
Journal of Object Technology | RESEARCH ARTICLE

Java Bytecode Verification with OCL
Why, How and When?

Christoph Bockisch, Gabriele Taentzer, Nebras Nassar, and Lukas Wydra
Philipps-Universität Marburg, Germany

ABSTRACT Program transformations are frequently developed, e.g., to realize programming language extensions or dynamic
program analyses such as profiling. They are typically implemented by manipulating bytecode as the availability of source code is
not guaranteed. There are standard libraries such as ASM that are typically used for implementing Java bytecode manipulations.
To check their correctness, they are usually tested by applying them to different programs, running the manipulated programs
and observing their behaviors. As part of the second step, the Java virtual machine verifies the bytecode, which can uncover
errors in the bytecode introduced by the manipulation. That approach uses different technologies that are not well linked making
the process of developing and testing bytecode manipulations difficult.
In this paper, we intend to perform bytecode manipulation by using concepts and techniques of model-driven engineering.
We are convinced that the declarative nature of model transformation rules allows the debugging and analyzing of bytecode
manipulations in more details than classically done. Following this path, a meta-model for bytecode is needed including OCL
constraints for bytecode verification. We analyze the semantic rules of the bytecode verifier according to their complexity factor,
present a meta-model for Java bytecode, show how the semantic rules can be expressed as OCL constraints on top of this
meta-model, and show that basing bytecode manipulation on model transformation can provide more immediate guidance and
feedback to the developer.

KEYWORDS Program transformation, Java bytecode, meta-model, OCL, bytecode verification.

1. Introduction
In programming language research, developing language exten-
sions or dynamic program analyses as program transformations
is a popular approach. Consider, for example, an extension
of the Java language with implicit invocation (Steimann et al.
2010) for direct support of the Observer pattern, and the dy-
namic analysis of program performance through profiling (Liang
& Viswanathan 1999). An implicit invocation allows adding
a specification to a method when it should be executed. A
language extension will transform a program using implicit in-
vocations such that explicit invocations to methods are inserted
at appropriate places. A profiler, e.g., typically inserts a fixed

JOT reference format:
Christoph Bockisch, Gabriele Taentzer, Nebras Nassar, and Lukas Wydra.
Java Bytecode Verification with OCL:Why, How and When?. Journal of
Object Technology. Vol. 19, No. 3, 2020. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2020.19.3.a13

sequence of code at the beginning and at the end of each relevant
method in a program to record the start and end time of each
method execution.

Program transformation can be applied to either the source
code in a preprocessing step (i.e., before the compilation) or in
a postprocessing step (i.e., after the compilation) which means
that the bytecode is transformed. Bytecode is often chosen
over source code because the latter may not be available for the
whole program, for example, when closed-source libraries are
used or when the bytecode is generated.

For the implementation, a program transformation reads the
base program first and parses it into an abstract syntax tree
(AST) then. Next, the AST is analyzed and rewritten. Since
parsing and processing an AST are very common but non-trivial
exercises, there are standard libraries that are typically used
for implementing program transformations. In the Java world,
Polyglot (Nystrom et al. 2003) is an example of a preprocessor

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a13

that works on the AST of the source code. ASM (Bruneton et
al. 2002) and BCEL (BCEL 2020) are popular examples for the
postprocessing approach; they work on the AST of the virtual
machine code. In this context, program transformations are
often called bytecode manipulation, a term which we will use
throughout this paper to avoid confusion with model transfor-
mation.

The libraries mentioned stick relatively close to the original
code representation which is optimized for machine-readability.
Thus, developers of program transformations have to cope with
a fixed, relatively low level of abstraction which boils down to
either a list of source code statements or a list of machine code
instructions. We need an approach to develop program transfor-
mations in a more flexible and easier way. The representation
of code should let developers choose the right abstraction level
for formulating program transformations.

The classical way of implementing a program transforma-
tion is an imperative program that manipulates the code of the
program under transformation. To check the correctness of a
program transformation, it is usually tested by (1) applying it
to different programs, (2) running the transformed programs,
and (3) observing if they behave as intended. As part of the
second step, the Java virtual machine loads the program code
and performs so-called bytecode verification, which checks that
no security-relevant restrictions are violated. For example, there
is a restriction that a program must not read from an empty
operand stack. Restrictions like this one are defined as part of
the Java Virtual Machine (JVM) Specification (Lindholm et al.
2020, Section 4.10). In the case of illegal code, the Java virtual
machine stops the execution and reports the violations.

This approach uses different technologies: a Java editor, for
example, for developing the program transformation, a Java
bytecode viewer for viewing the program before and after a
transformation, and the console output of the Java virtual ma-
chine for observing the behavior of a transformed program. The
information provided by these technologies is not well linked
which makes the process of developing and testing program
transformations difficult. While we cannot generally help to en-
sure correct behavior of the transformed program, in this paper,
we set out to support implementers of bytecode manipulations
in the first two steps.

To solve the stated problems of developing program trans-
formations, we intend to use concepts and techniques of model-
driven engineering (MDE) (Brambilla et al. 2012). Models
allow choosing the right abstraction level and to connect it to
the instruction level of programs. Moreover, we are convinced
that the declarative nature of model transformation rules al-
lows debugging and analyzing program transformations in more
details than classically done. The declarative nature of model-
transformation rules allows tracing their application. When an
element in the transformed model violates a constraint, it is
easy to trace back to find out which transformation rules may
have caused the violation. We will further show in this paper
that, due to their declarative nature, transformation rules can be
checked for potential constraint violations before even applying
them in certain cases.

Our approach to mapping the code transformation problem
to a model transformation problem is inspired by the analogy
between model-driven engineering and compiler construction.
Both share several common concepts of defining languages.
First, context-free grammars as used in compiler construction
are comparable to meta-models as used in MDE (Alanen &
Porres 2003). This relation is, for example, exploited in the
tooling for (textual) domain-specific languages (DSL) such as
Xtext (Efftinge & Völter 2006). Common compilers (Aho et al.
2006) do their work in several phases: they read in a program
representation, perform some initial checks and potentially pro-
duce a different representation of the program. The first two
phases are called lexical and syntactic analysis and produce
an abstract syntax tree (AST) of a syntactically well-formed
program. This kind of analysis is reflected in DSL tool kits as
well; in addition to an AST, a domain model is created. The
third compiler phase is called semantic analysis and performs a
number of correctness checks such as type correctness, absence
of stack overflow or underflow, a correct behavior of the pro-
gram counter, and correct register and object initialization. Such
semantic checks are hardly reflected in language implementa-
tions using DSL tool kits. A potential reason may be that DSLs
are typically so simple that semantic checks are not needed.

We want to demonstrate the benefit of implementing byte-
code manipulations as model transformations. Thus, our tar-
get does not need to be a simple DSL but may be a complex
general-purpose language. Continuing the analogy, we want to
explore how far the semantic analysis phase of complex compil-
ers can be mapped to the checking of invariants formulated in
OCL (OCL 2014).

Since Java bytecode is most popular in research on program
transformations, we consider a meta-model for Java bytecode.
An instance model of this meta-model may either be automat-
ically generated from an existing bytecode file or result from
a transformation. In any case, it has to meet the lexical and
syntactic requirements as captured in the meta-model. But it
is possible to define an illegal program violating the semantic
requirements as indicated above (e.g., by reading from an empty
stack).

In this paper, we (1) analyze the semantic rules in the JVM
specification according to their complexity factor, (2) present
a meta-model for Java bytecode, (3) show how the semantic
rules of the bytecode verifier can be expressed as OCL con-
straints on top of this meta-model, and show that (4) basing
program transformation on model transformation has several
advantages: Expressing the semantic rules in a formalism like
OCL allows for checking them earlier than in state-of-the-art
approaches to program transformation. We show at an exam-
ple that our approach can provide more immediate feedback
to the developers of bytecode manipulations. The declarative
definition of correctness criteria in OCL can even be used to
guide the design of transformation rules in some cases and to
restrict the application of transformation rules to valid cases in
an automated way.

This article is structured as follows: We start with recalling
some background on Java bytecode. In Section 3, we recall all
concepts of model-driven engineering (MDE) that are needed

2 Bockisch et al.

for our work. Our approach to bytecode processing based on
MDE is presented in Section 4. Section 5 shows a case example
that demonstrates the usefulness of our approach. We conclude
with considering the related work in Section 6 and the final
remarks in Section 7.

2. Background on Java Bytecode
Before discussing how to express bytecode verifier rules as OCL
constraints, it is necessary to describe Java bytecode in general
as well as the verification rules as defined in the Java Virtual
Machine specification.

2.1. Java Bytecode Format
Knowing the Java source code language, Java bytecode looks
largely familiar. The general structure of bytecode is pretty
similar to that of source code. For each compiled Java class, a
.class file is created. This file contains type information such
as the super class and interfaces, the outer class (in the case
of nested classes), and the declarations of fields and methods.
For (non-abstract) methods, the implementation is stored as
bytecode instructions.

However, there are also several significant differences. This
subsection briefly summarizes the most important differences
that need to be known to understand the bytecode meta-model
and its invariants which are the subject of this paper. A full
definition of the Java bytecode is given in the JVM Specification
(Lindholm et al. 2020).

