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ABSTRACT We propose a model-based characterization of fine-grained access control (FGAC) authorization for SQL queries.
More specifically, we define a predicate AuthQuery() that represents whether a user is authorized by an FGAC-policy to
execute a SQL query on a database. It is characteristic of FGAC-policies that access control decisions depend on dynamic
information, namely whether the current state of the system satisfies some “authorization constraints”. In our proposal, FGAC-
policies are modeled using a dialect of SecureUML, and authorization constraints are specified using the Object Constraint
Language (OCL). To illustrate our definition of the predicate AuthQuery(), we provide examples of authorization decisions
for different SQL queries, attempted by different users, in different scenarios, and with respect to different FGAC-policies.
Interestingly, the availability of mappings from OCL to SQL opens up the possibility of implementing AuthQuery() within the
database and, consequently, of enforcing FGAC-policies following a model-driven approach.
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1. Introduction

The ever-growing development and use of information and com-
munication technology is a constant source of security and relia-
bility problems. Clearly, better ways of developing software sys-
tems and approaching software engineering as a well-founded
engineering discipline is needed.

Model-Driven Engineering is a software development
methodology that focuses on creating models of different views
of a system, and then automatically generating different system
artifacts from these models, such as code and configuration
data. Model-Driven Security (MDS) (Basin et al. 2006, 2011)
is a specialization of model-driven engineering for developing
secure systems. In a nutshell, designers specify system models
along with their security requirements and use tools to automat-
ically generate security-related system artifacts, such as access
control infrastructures.
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SecureUML (Lodderstedt et al. 2002) is ‘de facto’ model-
ing language used in MDS for specifying fine-grained access
control policies (FGAC). These are policies that depend not
only on static information, namely the assignments of users and
permissions to roles, but also on dynamic information, namely
the satisfaction of authorization constraints in the current state
of the system. Typically, authorization constraints are specified
in SecureUML models using the Object Constraint Language
(OCL) (OCL 2014).1

The Structure Query Language (SQL) (SQLISO 2011) is a
special-purpose programming language designed for managing
data in relational database management systems (RDBMS). Its
scope includes data insert, query, update and delete, and schema
creation and modification. For data access control, standard
RDBMS do not easily support FGAC policies. In fact, to the
best of our knowledge, no formal characterization of FGAC
authorization for SQL queries has been proposed yet. In this pa-
per, we aim to fill this critical gap by providing a model-based
characterization of FGAC authorization for a large class of
SQL queries. Concretely, we define a predicate AuthQuery()

1 The context of an authorization constraint in a SecureUML model is each
policy’s underlying data model. As such, (history-based) SoD constraints are
not easily modelled using SecureUML.
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that represents whether a user is authorized to execute a SQL
query, according to an FGAC-policy specified in a SecureUML
model. To illustrate our definition, we provide examples of
authorization decisions for different SQL queries, attempted
by different users, in different scenarios, and with respect to
different FGAC-policies. We envision the possibility of im-
plementing the predicate AuthQuery() in SQL —by making
use of the mapping OCL2PSQL from OCL to SQL (Nguyen
& Clavel 2019)— and, consequently, of being able to enforce
FGAC-policies in SQL databases, following a model-driven
approach.2

Organization The rest of the paper is organized as follows.
In Section 2 we provide our basic definitions of data models
and object models, and a short description of OCL. In Section 3
we define our mappings from data models and object models to
SQL. Then, in Section 4 we define our concrete semantics for
SecureUML, by providing a predicate Auth() that represents,
for each security model, whether a user is authorized to execute
an action on an object model. Next, in Section 5, we propose our
model-based characterization of FGAC-authorization for SQL
queries. Concretely, we define a predicate AuthQuery() that
represents, given an FGAC-policy, modeled using SecureUML,
whether a user is authorized to execute a SQL query on a
database. As expected, the definition of AuthQuery() crit-
ically uses the predicate Auth() defined in Section 4. Finally,
we conclude, with an extended related work in Section 6 and
detailed discussion on future work in Section 7.

2. Modeling data
In modeling access control policies, we use data models to
specify the data to be protected. In this section we define our
notions of data and object models. We also introduce below the
data and object models that will be used in our examples. We
end this section with a brief description of OCL.

Definition 1. Let T be a set of predefined types. A data model
D is a tuple 〈C, AT, AS〉, where:

– C is a set of classes c.
– AT is a set of attributes at, at = 〈ati, c, t〉, where ati is the

attribute’s identifier, c is the class of the attribute, and t is
the type of the values of the attribute, with t ∈ T or t ∈ C.

– AS is a set of associations as, as = 〈asi, asel, cl, aser, cr〉,
where asi is the association’s identifier, asel and aser are
the association’s ends, and cl and cr are the classes of the
objects at the corresponding association’s ends.

For simplicity’s sake, we only consider Integer and String
as our predefined types.

2 Interestingly, this possibility was already foreseen in (Lodderstedt et al. 2002),
the seminal paper on MDS and SecureUML: “To begin with, security require-
ments can be formulated and integrated into system designs at a high level of
abstraction. In this way, it becomes possible to develop security aware appli-
cations that are designed with the goal of preventing violations of a security
policy. For example, a database query can be designed so that users can only
retrieve those data records that they are allowed to access”.

Figure 1 The University model

Example 1 (The data model University). As a basic exam-
ple, we introduce in Figure 1 the data model University. It
contains two classes, Student and Lecturer, and one associa-
tion Enrollment between both of them. The classes Student
and Lecturer have both attributes name and email. The class
Student represents the students of the university, with their
name and email. The class Lecturer represents the lectur-
ers of the university, with their name and email. The asso-
ciation Enrollment represents the relationship between the
students (denoted by students) and the lecturers (denoted by
lecturers) of the courses the students have enrolled in. More
formally, the data model University is a tuple containing
the set of classes {Lecturer, Student}, the set of attributes
{ 〈name, Lecturer, String〉, 〈email, Lecturer, String〉,
〈name, Student, String〉, 〈email, Student, String〉},
and the set of associations { 〈Enrollment, lecturers,
Lecturer, students, Student〉}.

