItem, c: Copy)

+ ...

ATestable

+ constraintTest(testNumber : Integer) : Boolean
+ checkConstraint_1() : Boolean
+ checkConstraint_2() : Boolean
+ checkConstraint_3() : Boolean
...
+ checkConstraint_12() : Boolean

1 0..*

Figure 4 The JavaCL Framework

(IDEs), such as IntelliJ, Eclipse, and Netbeans.
However, Java is not designed to develop model-based con-

straints. To enable developing model-based constraints using
Java similar to USE,

we have implemented an infrastructure that allows for con-
straint definition, instance creation and instance validation with
respect to the defined constraints. We term this framework
JavaCL. We implemented this infrastructure by defining an ab-
stract class ATestable that is extended by all Java classes in the
model. Java classes are generated from the model classes. The
ATestable class contains a method for each model constraint.
The default return value for each method is true implying that
are no enforced constraints (similar to OCL, where an invariant
includes only true). A specification of a constraint requires the
overriding of the corresponding method in the relevant class
(like a context class in OCL). Since each class extends the ab-
stract class, they all inherit the default constraints’ methods.
Therefore, the non-context classes return true upon checking
a specific constraint. In addition, JavaCL includes the class
Model. This class is a container of the class objects (model
instance). It enables the creation and validation of instances,
and queries the instances. It has capabilities similar to those
described for USE in the previous section, with respect to in-
variant checking. For running JavaCL, we used IntelliJ IDEA.
IntelliJ provides rich capabilities such as authoring, modifying,
compiling, auto-completion, and refactoring, which improve
programmer productivity and the code quality. In this way,

JavaCL under IntelliJ provides a "constraint-based Specification
Environment" similar to USE. Figure 4 presents the JavaCL
framework.

In the following we demonstrate the JavaCL capabilities.
Figure 5a presents the same model that appears in Figure 2a
with its implementation within the developed framework. As
mentioned earlier, each class within the model extends the AT-
estable abstract class. The constraint states that "For each User,
the currently borrowed copies (myCopy) could not appear in
his ordered copies (reqCopy)". For creating instances, there is
a need to explicitly create objects and links. Figures 5b and 5c
present two instances, alongside their Java code specifications in
the comment boxes. After defining the instances to be checked,
each constraint is checked by sending its ID to the model. Then,
for each object within the model, the constraint method is ex-
ecuted. The Java code m1.testConstraint(0) in the last line in
the Java specification parts of Figures 5b and 5c invokes the
desired constraint. It returns false in Figures 5b, meaning that
the instance is illegal; and true in Figure 5c, meaning that the
instance is legal.

Table 1 shows the differences between the two tools, USE
and JavaCL + IntelliJ. The advantage of USE as a tool designed
for models is clear. It is easier to load models, see them visually
and to select a specific constraint for validation. In contrast to
this, Java has a significant advantage as a programming tool with
all the capabilities of syntax error handling and code completion.

Constraints Specification Via Tool Support 5

(a) A class diagram with Java constraint

// Java specification
public static boolean example(){
 Model m1 = new Model();
 Copy c1 = new Copy(7, false);
 User u1 = new User(11111);
 LibraryItem ocl = new LibraryItem("OCL", false);
 m1.addObjectToModel(c1);
 m1.addObjectToModel(u1);
 m1.addObjectToModel(ocl);
 m1.createLink_copy_libraryItem(ocl,c1);
 m1.createLink_borrower_myCopy(c1,u1);
 m1.createLink_reqCopy_userReq(c1,u1);
 boolean expectedAnswer = false;
 boolean actualAnswer = m1.testConstraint(0);
 return actualAnswer == expectedAnswer;

myCopy borrower

 l ibraryItem copy
reqCopy userReq

c1 : Copy

loanPeriod = 7

electronic = false

ocl : LibraryItem

title = 'OCL'

reserved = false

mari : User

id = 11111

m1 : Model

(b) An illegal object diagram with its Java code specification

// Java specification
public static boolean example(){
 Model m1 = new Model();
 Copy c1 = new Copy(7, false);
 User u1 = new User(11111);
 LibraryItem ocl = new LibraryItem("OCL", false);
 m1.addObjectToModel(c1);
 m1.addObjectToModel(u1);
 m1.addObjectToModel(ocl);
 m1.createLink_copy_libraryItem(ocl,c1);
 m1.createLink_borrower_myCopy(c1,u1);
 boolean expectedAnswer = true;
 boolean actualAnswer = m1.testConstraint(0);
 return actualAnswer == expectedAnswer;

myCopy borrower

 l ibraryItem copy

c1 : Copy

loanPeriod = 7

electronic = false

ocl : LibraryItem

title = 'OCL'

reserved = false

mari : User

id = 11111

m1 : Model

(c) A legal object diagram with its Java code specification

Figure 5 A class model with a Java constraint, two instances: illegal and legal, with their Java specifications

4. Experiment Design and Execution
This paper examines the effectiveness of developing model-
based constraints using two constraints languages, OCL and
Java, using their supporting tools. In this section, we elaborate
on the experiment design and its execution.

4.1. Hypotheses
By effectiveness, we refer to the quality of the resulting con-
straints, the time it takes to develop such constraints, and the
confidence developers have in these constraints. We further
establish a difference between four levels of complexity.

Our conjectures regarding the effectiveness of developing
constraints using the two languages using their supporting tools
were the following: We believe that there is a trade-off in speci-
fying constraints in OCL or Java. Java is more familiar, yet it

requires greater effort (in terms of the text size) to develop con-
straints; OCL, however, is less familiar, but requires less effort.
In addition, working with an Integrated Development Environ-
ment (IDE) (as in the case of JavaCL+IntelliJ) is much simpler
than working out of the checking environment (as in the case
with USE). Thus, there is a trade-off involved in using either of
the two languages and their supporting tools. This applies to the
three factors we are interested in exploring: quality, time to de-
velop the constraint, and confidence in the developed constraint.
For the statistical analysis, we formalized the hypotheses as
follows:

HComp-Factor
0 : OCLComp-Factor = JavaComp-Factor

6 Mareee et al.

Table 1 A Comparison between OCL and / JavaCL + IntelliJ

USE JavaCL + IntelliJ

Object visualization X 7

Model loading

using GUI
X

X

requires embedded

the model code

manually

Instance loading X X

Instance creation

using GUI
X 7

Instance creation

textually
X X

Instance manipulation

using GUI
X 7

Instance validation X X

Constraint selection

for validation
X X

Validation

feedback

X

visual, textual

X

textual

Constraint evaluation X 7

Syntax error

handling
7 X

Code completion 7 X

HComp-Factor
1 : OCLComp-Factor 6= JavaComp-Factor

Where Comp refers to the complexity level of either all or of
each of the levels we defined, and Factor refers to quality, time,
and confidence.