The architecture of the bytecode instruction set is a hybrid of
a stack-based and a register-based machine. Arithmetic expres-
sions are computed using a stack. For example, an expression
like a + b is represented by three instructions: first push the
value of a on the stack, second push the value of b on the stack,
third pop the two top-most values from the stack, add them and
push the result on the stack. For method invocations, arguments
are also passed by pushing them on the stack; the result value
will be on the stack when the invoked method returns. Local
variables are represented by a virtually unlimited number of
virtual registers that can be randomly accessed. References
to entities such as types, methods or fields, are always fully
qualified in Java bytecode.

Instructions do not have a nesting structure like source code
statements. Instead, the implementation of a method is stored
as a sequence of instructions whereby control flow is defined
by either conditional or unconditional jump instructions. The
target of a jump is defined by a relative offset. Exceptional
control flow is defined by a so-called exception table. This
table specifies the range of instructions for which an exception
handler is active. The specification is given by the offsets of the
first and last instruction, respectively, in the range. Each table
entry denotes the type of the handled exception and the offset
of the first instruction of the handler code.

The Java virtual machine supports only four kinds of prim-
itive values: integers and floating point values, both in 32bit
and 64bit. Thus, values that have one of the primitive types
boolean, char, byte, short and int in the Java source language
are treated equally by the JVM. For example, there is only one

bytecode instruction for the addition of 32bit integers. In type
declarations such as the declared result type of a method, the
exact type is, however, retained in the bytecode.

As a further difference, type names are represented differ-
ently in bytecode and source code. A primitive type is repre-
sented by a single letter string, for example, "I" for int or "D" for
double. A reference type is given by the concatenation of the
strings "L", the class descriptor and ";". The class descriptor in
turn is more or less the fully-qualified class name where . is
replaced by /. In places where reference types are allowed only,
the bytecode format may require a plain class descriptor that is
a descriptor without "L" and ";".

2.2. Bytecode Verification
Java bytecode verification is a very important component of the
Java security concept which is also called the sandbox princi-
ple (Li Gong 1998). The JVM can execute code from arbitrary
sources including generally untrusted sources like the Internet.
Since the JVM is executed locally with relatively broad per-
missions, malicious bytecode from an untrusted source could
potentially exploit the JVM to acquire its permissions for exe-
cuting an attack on the local system. To prevent such damage
to the JVM’s integrity, all bytecode loaded is always verified
before execution.

Beside malicious exploits, it is also possible that, unintention-
ally, bytecode occurs which violates the specification. This can
happen in particular when classes are compiled separately and
bytecode from different sources is used inconsistently. When the
final keyword is added to a super class, for example, a subclass
is not automatically recompiled.

The specification of the Java virtual machine defines an ex-
tensive set of rules which must be satisfied by legal bytecode.
The verifier examines the bytecode of each loaded class to deter-
mine if none of the rules is violated and thus is safe to execute.
This set of rules is divided into three categories (Lindholm et al.
2020, ch. 4.9–4.20) :

1. Static rules ensure that the class file itself is well-formed
(e.g., the target of a jump instruction must be an instruction
within the same method).

2. Structural rules prescribe correct relationships for the data
flow between instructions. (When an instruction is exe-
cuted, for example, it consumes values from the operand
stack that have been produced by other instructions and
the consumed values must be of the expected types.)

3. Additional rules: In addition to static and structural rules,
bytecode verification must ensure that each class has a
direct super class and that the final modifier is respected.

These constraints are verified at link time when the classifier
is invoked for the first time; note that they are not verified
continuously at runtime. Since runtime data is not present
at link time, verification is based on types instead of actual
values. The bytecode verifier simulates all possible control
flow paths that could occur at runtime and checks if all type
conditions are fulfilled. The verification at link time saves

Java Bytecode Verification with OCL: Why, How and When? 3

expensive type checking per instruction at runtime and implies
that the verification of a defensive JVM (which verifies the rules
at runtime) never fails. In this paper, we will call bytecode which
successfully passes verification to be well-behaved bytecode.

In the remainder of this section, we will summarize the rules
along the above categories and explain a representative subset
of the rules in more detail. The goal of this section is to give
an overview of the verifier rules and to illustrate different levels
of complexity of verifier rules. As an indicator of complexity,
we primarily consider the scope within which to access relevant
information required to check the rule.

2.2.1. Static Rules Many of the static rules are concerned
with the well-formedness of a class file. For example, arrays that
contain data must not be truncated. These rules will not be con-
sidered throughout this paper, because bytecode manipulation
toolkits do not allow creating of ill-formed class files.

Local information (I). A specific kind of static rules specifies
the format of symbols (encoded as UTF-8 strings in the class
file) like method and class names (Lindholm et al. 2020). The
legal format is specified for each kind of symbol. Thus, rules
are specified such as:

Rule 1. “Names [...] must not contain any of the ASCII char-
acters . ; [/.”

Rule 2. “Method names are further constrained so that, with
the exception of “<init>” and “<clinit>” [N.B.: the reserved
names for constructors and static initializers in class files], they
must not contain the ASCII characters < >.”

Rule 3. “Each field of a class may have at most one of its public,
private, and protected flags set.”

Rule 4. “A field descriptor representing an array type is valid
only if it represents a type with 255 or fewer dimensions.”

The first two rules require operators for checking the pres-
ence of predefined characters within a string and string equality.
The third rule needs to check the mutual exclusion of informa-
tion and the fourth rule applies some counting.

Directly referenced information (I). A more complex example
of a static rule is the following one that ensured uniqueness
of field definitions within one class. This requires accessing
information from directly nested entities (the scope of this rule),
in this case, the fields defined within a class.

Rule 5. “No two fields in one class file may have the same
name and descriptor.”

2.2.2. Structural Rules The structural bytecode verifica-
tion rules are concerned with type checking the instructions
within each method.

Directly referenced information (II). Some of the structural
rules specify within which classes or methods certain instruc-
tions may be used. Thus, the scope of relevant information is
the class or method in which the instruction is contained.

Rule 6. “An ireturn instruction is type safe if the enclosing
method has a declared return type of int.”

Traversing information referenced by name (I). Another kind
of rule specifies that visible methods and fields may be accessed
only. As an example, consider the following rule for accessing
a protected field.

Rule 7. If invokevirtual or invokespecial is used to access a
protected method declared in a superclass that is a member
of a different run-time package than the current class, then the
type of the class instance being accessed (that is, the type of
the target reference on the operand stack) must be assignment
compatible with the current class.

This rule requires access to the computed stack. In addition,
it requires access to the type hierarchy defined by the class
files of the program. This access is required for two purposes.
First, the declaration of the invoked method must be looked-up
because it contains the visibility definition (i.e., if it is protected).
Second, the type of the receiver object, found on the computed
stack, must be checked for assignment compatibility with the
current class. This means that the class of the receiver object
must be either the current class or a subclass thereof.

Thus, the scope within which information must be accessed
to check this rule is not local. Instead it is defined elsewhere
and referenced by name. In general, it is even necessary to
follow a chain of such named references because the searched
method may also be defined in a superclass of the referenced
class. Therefore, also this rule involves a topological search
operation.

Traversing local information. When a Java bytecode program
is executed, the methods defined in the bytecode are called
and their instructions are executed. For each method call, also
called method activation, local storage is allocated at runtime to
hold the method’s state. It may consist of local variable values
on the operand stack which are used to pass values between
instructions. This storage and the values are available at runtime
only. The layout of the operand stack and the local variables
at each instruction, however, can be statically computed. The
layout is determined by the amount and types of the values that
will be on the stack or held in local variables when the execution
reaches the instruction.

The verifier can establish—without running the program—
whether the expectations of each instruction will be met in every
program run by traversing the possible control-flow paths. For
each instruction, the successor in a control-flow path is either
the neighbor in the method’s sequence of instructions, or it is
directly referenced by the instruction in the case of branching
instructions. Rule 8 shows the requirements on the stack layout
for the integer addition instruction. Analog rules exist for the
other instructions.

Rule 8. The integer addition instruction (iadd) requires two
int-like values at the top of the stack.

2.2.3. Additional Rules There are only three rules in this
category that are concerned with the proper use of extending a
class and respecting the keyword final.

4 Bockisch et al.

Local information (II). The first rule in this category has very
low complexity. It simply checks if the current class specifies
the name of a superclass.

Rule 9. “Every class (except Object) has a direct superclass.”

Traversing information referenced by name (II). The other
two rules in this category have a complexity that is similar
to that of Rule 7 in the previous subsection. The rule searches
the class hierarchy for a method definition and checks its access
modifiers. The last rule is similar but traverses only one step in
the class hierarchy.

Rule 10. “Final methods are not overridden.”

Rule 11. “Final classes are not subclassed.”

3. Model-Driven Engineering
This section recalls all those concepts from model-driven engi-
neering that are needed in this paper. The bytecode meta-model
will be based on the Eclipse Modeling Framework and the Ob-
ject Constraint Language which are recalled next. Thereafter
we recall the model transformation approach Henshin. As we
want to use it for specifying bytecode transformations such that
the bytecode remains valid, we also recall how model transfor-
mations can be designed to be constraint-preserving.

3.1. The Eclipse Modeling Framework
The Eclipse Modeling Framework (EMF) (Steinberg et al. 2008)
has evolved into a de-facto standard technology for defining
models and modeling languages. In EMF, meta-models are
defined using Ecore, an implementation of the OMG’s EMOF
standard (OMG 2016). Meta-models in Ecore prescribe the
structures that instance models of the modeled domain should
exhibit. Concepts known from UML class diagrams are used,
namely the classification of objects and their attributes, refer-
ences to objects, and constraints on object structures. A specific
kind of references is containments. There may be a root object
that contains all other objects of a model directly or transitively.