Definition 2. Let D = 〈C, AT, AS〉 be a data model. An object
model O of D (also called an instance of D) is a tuple 〈OC,
OAT, OAS〉 where:

– OC is set of objects o, o = 〈oi, c〉, where oi is the object’s
identifier and c is the class of the object, where c ∈ C.

– OAT is a set of attribute values atv, atv = 〈〈ati, c, t〉, 〈oi,
c〉, vl〉, where 〈ati, c, t〉 ∈ AT, 〈oi, c〉 ∈ OC, and vl is
a value of the type t. The attribute value atv denotes the
value vl of the attribute 〈ati, c, t〉 of the object 〈oi, c〉.

– OAS is a set of association links asl, asl = 〈〈asi, asel,
cl, aser, cr〉, 〈oil, cl〉, 〈oir, cr〉〉, where 〈asi, asel, cl, aser,
cr〉 ∈ AS, 〈oil, cl〉 ∈ OC, and 〈oir, cr〉 ∈ OC. The as-
sociation link asl denotes that there is a link of the asso-
ciation 〈asi, asel, cl, aser, cr〉 between the objects 〈oil, cl〉
and 〈oir, cr〉, where the later stands at the end aser and the
former stands at the end asel.

Without loss of generality, we assume that every object has a
unique identifier.

Example 2. Consider the following instance VGU#1 of the data
model University (Example 1). It contains five students:
Chau, An, Thanh, Nam, and Hoang, with the expected names
and emails (name@vgu.edu.vn). It contains also three lec-
turers: Huong, Manuel, Hieu, again with the expected names
and emails (name@vgu.edu.vn). Finally, there are links of the
association Enrollment between the lecturer Manuel and the
students Chau, An, and Hoang, and also between the lecturer
Huong and the students Chau and Thanh.

Example 3. Consider an instance VGU#2 of the data model
University (Example 1), which is exactly as VGU#1 except for
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including two additional links of the association Enrollment:
one between the lecturer Hieu and the student Thanh and the
other between the lecturer Hieu and the student Nam.

2.1. Object Constraint Language (OCL)
OCL (OCL 2014) is a language for specifying constraints and
queries using a textual notation. Every OCL expression is writ-
ten in the context of a model (called the contextual model).
OCL is strongly typed. Expressions either have a primitive type,
a class type, a tuple type, or a collection type. OCL provides
standard operators on primitive types, tuples, and collections.
For example, the operator includes checks whether an ele-
ment is inside a collection. OCL also provides a dot-operator
to access the value of an attribute of an object, or to collect the
objects linked with an object at the end of an association. For
example, suppose that the contextual model includes a class c
with an attribute at and an association-end ase. Then, if o is an
object of the class c, the expression o.at refers to the value of
the attribute at of the object o, and o.ase refers to the objects
linked to the object o at the association-end ase. OCL provides
operators to iterate over collections, such as forAll, exists,
select, reject, and collect. Collections can be sets, bags,
ordered sets and sequences, and can be parameterized by any
type, including other collection types. Finally, to represent un-
definedness, OCL provides two constants, namely, null and
invalid. Intuitively, null represents an unknown or undefined
value, whereas invalid represents an error or an exception.

Notation. Let D be a data model. We denote by Exp(D) the
set of OCL expressions whose contextual model is D. Let O be
an instance of D, and let exp be an OCL expression in Exp(D).
Then, we denote by Eval(O, exp) the result of evaluating exp
in O according to the semantics of OCL.

3. Mapping data and object models to
databases

In characterizing access control authorization for SQL queries,
we assume that SQL queries are executed on databases that
implement the policies’ underlying data models, as well as the
object models of interest, according to the mappings defined
below.3

Definition 3. Let D = 〈 C, AT, AS 〉 be a data model. Our
mapping of D to SQL, denoted by D, is defined as follows:

– For every c ∈ C,

CREATE TABLE c ( c_id varchar PRIMARY KEY);

– For every attribute at ∈ AT, at = 〈ati, c, t〉,

ALTER TABLE c ADD COLUMN ati SqlType(t);

where:
3 Notice that other mappings from data models to SQL are possible (Demuth

et al. 2001). If a different mapping from data models to SQL is chosen, then
our characterizing of access control authorization for SQL queries should be
changed accordingly.

- if t =Integer, then SqlType(t) = int.
- if t = String, then SqlType(t) = varchar.
- if t ∈ C, then SqlType(t) = varchar.

Moreover, if t ∈ C, then

ALTER TABLE c ADD FOREIGN KEY fk_c_ati(ati)
REFERENCES t(t_id);

– For every association as ∈ AS, as = 〈asi, asel, cl, aser,
cr〉,

CREATE TABLE asi (
asel varchar NOT NULL,
aser varchar NOT NULL,
FOREIGN KEY fk_cl_asel(asel)

REFERENCES cl(cl_id),
FOREIGN KEY fk_cr_aser(aser)

REFERENCES cr(cr_id));

Moreover,

ALTER TABLE asi
ADD UNIQUE unique_link(asel, aser);

Definition 4. Let D = 〈C, AT, AS〉 be a data model. Let O =
〈OC, OAT, OAS〉 be an object model of D. Our mapping of
O to SQL, denoted by O, is defined as follows:

– For every object o ∈ OC, o = 〈oi, c〉,

INSERT INTO c (c_id) VALUES (oi);

– For every attribute value atv ∈ OAT, atv = 〈〈ati, c, t〉,
〈oi, c〉, vl〉,

UPDATE c SET ati = vl WHERE c_id = oi;

– For every association link asl ∈ OAS, asl = 〈〈asi, asel,
cl, aser, cr〉, 〈oil, cl〉, 〈oir, cr〉〉,

INSERT INTO asi (asel, aser) VALUES (oil, oir);

Notation. Let D be a data model. Let O be an object model
of D. Let q be a SQL query on D. We denote by Exec(O, q)
the result of executing q in O according to the semantics of
SQL.