4.2. Design
In the following, we describe the variables and their measure-
ments, the subjects, and the tasks.

4.2.1. Independent Variables The first variable is the lan-
guage according to which the constraints are set. It has two
options: OCL and Java. Each of the languages is used with its
supporting framework, USE and JavaCL+IntelliJ, respectively.
The second variable is the constraint complexity. In this work,
we adopted metrics inspired by (Yue & Ali 2016). We illustrate
the metrics on the OCL constraint in Listing 1. Note that we
carried out the same analysis on the constraints specified in Java,

and the complexity level of the constraints were similar to those
of OCL.

2 C o n t e x t L i b r a r y
i n v : s e l f . l i b r a r y I t e m −> s e l e c t (n o t e l e c t r o n i c
and oclIsTypeOf (ReferenceBook)) . t i t l e −>f o r A l l (t

| s e l f . l i b r a r y I t e m −> s e l e c t (oclIsTypeOf (
ReferenceBook) and t i t l e = t)−> c o l l e c t (oclAsType (
Book)) . numberOfCopy−>sum () >=3)

Listing 1 An OCL constraint

1. Nesting level (Mnl) is defined as the maximum number of
nested sub-queries within a main query. This is calculated
as follow. The nesting level of the main query is 0; its
immediate nested sub-query is 1; and the nesting level of
each sub query is the nesting level of the upper sub query
plus 1. For the OCL constraint in Listing 1, Mnl = 1.

2. Composition level (Mcomps) is the maximum number of
applications of OCL operations from a context class on the
result of previous inner operations. For the OCL constraint
in Listing 1, Mcomps = 2.

3. Number of traversals (Mtr) is the number of navigations
via the association ends or the operator from a context class
to the constraint target class. For example, for the OCL
constraint in Listing 1, Mtr = 2.

4. Maximum number of all OCL complex operators (MOp).
For the OCL constraint in Listing 1, MOp = 9.

5. Number of different OCL operations (MDOP): For the
OCL constraint in Listing 1, MDOP = 6.

6. Number of clauses (Mcl) is defined as the total number of
clauses required in a constraint specification. A clause is
an OCL expression supported by a Boolean operator. For
the OCL constraint in Listing 1, Mcl = 4.

Based on these metrics, we ordered the constraints sequentially
and classified the constraints according to four complexity lev-
els, similar to our previous study (Maraee & Sturm 2020).

4.2.2. Dependent Variables

– The first dependent variable is the quality of a constraint.
– The second dependent variable is the time it takes to de-

velop a constraint.
– The third dependent variable is the confidence that a sub-

ject has in the developed constraint.

We also checked the perception of the subjects with respect to
the following:

– The suitability of the language (OCL and Java) for devel-
oping constraints;

– The ease of developing the constraints;
– The ease of checking the constraints;
– The efficiency of developing the constraints;
– The efficiency of checking the constraints;
– The use of the tools for finding errors; and
– The overall satisfaction of working with the tools.

Constraints Specification Via Tool Support 7

4.2.3. Dependent Variables For checking the quality,
we prepared a set of instances that either satisfy (legal
instances) or violate the constraints (illegal instances). The
number of instances in general and the number of legal and
illegal instances in each constraint is different, dependent
on the complexity of the constraint. Table 2 shows for each
constraint the number of legal and illegal instances. Constraint 3
self.status=UserStatus::ACTIVE implies self.loan.

fine->asSet()->forAll(fine | fine.paid) includes
the implies operation. Therefore, there are three possible
legal instances: an instance where the two statements of the
constraint are satisfied; an instance where the first statement of
the constraint is satisfied (i.e., an instance with an active user);
and instance where both statements are not satisfied (an inactive
user who has not paid his fines). The only illegal instance is
an instance with an active user who has not, however, paid his
fines. Hence, for this constraint we created three legal instances
and one illegal instance with similar consideration as with the
other constraints.

Table 2 The number of legal and illegal instances for each
constraint

Constraint #Legal instances #Ilegal instances

1, 2, 4, 9, 10, 11 1 1

3 3 1

5 2 2

6 3 1

7 1 2

8 3 1

12 3 2

Constraints Evaluation For each constraint, we calculated the
ratio of the correct identification of the object diagrams given
for that constraint. Thus, we actually measured the precision
and recall used in information retrieval and data science for
evaluating classifiers (Manning et al. 2008). In our case, an OCL
constraint can be considered as a binary classifier. Precision is
the fraction of retrieved (accepted) documents (instances) that
are relevant (legal instances). Recall is the fraction of relevant
documents (legal instances) that are retrieved (accepted). These
metrics are calculated according to the following

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Where true positive (TP) is the number of retrieved rele-
vant items (accepted legal instances), false positive (FP) is the
number of irrelevant retrieved items (accepted illegal instances),

and false negative (FN) is the number of non-retrieved rele-
vant items (rejected legal instances). Table 3 summarizes these
notions (Manning et al. 2008).

We demonstrate the precision and recall metrics with respect
to constraint 8 in the experiment: In case a Library Item is not
reserved, then it has at least one non-electronic Copy residing
in an open Stack, whose OCL specification appears in Listing 2.

c o n t e x t L i b r a r y I t e m
2 i n v c o n s t r a i n t _ 8 :

(n o t r e s e r v e d) i m p l i e s s e l f . copy−> s e l e c t (n o t
e l e c t r o n i c) . s t a c k−> s e l e c t (open)−> s i z e () >=1

Listing 2 The OCL Specification of Constraint 8

Figure 6 presents instances for checking constraint 8, where
Figure 6a and 6b present legal instances, and Figure 6c presents
an illegal instance. Indeed, the OCL constraint in Listing 2
accepts the two legal instances in Figure 6 and rejects the il-
legal one. Hence, TP = 2, FP = 0, FN = 0. Therefore,
Precision = 2

2+0 = 1 and Recall = 2
2+0 = 1.

A solution that replaces the operator implies in the OCL

constraint in Listing 2 by the operator and as shown in List-
ing 3 yields a constraint that still accepts the legal instance in
Figure 6a, rejects the illegal instance in Figure 6c, but also re-
jects the legal instance in Figure 6b. Hence, TP = 1, FP = 0,
FN = 1, Precision = 1

1+0 = 1 and Recall = 1
1+1 = 1

2 .

c o n t e x t L i b r a r y I t e m
2 (n o t r e s e r v e d) and s e l f . copy−> s e l e c t (n o t e l e c t r o n i c)

. s t a c k−> s e l e c t (open)−> s i z e () >=1

Listing 3 The revised OCL Specification of Constraint 8

We also considered the time it took to specify the constraints,
as measured by the subjects themselves and the confidence they
had in their specified constraints, using a 7-point Likert scale.
For the various perceptions, we used a 5-point Likert scale, and
asked the subjects to list negative and positive issues.