Each model that conforms to its meta-model and fulfills the
following constraints is called EMF model: (1) Each object must
not have more than one container. (2) Cycles of containments
must not occur. (3) There are no two references of the same type
from the same source to the same target object. (4) If reference
types t1 and t2 are opposite to each other: For each reference
of type t1, there has to be a reference of type t2 linking the
same objects in the opposite direction. In addition, a model may
be constrained by multiplicities and OCL constraints which are
recalled below.

3.2. The Object Constraint Language
The Object Constraint Language (OCL) (OCL 2014) is a for-
mal language that can be used to specify the bytecode verifier
rules for models that are defined over a meta-model. They are
formulated as invariants. In the following, we give a rough
classification for the complexity of invariants. The rationale for
this classification is partly given by the efficiency of checking
OCL constraints. The authors of (Franconi et al. 2019) argue

for a subset of OCL invariants that are first-order and expressive
enough for practical use.

OCL has a type system which consists of mainly three cat-
egories: custom types, predefined types and template types.
Custom types are either class types or enumeration types de-
fined by the user in the corresponding meta-model. Predefined
types are Integer, Real, String, and Boolean, called primitive data
types. In meta-models, they are used as types of class attributes.
In addition, OCL has two predefined types representing the top
(OclAny) and bottom (OclVoid) elements of its type hierarchy.
Template types are Collection(T) and Tuple(T1, T2) whose param-
eters T, T1 and T2 are applied to other types. Collection is an
abstract type: its concrete sub types are Set, OrderedSet, Bag
and Sequence and differ with respect to frequency and ordering
of the contained elements.

(1) The simplest form of invariants is formulated within a
propositional logic of navigation expressions: In OCL expres-
sions, object structures can be traversed using the so-called dot
notation. Accessible elements are objects (i.e. instances of
classes) and their features (i.e. attributes and opposite associ-
ation ends of classes). In this simplest form of invariants, we
consider only navigation expressions that yield a single-valued
return type (for multiplicities with a lower and an upper bound
of 1). If the return type is an object type, the existence of such
an object is checked. If the return type is a primitive one, the re-
sulting values can be compared to another by some comparator.
In addition, all operators known from propositional logic such
as not and and can be used in this category of OCL invariants.

(2) More advanced forms of OCL invariants form a first-
order logic of navigation expressions: In addition to the OCL
features recalled above, all the collection types may be used
together with most of their operators. Depending on a fea-
ture’s multiplicity, a navigation expression may result either in a
single-valued return type (for multiplicities with an upper bound
of 1) or in a multi-valued type, more precisely in a set (for mul-
tiplicities with an upper bound greater than1) or a sequence for
ordered associations. If, in a multi-valued reference, there does
not exist any target object, the navigation results in an empty
set. The multiplicity 0..1 is not supported in this case as the ab-
sence of an appropriate value would yield null representing the
only value of bottom type OclVoid. Moreover, all expressions
are defined such that they do not yield the OCLinvalid value as
return value. In practice, this means that expressions have to
apply proper safety checks. Hence, this form of invariants still
sticks to a two-valued logic.

All forms of collection or tuples may be used. The follow-
ing collection operations are supported: Collections may be
constructed with operations like Set{...} and Sequence{...} or one
of the implicit constructors including(e) and excluding(e). An
implicit constructor takes an element e as parameter and adds it
to a given collection (including) or removes all occurrences of it
from a given collection (excluding). Filter operations like select(
BExp), reject(BExp), and any(BExp) are used to filter collection
elements according to the evaluation of the Boolean expression
BExp. Extraction operations extract some information from
the given collection except for Boolean values. Examples of
this kind of operations are size() and union(Collection(T)). Op-

Java Bytecode Verification with OCL: Why, How and When? 5

eration size() returns the number of elements in a collection
and may be used to compare the size of a collection with some
fixed integer but not with another set size neither with some
attribute value. Finally, OCL provides a number of operations
returning Boolean values. For checking the existence of ele-
ments within a collection, isEmpty() and notEmpty() can be used,
for example. In order to test the membership in a collection,
the operations includes(e) and excludes(e) for testing on single
elements e as well as includesAll(Collection(T)) and excludesAll
(Collection(T)) for testing if element collections are available.
Let expressions are supported as long as the specifications of
additional variables and operations use the OCL features in this
category and are non-recursive.

(3) The most advanced form of OCL invariants allows all
possible OCL expression and operations based on a four-valued
logic, i.e. Boolean={true, false, null, invalid} is supported here.
Now, the multiplicity 0..1 is supported; the absence of an ap-
propriate value would yield null representing the only value of
bottom type OclVoid. Furthermore, collection operations collect
and iterate may be used which allow specifying recursive func-
tions. Any kind of let expressions is supported which means that
the specifications of additional variables and operations may be
recursive. Finally, operations closure and count may be used;
size may be used without any restriction. Custom operations
are supported as long as they are queries, i.e. do not change the
object structure.

3.3. Model Transformations with Henshin

Model transformations can be defined inside one modeling lan-
guage or between two different languages. They are called
endogenous or exogenous, respectively. While endogenous
transformations are used, for example, to edit or optimize in-
stance models, exogenous transformations are typically used
to translate a model to another model or to text. There are
various approaches to model transformation based on several
paradigms. A comprehensive overview of model transforma-
tion approaches and languages is given in (Lúcio et al. 2016;
Kahani et al. 2019). As most of them are able to transform EMF
models, it depends very much on the purpose which model
transformation approaches or languages to use.

Henshin1 (Arendt et al. 2010) is a language and tool environ-
ment for rule-based transformations of EMF models based on
graph transformation concepts. A transformation rule specifies
all the model changes that shall be performed in one transforma-
tion step. The left-hand side L of a rule represents a pattern that
has to be found to apply the rule. The difference between the
left and the right-hand side R of a rule specifies its actions. The
intersection K = L ∩ R denotes the part that is not changed,
the part that is to be deleted is defined by L \ K, while R \ K
defines the part to be created. A model transformation (step)
M r,m

=⇒ N between two models M and N is defined by first
finding a match m, that is a mapping of the left-hand side L of
rule r into M. Model N is obtained erasing m(L \ K) in M and
adding a new copy of R \ K using mapping n. The following

1 Available at: www.eclipse.org/henshin

diagram shows all the models and interrelations that play a role
in a transformation step.

r : L oo
⊇

m
��

K
⊆ //

��

R

n
��

M oo
⊇

I
⊆ // N

If model transformations shall preserve the validity of models
concerning OCL constraints, there are basically two strategies
to achieve that: (1) A valid model is transformed first and the
resulting model is checked for validity thereafter. This can be
done, for example, with the OCLinEcore validator (OCLinEcore
2019). (2) Another possibility is to translate OCL constraints
to graph constraints and to enhance model transformation rules
with application conditions that are derived from those graph
constraints. An application condition restricts the applicabil-
ity of a rule as a match has to be found that satisfied an ad-
ditional condition. The second approach is automated with
OCL2AC2 (Nassar et al. 2019, 2018), tool support which is
based in Henshin. It is demonstrated at an example in Section
5.2.

4. An MDE Approach to Bytecode Processing
In this paper, our goal is to leverage techniques from model-
driven engineering for defining code Java bytecode manipula-
tions by defining them as model transformations. By defining
the bytecode verifier rules as OCL constraints it will become
easier to test byyecode manipulations because it can imme-
diately be checked whether the result of the manipulation is
well-behaved bytecode (c.f. Section 2.2) without executing the
bytecode. Moreover, it will become possible to analyze whether
a given manipulation will always preserve well-behavedness in
bytecode.

For these purposes, we will present a meta-model for Java
bytecode in Section 4.1 (precursors of it have already been
published (Yildiz, Bockisch, et al. 2017; Yildiz, Rensink, et
al. 2017)). In Section 4.2, we will show how to define OCL
constraints for the verifier rules choosing a representative set of
rules.

We have developed a suite of Eclipse plugins to perform
Modular Bytecode Engineering and Analysis based on MDE.
We call our project ModBEAM for short. One of these plugins
provides our meta-model which is called JBC (short for Java
Bytecode). ModBEAM provides a nature that can be added to
Eclipse Java projects such that an instance model is created
for every .class-file that is contained in its source folder. It
is placed in the folder jbc-model and it is updated when a
.class-file changes. The user can choose between generating
one single model which contains call class definitions or many
models which contain one single class each. In the first style,
the models are always created in a full-build, while the second
style supports incrementally building the models. Given a JBC
instance model, the ModBEAM plugins can also generate proper
Java bytecode from such a model again, which is also updated,
when the model changes.
2 Available at: ocl2ac.github.io/home

6 Bockisch et al.

www.eclipse.org/henshin
ocl2ac.github.io/home

In addition to the meta-model and the work flow, ModBEAM
includes an Xtext plugin that provides a textual editor for JBC
instance models. This editor automatically validates the OCL
invariants contained in our meta-model and marks violations
thereof. But we also provide the possibility to persist JBC
instance models in the XML format. The implementation of
ModBEAM, including the meta-model with the OCL invariants,
the Eclipse plugins and the Xtext editor can be accessed from
our Git repository at https://bitbucket.org/modbeam/dev/.