The following remark makes explicit the key property of our
mapping from object models to SQL:

Remark 1. Let D = 〈C, AT, AS〉 be a data model. Let O =
〈OC, OAT, OAS〉 be an instance of D. Let 〈ati, c, t〉 be an
attribute in AT, and let 〈oi, c〉 be an object in OC. Then:

Eval(O, oi.ati)
= Exec(O, SELECT ati FROM c WHERE c_id = oi).

Let 〈asi, asel, cl, aser, cr〉 be an association in AS, and let 〈oil,
cl〉 and 〈oir, cr〉, be objects in OC. Then,

Eval(O, oil.asel)
= Exec(O, SELECT asel FROM asi WHERE aser = oir),

and

Eval(O, oir.aser)
= Exec(O, SELECT aser FROM asi WHERE asel = oil).

Model-based characterization of fine-grained access control authorization for SQL queries 3



4. Modeling fine-grained access control poli-
cies

In this section, we first introduce SecureUML (Lodderstedt et
al. 2002) and then define the meaning of SecureUML models by
providing a predicate Auth() that represents, for each security
model, whether a user is authorized to execute an action on an
object model. Logically, the predicate Auth() plays a key role
in our characterization of access control authorization for SQL
queries with respect to SecureUML models.

SecureUML is a modeling language for specifying access
control policies on protected resources. In SecureUML, re-
sources are protected by controlling the actions that provide
access to them. However, SecureUML leaves open the nature
of the protected resources, —i.e., whether these resources are
data, business objects, processes, controller states, etc.— and,
consequently, of the corresponding controlled actions. These
are to be declared in a so-called SecureUML dialect. Next we
define the actions that we consider in our SecureUML dialect:

Definition 5. Let D be a data model D = 〈C, AT, AS〉. Then,
we denote by Act(D) the following set of read-actions:

– For every attribute at ∈ AT, read(at) ∈ Act(D).
– For every association as ∈ AS, read(as) ∈ Act(D).

Definition 6. Let D = 〈C, AT, AS〉 be a data model. Let O
= 〈OC, OAT, OAS〉 be an instance of D. Then, we denote by
Act(O) the following set of instance read-actions:

– For every attribute at = 〈ati, c, t〉, at ∈ AT, and every
object o = 〈oi, c〉, o ∈ OC, the action read(at, o) of
reading the value of the attribute at in o.

– For every association as = 〈asi, asel, cl, aser, cr〉, as ∈
AS, and every pair of objects ol = 〈oil, cl〉, or = 〈oir, cr〉,
such that ol, or ∈ OC, the action read(as, ol, or) of read-
ing if there is a link of the association as between ol and
or.

As a language for specifying access control policies, Se-
cureUML is an extension of Role-Based Access Control
(RBAC) (Ferraiolo et al. 2001). In RBAC, permissions are
assigned to roles, and roles are assigned to users. However,
in SecureUML, one can model access control decisions that
depend on two kinds of information: namely, static informa-
tion, i.e., the assignments of users and permissions to roles;
and dynamic information, i.e., the satisfaction of authorization
constraints in the current state of the system. Authorization
constraints are specified in SecureUML models using OCL ex-
pressions. Concretely, in our SecureUML dialect, we consider
authorization constraints whose satisfaction depend on informa-
tion related to: (i) the object who is attempting to perform the
read-action; (ii) the object whose attribute is attempted to be
read; and, (iii) the objects whose association is attempted to be
read. By convention, we denote (i) by the keyword caller; we
denote (ii) by the keyword self; and we denote (iii) by using
as keywords the corresponding association-ends.

Next we define the notion of security models in our Se-
cureUML dialect, and introduce the security models that will
be used in our examples.

Definition 7. Let D be a data model. Then, a security model S
for D is a tuple S = (R, auth), where R is a set of roles, and
auth : R×Act(D) −→ Exp(D) is a function that assigns to
each role r ∈ R and each action a ∈ Act(D) an authorization
constraint exp ∈ Exp(D).

Example 4. Consider the following security model SecVGU#A
for the data model University.

– Roles. There is only one role, namely, the role Lecturer.
Lecturers are assigned this role.

– Permissions:

- Any lecturer can know his/her students. Formally, for
this model, auth(Lecturer, read(Enrollment))
is

lecturers = caller.

- Any lecturer can know his/her own email, as well
as the emails of his/her students. Formally, for this
model, auth(Lecturer, read(email)) is

(caller = self)
or (caller.students→ includes(self))

Example 5. Consider the security model SecVGU#B for the data
model University, which is exactly as SecVGU#A except for
including the following additional clauses:

– Permissions:

- Any lecturer can know his/her colleagues’ emails.
For the sake of this example, two lecturers are col-
leagues if there is at least one student enrolled
with both of them. Formally, for this model,
auth(Lecturer, read(email)) is

(caller = self)
or (caller.students→ includes(self))
or (caller.students→ exists

(s|s.lecturers→ includes(self))).

Example 6. Consider the security model SecVGU#C for the data
model University, which is exactly as SecVGU#B except for
including the following additional clauses:

– Permissions:

- Any lecturer can know the lecturers of his/her
own students. Formally, for this model,
auth(Lecturer, read(Enrollment)) is

(lecturers = caller)
or(caller.students→ includes(students)).