4.2.4. Subjects The subjects of the experiment were third
year students taking the course "Analysis and Design of Soft-
ware Systems." The course covers the analysis, design, and im-
plementation of software based on the object-oriented paradigm.
During the course, the subjects learned the concept of modeling,
and in particular the use of a class diagram. In addition, they
learned OCL, emphasizing invariants in class diagrams, and
learned how to write constraints in Java. They also practiced
class diagrams and writing constraints in both OCL and Java, us-
ing the same tools used in the experiment. The students had pre-
vious experience with Java and other programming languages,
and used these as part of the course. Some of the students al-
ready had work experience in the software industry. Recruiting
the students was done on a voluntary basis. Nevertheless, they
were encouraged to participate in the experiment through the
offer of additional bonus points for the course grade, based on
their performance. Before recruiting the students, we sought
and received approval from the department’s ethics committee.

4.2.5. Task We designed the experiment using one fac-
tor—the language (and its supporting tool)—so that each

8 Mareee et al.

Table 3 Contingency Table

legal instance illegal instance

accepted by the constraint true positives (tp) false positives (fp)

rejected by the constraint false negatives (fn) true negatives (tn)

c1:Copy

electronic=false

s1:Stack

open=true

ocl:Book

title='OCL'

reserved=false

copy stackcopylibraryItem

(a) A legal instance that satisfies constraint 8

c1:Copy

electronic=false

s1:Stack

open=false

ocl:Book

title='OCL'

reserved=true

copy stackcopylibraryItem

(b) A legal instance that satisfies constraint 8

c1:Copy

electronic=false

s1:Stack

open=false

ocl:Book

title='OCL'

reserved=false

copy stackcopylibraryItem

(c) An illegal instance

Figure 6 Instances for checking constraint 8

student would have enough time to develop the set of con-
straints. The experiment form consisted of three parts: (1) a
pre-questionnaire, checking the background and knowledge of
the subjects; (2) using one language, the subjects received a
class diagram of a Library Management system (as appears in
Appendix A), and were asked to write 12 constraints based on
natural language specification. The constraints were ordered
in ascending order of difficulty (see Appendix B). For each
constraint, they were asked to mark the development time and
their confidence in its correctness; (3) the last part of the form
reflected upon the subjects’ perception of the language and the
tool that they had worked with. As part of the experiment, the
subjects received an electronic copy of the model, either in USE
or in Java, so that they could work with it during the experiment.
They were encouraged to develop tests in the form of object
diagrams for both JavaCL and USE. To do so, they either cre-
ated instances using JavaCL when specifying the constraints in
Java, or using SOIL when specifying the constraints in OCL. To
check the validity of the instances, they used JavaCL utility and
the validate feature in USE.

4.2.6. Execution The execution of the experiment took
place in a special session that lasted between 2-3 hours (sub-
jects were free to leave whenever they wished). The session
took place in several labs equipped with Lenovo M900 Desktop
(ThinkCentre - Type 10FH) with i5-6500 CPU and 16GB RAM.
Both Intellij and USE were installed on all computers. A few
students worked on their own laptops, which already had Intellij
and USE installed. The assignment of the subjects to the groups

(i.e., through the different forms) was at random (i.e., following
the sitting arrangement in the labs). The distribution of groups
was as followed: Form A, in which the subjects were using
OCL and USE, was assigned to 49 subjects. Form B, in which
the subjects were using JavaCL+IntelliJ, was assigned to 46
subjects. The students downloaded the electronic copy via the
course website, and submitted their outcomes via a submission
system, as they do with their regular coursework. No communi-
cation between the students were allowed, so as to ensure that
the experiment was as controlled as possible. It should be noted
that submission was not anonymous; nevertheless, the outcomes
were checked automatically without referring to the students’
details.

5. Experiment Results
In analyzing the results, we first checked the homogeneity be-
tween the two groups, using the pre-task questionnaire which
referred to the subjects’ background and knowledge. The ques-
tionnaire consisted of questions related to the subjects’ famil-
iarity with class and object diagrams, and with OCL and Java
and their supporting tools. We also checked the differences
between their GPAs. As all measures except for the GPA are
ordinal, we applied the Mann-Whitney test. For the GPA, we
checked whether it deviated from the normal distribution, and
then applied the T-test. Overall, no significant differences were
found among the groups (see Table 4). Nevertheless, subjects
who were assigned to OCL/USE reported a lower degree of
familiarity with OCL, and the subjects assigned to Java/JavaCL

Constraints Specification Via Tool Support 9

reported limited knowledge about the specific framework. This
was statistically significant.

Before analyzing the results, we examined the descriptive
statistics and found that two of the constraints were of low
quality. That is to say, all the measures were below 0.7 in both
OCL with USE and JavaCL with IntelliJ. We attribute this to
the way the constraints were introduced. Thus, we decided to
omit these constraints (4 and 9) from our analysis. Table 5
presents the results with regard to quality, time, and confidence.
The numbers in bold indicate the best results in each category.
The rightmost column indicates the statistical significance of
the results. Statistically significance differences are highlighted
using an asterix, to denote sig<0.05. We calculated this using
the Mann-Whitney test as the data had deviated from the normal
distribution (following the Shapiro-Wilk test we performed). In
general, time and confidence were in favor of Java, for which
only some of the results were statistically significant. On the
other hand, the quality measures of precision and recall were in
favor of OCL and many of them were of statistical significance.

Based on these results we rejected the following hypotheses:

HAll-Time
0 : OCLAll-Time = JavaAll-Time

HAll-Precision
0 : OCLAll-Precision = JavaAll-Precision

HAll-Recall
0 : OCLAll-Recall = JavaAll-Recall

HLevel1-Precision
0 : OCLLevel1-Precision = JavaLevel1-Precision

HLevel2-Time
0 : OCLLevel2-Time = JavaLevel2-Time

HLevel2-Recall
0 : OCLLevel2-Recall = JavaLevel2-Recall

HLevel3-Recall
0 : OCLLevel3-Recall = JavaLevel3-Recall

The statistical significant differences in the time it took to
develop the constraints in favor of Java and JavaCL originate
from the time it took to develop the constraints at the second
level. The statistical significant differences in the quality in
favor of OCL and USE span across all levels, except for the
fourth level.

Table 6 presents the results of the post-task questionnaire,
which reflected on the subjects’ perceptions. The results indi-
cated that both languages fitted the task of specifying constraints.
Using JavaCL and IntelliJ was perceived as easier and more
effective for specifying the constraints, resulting in higher lev-
els of satisfaction. On the other hand, using OCL and USE
was perceived to be easier and more effective for checking the
constraints and for finding mistakes.