4.1. A Meta-model for Java Bytecode

The purpose of the JBC meta-model is to act as an alternative,
more accessible representation of Java .class files, which is
equivalent to the original. Therefore its structure mainly follows
the organization of Java class files as defined in the Java Virtual
Machine specification (Lindholm et al. 2020). Nevertheless, the
original goal of the bytecode format was to facilitate an efficient
interpretation of .class files and not to be human-readable or
easy to manipulate. For this reason, our meta-model represents
information differently in some places. Examples will be given
along with the discussion of the meta-model in Listung 1.

The JBC meta-model is defined using Ecore. In general,
each kind of entity of the class file format (such as method
declarations, attributes and instructions) is represented as one
ECore class in the meta-model. Lexical nesting is represented
as a containment relationship, i.e., a method is contained in the
class that declares it. The top-level of the Java class file format
follows the Java source language. A simplified and incomplete
version of the most relevant EClasses is shown in Listing 1.

Project is the root of the meta-model and has no other purpose
than to contain Clazz EObjects3, which stands for a .class-file
each. A series of Boolean attributes in Clazz specifies which
modifiers have been used in the corresponding Java class. The
TypeReference basically encapsulates a type name and is used
here to refer to the super class and implemented interfaces.4

Besides this type-related information, a Clazz refers to EOb-
jects modeling the methods and fields defined within the class.
To simplify the analysis of instance models, all containment
references are bidirectional.

The EClasses Method and Field (not shown in the listing) fol-
low the same design strategy. The property descriptor references
a MethodDescriptor (not shown here) which encodes the type
names of the method’s list of parameters.

In contrast to the sequential organization of instructions in ac-
tual bytecode, our meta-model organizes them in a control-flow
graph, which is a representation used in virtually flow-sensitive
code analyses. The property firstInstruction of a Method refers
to the root of this graph, i.e., the instruction at which the exe-
cution of a method starts. The property instructions is required
because all EObjects of type Instruction must be contained in
another EObject and thus, holds an unordered collection of all
instructions of the method. Since a method may be abstract, the

3 This spelling is used to avoid conflicts with the type java.lang.Class when
generating Java classes from the Ecore model.

4 Type names are specified following the “Field Descriptor” notation, cf. (Lind-
holm & Yellin 1999, Section 4.3.2).

property firstInstruction is optional; in that case, the method does
not contain any instruction at all.

The abstract EClass Instruction is the root of a type hier-
archy, which contains one concrete EClass for each possible
Java bytecode instruction. Each instruction type may have spe-
cific attributes; an instruction for invoking a method, for exam-
ple, has an attribute MethodReference. All instructions have in
common that they contain a reference to outgoing control flow
edges, represented by a subtype of the EClass ControlFlowEdge.
That EClass has two properties, namely a reference to the start
Instruction and a reference to the end one.

1 package jbc : jbc = 'https://modbeam.bitbucket.io/jbc' {
2 class Project {
3 property classes : Clazz[*|1] { ordered composes };
4 }
5 abstract class NamedElement {
6 attribute name : String[1];
7 }
8 abstract class MethodNamedElement extends NamedElement {
9 }

10 abstract class AccessFlaggedElement {
11 attribute public : Boolean[1];
12 attribute private : Boolean[1];
13 attribute protected : Boolean[1];
14 }
15 class TypeReference {
16 attribute typeDescriptor : String[1];
17 }
18 class Clazz extends NamedElement, AccessFlaggedElement {
19 attribute final : Boolean[1];
20 attribute super : Boolean[1];
21 attribute abstract : Boolean[1];
22 attribute name : String[1];
23 property superClass : TypeReference[1] { composes };
24 property interfaces : TypeReference[*|1] { ordered composes };
25 property methods#class : Method[*|1] { ordered composes };
26 property fields#class : Field[*|1] { ordered composes };
27 // et cetera
28 }
29 class Method
30 extends MethodNamedElement, AccessFlaggedElement {
31 attribute final : Boolean[1];
32 attribute abstract : Boolean[1];
33 property class#methods : Clazz[?];
34 property descriptor : MethodDescriptor[1] { composes };
35 property instructions#method : Instruction[*|1] { composes };
36 property firstInstruction : Instruction[?];
37 // et cetera
38 }
39 class Field extends NamedElement, AccessFlaggedElement {
40 attribute final : Boolean[1];
41 attribute volatile : Boolean[1];
42 property class#fields : Clazz[?];
43 property descriptor : TypeReference[1] { composes };
44 // et cetera
45 }
46 abstract class Instruction {
47 property method#instructions : Method[1];
48 property outEdges#start : ControlFlowEdge[*|1] {
49 ordered composes };
50 // et cetera
51 }
52 abstract class ControlFlowEdge {
53 property start#outEdges : Instruction[1];
54 property end : Instruction[1];
55 }
56 }

Listing 1 Relevant part of the JBC meta-model

Java Bytecode Verification with OCL: Why, How and When? 7

https://bitbucket.org/modbeam/dev/

Program Classes Methods Model Size Time

LiveGraph 131 350 24049 18s

Weka 1041 8322 756063 764s

Groove 1482 9232 418269 1480s

Table 1 Preliminary performance of JBC instance model
creation from .class-files.

There are three major kinds of control flow edges represented
by subtypes of ControlFlowEdge. The type UnconditionalEdge is
used to define sequential control flow and can be used for most
of the instructions. Some instructions are so-called branching
instructions; when these are executed, the control flow can con-
tinue at different instructions depending on a condition that is
checked by the branching instruction. Most branches are binary
which means that the corresponding Instruction EObject has two
outgoing edges of the type ConditionalEdge. That EClass has
a Boolean attribute condition which specifies whether one or
the other edge is followed depending on whether the instruc-
tion’s condition is satisfied or not. There are also instructions
with n-ary branches to express the switch statement from Java
source code. Outgoing edges for them are modeled in a similar
way. Lastly, there are instructions specifying control flow in
a try block with a corresponding catch block to formulate an
exception. Those instructions have outgoing edges of the type
ExceptionalEdge.

4.1.1. Digression: Performance of ModBEAM To illus-
trate the feasibility of using the ModBEAM meta-model, we
present a few details on the implementation and its performance.
More details can be found in (Yildiz, Bockisch, et al. 2017).

We use the ASM bytecode manipulation toolkit (Bruneton et
al. 2002) to parse class files when creating instance models, as
well as for generating bytecode files from instance models. For
the performance study below, we have used the XMI format for
persisting instance models, and we only consider full builds.

For our performance study, we have used three real-world,
open-source projects of different sizes. The results are presented
in Table 1. The table columns show the Java project’s name,
the number of classes and methods it contains, the number of
EObjects in the instance model and the time spent on creating
the instance-models. The required time ranges from 18 seconds
for a small project to almost 25 minutes for a relatively large
project with nearly 1,500 classes. While 25 minutes is a long
time, a full-build is rarely necessary. A thorough analysis of the
impact of incremental instance model creation in ModBEAM
on the development work flow still has to be performed. In
this study, the average time for creating an instance model for
a .class file was between 0.14 seconds and 1 second. Since
incremental creation works in the background and therefore,
this does not cause a perceivable delay during the development.
For these reasons, we think that our approach is sufficiently
scalable for use in practice. It should also be mentioned that we
have not explored optimization opportunities yet.

4.2. Bytecode Verification Rules as OCL Constraints
In Section 2.2, we have presented an overview of the Java byte-
code verifier rules as they are presented in the Java Virtual
Machine specification. In this section, we will revisit all those
example rules and show their definition in OCL. This subset
of the verifier rules has been selected to be representative with
regard to the complexity of the logic statement and the informa-
tion accessed by them. We have analyzed each rule to determine
the proper EClass to be used as the context and defined an in-
variant for the rule. In Section 3.2, we have classified OCL
invariants into 1. propositional logic, 2. first-order logic, and
3. general OCL expressions. Here, we consider our example
invariants and discuss the level of logic they have.

Local information. Rule 1 applies to every entity with a name
such as a Field, FieldReference or Clazz. All these EClasses
extend the abstract EClass NamedElement which defines the cor-
responding invariant. For method names, there is the additional
rule 2, so the invariant is strengthened in this case. There-
fore, we define the EClass MethodNamedElement—extending
NamedElement—as super class of Method with an additional
invariant.

1 context NamedElement inv nameHasNoIllegalCharacters:
2 name.indexOf('.') = 0 and name.indexOf(';') = 0
3 and name.indexOf('[') = 0 and name.indexOf('/') = 0;
4 context MethodNamedElement inv nameHasNoIllegalBrackets:
5 (name <> '<init>' and name <> '<clinit>')
6 implies (name. indexOf('<') = 0 and name.indexOf('>') = 0);

Listing 2 OCL invariants for verification rules 1 and 2.

Rule 3 restricts the kinds of visibility allowed; it is defined
for fields. Equivalent rules exist for classes and methods, for all
of them at most one visibility modifier may be specified. Given
our meta-model, we do not need to define this invariant mul-
tiple times. Instead we use the EClass AccessFlaggedElement
as context which contains Boolean attributes that specify the
presence of modifiers. This EClass is extended by all EClasses
representing entities with visibility modifiers.

1 context AccessFlaggedElement inv hasAtMostOneAccessFlag:
2 (public implies (not private and not protected)) and
3 (private implies not protected);

Listing 3 OCL invariant for verification rule 3.

The next example in this category of rules is Rule 4. It speci-
fies that the type of a field must not be an array type with more
than 255 dimensions. In fact, this constraint applies to each
entity with a type reference following the“field descriptor” nota-
tion, including method result types. An array type is encoded in
this notation by prepending the character [for each array dimen-
sion. In our meta-model, we define the EClass TypeReference
which is used for all type references; therefore, it is the ideal
context for specifying this invariant.