Finally, we formalize the semantics of our security models
by defining a predicate Auth() that represents, for a given
model, whether a user is authorized to execute a read-action on
a scenario.

Definition 8. Let D be a data model. Let S = 〈R, auth〉 be
a security model for D. Let r be a role in R. Let O = 〈OC,
OAT, OAS〉 be an object model of D. Let u be an object in
OC. Then, we define the predicate Auth as follows:
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– For any action read(at, o) ∈ Act(O),

Auth(S ,O, u, r, read(at, o))

⇐⇒ Eval(O, auth(r, read(at))

 self 7→ o

caller 7→ u

).
– For any action read(as, ol, or) ∈ Act(O),

Auth(S ,O, u, r, read(as, ol, or))

⇐⇒ Eval(O, auth(r, read(as))


asl 7→ ol

asr 7→ or

caller 7→ u

).
To illustrate the definition of the predicate Auth(), we show

in Tables 1–2 the different values of this predicate, for the same
actions, but with different users (callers), on different scenarios,
and for different security models.

5. Model-based SQL query authorization
In this section, we propose a model-based characterization of
FGAC-authorization for SQL queries. More specifically, we
define a predicate AuthQuery() that checks, given an FGAC-
policy modelled using our SecureUML dialect, whether a user
is authorized to execute a SQL query on a database.

We organize this section as follows. First, we motivate with
examples some of the problems we aim to address when defin-
ing the predicate AuthQuery(). Then, we present the list
of SQL query-patterns currently covered by our definition.
Next, for each of these query-patterns, we define the predi-
cate AuthQuery(), including in each case several examples of
authorization decisions that illustrate the intent of the definition.
Finally, we revisit the examples used to motivate our definition
of the predicate AuthQuery(), with a preliminary case study.

Motivation Informally, a user can be authorized to execute a
SQL on a database if the execution of this query does not leak
confidential information, according to a given FGAC policy.
Interestingly, checking whether a user is authorized to execute
a SQL query on a database implies much more than simply
checking that the final result satisfies the given FGAC policy,
since a clever attacker can devise a query such that the simple
fact that a final result is obtained reveals already some additional
information, which maybe confidential.

Consider the select-statements in Figures 2–4. For the sake
of this example, suppose that, for a given scenario, the three of
them return the same final result, namely, a non-empty string,
representing an email, which is not confidential. On a closer
examination, however, we can realize that, for each of these
select-statements, the final result is revealing additional infor-
mation, which may in turn be confidential. In particular,

– Query#1 reveals that the resulting email belongs to Huong.
– Query#2 reveals not only that the resulting email belongs

to Huong, but also that Thanh is enrolled in a course that
Huong is teaching.

mysql> SELECT email FROM Lecturer
-> WHERE Lecturer_id = ’Huong’

Figure 2 Example. Query#1.

– Query#3 reveals that the email belongs to Huong, and that
Huong and Manuel are “colleagues”, in the sense that there
some students who have both Huong and Manuel as their
lecturers.

As the above example shows, in order to authorize a user,
according to an FGAC policy, to execute a query, it is not
enough to simply check that displaying the final result is policy-
compliance. On the contrary, we claim that any information
that is used to reach this final result (in particular, information
involved in subqueries, where-clauses, and on-clauses) should
be also checked for policy-compliance. In this way, for ex-
ample, if a user is not authorized to know whether Huong is
Thanh’s lecturer or not, then he/she should not be authorized
to execute Query#2, even when he/she may be authorized to
access Huong’s email. Similarly, if a user is not authorized to
know whether Huong and Manuel are “colleagues” or not, then,
he/she should not be authorized to execute Query#3, even when
he/she may be authorized to access lecturers’ emails.

mysql> SELECT DISTINCT email FROM Lecturer
->JOIN (SELECT * from Enrollment
-> WHERE students = ’Thanh’
-> AND lecturers = ’Huong’
-> ) as TEMP
->ON TEMP.lecturers = Lecturer_id

Figure 3 Example. Query#2.

mysql> SELECT DISTINCT email FROM Lecturer
->JOIN (SELECT e1.lecturers as lecturers
-> FROM (SELECT * FROM Enrollment
-> WHERE lecturers = ’Manuel’
-> ) AS e1
-> JOIN (SELECT * FROM Enrollment
-> WHERE lecturers = ’Huong’
-> ) AS e2
-> ON e1.students = e2.students
-> ) AS TEMP
->ON TEMP.lecturers = Lecturer_id;

Figure 4 Example. Query#3.

Scope Our definition of the predicate AuthQuery currently
covers the following query “patterns”, where c and as denote,
respectively, a class and an association in the underlying data
model.

– SELECT selitems FROM c WHERE exp.

Model-based characterization of fine-grained access control authorization for SQL queries 5



SecVGU#A SecVGU#B SecVGU#C

caller action VGU#1 VGU#2 VGU#1 VGU#2 VGU#1 VGU#2

Manuel read(email, Manuel) 3 3 3 3 3 3

Manuel read(email, Huong) 7 7 3 3 3 3

Manuel read(email, Hieu) 7 7 7 7 7 7

Huong read(email, Manuel) 7 7 3 3 3 3

Huong read(email, Huong) 3 3 3 3 3 3

Huong read(email, Hieu) 7 7 7 3 7 3

Hieu read(email, Manuel) 7 7 7 7 7 7

Hieu read(email, Huong) 7 7 7 3 7 3

Hieu read(email, Hieu) 3 3 3 3 3 3

Table 1 The predicate Auth(): lecturers attempting to read lecturers’ emails.

– SELECT selitems FROM as WHERE exp.
– SELECT selitems FROM subselect WHERE exp.
– SELECT selitems FROM c JOIN as ON exp WHERE exp′ (and,

vice versa, SELECT selitems FROM as JOIN c ON exp WHERE
exp′).