We further analyzed the comments written by the subjects.
For that purpose, we performed a thematic analysis, which is
presented in Table 7. The results of that analysis are aligned
with the post-questionnaire results. Java and IntelliJ are known
to the students; thus they indicated that it was easy to write
the constraints. Nevertheless, the utilities for checking the con-
straints were challenging. OCL and USE were perceived as
difficult-to-write constraints; however, they were perceived pos-
itively with regard to checking the constraints and identifying
semantic errors.

6. Discussion
The results indicate that using OCL and USE achieved con-
straints of better quality than when using JavaCL and IntelliJ.

p u b l i c b o o l e a n c h e c k C o n s t r a i n t _ 1 (Model model) {
2 i n t c o u n t =0 ;

f o r (Loan l o a n : l o a n s) {
4 i f (l o a n . g e t F i n e () . p a i d&&l o a n . g e t F i n e () ==

t h i s) {
c o u n t ++;

6 }}
r e t u r n c o u n t == l o a n s . s i z e () ;

8 }

Listing 5 A student Java solution for Constraint 1

This is particularly relevant in accepting legal instances (recall)
and is less noticeable in rejecting some of the legal instances
(precision). In an attempt to understand these results, we per-
formed a qualitative analysis comparing the types of errors in
both settings. For this purpose, we chose three constraints, 1,6,
and 11. These are presented in Listing 4.

C o n s t r a i n t 1 . The number o f Loans f o r which a F ine
was p a i d i s e q u a l t o t h e number o f Loans
a s s o c i a t e d wi th t h e same F ine .

2

C o n s t r a i n t 6 . Only an Academic can borrow a r e s e r v e d
J o u r n a l .

4

C o n s t r a i n t 1 1 . The number o f e d i t i o n s o f a Book i s
e q u a l t o t h e number o f Books wi th t h e same
t i t l e .

Listing 4 Constraints 1, 6, and 11

Constraint 1. Using OCL and USE achieved better re-
sults than when using JavaCL, and the differences in pre-
cision were statistically significant. Although there is
no statistical significance in favor of OCL with respect
to recall, the results in the recall metric are also better
than Java. The solution in Java includes one expression
return numberOfLoan==loans.size() . We therefore ex-

pected that there would be no differences between the two
languages. However, 21% of the subjects (10 of 46) used un-
necessary loop and control expressions to iterate over the loan
collection when using JavaCL, compared to OCL where only
6% of the subjects (3 of of 49) used collection operators such
as select and forall . In addition, 8 subjects who applied
loops in Java had errors in writing the constraint and each got
0.55 in precision metrics. An example of a Java solution appears
in Listing 5.

Constraint 6. In general, developing this constraint using
OCL has a notable advantage over JavaCL and it has a recall
difference of statistical significance. The constraint requires
that only Academic can borrow a reserved Journal. Indeed,
the constraint is quite complex, as it is required to capture the
implication relation between a reserved journal and academics:
(reserved implies self.copy.borrower->

asSet()->forAll(oclIsTypeOf(Academic)). Using
OCL, the subjects were unable to capture this dependency. An-
alyzing 19 (39%) such answers showed that the written con-
straints specified that students can loan only books or a jour-
nal can be loaned only by an academic as shown in the OCL

10 Mareee et al.

Table 4 Pre-task questionnaire results. The triplets indicate the number of answers we received, the average of these answers, and
the standard deviation. The Sig. column indicates the significance of the statistical test. The numbers in bold font indicate the best
results. The asterixes in the Sig. column indicate statistically significant differences.

Form A - OCL Form B - Java Sig

Class Diagram Familiarity 47, 3.85, 0.73 45, 3.89, 0.78 0.649

Object Diagram Familiarity 46, 3.6, 0.77 45, 3.64, 0.80 0.446

OCL/Java Familiarity 47, 3.40, 0.64 45, 3.95, 0.74 0.00*

USE/Java Framework Familiarity 48, 3.40, 0.64 42, 3.16, 1.29 0.724

Participation in Tutorial 44 43 0.944

Homework Involvement 47, 4.38, 0.67 45, 4.29, 0.66 0.453

GPA 47, 81.63, 4.98 44, 81.66, 5.12 0.981

Table 5 Constraints Development Results of the Library Management System. The triplets indicate the number of answers we
received, the average of these answers, and the standard deviation. The Sig. column indicates the significance of the statistical test.
The bold font numbers indicate the best results. The asterixes in the Sig. column indicate statistical significant differences.

Level Variable Form A - OCL Form B - Java Sig.

Total

Time 46, 12.05, 4.11 46, 10.45, 3.81 0.028*

Precision 49, 0.91, 0.11 46, 0.84, 0.13 0.004*

Recall 49, 0.89, 0.11 46, 0.80, 0.13 0.001*

Confidence 46, 5.22, 1.17 45, 5.42, 0.88 0.494

Level 1

Time 46, 12.14, 6.84 46, 11.78, 8.25 0.534

Precision 49, 0.98, 0.07 46, 0.92, 0.16 0.048*

Recall 49, 0.98, 0.07 46, 0.93, 0.13 0.114

Confidence 46, 5.86, 1.13 45, 5.74, 1.08 0.544

Level2

Time 46, 12.49, 7.29 46, 8.77, 4.04 0.007*

Precision 48, 0.90, 0.18 46, 0.84, 0.27 0.42

Recall 48, 0.86, 0.23 46, 0.75, 0.27 0.01*

Confidence 46, 5.16, 1.57 45, 5.63, 1.33 0.25

Level 3

Time 46, 9.20, 4.33 45, 8.16, 4.42 0.135

Precision 48, 0.92,0.19 45, 0.86, 0.24 0.191

Recall 48, 0.92, 0.20 45, 0.83, 0.24 0.006

Confidence 45, 5.06, 1.49 44, 5.39, 1.28 0.346

Level 4

Time 42, 13.82, 7.58 46, 11.22, 4.90 0.239

Precision 41, 0.78, 0.29 46, 0.72, 0.24 0.071

Recall 41, 0.75, 0.27 46, 0.69, 0.24 0.179

Confidence 41, 4.53, 1.69 45, 4.95, 1.32 0.196

constraint in Listing 6. Hence, their constraints rejected legal
instances that included students with loaned reserved journals.

Therefore, their recall scores were 0.50, while most of the preci-
sion scores were 1.

Constraints Specification Via Tool Support 11

Table 6 Post-task questionnaire results. The triplets indicate the number of answers received, the average of these answers, and
the standard deviation. The Sig. column indicates the significance of the statistical test. The numbers in bold font indicate the best
results. The asterixes in the Sig. column indicate statistically significant differences.