1 context TypeReference inv arrayDimensionValid:
2 typeDescriptor.characters()−>count('[') <= 255;

Listing 4 OCL invariant for verification rule 4.

8 Bockisch et al.

Rule 9 prescribes that every class except java.lang.Object
must have a superclass specified. The respective OCL invariant
in Listing 5, therefore, requires that a type reference is specified
for the superClass property. This is sufficient since the exis-
tence of the reference class is checked by the linker and not the
bytecode verifier.

1 context Clazz inv hasDirectSuperClass:
2 name = 'java/lang/Object' or not superClass.oclIsUndefined();

Listing 5 OCL invariant for verification rule 9.

The first three invariants presented above clearly belong to
the simplest category of OCL expressions, namely those that use
propositional logic only. The one in Listing 4, however, belongs
to the second category, first-order logic, since the size of a
collection is compared against a constant value. The invariant in
Listing 9 uses the OCL operation oclIsUndefined which makes
use of four-valued logic. Thus, this invariant belongs to the
category of general OCL constraints.

Directly referenced information. Rule 5 could be considered
as an invariant of a class (it must not contain duplicate fields)
or of a field (it must be unique within its class). We decided
to define it as an invariant of the EClass Field because, in case
of a violation, the error reported will be more specific. This
means that the two (or more) duplicate Field EObjects will
be marked. For the second rule in this category, Rule 6, the
JVM specification is more clear about the context which is
IreturnInstruction: an instruction returning an integer is legal
only when it appears within a method with a matching return
type. Let us recall here that a primitive type in bytecode is
represented by a single letter and the types boolean, char, byte,
short and int are all represented as integer values internally.

1 context Field inv noNameAndDescriptorDuplicates:
2 class.fields−>forAll(field | (field <> self)
3 implies (field.name <> self.name
4 or field.descriptor.typeDescriptor <>
5 self.descriptor.typeDescriptor));
6 context IreturnInstruction inv properReturnType:
7 let desc = method.descriptor.resultType.typeDescriptor
8 in desc = 'I' or desc = 'Z' or desc = 'B' or desc = 'S' or
9 desc = 'C';

Listing 6 OCL invariants for verification rules 5 and 6.

Both invariants navigate along eOpposite edges and use sim-
ple equality comparison of primitive attribute values. The sec-
ond invariant does not use other operators and therefore, belongs
to the category of propositional logic. As the first invariant uses
universal quantification, it belongs to the category of first-order
logic. It also navigates along a containment edge, which does
not add to the complexity.

Traversing information referenced by name. In the Java lan-
guage, entities such as classes and methods are referenced by
name. Also in the bytecode, method-invocation instructions
must specify the name of the called method and a class definition
must specify the name of the superclass. We formulate this re-
quirement in the EClasses MethodReference and TypeReference.

To resolve name references to a Clazz, we have implemented
the operation in Listing 7. It searches through all Clazzes in

the instance model and returns the one whose attribute name
matches the provided name. The comparison is not made with
the class name directly but with the expression 'L' + cls.name + ';'
because this is the notation for class-type descriptors in the Java
virtual machine.

If a unique matching Clazz is found, it is returned by the
operation. Otherwise, it returns null. This may be the case,
for example, when a class is referred to that is loaded dynam-
ically at runtime from a source that was not available when
the instance model was created. The operation also returns null
when multiple matches are found as ambiguous class definitions
would exist. This cannot be the case if the instance model is
created by our tooling.

1 context Clazz::getClassFromReference(ref : String[?]) : Clazz[?]
2 body: let availableClasses = Clazz.allInstances()−>
3 select(cls | ref = 'L' + cls.name + ';')
4 in if(not availableClasses−>isEmpty())
5 then availableClasses−>first()
6 else null
7 endif;

Listing 7 Operation to resolve a Clazz EObject from a type
descriptor.

For method references we have implemented an
analogous mechanism. This means that an operation
getMethodFromReference is added to the context Method, which
internally uses the operation getClassFromReference to lookup
the Clazz for the receiver type of the method reference.

The operation isAssignmentCompatible(target : Clazz[?],
operand : Clazz[?]) : Boolean[?] (not shown here) traverses the
class hierarchy by recursively calling getClassFromReference
to determine if the type referred to by operand is a sub type of
the one referred to by target. Using these operations, we can
formulate the bytecode verifier rule 7 as an OCL invariant.

1 context InvokevirtualInstruction inv invocationRespectsProtected :
2 let target = Method::getMethodFromReference(methodReference)
3 in (target.protected and target.class.package() <>
4 self.method.class.package())
5 implies TypeReference::isAssignmentCompatible(
6 self.method.class, target.class);

Listing 8 OCL invariant for verification rule 7.

Rule 10 specifies that no final methods may be overridden.
The corresponding OCL invariant is shown in Listing 9. The in-
variant uses the custom operation getAllMethods(super : Boolean
[?]) : Method[*|1] which is defined in the context Clazz. Simi-
lar to isAssignmentCompatible, this operation recursively calls
getClassFromReference to follow the chain of superclasses and
to collect all methods defined in those classes. In both invariants,
recursive custom operations are used. Therefore, they belong to
the hardest category of general OCL constraints.

1 context Method inv overridesNoFinalMethod:
2 not class.getAllms()−>exists(m |
3 (not private) and m.name = self.name and
4 m.descriptor = self.descriptor and (m.public or m.protected or
5 not (m.public or m.protected or m.private) and m.final));

Listing 9 OCL invariant for verification rule 10.

Java Bytecode Verification with OCL: Why, How and When? 9

Rule 11 states that a final class must not be subclassed. List-
ing 10 shows the equivalent OCL invariant. Since it is costly to
locate all sub classes for a given class, we invert this condition
and specify that the super class must not be final. We must
explicitly handle the case that the name of the super class is
java/lang/Object as that class does not have a super class.

1 context Clazz inv superClassNotFinal:
2 name = 'java/lang/Object' or not self.getClassFromReference(
3 self.superClass.typeDescriptor).final;

Listing 10 OCL invariant for verification rule 10.

This invariant uses the custom operation
getClassFromReference. This operation is not recursive
such that it could also be inlined into the invariant (only at the
expense of readability). The most complex operations used in
this invariant are allInstances and select so that it is first-order.

Traversing local information. This category of verifier rules
is concerned with type checking the arguments of instructions
that are passed along the operand stack or along with local
variables. As outlined in Section 2.2, this requires the computing
of the stack layout and the layout of local variables at each
instruction. Implementing this computation in OCL is lengthy
and its comprehension requires a deeper knowledge of how
instructions in Java bytecode look like. Thus, showing the
implementation would be beyond the scope of this paper.

The overall implementation strategy can, nevertheless, be
presented here. The layout of the stack and the local variables
at an instruction can be computed by traversing all possible
paths from the first instruction to the instruction in question and
collecting information along the way. We have implemented
an operation in the context of the Instruction EClass, called
simulateStack, for performing this traversal. Since there may
be any number of instructions in a method, the control-flow
paths to be traversed may be of any length. For that reason, the
operation simulateStack is implemented recursively. In general,
the control-flow graph of a method may contain cycles (namely
when the method contains loops). To avoid endless recursion,
this operation also has to keep track of EObjects Instruction
already visited.

The operation simulateStack is used in an invariant of Method
, cf. Listing 11, which checks the compliance of the stack
layout and the layout of local-variable computed with the layout
expected by each instruction. It is used to specify the invariant
for bytecode verifier rule 8, among others. The invariant calls
the operation simulateStack on the method’s first instruction and
passes the following arguments: the initial stack layout, the
initial local-variable layout and the sequence of already visited
instructions.

1 context Instruction inv isTypeSafe:
2 (not firstInstruction.oclIsUndefined())
3 implies firstInstruction.simulateStack(Sequence{},
4 localLayoutFromParameters, Sequence{});

Listing 11 OCL invariant for verification rule 8.

Regarding the classification of OCL constraints, the above
invariant belongs to the highest class of general OCL expres-
sions. This is because we use recursive custom operations and

maintain the state of all the EObjects of type Instruction that are
already visited, to avoid endless recursion.

5. Example: Bytecode Manipulation as Model
Transformation

To demonstrate the benefits of our approach of specifying byte-
code verifier rules as OCL constraints, let us have a look at how
bytecode manipulation can be developed as model transforma-
tions based on our meta-model. As an example, we will develop
a simple mock-up tool to develop unit tests before implementing
a method. It will replace the stub body of that method with an
implementation returning predefined values to make the test
cases pass.

For illustration, let us assume that we are developing a pro-
gram to compute the nth Fibonacci number and start by writing
a test driver as well as an empty method, as seen in the listing
below.

1 public class Fibonnaci {
2 public static void main(String[] args) {
3 assert fibonacci(1) == 1;
4 assert fibonacci(4) == 3;
5 }
6 public static int fibonacci(int n) {
7 return 0;
8 }
9 }

Listing 12 Empty implementation of the method fibonacci().

