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ABSTRACT The logic of the UML and OCL modeling languages is based on crisp values, e.g., true or false. However, when
modeling systems that work in physical environments or where human actors are involved, different users may have subjective
opinions about the reality that they perceive, and thus may need to assign different levels of confidence to the logic predicates
of the models. These different views, or opinions, may also be subject to uncertainty when there is a lack of knowledge about
the system, adding the dimension of ignorance to the traditional belief-disbelief dichotomy. This paper proposes an extension
of the OCL/UML datatype Boolean that enables the representation of subjective uncertain opinions, together with a set of
logical operators for reasoning with uncertain propositions in order to reach better informed decisions. The proposal has been
implemented as an extension of the UML-based Specification Environment (USE) tool, and validated with several applications
and case studies.
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1. Introduction
Conceptual modeling (Olivé 2007) enables engineers to repre-
sent a system at a level of abstraction that contains the relevant
information for the purpose of the model, abstracting away
irrelevant details. Despite the success of UML (Object Manage-
ment Group 2015) and OCL (Object Management Group 2014)
for modeling information systems, the birth of new paradigms
such as the Internet of Things (IoT), Cyber-physical Systems
(CPS), the advances in Robotics and Artificial Intelligence (AI),
have raised the need to model systems that represent or interact
with new environments (i.e., physical factors), which is chal-
lenging these notations. In particular, the basic datatypes and
mechanisms that they provide are falling short for expressing
behavioral aspects which are essential to these kinds of systems
such as concurrency, units, precision, uncertainty or social be-
havior (Lee 2008; Selic 2015; Zhang et al. 2016; Bertoa et al.
2019; Burgueño, Mayerhofer, et al. 2019; Bucchiarone et al.
2020).
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Focusing on uncertainty, it applies to physical measurements,
estimations, predictions of future events, and unknown proper-
ties of a system. Uncertainty is defined as “the quality or state
that involves imperfect and/or unknown information” (JCGM
2008). In this paper, we are interested in representing one
particular kind of uncertainty, namely the uncertainty due to
imprecision and subjectivity of logical predicates, whereby a
user is not sure about a statement, i.e., a Boolean predicate,
made about the system.

In UML, logic predicates are represented by OCL expres-
sions of type Boolean. This datatype represents the binary
logic values true and false, which fit very well with an ideal
view of a perfect world. In many real situations, however, we
cannot be completely sure about the truth of these predicates.
For example, whether a sensor is working properly or not, or
whether your favorite team will win the league this year.

Several extensions to Boolean logic allow dealing with
this kind of uncertainty. A particular case is probability the-
ory (Feller 2008; de Finetti 2017), which assigns probabilities
to propositions, rather than truth values, and where formulas of
probability calculus replace truth tables. In other words, they
let Boolean values or predicates to be partially true. In (Bertoa
et al. 2019), we proposed an extension of UML and OCL type
Boolean, called UBoolean (Uncertain Boolean), which adds
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to each Boolean value a real number in the range [0,1] that
represents the likelihood that such a value is true. This datatype
provides a probabilistic extension to binary logic.

However, a fundamental limitation of probabilistic logic is
the inability to account for the modeler’s level of confidence in
the assigned probability, or to handle the situation in which the
modeler cannot assign probabilities to a predicate. For example,
when the modeler has total ignorance about some statement x,
it might be preferable to say “I don’t know” than assigning x a
confidence of 0.5, because a confidence of 0.5 would mean that
x and ¬x are equally likely, which does not represent ignorance
since it is already quite informative (Jøsang 2016). Moreover,
forcing a modeler to set probabilities with little or no confidence
could lead to unreliable conclusions. Therefore, we need a
formalism that explicitly states the level of uncertainty that
someone holds about a predicate, and distinguishes between
the degrees of belief, disbelief and uncertainty, since they are
different.