Form A - OCL Form B - Java sig

The language fits for con-
straints specification

47, 4.09, 0.69 43, 4.07, 0.8 0.993

Using the tool for specify-
ing constraints was easy

46, 2.57, 0.96 43, 3.74, 0.85 0*

Using the tool for checking
constraints was easy

47, 3.00, 1.29 42, 2.71, 1.09 0.274

I manage to write the con-
straints effectively

46, 3.04, 0.76 43, 3.70, 0.77 0*

I manage to check the con-
straints effectively

47, 3.04, 1.16 42, 2.64, 0.98 0.111

The tool helped in identify-
ing mistakes

47, 3.51, 1.04 44, 2.83, 0.76 0.001*

I was satisfied while work-
ing with the tool

47, 2.55, 1.12 43, 3.33, 0.97 0.001*

Table 7 Thematic Analysis of the Subjects’ Comments

Form A - OCL Form B - Java

Positive

The tool support object visualization (9) Java familiarity (9)

Help in error identification (6) Easy to write constrains (17)

Eady checking (17)

Negative

No information on syntax error (12) Difficult to understand the model (3)

Cumbersome (13) Difficult to check the constraint (25)

Object creation is cumbersome (7)

Using Java, 26 subjects (57%) experienced this kind of error,
compared to 19 in OCL. Four subjects received a recall score
of 0.33 due to logical errors, whereas in OCL no such errors
occurred. Listing 7 presents such a Java solution.

OCL:
2 c o n t e x t J o u r n a l i n v c o n s t r a i n t _ 6 :

s e l f . copy−>a s S e t ()−> f o r A l l (c : Copy | c . bor rower−>
a s S e t ()−> f o r A l l (u : User | u . oclIsTypeOf (Academic
)))

Listing 6 OCL student solutions for Constraint 6

Constraint 11. This constraint belongs to Level 4 and there
are no statistically significant differences between the two lan-
guages. However, it is still noticeable that the subjects were
more successful when using OCL. Below, we analyze the perfor-
mance of this constraint. This is a very complex constraint that
requires complex navigation, including using the type operator
oclIsTypeOf. Using OCL, 22 subjects (45%) received 1 in both
metrics; 12 of the 35 subjects (34%) who solved the constraint

wrote a constraint that rejected all instances, so they received
zero in recall and precision metrics. Most of the mistakes were
type mistakes, where the subjects ignored the oclIsTypeOf oper-
ation or used the operation oclIAsType instead.

J ava :
2 C l a s s J o u r n a l { . . .

p u b l i c b o o l e a n c h e c k C o n s t r a i n t _ 6 (Model model) {
4 f o r (Copy copy : t h i s . c o p i e s) {

f o r (HashMap . Ent ry <Loan , User > e n t r y : copy
. g e t B o r r o w e r s () . e n t r y S e t ()) {

6 i f (! (e n t r y . g e t V a l u e () i n s t a n c e o f
Academic))

r e t u r n f a l s e ;
8 }

}
10 r e t u r n t r u e ;

}
12 . . . }

Listing 7 Java student solutions for Constraint 6

Analyzing the answers in Java shows that 20 subjects (45%)

12 Mareee et al.

c l a s s L i b r a r y { . . .
2 p u b l i c b o o l e a n c h e c k C o n s t r a i n t _ 1 1 (Model model) {

b o o l e a n good = t r u e ;
4 HashMap< S t r i n g , I n t e g e r > t i t e l s = new HashMap

< >() ;
f o r (L i b r a r y I t e m l : l i b r a r y I t e m s) {

6 i f (l i n s t a n c e o f Book) {
i f (t i t e l s . c o n t a i n s K e y (l . t i t l e)) {

8 I n t e g e r v a l = t i t e l s . g e t (l . t i t l e
) ;

t i t e l s . r e p l a c e (l . t i t l e , va l , v a l
+1) ;

10 }
e l s e {

12 t i t e l s . p u t (l . t i t l e , 1) ;
}

14 }
}

16 f o r (L i b r a r y I t e m l : l i b r a r y I t e m s) {
i f (l i n s t a n c e o f Book) {

18 i f (((Book) l) . n u m b e r O f E d i t i o n s !=
t i t e l s . g e t (l . t i t l e)) {

good = f a l s e ;
20 }

}
22 }

24 r e t u r n good ;
}

26 . . .
}

Listing 8 A student Java solution for constraint 11

received 1 in both metrics; 20 of the 44 subjects (45%) wrote
a constraint that rejected all instances and hence received zero
in recall and precision metrics. Most of the Java solutions used
unnecessarily complex data structures, and unnecessarily nested
control expressions. Another issue is that 66% of the answers
(29 out of 44) in Java used Library as the context class instead
of Book, whereas in OCL 94% of the solutions used Book as the
class context. Using Library as a context significantly increased
the use of control expressions including nested expressions and
complex data structures (such as HashMap); 18 out of the 20
subjects that received zero in the recall and precision metrics
used Library as a context. Listing 8 shows the solution of one of
the students in Java. In OCL, 94% of solutions did not contain
nested expressions (only 6 solutions used Library as context),
and 86% of the correct answers used Book as the context class.

Below is a summary of the types of errors we found following
the analysis of the students’ answers:

1. Using nested loops and unnecessary data structures: Stu-
dents used unnecessary control expressions and data struc-
tures which made their code more complex. A significant
proportion of the students did not use the rich API of the
collection framework. Table 8 presents the usage of unnec-
essary control expressions and data structures in several
constraints,

2. Obsessive use of temporal variables: Using local variables
is not a bad practice per se, but overuse is considered bad

design (bad smell) 1. The overuse of temporal variables by
the students increased the complexity of the code and also
led to logical errors.

3. Incorrect context (class): Choosing the right context for a
constraint is important, and requires considering the object
which is responsible for carrying this constraint. Many of
the students defined the constraints in the wrong classes
which led to the definition of complex constraints (due
to long navigation paths or a lot of iterations). The next
column in Table 9 presents the right "gold" contexts for
the constraints in the first column. The last two columns
present the choice of the context in the second column by
the students in both languages, Java and OCL. It is notable
that there are significant advantages for using OCL. For the
rest of the constraints, we found no significant differences,
even though OCL had advantages in all.

4. Defensive programming approach: A lot of the stu-
dents’ codes defensively included null checks. Although
null checks are essential, they are unnecessary for non-
nullable2 reference types. Most reference types are derived
from association roles. Association roles whose minimum
multiplicity constraints are greater than one define non-
nullable reference types. Hence, there is no need for the
null checking of those references.