Our mock-up tool is now supposed to insert code into the
method fibonacci() that returns the correct value for the first two
method calls to make the test pass. For brevity, we assume that
a class test.MockDataProvider with a static method next() exists
that returns 1 and 3 for the first two calls and −1 for all others.
The bytecode manipulation needs to insert an instruction into
the method fibonacci() that invokes the method next() as new first
instruction. More instructions need to be inserted to test whether
the result is negative. In that case, the execution should jump to
the original first instruction (i.e., the first instruction compiled
from the statement return 0;), otherwise the execution should
continue at an instruction returning the result of next(). That
instruction also needs to be inserted. In Java bytecode, different
return instructions exist, one for each kind of result type (int-
like, long, float, double and reference type). We generate an
ireturn instruction that returns an int value.

Applying this manipulation to the bytecode of the class in
Listing 12 is successful and the execution of the test driver will
succeed. As we know that the Fibonacci numbers grow very
quickly, we decide to change the method’s return type to long.
After that change, the application of the same manipulation
will produce illegal code that will be rejected by the bytecode
verifier. When the manipulated class is loaded by the Java
Virtual Machine, the error message shown in Listing 13 on page
12 is produced.

To understand that error, developers of bytecode manipu-
lations need to perform the following steps: (1) Execute the
transformed program, leading to a verification error. (2) Read
the error message to figure out the location of the violating in-
struction in terms of its bytecode index, the containing method

10 Bockisch et al.

Figure 1 A sample transformation rule in Henshin.

and the containing class. (3) Open a bytecode viewer for this
class and locate the correct instruction. (4) Analyze the viola-
tion. (5) And finally, locate the part of their implementation that
is responsible for creating the faulty instruction.

5.1. Bytecode verification by OCL Checking
To specify bytecode manipulations such as the one presented
above, we can use model transformation rules instead. For
this case example, we use Henshin to formulate the trans-
formation rule, which is shown in Figure 1. When applied
to a JBC instance model, this rule identifies all parts of the
model that has the expected structure, which is defined by the
Method and Instruction EObjects (stereotype <<preserve>>) and
firstInstruction reference (stereotype <<delete>>) in the figure.
This means that all methods with the name "fibonacci" that have
a first instruction are selected. Such a pattern occurs exactly
once in our example. The matched part of the instance model is
then transformed by removing the reference with the stereotype
<<delete>> and creating the EObjects and references with the
stereotype <<create>>.

The example rule creates the following instructions
linked to sequential control flow by UnconditionalEdge EOb-
jects: InvokestaticInstruction invokes the static method test
.MockDataProvider.next()5 which will push its result on the
operand stack, DupInstruction duplicates this value and
IfltInstruction tests whether the result is negative. The last in-
struction pops a copy of the value from the operand stack such

5 The invocation target is specified by a MethodReference. This EObject
references further EObjects, which are not shown in the example.

that it contains a single value which is the result of the next()
method. This instruction has a conditional control flow defined
by the two ConditionalEdge EObjects. The two possible targets
are IreturnInstruction, if the result of next() was not negative, to
return this value, and the original first instruction to perform the
stub implementation, otherwise. The invocation instruction will
become the new firstInstruction.

The rule explicitly defines the reference method from the
IreturnInstruction to the Method. This is the EOpposite reference
instructions and does not have to be specified. We have included
it into the rule because the OCL2AC tool, applied in the follow-
ing subsection, can use it to create a more readable application
condition.

In our approach, the first three steps of understanding an error
listed for the classical approach above are not needed. Program
execution is not necessary because the verification is performed
by validating the transformed instance model against our OCL
invariants. The resulting instance model can be viewed and
EObjects of violating instructions are directly annotated with
error messages.

Figure 2 shows a screenshot of our Xtext editor for JBC
instance models. The editor shows an excerpt of the model for
our Fibonacci implementation with result type long (the type
descriptor ("J") in bytecode) after our transformation has been
applied. It can be seen immediately that the IreturnInstruction
violates the invariant properReturnType, cf. Listing 6.

The creative task of understanding the mistake in step 4 can
be supported by tracing model transformations such that the
transformation rules that are responsible for creating failure

Java Bytecode Verification with OCL: Why, How and When? 11

1 Error: Unable to initialize main class Fibonacci
2 Caused by: java.lang.VerifyError: Bad return type
3 Exception Details:
4 Location:
5 Fibonacci.fibonacci(I)J @7: ireturn
6 Reason:
7 Type integer (current frame, stack[0]) is not
8 assignable to long
9 (from method signature)

10 Current Frame:
11 bci: @7
12 flags: { }
13 locals: { integer }
14 stack: { integer }
15 Bytecode:
16 0000000: b800 2959 9b00 04ac 09ad
17 Stackmap Table:
18 same_locals_1_stack_item_frame(@8,Integer)

Listing 13 Error message by the bytecode verifier. Figure 2 Xtext editor with the transformed instance model
violating an invariant.

is identified. Considering Henshin, however, such tracing is
not implemented in a user-friendly way yet. Step 5, however,
is supported with our solution as each model resulting from
a transformation can be checked against the bytecode verifier
rules using the OCL constraints of our meta-model.

5.2. A Correct-by-Construction Approach

In contrast to performing bytecode verification by OCL check-
ing as above, we present an approach here that enhances a
model transformation rule with application conditions. They
control the applicability of the transformation rule such that
all possible applications lead to transformation results that re-
spect the given set of constraints. The construction of such
application conditions is implemented in an Eclipse-based tool
called OCL2AC (Nassar et al. 2018, 2019). For a given Hen-
shin rule and an OCL constraint, OCL2AC can automatically
construct constraint-preserving application conditions. Such
an application condition ensures that the rule applies to a valid
model if and only if the resulting model after the rule appli-
cation satisfies the constraint. OCL2AC implements a formal
approach; its correctness is shown (Radke et al. 2018; Nassar
et al. 2019). However, OCL2AC comes with the following
limitations: It cannot yet translate all OCL constraints but only
those that are two-valued and in first-order logic. Thus, the
expression oclIsUndefined and the operation iterate are not sup-
ported. Moreover, there is no support to translate user-defined
operations.

In the following, we show how to enhance the Henshin rule
shown in Figure 1 to preserve the OCL constraint properRe-
turnType with the help of OCL2AC. This means that the rule
will be turned to be applicable to a valid model if and only if the
model that results from an application of that rule satisfies the
constraint. The integration process consists of two main steps
as follow: First, the OCL constraint is translated into a semanti-

cally equivalent graph constraint as shown for our example in
Figure 3. A graph constraint is a formula in first-order logic; it
is formulated over (model) graph patterns that are checked for
(non-)existence in an instance model. The graph constraint in
Figure 3 states that for each IreturnInstruction, there exists a
Method connected to a MethodDescriptor, which is connected
to a TypeReference. The value of the attribute typeDescriptor
may be C, S, B, Z, or I. The name self requires the nodes of
type IreturnInstruction to be the same.

∀




self:IreturnInstruction , ∃




var19:Method

self:IreturnInstruction

var18:MethodDescriptor

var17:TypeReference

typeDescriptor = varX

resu
ltT

y
p
e

descriptor

m
et
h
o
d







∧ varX = ”C” or ”S” or ”B” or ”Z” or ”I”

Figure 3 Graph constraint properReturnType

Second, the graph constraint is integrated as a constraint-
preserving application condition for the rule. This is mainly
done by overlapping the right-hand side of the rule with the
constraint in every possible way to find all possibilities how a
rule application may violate the constraint. Often, the resulting
application condition contains unnecessary checks that can be
eliminated. Figure 4 shows the relevant snippet of the appli-
cation condition that is constructed from the graph constraint
in Figure 3. It requires that the Method that will contain the
IreturnInstruction has a MethodDescriptor connected with a
TypeReference, and the value of its attribute typeDescriptor
must be C, S, B, Z, or I.

Given a metamodel with a set of constraints and a set of
rules, we show in (Nassar et al. 2019) that a constraint has to

12 Bockisch et al.




∃




fibonacciMethod:Method

origFirst:Instruction

var18:MethodDescriptor

var17:TypeReference

typeDescriptor = varX

resu
ltT

y
p

e

descriptor

fi
rstIn

stru
ctio

n




∧ varX = ”C” or ”S” or ”B” or ”Z” or ”I”

Figure 4 Snippet from the resulting properReturnType-
preserving application condition

be integrated into a rule only if it can violate that constraint.
Thus, in general, not all the rules have to be enhanced with
application conditions. The decision of whether to integrate
a constraint into a rule is based on a static analysis of their
declarative specifications.

6. Related Work
Our considerations of related work cover several areas: ap-
proaches to bytecode manipulation, formalization of Java byte-
code verifier rules, meta-models for general-purpose program-
ming languages, especially Java, and using MDE to implement
bytecode manipulations.

In the programming-language-implementation community,
there are approaches to support developers of bytecode manip-
ulations by offering high-level interfaces (e.g., (Marek et al.
2015; Bytebuddy 2020)). They offer convenience and prevent
some kinds of mistakes but also limit the possible kinds of ma-
nipulations. General toolkits such as ASM or BCEL (Bruneton
et al. 2002; BCEL 2020) facilitate the checking of generated
bytecode against the verifier rules of the JVM specification. But
they have several shortcomings compared to our approach: First,
there is no persistent representation of the bytecode to which
the error messages can be attached. Second, the manipulation
must be implemented in an imperative way and thus, cannot be
analyzed itself.

There are also some formalizations of Java bytecode verifier
rules. The JVM specification itself (Lindholm et al. 2020)
uses Prolog terms to define some of the verifier rules. But
it does not an actual implementation for all relations so that
these rules are not executable. Leroy has formulated the rules
as data-flow equations (Leroy 2003) but not implemented in
a machine-processable language. Reynolds (Reynolds 2013)
follows a very similar approach to ours. He defines a meta-
model for Java bytecode in the modeling language Alloy which
contains constraints for some of the verifier rules. Since Alloy
is restricted to first-order logic, not all verifier rules can be
supported.