– SELECT selitems FROM c JOIN subselect ON exp WHERE
exp′ (and, vice versa, SELECT selitems FROM subselect
JOIN c ON exp WHERE exp′).

– SELECT selitems FROM as JOIN subselect ON exp WHERE
exp′ (and, vice versa, SELECT selitems FROM subselect
JOIN as ON exp WHERE exp′).

– SELECT selitems FROM subselect1 JOIN subselect2 ON exp
WHERE exp′.

Preliminaries In the definition of our predicate
AuthQuery(), we use the following auxiliary functions.

– PropsInSel(selitems): the set of properties (i.e., attributes
and association-ends) that appear in a list of selected items.

– PropsInWhe(exp): the set of properties (i.e., attributes
and association-ends) that appear in a where-expression.

– PropsInOn(exp): the set of properties (i.e., attributes and
association-ends) that appear in an on-expression.

– CompWithInOn(exp, ase): the property that is compared
with ase in an on-expression.

5.0.1. Definition Let D be a data model. Let O be an
object model of D. Let S = (R, auth) be a security model for
D. Let q be a SQL query in D. Let r be a role in R. Let u be a
user. Then, we define the predicate AuthQuery() as follows:

Case q = SELECT selitems FROM c WHERE exp. Then,
AuthQuery(S ,O, u, r, q) holds if and only if:

– For every o ∈ Exec(O, SELECT c_id FROM c),

- For every attribute at = 〈ati, c, t〉, such that ati ∈
PropsInWhe(exp), it holds that:

Auth(S ,O, u, r, read(at, o)).

– For every o ∈ Exec(O, SELECT c_id FROM c WHERE exp),

- For every attribute at = 〈ati, c, t〉, such that ati ∈
PropsInSel(selitems), it holds that:

Auth(S ,O, u, r, read(at, o)).

Example 7. Consider the following SQL query:

SELECT Lecturer_id
FROM Lecturer;

For any policy SecVGU#[A|B|C], and any instance of the data
model VGU, all lecturers will be authorized to execute this query.

Example 8. Consider the following SQL query:

SELECT 1
FROM Lecturer;

For any policy SecVGU#[A|B|C], and any instance of the data
model VGU, all lecturers will be authorized to execute this query.

Example 9. Consider the following SQL query:

SELECT email
FROM Lecturer;

For policy SecVGU#A, for any scenario VGU#[1|2], none of the
lecturers are authorized to execute this query. Also, for any
policy SecVGU#[B|C] and scenario VGU#1, none of the lecturers
are authorized to execute this query. However, for any pol-
icy SecVGU#[B|C] and scenario VGU#2, Huong is authorized to
execute this query (but only her).
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SecVGU#A SecVGU#B SecVGU#C

caller action VGU#1 VGU#2 VGU#1 VGU#2 VGU#1 VGU#2

Manuel

read(enroll, Manuel, any student) 3 3 3 3 3 3

read(enroll, Huong, Chau) 7 7 7 7 3 3

read(enroll, Huong, An) 7 7 7 7 3 3

read(enroll, Huong, Thanh) 7 7 7 7 7 7

read(enroll, Huong, Hoang) 7 7 7 7 3 3

read(enroll, Huong, Nam) 7 7 7 7 7 7

read(enroll, Hieu, Chau) 7 7 7 7 3 3

read(enroll, Hieu, An) 7 7 7 7 3 3

read(enroll, Hieu, Thanh) 7 7 7 7 7 7

read(enroll, Hieu, Hoang) 7 7 7 7 3 3

read(enroll, Hieu, Nam) 7 7 7 7 7 7

Huong

read(enroll, Manuel, Chau) 7 7 7 7 3 3

read(enroll, Manuel, An) 7 7 7 7 7 7

read(enroll, Manuel, Thanh) 7 7 7 7 3 3

read(enroll, Manuel, Hoang) 7 7 7 7 7 7

read(enroll, Manuel, Nam) 7 7 7 7 7 7

read(enroll, Huong, any student) 3 3 3 3 3 3

read(enroll, Hieu, Chau) 7 7 7 7 3 3

read(enroll, Hieu, An) 7 7 7 7 7 7

read(enroll, Hieu, Thanh) 7 7 7 7 3 3

read(enroll, Hieu, Hoang) 7 7 7 7 7 7

read(enroll, Hieu, Nam) 7 7 7 7 7 7

Hieu

read(enroll, Manuel, Chau) 7 7 7 7 7 7

read(enroll, Manuel, An) 7 7 7 7 7 7

read(enroll, Manuel, Thanh) 7 7 7 7 7 3

read(enroll, Manuel, Hoang) 7 7 7 7 7 7

read(enroll, Manuel, Nam) 7 7 7 7 7 3

read(enroll, Huong, Chau) 7 7 7 7 7 7

read(enroll, Huong, An) 7 7 7 7 7 7

read(enroll, Huong, Thanh) 7 7 7 7 7 3

read(enroll, Huong, Hoang) 7 7 7 7 7 7

read(enroll, Huong, Nam) 7 7 7 7 7 3

read(enroll, Hieu, any student) 3 3 3 3 3 3

Table 2 The predicate Auth(): lecturers attempting to read lecturers’ enrolled students.
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Example 10. Consider the following SQL query:

SELECT email
FROM Lecturer
WHERE Lecturer_id = ’Huong’;

For policy SecVGU#A, for scenario VGU#[1|2], only Huong is
authorized to execute this query. For any policy SecVGU#[B|C],
for scenario VGU#1, both Huong and Manuel are authorized to
execute this query. But, for any policy SecVGU#[B|C], for sce-
nario VGU#2, all lecturers are authorized to execute this query.