Table 8 Percentage of use of unnecessarily control expres-
sions, local variables and data structures in several constraints

Constraint Java OCL

Constraint 1 0.21 0.06

Constraint 2 0.36 0.10

Constraint 3 0.47 0.08

Constraint 5 0.32 0.08

Constraint 6 0.32 0.16

Constraint 7 0.32 0.12

Constraint 8 0.36 0.10

Constraint 11 0.68 0.07

In summary, the differences between the two languages (i.e.,
imperative object-oriented paradigm vs. declarative paradigm)
affected the way the subjects solved the constraints. Writing the
constraints declaratively, using object navigation, collections,
collection operations, and Boolean-valued expressions, shifted
the way the subjects formulated (programmed) the constraints.
Subjects who wrote the constraints in Java tended to use local
variables and control expressions even with constraints that did
not require this, such as constraint 1. It seems that the subjects

1 Indeed, one of the refactoring transformations is inline a temporary variable
which removes a temporary variable and replaces it with its value instead.

2 Non-nullable variables must always contain a value and cannot be null

Constraints Specification Via Tool Support 13

Table 9 Choosing the context in the two languages for the
constraints 2, 3, 5 and 11 (have a significant difference of
more than 5%)

Constraint Context Java OCL

Constraint 2 Book 0.85 0.98

Constraint 3 Student 0.93 0.99

Constraint 5 ReferenceBook 0.85 0.92

Constraint 11 Book 0.44 0.94

were affected by a culture that values loop and control structures,
which led to the unnecessary use of nested loops and to further
focus on implementation aspects. We noticed these phenomena
in our previous research where subjects wrote the constraints
manually without using tools (Maraee & Sturm 2020). By
using tools in this study, syntactic errors that manifested in
the previous experiment did not appear here, and using the
tools to validate the constraints improved the constraint quality.
However, Java solutions still included unnecessarily complex
control expressions. Object-oriented programming itself does
not encourage this writing. On the contrary, it is a paradigm
of which an encapsulation is one of its important principles,
and it encourages writing in terms of services. But languages
like Java enable easy writing of control statements, and the
subjects tended to use them. The constraints in Java (JavaCL)
were written at the modeling stage, before the development
phase, in which design decisions, and architecture decisions are
made. Hence, the written constraints were of low quality, and
violated principles of the programming language itself as we
have indicated.

Comparing the results to those of our previous experiment
(Maraee & Sturm 2020), we determined that the two are aligned
to a large extent. One noticeable difference is in the confidence
of the subjects with respect to the developed constraints, which
were increased when using the tools. Another difference mani-
fested in the time it took to develop the constraint. In that sense,
using the tool for validating the constraints led to longer devel-
opment time. The longer development time makes sense, as the
subjects used the tools to check their solutions. For the quality
of the constraints, there were no consistent differences between
the two experiments. However, when referring to OCL, it seems
that using USE to develop constraints improved their quality.
Although the improvement seemed to be of limited significance,
we believe that when models become more complex, the use of
tools is inevitable.

7. Threats to Validity
The results of our study need to be considered in view of sev-
eral threats to validity categorized by (Wohlin et al. 2012) as
construct, internal, conclusion, and external validity.

Construct validity threats, which concern the relationships
between theory and observation, are mainly due to the method
used to assess the outcomes of the tasks. In this experiment,

we examined two languages and their supporting tools for spec-
ifying constraints. It is difficult to separate the effects of the
language and of the tool. The experiment confirms the results
of the previous one regarding the language used for developing
the constraints. We further refer to the subjects’ comments in
explaining the differences from the tools’ point of view as well.

Internal validity threats, which concern the external factors
that might affect the dependent variables, may affect the results
due to individual factors, such as familiarity with the domain,
the degree of commitment by the subjects, and the training
level that the subjects underwent. These factors are neutralized
by the experiment design that we chose. Specifically, both
groups had similar conditions and performed the same task.
Even though participation in the experiment was on a voluntary
basis, the compensation of bonus points based on the students’
performance increased the motivation and commitment of the
subjects as they took advantage of the entire time allocated for
the experiment.

Conclusion validity threats concern the relationship be-
tween the treatment (the constraint language and supporting
tool) and the outcome. We followed the various assumptions of
the statistical tests when analyzing the results. As the checking
of the quality of the constraints was carried out automatically,
the outcomes were calculated objectively. Furthermore, the
results of the post-questionnaire also re-confirm the statistical
analysis.

External validity concerns the generalization of the results.
The effect of using the tools should be taken with caution as
we experimented with only two possible tools. Thus, the gener-
alization is limited. Nevertheless, the results indicate that the
tools should focus and provide proper support for the main task
needed to be performed. In our case, the task was to achieve
high-quality constraints, and the tools were required to support
that aspect. In particular, they should facilitate the generation of
valid and invalid instances, check the constraint validity, and in
the case of problems indicate what these problems are. Needless
to say, the usability of the tools should be examined; and in our
experiment, we overlooked this aspect.

8. Summary
In this study, we examined the effectiveness of using a constraint
language with its supporting tool in developing model-based
constraints. We found out that in terms of quality, the use of
OCL and USE outperforms the use of a Java framework along
with an IDE support. We found that the utilities for checking the
constraints encouraged the subjects to improve their qualities.
Nevertheless, the tool’s usability should be further examined; in
particular, the means for indicating syntax errors and the work-
ing environment. This paper summarizes a series of experiments
that we conducted in order to examine the process of working
with model-based constraints. All experiments indicated that
a declarative language such as OCL better serves the purpose
of achieving constraints with proper quality. Unsurprisingly, ar-
riving at these constraints takes much more time and engenders

14 Mareee et al.

lower levels of confidence, as such languages are less famil-
iar. Thus, further education on declarative languages should be
provided along with a rich set of tools to support their usage.
In the future, we plan to look for means to further stimulate
modelers to specify constraints by means of recommending or
automatically generating the relevant constraints.

References

Agner, L. T., Lethbridge, T. C., & Soares, I. W. (2019). Student
experience with software modeling tools. Software & Systems
Modeling, 18(5), 3025–3047.

Ali, S., Iqbal, M.-Z., Arcuri, A., & Briand, L.-C. (2013). Gen-
erating test data from ocl constraints with search techniques.
IEEE Transactions on Software Engineering, 39(10), 1376–
1402.

Ali, S., Yue, T., Iqbal, Z., & Panesar-Walawege, R.-K. (2014).
Insights on the use of ocl in diverse industrial applications.
In International conference on system analysis and modeling
(pp. 223–238).

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2010). On
Challenges of Model Transformation from UML to Alloy.
Software and Systems Modeling, 9(1), 69–86.

Auer, M., Meyer, L., & Biffl, S. (2007). Explorative uml
modeling-comparing the usability of uml tools. In 9th inter-
national conference on enterprise information systems- iceis
2007 (pp. 466–473).

Balaban, M., Bennett, P., Doan, K.-H., Georg, G., Gogolla, M.,
Khitron, I., & Kifer, M. (2016). A comparison of textual
modeling languages: Ocl, alloy, foml. In 16th international
workshop on ocl and textual modeling, models (2016).

Balaban, M., & Kifer, M. (2011). Logic-based model-level
software development with f-oml. In International conference
on model driven engineering languages and systems.