There are already meta-models for general-purpose program-
ming languages, in particular for Java. SPOON (Pawlak et al.
2016) is a meta-model for the Java language; it has been de-
veloped specifically for supporting analysis and transformation
of source code. Analyses and transformations in the SPOON
approach are implemented in plain Java and therefore, are not
as declarative as in our approach. This means that analyses of

the transformations themselves, as we have shown using the
OCL2AC tool, are out of reach.

There are EMF-based meta-models of the Java source lan-
guage are provided by JaMOPP (Heidenreich et al. 2009) and
MoDisco (Bruneliere et al. 2014). These meta-models do not
contain invariants for semantic properties yet. But since they
are defined in Ecore, OCL can be used of course to specify such
invariants also there. Nevertheless, we believe that bytecode is
more appropriate for implementing program transformations in
general as bytecode can always be assumed to be present and it
can also be modified more flexibly.

Regarding other meta-models for bytecode, besides the work
by Reynolds discussed above, we are aware of only one further
approach by Eichberg et al. (Eichberg et al. 2010). They provide
a meta-model for Java bytecode as an XML Schema. The focus
of that approach is on supporting static analyses, however, it
would also be possible to implement bytecode manipulations
as XML transformation using, for example, XSLT. There are
also approaches to validate XML documents based on OCL
invariants. However, Ecore is more commonly used in model-
driven engineering and more tools exist for processing Ecore-
based instance models. We have demonstrated this benefit by
using the powerful OCL2AC tool to analyze a transformation
itself.

When using MDE to implement bytecode manipulations,
there are tools that offer interesting functionality: The UML-
based Specification Environment (USE) (Gogolla et al. 2007)
by Gogolla et al. supports the execution of UML models and the
checking of OCL constraints. As advanced features, USE can
check the consistency of models, and moreover, the indepen-
dence and implication of invariants. In the future, it is interesting
to check the independence and implications of the OCL con-
straints deduced from bytecode verifier rules for proving their
soundness.

We have seen that model transformation can be used to imple-
ment program transformation. Having translated Java bytecode
to an instance model, model transformations shall enhance and
rewrite it; so an endogenous model transformation approach
is needed. While there are several endogenous model trans-
formation approaches for EMF such as ETL (Kolovos et al.
2008), Henshin, ViaTra (Varró et al. 2016), Henshin is the
only one that can enhance model transformation rules with
application conditions such that resulting transformations are
constraint-preserving. While Henshin uses a translation of OCL
constraints to graph constraints (Radke et al. 2018), Desai and
Gogolla (Desai & Gogolla 2019) use OCL directly to develop
pre- and post-conditions of state transitions in operation calls.
In addition, a certain kind of independence between different
program analyses shall be ensured. This requirement demands
a model transformation approach that supports independence
analyses between transformation modules. Henshin is the only
transformation tool with such support. It offers a conflict and
dependency analysis of transformation rules. It is up to future
work to consider a toolbox for modular bytecode engineering
and analysis.

Java Bytecode Verification with OCL: Why, How and When? 13

7. Conclusion

As standard approaches for developing and testing program
transformations need to use several technologies that are not
well linked, we investigated how model-driven engineering can
be used in this context and when this approach is promising. In
the context of Java bytecode, we analyzed the semantic rules of
the bytecode verifier according to their complexity factor, pre-
sented a meta-model for Java bytecode, showed how to express
the semantic rules as OCL constraints using this meta-model,
and showed that using MDE for developing program transfor-
mations can provide more immediate guidance and feedback to
the developer.

As we report on work-in-progress, there is a number of
improvements to be made and open questions to be answered.
To start with, we plan to further optimize our meta-model and
especially, the invariants; in particular, we will focus on the
following problems. First, there are some properties in our
meta-model that are optional. Using them in invariants may
lead to the use of four-valued logic. We will investigate if we
can improve the meta-model such that optional properties are
avoided. Then, corresponding invariants may be reformulated
such that they will belong to a simpler logic class and tools
like OCL2AC could analyze bytecode manipulations in more
cases. Second, when using the stack and local-variable layout
for checking verifier rules, violations are currently attributed to
the Method instead of an Instruction EObject. In the future, we
will attempt to implement this check as invariants of instructions
to produce more specific error messages.

Expressing semantic rules of programming languages as
invariants of the languages meta-model can provide a huge
benefit to developers of bytecode manipulations, as we have
shown in this paper. We will therefore further enrich our work
with additional semantic rules, beyond the ones of the Java
bytecode verifier, to extend this advantage even more.

A first demonstration of the benefits of implementing byte-
code manipulations as model transformation has been given in
our case example. In future, we will investigate more complex
bytecode manipulations for a variety of purposes to find out
how far the usage of MDE concepts and techniques allows de-
veloping correct bytecode manipulations in a developer-friendly
way.

Acknowledgments

This work was partially funded by the German Research Foun-
dation (DFG) projects “Meta-Modeling and Graph Grammars:
Generating Development Environments for Modeling Lan-
guages” (grant no. HA 2936/4-2 and TA 294/13-2). We would
also like to thank Mehmet Akşit, Arend Rensink and Bugra
Yildiz for their contributions to early versions of our Java byte-
code meta-model.

References

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006).
Compilers: Principles, techniques, and tools (2nd edition).
USA: Addison-Wesley Longman Publishing Co., Inc.

Alanen, M., & Porres, I. (2003). A relation between context-free
grammars and meta object facility metamodels (Tech. Rep.).
Turku Centre for Computer Science.

Arendt, T., Biermann, E., Jurack, S., Krause, C., & Taentzer, G.
(2010). Henshin: Advanced Concepts and Tools for In-Place
EMF Model Transformations. In Proc. models (pp. 121–135).
Springer. doi: 10.1007/978-3-642-16145-2_9

The BCEL homepage. (2020, May). http://commons.apache.org/
proper/commons-bcel/. (Accessed: May 15, 2020)

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-
driven software engineering in practice (1st ed.). Morgan &
Claypool Publishers.

Bruneliere, H., Cabot, J., Dupé, G., & Madiot, F. (2014, Au-
gust). MoDisco: a Model Driven Reverse Engineering Frame-
work. Information and Software Technology, 56(8), 1012-
1032. Retrieved from https://hal.inria.fr/hal-00972632 doi:
10.1016/j.infsof.2014.04.007

Bruneton, E., Lenglet, R., & Coupaye, T. (2002). ASM: a code
manipulation tool to implement adaptable systems. Adapt-
able and extensible component systems, 30, 19. Retrieved
from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10
.1.1.117.5769

Desai, N., & Gogolla, M. (2019). Developing comprehensive
postconditions through a model transformation chain. J. Ob-
ject Technol., 18(3), 5:1–18. Retrieved from https://doi.org/
10.5381/jot.2019.18.3.a5 doi: 10.5381/jot.2019.18.3.a5

Efftinge, S., & Völter, M. (2006). oaw xtext: A framework for
textual dsls. In Workshop on modeling symposium at eclipse
summit (Vol. 32).

Eichberg, M., Monperrus, M., Kloppenburg, S., & Mezini, M.
(2010). Model-driven engineering of machine executable
code. In Modelling foundations and applications (pp. 104–
115). Berlin, Heidelberg: Springer Berlin Heidelberg. Re-
trieved from https://doi.org/10.1007/978-3-642-13595-8_10
doi: 10.1007/978-3-642-13595-8_10

Franconi, E., Mosca, A., Oriol, X., Rull, G., & Teniente, E.
(2019, August). OCLFO: First-order expressive ocl con-
straints for efficient integrity checking. Softw. Syst. Model.,
18(4), 2655 - 2678. Retrieved from https://doi.org/10.1007/
s10270-018-0688-z doi: 10.1007/s10270-018-0688-z

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A
uml-based specification environment for validating UML and
OCL. Sci. Comput. Program., 69(1-3), 27–34. Retrieved from
https://doi.org/10.1016/j.scico.2007.01.013 doi: 10.1016/
j.scico.2007.01.013

Heidenreich, F., Johannes, J., Seifert, M., & Wende, C. (2009).
Closing the gap between modelling and java. In Software
language engineering, second international conference, SLE
2009, denver, co, usa, october 5-6, 2009, revised selected
papers (Vol. 5969, pp. 374–383). Springer. Retrieved
from https://doi.org/10.1007/978-3-642-12107-4_25 doi:
10.1007/978-3-642-12107-4_25

Kahani, N., Bagherzadeh, M., Cordy, J. R., Dingel, J., & Varró,
D. (2019, August). Survey and classification of model trans-
formation tools. Softw. Syst. Model., 18(4), 2361- 2397. Re-
trieved from https://doi.org/10.1007/s10270-018-0665-6 doi:
10.1007/s10270-018-0665-6

14 Bockisch et al.

http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
https://hal.inria.fr/hal-00972632
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.5769
https://doi.org/10.5381/jot.2019.18.3.a5
https://doi.org/10.5381/jot.2019.18.3.a5
https://doi.org/10.1007/978-3-642-13595-8_10
https://doi.org/10.1007/s10270-018-0688-z
https://doi.org/10.1007/s10270-018-0688-z
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1007/978-3-642-12107-4_25
https://doi.org/10.1007/s10270-018-0665-6

Kolovos, D. S., Paige, R. F., & Polack, F. (2008). The epsilon
transformation language. In Theory and practice of model
transformations, first international conference, ICMT 2008,
zürich, switzerland, july 1-2, 2008, proceedings (Vol. 5063,
pp. 46–60). Springer. Retrieved from https://doi.org/10.1007/
978-3-540-69927-9_4 doi: 10.1007/978-3-540-69927-9_4

Leroy, X. (2003). Java bytecode verification: Algorithms
and formalizations. Journal of Automated Reasoning,
30(3), 235–269. Retrieved from https://doi.org/10.1023/A:
1025055424017 doi: 10.1023/A:1025055424017

Li Gong. (1998). Secure java class loading. IEEE Internet
Computing, 2(6), 56-61. doi: https://doi.org/10.1109/4236
.735987

Liang, S., & Viswanathan, D. (1999). Comprehensive profiling
support in the javatm virtual machine. In Proceedings of the
5th conference on usenix conference on object-oriented tech-
nologies and systems - volume 5 (p. 17). USA: USENIX Asso-
ciation. Retrieved from http://www.usenix.org/publications/
library/proceedings/coots99/liang.html

Lindholm, T., & Yellin, F. (1999). Java virtual machine specifi-
cation (2nd ed.). USA: Addison-Wesley Longman Publishing
Co., Inc.