Case q = SELECT selitems FROM as WHERE exp, where as =
〈asi, asel, cl, aser, cr〉. Then, AuthQuery(S ,O, u, r, q) holds
if and only if:

– For every (ol, or) ∈ Exec(O, SELECT cl_id, cr_id FROM
cl, cr WHERE exp), it holds that:

Auth(S ,O, u, r, read(as, ol, or)).

Example 11. Consider the following SQL query:

SELECT lecturers
FROM Enrollment;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
none of the lecturers are authorized to execute this query. How-
ever, for any scenario with no students, all the lecturers will be
authorized to execute this query.

Example 12. Consider the following SQL query:

SELECT 1
FROM Enrollment;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
none of the lecturers are authorized to execute this query. How-
ever, for any scenario with no students, all the lecturers will be
authorized to execute this query.

Example 13. Consider the following SQL query:

SELECT students
FROM Enrollment
WHERE lecturers = ’Huong’;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
only Huong is authorized to execute this query.

Example 14. Consider the following SQL query:

SELECT lecturers
FROM Enrollment
WHERE lecturers = students;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2], all
of the lecturers are authorized to execute this query. Notice that
this is so, in scenarios VGU#[1|2], the set of lecturers who are
their own students is empty.

Example 15. Consider the following SQL query:

SELECT students
FROM Enrollment
WHERE lecturers = ’Hieu’;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
only Hieu is authorized to execute this query. Notice that this is
so, even when, in scenario VGU#1, the set of students enrolled
with Hieu is empty.

Case q = SELECT selitems FROM subselect WHERE exp.
Then, AuthQuery(S , O, u, r, q) holds if and only if
AuthQuery(S ,O, u, r, subselect) holds.

Example 16. Consider the following SQL query:

SELECT TEMP.Lecturer_id
FROM (SELECT Lecturer_id, email

FROM Lecturer) AS TEMP;

For policy SecVGU#A, for any scenario VGU#[1|2], none of the
lecturers are authorized to execute this query. Also, for any
policy SecVGU#[B|C] and scenario VGU#1, none of the lecturers
are authorized to execute this query. However, for any policy
SecVGU#[B|C] and scenario VGU#2, Huong is authorized to ex-
ecute this query (but only her). Notice that this is so, even when
this query is “equivalent” to the one in Example 7, which all
lecturers are authorized to execute in all circumstances.

Example 17. Consider the following SQL query:

SELECT TEMP.email
FROM (SELECT email

FROM Lecturer
WHERE Lecturer_id = ’Huong’) AS TEMP;

For policy SecVGU#A, for any scenario VGU#[1|2], only
Huong is authorized to execute this query. For any policy
SecVGU#[B|C], for scenario VGU#1, both Huong and Manuel
are authorized to execute this query. Then, for any policy
SecVGU#[B|C], for scenario VGU#2, all lecturers are authorized
to execute this query.

Example 18. Consider the following SQL query:

SELECT TEMP.email
FROM (SELECT email

FROM Lecturer) AS TEMP
WHERE TEMP.Lecturer_id = ’Huong’;

For policy SecVGU#A, for any scenario VGU#[1|2], none of the
lecturers are authorized to execute this query. Also, for any
policy SecVGU#[B|C] and scenario VGU#1, none of the lecturers
are authorized to execute this query. However, for any pol-
icy SecVGU#[B|C] and scenario VGU#2, Huong is authorized to
execute this query (but only her). Notice that this is so, even
when this query is “equivalent” to the one in Example 17, which
other lecturers beside Huong are authorized to execute for some
policies SecVGU#[A|B|C], and some scenarios VGU#[1|2].

8 Nguyễn and Clavel



Case q = SELECT selitems FROM c[l|r] JOIN as ON exp
WHERE exp′, where as = 〈asi, asel, cl, aser, cr〉. Then,
AuthQuery(S ,O, u, r, q) holds if and only if:

– For every o[l|r] ∈ Exec(O, SELECT c[l|r]_id FROM c[l|r]),

- For every attribute at = 〈ati, c[l|r], t〉, such that
ati ∈ PropsInOn(exp), it holds that:

Auth(S ,O, u, r, read(at, o[l|r])).

– For every (ol, or) ∈ Exec(O, SELECT cl_id, cr_id FROM
cl, cr), it holds that:

Auth(S ,O, u, r, read(as, ol, or)).

– For every o[l|r] ∈ Exec(O, SELECT c[l|r]_id FROM c[l|r]
JOIN as ON exp),

- For every attribute at = 〈ati, c[l|r], t〉, such that
ati ∈ PropsInWhe(exp′), it holds that:

Auth(S ,O, u, r, read(at, o[l|r])).

– For every o[l|r] ∈ Exec(O, SELECT c[l|r]_id FROM c[l|r]
JOIN as ON exp WHERE exp′),

- For every attribute ati = 〈ati, c[l|r], t〉, with ati ∈
PropsInSel(selitems) it holds that:

Auth(S ,O, u, r, read(at, o[l|r])).

Example 19. Consider the following SQL query:

SELECT email
FROM Lecturer
JOIN Enrollment
ON Lecturer_id = lecturers;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
none of the lecturers are authorized to execute this query.

Example 20. Consider the following SQL query:

SELECT email
FROM Lecturer
JOIN Enrollment
ON Lecturer_id = ’Huong’;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
none of the lecturers are authorized to execute this query.

Example 21. Consider the following SQL query:

SELECT email
FROM Lecturer
JOIN Enrollment
ON Lecturer_id = lecturers
WHERE lecturers = ’Huong’;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
none of the lecturers are authorized to execute this query.

Case q = SELECT selItems FROM c JOIN subselect ON exp WHERE
exp′. Then, AuthQuery(S ,O, u, r, q) holds if and only if
AuthQuery(S ,O, u, r, subselect) holds and

– For every o ∈ Exec(O, SELECT c_id FROM c),

- For every attribute at = 〈ati, c, t〉, such that ati ∈
PropsInOn(exp), it holds that:

Auth(S ,O, u, r, read(at, o)).