Briand, L. C., Labiche, Y., Yan, H.-D., & Penta, M. D. (2004).
A controlled experiment on the impact of the object constraint
language in uml-based maintenance. 20th IEEE International
Conference on Software Maintenance, 2004. Proceedings.,
380-389.

Brucker, A. D., & Wolff, B. (2008). Hol-ocl: a formal proof
environment for uml/ocl. In International conference on
fundamental approaches to software engineering (pp. 97–
100).

Burgueño, L., Vallecillo, A., & Gogolla, M. (2018). Teaching
uml and ocl models and their validation to software engi-
neering students: an experience report. Computer Science
Education, 28(1), 23–41.

Büttner, F., & Gogolla, M. (2014). On ocl-based imperative
languages. Science of Computer Programming, 92, 162–178.

Cabot, J., Clarisó, R., & Riera, D. (2014). On the verifica-
tion of uml/ocl class diagrams using constraint programming.
Journal of Systems and Software, 93, 1–23.

Cabot, J., & Gogolla, M. (2012). Object constraint language
(ocl): a definitive guide. In International school on formal
methods for the design of computer, communication and soft-
ware systems (pp. 58–90).

Carbonnelle, P. (2020). Pypl popularity of programming lan-
guage index [Computer software manual]. (Available at
http://pypl.github.io/PYPL.html)

Correa, A., Werner, C., & Barros, M. (2007). An empirical
study of the impact of ocl smells and refactorings on the
understandability of ocl specifications. In Proceedings of
the 10th international conference on model driven engineer-
ing languages and systems (p. 76–90). Berlin, Heidelberg:
Springer-Verlag.

Database Systems Group, B. U. (2020). Use: A uml-based speci-
fication environment [Computer software manual]. (Available
at http://https://sourceforge.net/projects/useocl/, Accessed: 3-
1-2020)

Demuth, B., & Wilke, C. (2009). Model and object verification
by using dresden ocl. In Proceedings of the russian-german
workshop innovation information technologies: Theory and
practice, ufa, russia (pp. 687–690).

Dix, A. (2009). Human-computer interaction. In Encyclopedia
of database systems (pp. 1327–1331). Springer US. Retrieved
from https://doi.org/10.1007/978-0-387-39940-9_192 doi:
10.1007/978-0-387-39940-9_192

Ezenwoye, O. (2019). What language? - The choice of an intro-
ductory programming language. In Proceedings - frontiers
in education conference, fie (Vol. 2018-October, pp. 1–8).
Institute of Electrical and Electronics Engineers Inc. Re-
trieved from https://ieeexplore.ieee.org/document/8658592/
doi: 10.1109/FIE.2018.8658592

Gogolla, M., Bohling, J., & Richters, M. (2005). Validating
uml and ocl models in use by automatic snapshot generation.
Software & Systems Modeling, 4(4), 386–398.

Gogolla, M., Burgueno, L., & Vallecillo, A. (2018). Model
finding and model completion with use. In Models workshops
(pp. 194–200).

Gogolla, M., Büttner, F., & Cabot, J. (2013). Initiating a
benchmark for uml and ocl analysis tools. In International
conference on tests and proofs (pp. 115–132).

Gogolla, M., Büttner, F., & Cabot, J. (2014). Ocl repository
[Computer software manual]. (Available at https://github
.com/jcabot/ocl-repository, Accessed: 2016)

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A
uml-based specification environment for validating UML and
OCL. Sci. Comput. Program., 69(1-3), 27–34. Retrieved from
https://doi.org/10.1016/j.scico.2007.01.013 doi: 10.1016/
j.scico.2007.01.013

Gogolla, M., Hamann, L., & Kuhlmann, M. (2010). Proving
and visualizing ocl invariant independence by automatically
generated test cases. In International conference on tests and
proofs (pp. 38–54).

Gogolla, M., Hilken, F., & Doan, K.-H. (2018). Achieving
model quality through model validation, verification and ex-
ploration. Computer Languages, Systems & Structures, 54,
474–511.

Gogolla, M., Kuhlmann, M., & Hamann, L. (2009). Consistency,
Independence and Consequences in UML and OCL Models.
In Proceedings of the 3rd international conference on tests
and proofs (pp. 90–104). Springer-Verlag.

Hammad, M., Yue, T., Wang, S., Ali, S., & Nygård, F. (2017).

Constraints Specification Via Tool Support 15

http://pypl.github.io/PYPL.html
http://https://sourceforge.net/projects/useocl/
https://doi.org/10.1007/978-0-387-39940-9_192
https://ieeexplore.ieee.org/document/8658592/
https://github.com/jcabot/ocl-repository
https://github.com/jcabot/ocl-repository
https://doi.org/10.1016/j.scico.2007.01.013

Iocl: An interactive tool for specifying, validating and eval-
uating ocl constraints. Science of Computer Programming,
149, 3–8.

IBM. (2019). Ibm rational software architect designer [Com-
puter software manual]. (Available at https://www.ibm.com/
developerworks/downloads/r/architect/index.html)

IBM. (2020). Eclipse papyrus [Computer software manual].
(Available at https://www.eclipse.org/papyrus/)

IEEE Spectrum. (2020). The top programming lan-
guages 2019 [Computer software manual]. (Avail-
able at https://spectrum.ieee.org/computing/software/the-top
-programming-languages-2019)

Jackson, D. (2002). Alloy: A Lightweight Object Modelling
Notation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2), 256–290.

Khaled, L. (2009). A comparison between uml tools. In
2009 second international conference on environmental and
computer science (pp. 111–114).

Khitron, I., Balaban, M., & Kifer, M. (2016). The FOML Site.
https://goo.gl/AgxmMc.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduc-
tion to information retrieval. Cambridge university press.

Maraee, A., & Sturm, A. (2019). The usage of constraint
specification languages: A controlled experiment. In Enter-
prise, business-process and information systems modeling -
20th international conference, BPMDS 2019, 24th interna-
tional conference, EMMSAD 2019, held at caise 2019, rome,
italy, june 3-4, 2019, proceedings (pp. 329–343). Retrieved
from https://doi.org/10.1007/978-3-030-20618-5_22 doi:
10.1007/978-3-030-20618-5_22

Maraee, A., & Sturm, A. (2020). Imperative vs declarative
constraint specification languages: A control experiment.
Software & Systems Modeling, in press.

Mengerink, J.-G., Noten, J., & Serebrenik, A. (2019). Em-
powering ocl research: a large-scale corpus of open-source
data from github. Empirical Software Engineering, 24(3),
1574–1609.

Nakajima, S. (2014). Using alloy in introductory courses of
formal methods. In International workshop on structured
object-oriented formal language and method (pp. 97–110).