Lindholm, T., Yellin, F., Bracha, G., Buckley, A., & Smith, D.
(2020). The java virtual machine specification, java se 14 edi-
tion. https://docs.oracle.com/javase/specs/jvms/se14/html/.

Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Se-
lim, G. M., . . . Wimmer, M. (2016, July). Model trans-
formation intents and their properties. Softw. Syst. Model.,
15(3), 647?684. Retrieved from https://doi.org/10.1007/
s10270-014-0429-x doi: 10.1007/s10270-014-0429-x

Marek, L., Zheng, Y., Ansaloni, D., Bulej, L., Sarimbekov, A.,
Binder, W., & Tuma, P. (2015). Introduction to dynamic
program analysis with disl. Sci. Comput. Program., 98, 100–
115. Retrieved from https://doi.org/10.1016/j.scico.2014.01
.003 doi: 10.1016/j.scico.2014.01.003

Nassar, N., Kosiol, J., Arendt, T., & Taentzer, G. (2018).
OCL2AC: automatic translation of OCL constraints to graph
constraints and application conditions for transformation
rules. In Graph transformation - 11th international con-
ference, ICGT 2018, held as part of STAF 2018, toulouse,
france, june 25-26, 2018, proceedings (Vol. 10887, pp. 171–
177). Springer. Retrieved from https://doi.org/10.1007/978-3
-319-92991-0_11 doi: 10.1007/978-3-319-92991-0_11

Nassar, N., Kosiol, J., Arendt, T., & Taentzer, G. (2019).
Constructing optimized validity-preserving application con-
ditions for graph transformation rules. In Graph transfor-
mation - 12th international conference, ICGT 2019, pro-
ceedings (Vol. 11629, pp. 177–194). Springer. Retrieved
from https://doi.org/10.1007/978-3-030-23611-3_11 doi:
10.1007/978-3-030-23611-3_11

Nystrom, N., Clarkson, M. R., & Myers, A. C. (2003). Polyglot:
An extensible compiler framework for java. In Compiler
construction (pp. 138–152). Berlin, Heidelberg: Springer
Berlin Heidelberg. Retrieved from https://doi.org/10.1007/
3-540-36579-6_11 doi: 10.1007/3-540-36579-6_11

Object Constraint Language, Version 2.4, Object Management
Group. (2014). http://www.omg.org/spec/OCL/2.4.

OCLinEcore. (2019). Eclipse OCL. Retrieved from https://
wiki.eclipse.org/OCL/OCLinEcore

OMG Meta Object Facility (MOF). Version 2.5.1 [Computer
software manual]. (2016, 11). Retrieved from http://www
.omg.org/spec/MOF/

Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., &
Seinturier, L. (2016, September). Spoon: A library for
implementing analyses and transformations of java source
code. Softw. Pract. Exper., 46(9), 1155?1179. Retrieved from
https://doi.org/10.1002/spe.2346 doi: 10.1002/spe.2346

Radke, H., Arendt, T., Becker, J. S., Habel, A., & Taentzer,
G. (2018). Translating essential OCL invariants to nested
graph constraints for generating instances of meta-models.
Sci. Comput. Program., 152, 38–62. Retrieved from https://
doi.org/10.1016/j.scico.2017.08.006 doi: 10.1016/j.scico
.2017.08.006

Reynolds, M. C. (2013). Modeling the java bytecode verifier.
Science of Computer Programming, 78(3), 327 - 342. doi:
https://doi.org/10.1016/j.scico.2011.03.008

Steimann, F., Pawlitzki, T., Apel, S., & Kästner, C. (2010, July).
Types and modularity for implicit invocation with implicit
announcement. ACM Trans. Softw. Eng. Methodol., 20(1). Re-
trieved from https://doi.org/10.1145/1767751.1767752 doi:
10.1145/1767751.1767752

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008).
Emf: Eclipse modeling framework (2nd ed.). Upper Saddle
River, NJ: Addison Wesley.

Team, T. B. (Ed.). (2020). The bytebuddy homepage. https://
bytebuddy.net/#/.

Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., &
Ujhelyi, Z. (2016). Road to a reactive and incremental model
transformation platform: three generations of the VIATRA
framework. Software and Systems Modeling, 15(3), 609–629.
Retrieved from https://doi.org/10.1007/s10270-016-0530-4
doi: 10.1007/s10270-016-0530-4

Yildiz, B., Bockisch, C., Rensink, A., & Aksit, M. (2017, 7). A
java bytecode metamodel for composable program analyses.
In Software technologies: Applications and foundations (pp.
30–40). Springer. doi: 10.1007/978-3-319-74730-9_4

Yildiz, B., Rensink, A., Bockisch, C., & Aksit, M. (2017,
4). A model-derivation framework for software analysis. In
Proceedings 2nd workshop on models for formal analysis of
real systems (mars) (pp. 217–229). arXiv.org. doi: 10.4204/
EPTCS.244.9

About the authors
Christoph Bockisch is a professor for practical computer sci-
ence and the chair of the Programming Languages and Tools
group at the Philipps-Universität Marburg, Germany. His cur-
rent research focus is on software development tools, program
analysis and software engineering methods, with a focal point
on software engineering for energy efficiency. You can contact
the author at bockisch@acm.org.

Gabriele Taentzer is a professor for software engineering at the
Philipps-Universität Marburg, Germany. Her research interests

Java Bytecode Verification with OCL: Why, How and When? 15

https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1023/A:1025055424017
https://doi.org/10.1023/A:1025055424017
http://www.usenix.org/publications/library/proceedings/coots99/liang.html
http://www.usenix.org/publications/library/proceedings/coots99/liang.html
https://doi.org/10.1007/s10270-014-0429-x
https://doi.org/10.1007/s10270-014-0429-x
https://doi.org/10.1016/j.scico.2014.01.003
https://doi.org/10.1016/j.scico.2014.01.003
https://doi.org/10.1007/978-3-319-92991-0_11
https://doi.org/10.1007/978-3-319-92991-0_11
https://doi.org/10.1007/978-3-030-23611-3_11
https://doi.org/10.1007/3-540-36579-6_11
https://doi.org/10.1007/3-540-36579-6_11
https://wiki.eclipse.org/OCL/OCLinEcore
https://wiki.eclipse.org/OCL/OCLinEcore
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/
https://doi.org/10.1002/spe.2346
https://doi.org/10.1016/j.scico.2017.08.006
https://doi.org/10.1016/j.scico.2017.08.006
https://doi.org/10.1145/1767751.1767752
https://bytebuddy.net/#/
https://bytebuddy.net/#/
https://doi.org/10.1007/s10270-016-0530-4
mailto:bockisch@acm.org?subject=Your paper "Java Bytecode Verification with OCL\Why, How and When?"

include the foundation and application of model-based software
engineering, software quality assurance, and graph transforma-
tion. You can contact the author at taentzer@informatik.uni-
marburg.de.

Nebras Nassar is a post-doctoral researcher in the software en-
gineering group at Philipps-Universität Marburg in Germany,
where he received the doctoral degree in 2019. His research
interests are in model-driven software engineering, quality as-
surance techniques, and (meta-)modeling tools. You can contact
the author at nassarn@informatik.uni-marburg.de.

Lukas Wydra finished his bachelor thesis on the topic Verifica-
tion of the well-formedness of Java bytecode with OCL con-
straints in the Programming Languages and Tools group at the
Philips-Universität Marburg, Germany. He received his degree
in 2020. You can contact the author at wydral@students.uni-
marburg.de.

16 Bockisch et al.

mailto:taentzer@informatik.uni-marburg.de?subject=Your paper "Java Bytecode Verification with OCL\Why, How and When?"
mailto:taentzer@informatik.uni-marburg.de?subject=Your paper "Java Bytecode Verification with OCL\Why, How and When?"
mailto:nassarn@informatik.uni-marburg.de?subject=Your paper "Java Bytecode Verification with OCL\Why, How and When?"
mailto:wydral@students.uni-marburg.de?subject=Your paper "Java Bytecode Verification with OCL\Why, How and When?"
mailto:wydral@students.uni-marburg.de?subject=Your paper "Java Bytecode Verification with OCL\Why, How and When?"