– For every o ∈ Exec(O, SELECT c_id FROM c JOIN
subselect ON exp),

- For every attribute at = 〈ati, c, t〉, such that ati ∈
PropsInWhe(exp′), it holds that:

Auth(S ,O, u, r, read(at, o)).

– For every o ∈ Exec(O, SELECT c_id FROM c JOIN
subselect ON exp WHERE exp′),

- For every attribute at = 〈ati, c, t〉, such that ati ∈
PropsInSel(selitems) it holds that:

Auth(S ,O, u, r, read(at, o)).

Example 22. Consider the following SQL query:

SELECT email
FROM Lecturer
JOIN (SELECT lecturers

FROM Enrollment
WHERE lecturers = ’Huong’) AS TEMP

ON Lecturer_id = TEMP.lecturers;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
only Huong is authorized to execute this query. Notice that this
is so, even when this query is “equivalent” to the one in Exam-
ple 21, which none of the lecturers are authorized to execute for
any policy SecVGU#[A|B|C], and any scenarios VGU#[1|2].

Case q = SELECT selItems FROM as JOIN subselect ON exp
WHERE exp′. Then, AuthQuery(S ,O, u, r, q) holds if and only
if AuthQuery(S , O, u, r, subselect) holds and

– if asel ∈ PropsInOn(exp), with CompWithInOn(exp,
asel) = col, but aser 6∈ PropsInOn(exp), then:

- For every (ol, or) ∈ Exec(O, SELECT col, cr_id
FROM subselect, cr), it holds that:

Auth(S ,O, u, r, read(as, ol, or)).

– Analogously for the case of aser ∈ PropsInOn(exp), but
asel 6∈ PropsInOn(exp).
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– if asel ∈ PropsInOn(exp) and aser ∈ PropsInOn(exp),
then:

- For every (ol, or) ∈ Exec(O, SELECT cl_id, cr_id
FROM cl, cr), it holds that:

Auth(S ,O, u, r, read(as, ol, or)).

Example 23. Consider the following SQL query:

SELECT TEMP.email
FROM Enrollment
JOIN (SELECT Lecturer_id, email

FROM Lecturer
WHERE Lecturer_id = ’Huong’) AS TEMP

ON TEMP.Lecturer_id = lecturers;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2],
only Huong is authorized to execute this query. Notice that this
is so, even when this query is “equivalent” to the one in Exam-
ple 21, which none of the lecturers are authorized to execute for
any policy SecVGU#[A|B|C], and any scenario VGU#[1|2].

Example 24. Consider the following SQL query:

SELECT TEMP.email
FROM Enrollment
JOIN (SELECT Lecturer_id, email

FROM Lecturer
WHERE Lecturer_id = ’Trang’) AS TEMP

ON TEMP.Lecturer_id = lecturers;

For any policy SecVGU#[A|B|C], for any scenario VGU#[1|2], all
lecturers are authorized to execute this query.

Case q = SELECT selItems FROM subselect1 JOIN subselect2
ON exp WHERE exp′. Then, AuthQuery(S ,O, u, r, q) holds
if and only if AuthQuery(S , O, u, r, subselect1) and
AuthQuery(S , O, u, r, subselect2) holds.

Case study We end this section by analyzing how our defi-
nition of AuthQuery() can prevent a malicious attacker from
obtaining confidential information when executing the queries
Query#[1|2|3], introduced in Figures 2–4. Concretely, in Ta-
ble 3 we show the values of AuthQuery() for different combi-
nations of the queries Query#[1|2|3], the users Huong, Manuel,
and Hieu, the scenarios VGU#[1|2], and the security models
SecVGU#[A|B|C]. Notice in particular that:

– Manuel is not authorized to execute Query#2 in the scenar-
ios VGU#[1|2], according to the security model SecVGU#C.
This is to be expected, since in these scenarios Manuel
and Huong are not colleagues with respect to Thanh, and,
therefore, SecVGU#C does not authorize Manuel to see that
Thanh is a student enrolled in Huong’s courses.

– Similarly, Hieu is not authorized to execute Query#2
in the scenario VGU#1, according to the security model
SecVGU#C. This is to be expected, since in this scenario
Hieu and Huong are not colleagues with respect to Thanh,
and, therefore, SecVGU#C does not authorize Hieu to see
that Thanh is a student enrolled in Huong’s courses. How-
ever, in the scenario VGU#2, Hieu and Huong are col-
leagues with respect to Thanh, and, therefore, SecVGU#C
does authorize Hieu to see that Thanh is a student enrolled
in Huong’s courses. Hence, as expected, Hieu is autho-
rized to execute Query#2 in this scenario according to
SecVGU#C.

– Huong is not authorized to execute Query#3 in the
scenarios VGU#[1|2], according to the security models
SecVGU#C. This is to be expected, since in these scenarios
Huong and Manuel are not colleagues with respect to all
the students enrolled in Manuel’s courses, and, therefore,
SecVGU#C does not authorize Huong to see them.

6. Related work
In this paper we have proposed a model-based characterization
of fine-grained access control (FGAC) authorization for SQL
queries. To the best of our knowledge, this seems to be the first
attempt to propose such a characterization. In the past, (Cranor
et al. 2002; Ashley et al. 2003) proposed the idea of specifying
(privacy) policies using specific formalisms (e.g., P3P, EPAL,
or XACML (Rissanen 2013)), and then translating these policies
into security checks to be stored as meta-data in the databases.
However, a formal definition of how these checks are generated
from the policies, and how they interact with the execution of
the queries is, to the best of our knowledge, still missing. More
recently, (Mehta et al. 2017) addressed the problem in a different
way. They propose a SQL-like language for writing the policies,
and then an algorithm for automatically rewriting the queries by,
essentially, adding the policies as where-clauses. Unfortunately,
for this approach to work, the policies need to be (re-)written
with the queries in mind. In fact, the policy language provides
special constructors depending on whether the rules apply to
queries that access only one column, more than one column,
a user defined function, or an aggregate function. As a conse-
quence, these policies can be hardly considered a model, and
a formal discussion of their actual meaning —namely, what
resources they protect, and what authorization decisions are to
be inferred from them— is still missing.