Subjective logic (Jøsang 2001, 2016) is a probabilistic logic
that explicitly takes uncertainty and trust into account (Jøsang
et al. 2005), and allows different individuals to hold different
subjective opinions about the same statement. Expressions in
subjective logic are called opinions, and are defined by quadru-
ples (b, d, u, a). The b, d and u components represent, respec-
tively, the degrees of belief, disbelief and uncertainty that the
agent has about the statement, i.e., the degree of trust; and a is
the (objective) prior probability assigned to the statement. For
example, (0.7, 0.1, 0.2, 0.5) means that there is an statement
with a (prior) probability of 0.5 to be true, but the agent has a
degree of belief of 0.7 that the statement to which the quadruple
is associated is true, 0.1 that it is false, and is 0.2 uncertain about
it. In other words, initially the statement was equally likely to
be true or false (hence the prior probability of 0.5), but agent’s
stakes are 70% in favor, 10% against, and 20% unsure.

In this paper, we propose an extension of the UML and OCL
primitive datatype Boolean, and of its extension UBoolean,
which enables the representation of subjective opinions in order
to make more reliable and informed decisions about OCL state-
ments (i.e., specific situations and future events). The extended
datatype, called SBoolean, provides a set of operators that can
be used for logical reasoning with uncertain propositions. We
present how the former logic types can be naturally embedded
into the new type, and how OCL expressions can be seam-
lessly evaluated in the extended type. The proposal has been
implemented as an extension of the UML-based Specification
Environment (USE) tool (Gogolla et al. 2007), and validated
with several applications and case studies.

This paper is structured as follows: Sect. 2 introduces the
concepts that will be used throughout the paper. Then, Sect. 3
describes our proposal: the type SBoolean and its values, as
well as the algebra of operations on subjective values that we
have defined. The algebraic properties of these operations are
also studied. Tool support is described in Sect. 4, while Sect. 5
presents the usability evaluation we have performed on the pro-
posal. Finally, Sect. 6 compares our work to similar proposals
and Sect. 7 concludes the paper with an outlook on future work.

2. Background

2.1. Belief Uncertainty

Uncertainty can be defined as “the quality or state that involves
imperfect and/or unknown information” (JCGM 2008). Vari-
ous types of uncertainties can be considered when modeling
a system (Oberkampf et al. 2002; Thunnissen 2003; Zhang
et al. 2016, 2019; Object Management Group 2017). For ex-
ample, aleatory uncertainty refers to the inherent variation as-
sociated with the physical system under consideration, or its
environment. In contrast, epistemic uncertainty refers to the
potential inaccuracy or vagueness that is due to the lack of
knowledge (Oberkampf et al. 2002).

Logic predicates that refer to physical systems should be able
to capture uncertainty of both aleatory and epistemic natures.
For instance, aleatory uncertainty happens when we compare
two uncertain real numbers (e.g., 3.0± 0.1 < 3.1± 0.1). The
result can be expressed by the probability that one is in fact
less than the other: in this case, 0.383, cf. (Bertoa et al. 2019).
On the other hand, epistemic uncertainty happens, for example,
when somebody is asked whether it will rain tomorrow or not.

A particular kind of epistemic uncertainty, called Belief Un-
certainty, occurs when a user is not sure about the truth of an
statement, i.e., a Boolean predicate. This is directly related to
trust (Jøsang et al. 2005). Several extensions to the Boolean
logic enable dealing with belief uncertainty, including proba-
bility theory (Feller 2008; de Finetti 2017), possibility theory
(based on fuzzy logic (Zimmermann 2001; Russell & Norvig
2010)), plausibility (a measure in the Dempster-Shafer theory
of evidence (Shafer 1976)) and uncertainty theory (Liu 2018).
These proposals assign different probabilities to propositions,
rather than truth values, and probability formulas replace truth
tables.

In (Bertoa et al. 2019), we proposed an extension of all UML
and OCL primitive datatypes (Boolean, Real, String, Integer)
able to deal with uncertainty. Type embedding was used to
define the extensions, and subtyping ensured safe replaceability
of values and operations. In particular, type UReal extends
the OCL type Real by adding the uncertainty of measurement
associated to its values, expressed as the standard deviation of
their potential measurements (JCGM 2008). Thus, possible
UReal values are 3.0± 0.1 or 4.5± 0.0. This last uncertain real
number represents the embedding of the Real value 4.5 into
UReal.