NoMagic. (2020). Magicdraw [Computer software manual].
(Available at https://www.nomagic.com/)

Noten, J., Mengerink, J.-G. M., & Serebrenik, A. (2017). A
data set of ocl expressions on github. In Proceedings of the
14th international conference on mining software repositories
(p. 531–534). IEEE Press.

Pérez, B., & Porres, I. (2019). Reasoning about uml/ocl class
diagrams using constraint logic programming and formula.
Information Systems, 81, 152–177.

Planas, E., & Cabot, J. (2020). How are uml class diagrams built
in practice? a usability study of two uml tools: Magicdraw
and papyrus. Computer Standards & Interfaces, 67, 103363.

Portal, O. (2014). Ocl tools [Computer software manual].
(Available at http://st.inf.tu-dresden.de/oclportal/index.php
?option=com_content&view=category&id=8&Itemid=26)

Queralt, A., Artale, A., Calvanese, D., & Teniente, E. (2012).
Ocl-lite: Finite reasoning on uml/ocl conceptual schemas.

Data Knowl. Eng., 73, 1–22.
RedMonk. (2020). The RedMonk Programming Language

Rankings: January 2020 – tecosystems [Computer software
manual]. (Available at https://redmonk.com/sogrady/2020/
02/28/language-rankings-1-20/)

Richters, M., & Gogolla, M. (2002). Ocl: Syntax, seman-
tics, and tools. In Object modeling with the ocl (pp. 42–68).
Springer.

Safdar, S.-A., Iqbal, M.-Z., & Khan, M.-U. (2015). Empirical
evaluation of uml modeling tools–a controlled experiment.
In European conference on modelling foundations and appli-
cations (pp. 33–44).

Schildt, H. (2014). Java: the complete reference. McGraw-Hill
Education Group.

Software Technology Chair, T. D. (2004). Dresden ocl [Com-
puter software manual]. (Available at https://github.com/
dresden-ocl, Accessed:2016)

Störrle, H. (2013). Improving the usability of OCL as an
ad-hoc model querying language. In Proceedings of the
MODELS 2013 OCL workshop co-located with the 16th in-
ternational ACM/IEEE conference on model driven engi-
neering languages and systems (MODELS 2013), miami,
usa, september 30, 2013 (pp. 83–92). Retrieved from
http://ceur-ws.org/Vol-1092/stoerrle.pdf

Warmer, J., & Kleppe, A. (2003). The object con-
straint language: Getting your models ready for
mda (2nd ed.). Addison-Wesley. Retrieved from
https://www.safaribooksonline.com/library/view/
object-constraint-language/0321179366/

Wille, R., Soeken, M., & Drechsler, R. (2012). Debugging of in-
consistent uml/ocl models. In Proceedings of the conference
on design, automation and test in europe (p. 1078–1083). San
Jose, CA, USA: EDA Consortium.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., &
Wessln, A. (2012). Experimentation in software engineering.
Springer Publishing Company, Incorporated.

Yue, T., & Ali, S. (2016). Empirically evaluating ocl and java for
specifying constraints on uml models. Software & Systems
Modeling, 15(3), 757–781.

16 Mareee et al.

https://www.ibm.com/developerworks/downloads/r/architect/index.html
https://www.ibm.com/developerworks/downloads/r/architect/index.html
https://www.eclipse.org/papyrus/
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://goo.gl/AgxmMc
https://doi.org/10.1007/978-3-030-20618-5_22
https://www.nomagic.com/
http://st.inf.tu-dresden.de/oclportal/index.php?option=com_content&view=category&id=8&Itemid=26
http://st.inf.tu-dresden.de/oclportal/index.php?option=com_content&view=category&id=8&Itemid=26
https://redmonk.com/sogrady/2020/02/28/language-rankings-1-20/
https://redmonk.com/sogrady/2020/02/28/language-rankings-1-20/
https://github.com/dresden-ocl
https://github.com/dresden-ocl
http://ceur-ws.org/Vol-1092/stoerrle.pdf
https://www.safaribooksonline.com/library/view/object-constraint-language/0321179366/
https://www.safaribooksonline.com/library/view/object-constraint-language/0321179366/

A. The Library System Class Diagram
In Figure 7 we show the class diagram of the Library System
that was provided to the subjects.

B. The Constraints
In the following, the constraints specified in natural language
are ordered by their difficulty and the way they were introduced
to the subjects.

Complexity Level 1

Constraint 1. The number of Loans for which a Fine was
paid is equal to the number of Loans associated with the
same Fine.

Constraint 2. The number of Copies associated with a
Book are equal to the number of Copies indicated in the
Book itself.

Constraint 3. An active Student paid all her Fines.

Complexity Level 2

Constraint 4. The amount of a Fine over Loans is equal
or lower than the sum of all defined Fines (LibraryItem.fine
of the copies associated with these Loans).

Constraint 5. For each Reference Book, there is at least
one non-electronic.

Constraint 6. Only an Academic can borrow a reserved
Journal.

Complexity Level 3

Constraint 7. For each User, the currently borrowed
copies (myCopy) will not appear in his ordered copies
(requestedCopy) and the list of the currently borrowed
copies (myCopy) is included within her entire set of loans
(allCopy).

Constraint 8. In case a Library Item is not reserved, then
it has at least one non-electronic Copy residing in an open
Stack.

Constraint 9. The Copies associated with a Fine includes
all Copies associated with the Loans associated with that
Fine.

Complexity Level 4

Constraint 10. All the Loans associated with a Fine are
of the same User.

Constraint 11. The number of Editions of a Book is
equal to the number of Books with the same title.

Constraint 12. A Reference Book has at least non-
electronic copies of all its editions.

About the authors
Azzam Maraee is on the faculty of the Information System de-
partment at Achva Academic College, and an adjunct faculty
of the Computer Science department at Ben-Gurion University
of the Negev. His research focuses on software engineering,
with emphasis on modeling: model correctness and reason-
ing, modeling languages, and model patterns. Contact him at
mari@cs.bgu.ac.il.

Eliran Nachmani is a Masters degree student in the Soft-
ware and Information Systems Engineering department at
Ben-Gurion University of the Negev. Contact him at
nachamni@post.bgu.ac.il.

Arnon Sturm is on the faculty of the Software and Informa-
tion Systems Engineering department at Ben-Gurion University
of the Negev. His research interests focus around models for
various purposes including software development ranges from
end-user programming, database applications, to complex multi-
agent systems, and knowledge representation and management.
Much of his work has been on human aspects and the benefits
of using models. Contact him at sturm@bgu.ac.il.

Constraints Specification Via Tool Support 17

mailto:mari@cs.bgu.ac.il
mailto:nachamni@post.bgu.ac.il
mailto:sturm@bgu.ac.il

Figure 7 The Library System Class Diagram

18 Mareee et al.