Not related with authorization of SQL query execution,
which is the focus of our paper, FGAC policies have been cer-
tainly studied before in the context of model-driven engineering.
In particular, (Martínez et al. 2018) defined a language for spec-
ifying FGAC policies for models and metamodels, which also
uses OCL for declaring “authorization constraints”. (Bergmann
et al. 2016; Debreceni et al. 2019) proposed a way to enforce
FGAC policies, using bidirectional transformations, in order to
control the access (read, modify) to the models in a collaborative
modeling environment. Although focused on identifying policy
violations on databases, and not to prevent them when executing
queries, (Hamann et al. 2015) shares with our approach the use
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SecVGU#A SecVGU#B SecVGU#C

caller query VGU#1 VGU#2 VGU#1 VGU#2 VGU#1 VGU#2

Manuel

Query#1

7 7 3 3 3 3

Huong 3 3 3 3 3 3

Hieu 7 7 7 3 7 3

Manuel

Query#2

7 7 7 7 7 7

Huong 3 3 3 3 3 3

Hieu 7 7 7 7 7 3

Manuel

Query#3

7 7 7 7 7 7

Huong 7 7 7 7 7 7

Hieu 7 7 7 7 7 7

Table 3 The function AuthQuery(): lecturers attempting to execute case study’s queries.

of modeling languages, and, in particular, of the OCL language,
to express FGAC policies.

Notice that we left outside the scope of this paper the ques-
tion of how we may propose to enforce FGAC policies when
executing SQL queries. A quick review of the state of things
with regards to FGAC access control in RDBMS, will shed light
upon the current challenges, as well as set the stage for further
discussing our future work. As it is well-known, role-based ac-
cess control (RBAC) (Sandhu et al. 1996; Ahn & Sandhu 2000;
Ferraiolo et al. 2001) is currently supported as a key security fea-
ture of database management systems (RDBMS). Nevertheless,
RBAC is clearly insufficient for specifying FGAC. An approach
often suggested for implementing FGAC in RDBMS that does
not natively support FGAC (e.g., MySQL or MariaDB (Montee
2015)) consists of using views, in combination with the native
RBAC support. This approach, however, is time-consuming,
error-prone, and scales poorly. Moreover, the resulting imple-
mentations are hard to maintain, should any changes occur either
in the database or in the FGAC policies. On the other hand, there
are RDBMS that support FGAC —albeit at different degrees,
and not in all versions— using an interesting variety of, more
or less, “ad hoc” and proprietary mechanisms. In particular,
Oracle supports FGAC through their Virtual Private Databases
(VPD) (VPD-Oracle n.d.), IBM supports FGAC in DB2 through
rows permission and column masking (DB2-IBM 2014), and
PostgreSQL supports FGAC through row-level security (Post-
greSQL n.d.). However, in these cases, the FGAC policies need
to be manually implemented using each RDBMS’s specific
mechanism. Clearly, this task is time-consuming, error-prone,
and scales poorly. Moreover, the resulting implementations
are hard to maintain, should any changes occur either in the
database or in the FGAC policies. The so-called Hippocratic
Databases proposed in (Agrawal et al. 2002) to ensure privacy
in IBM databases shows as well the limitations of the current
solutions for implementing FGAC in RDBMS. Similar to the

view approach, the idea is to create (meta-data) tables in the
database for storing the policies. Then, (LeFevre et al. 2004)
proposes two different algorithms to automatically rewrite a
query in such a way that, when executing the query, the results
are filtered out according to the policy. As in the case of the
view approach, manually creating the (meta-data) tables repre-
senting the policies is time-consuming, error-prone, and scales
poorly. To the best of our knowledge, Hippocratic Databases
have not yet been realized.

7. Conclusions and future work

In this paper we have proposed a model-based characteriza-
tion of fine-grained access control (FGAC) authorization for
SQL queries. More specifically, we have defined a predicate
AuthQuery() that represents whether a user is authorized by
an FGAC-policy to execute a SQL query on a database. To
illustrate our definition, we have provided examples of autho-
rization decisions for different SQL queries, attempted by dif-
ferent users, in different scenarios, and with respect to different
FGAC-policies. Currently, our definition does not cover the
full SQL query language. In particular, we have left out outer
joins, group-by clauses, and aggregation functions. We plan to
extend our definition to cover these and other elements of the
SQL query language. We also plan to extend our model-based
approach to address fine-grained access control for other SQL
statements, like inserts, updates, and deletes.

Having a formal characterization of FGAC-authorization
for SQL queries is, however, only a prerequisite. The chal-
lenge now is to enforce the corresponding authorization de-
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cisions when executing SQL queries. 4 We have seen that
the solutions provided by the major RDBMS are still far from
ideal: in fact, they are time-consuming, error-prone, and scale
poorly. In our proposal, FGAC-policies are modeled using
SecureUML (Lodderstedt et al. 2002), and authorization con-
straints are specified using the Object Constraint Language
(OCL) (OCL 2014). Interestingly, the availability of mappings
from OCL to SQL (Nguyen & Clavel 2019) opens up the possi-
bility of implementing AuthQuery() within the database and,
consequently, of being able to enforce FGAC-policies following
a model-driven approach.
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