The type UBoolean extends the type Boolean by adding
the probability that expresses the likelihood that the value is
true. In other words, it allows Boolean values or predicates to
be partially true. Possible UBoolean values are (true, 0.90) or
(false, 0.70). The type Boolean can be naturally embedded into
UBoolean by lifting true to (true, 1.0) and false to (true, 0.0).

However, as we mentioned in the introduction, this proba-
bilistic extension to binary logic presents some limitations when
the modeler is uncertain about the probability that she has to
assign to a logic predicate or to a Boolean attribute. This un-
certainty is typically called second-order probability or second-
order uncertainty in the literature of statistics and economics,
and needs to be explicitly represented, propagated and taken
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Lookout

safeDistanceLimit : UReal

/raiseAlarm : UBoolean

Plane

identifier : UString

altitude : UReal

PositionedElement

xCoord : UReal

yCoord : UReal

distanceTo(p : PositionedElement) : UReal

Sighting

isEnemy : UBoolean

isArmed : UBoolean

/isDangerous : UBoolean

plane*

lookout*

(a) The Lookout model class diagram.

p1:Plane

xCoord=UReal(200.0, 1.0)
yCoord=UReal(300.0, 1.0)
identifier=UString('JAP1', 0.99)
altitude=UReal(700.0, 1.0)

Sighting1:Sighting

isEnemy=UBoolean(true, 0.8)
isArmed=UBoolean(true, 0.9)
/isDangerous=UBoolean(true, 0.72)

l1:Lookout

xCoord=UReal(0.0, 10.0)
yCoord=UReal(0.0, 10.0)
safeDistanceLimit=UReal(400.0, 1.0)
/raiseAlarm=UBoolean(true, 0.72)

plane

lookout

(b) Example of an object diagram.

Figure 1 A lookout system for enemy planes.

into account in the results, in order to make informed decisions
about the system. Therefore the need to count on notations that
deal with such uncertainty as a first-class concept, and on a
type system that extends that of UML and OCL and enables its
transparent manipulation and propagation.

2.2. A motivating example

To illustrate our proposal, let us suppose there are a set of
lookouts on the Pacific islands during World War II, in charge
of monitoring airspace and detecting enemy planes that may
pose a threat to the allies. This system can be specified in UML
as shown in Fig. 1a. The three main entity types are Lookout,
Plane and Sighting. Associated to every sighting of a plane,
the lookout system identifies whether the plane is an enemy or
not (isEnemy), and whether it is armed (isArmed). The values
of these two variables are determined by, e.g., checking the
identifier of the plane against the list of known allies, or whether
bombs are visible on the plane wings. These two decisions are
difficult in practice due to complicated weather conditions, lack
of visibility, lack of operator experience or visual acuity. The
third attribute, isDangerous, is derived using the expression
specified in Listing 1. It checks whether the plane is considered
to be an enemy, it is armed, and is inside the safe area defined for
the lookout. Note the use of uncertain datatypes in the model,
namely UReal to represent distances, UString to represent
identifiers (given that character recognition system may not be
fully accurate under poor visibility conditions), and UBoolean
to represent logical values with associated probabilities. Finally,
the attribute raiseAlarm of the class Lookout decides if the
alarm should be raised, with a probability that corresponds to
the plane considered as most dangerous.

Figure 1b shows an object diagram with a lookout, a plane
and one sighting. Given the confidence of the attributes of the
sighting, and the confidence of the comparison between the two
UReal numbers that determine the distance between the plane
and the lookout, the plane is considered to be dangerous with a
confidence of 0.72. However, the operator at the lookout post

context Sigh t i ng : : isDangerous : UBoolean derive :
s . isEnemy and s . isArmed and
( s e l f . lookout . d istanceTo ( s e l f . plane ) <=

s e l f . lookout . sa feD is tanceL im i t )
context Lookout : : ra iseAlarm : UBoolean derive :

UBoolean ( t rue , s e l f . s i g h t i n g . isDangerous−>
c o l l e c t ( i | i . conf idence ( ) )−>max ( ) )

Listing 1 Derivation expression of attributes isDangerous
and raiseAlarm.

may have a different (subjective) opinion based on their trust on
the measuring devices and identification instruments and their
own skills using them. Therefore, the subjective confidence (i.e.,
the trust on these Boolean values) may be different from the
objective confidence (i.e., UBoolean value) assigned to them
using probabilities.

Here, we are concerned about how to represent such subjec-
tive opinions, which qualify the objective probabilities and add
uncertainty to them, and how to take them into account when
reasoning about the system. For example, to avoid raising the
alarm in false or not raising it when we should.

2.3. Subjective logic
Subjective logic, invented by Audun Jøsang (Jøsang 2001,
2016), is a type of probabilistic logic that explicitly takes uncer-
tainty and trust into account. Subjective opinions express beliefs
about the truth of propositions under degrees of uncertainty.

Let x be a state value in a binary domain, e.g., a Boolean
predicate. A binomial opinion about the truth of state value x is
the quadruple ωx = (bx, dx, ux, ax) where:

– bx (belief mass) is the degree of belief that x is true.
– dx (disbelief mass) is the degree of belief that x is false.
– ux (uncertainty mass) is the degree of uncertainty about x,

i.e., the amount of uncommitted belief.
– ax (base rate) is the prior probability in the absence of

belief or disbelief.
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X vertex (disbelief)

U vertex (uncertainty)

X vertex (belief)PX aX

bX dX

uX

ωX

director

projector

(0,1,0)

(0,0,1)

(1,0,0)

Figure 2 Graphical representation of a binomial opinion
(Jøsang 2016).

These values satisfy bx + dx + ux = 1, and bx, dx, ux, ax ∈
[0, 1]. Opinions where bx = 1 or dx = 1 are called absolute
opinions, and are equivalent to the Boolean values true and false,
respectively. An opinion where bx + dx = 1 is a dogmatic
opinion which is equivalent to a traditional probability. If bx +
dx < 1, we have an uncertain opinion which expresses a degree
of uncertainty. Finally, if bx + dx = 0 (i.e., ux = 1) we have a
vacuous opinion that expresses total uncertainty, or vacuity of
belief.

Opinions can be represented on an equilateral triangle using
barycentric coordinates as shown in Fig. 2. A point inside the
triangle represents a (bx, dx, ux) triple. Vertices at the bottom
represent absolute opinions, and the vertex at the top represents
the vacuous opinion (ux = 1). Dogmatic opinions belong to the
base line (ux = 0), and correspond to probabilities. The base
rate ax, or prior probability, is shown along the base line, too.

The projected probability of an opinion is defined as Px =
bx + axux. Graphically, it is formed by projecting the opinion
ωx onto the base, parallel to the base rate projector line (i.e.,
parallel to the director line).

Logic operators (and, or, not, implies, equivalent, etc.) are
defined for opinions, generalizing those of binary and proba-
bilistic logic. The behaviors of the extended operators respect
those of the base types when applied to base values. In case the
argument opinions contain degrees of uncertainty, the operators
produce derived opinions that always have correct projected
probabilities, which ensures a correct subtyping relation be-
tween probabilities and opinions.

3. Extending the type Boolean
The main objective of this paper is to extend the OCL and UML
languages by declaring a new type, SBoolean, that enables the
representation and management of binomial opinions of sub-
jective logic. The benefits are twofold: First, opinions can be
expressed in software models, enriching the current representa-
tion of subjective belief (or trust) on the logic predicates stated
in a software model. Second, this information can be managed
in a transparent manner by the type system, providing a useful

mechanism for reasoning about imprecise knowledge which can
be supported by OCL tools.

Similar to the embedding relationship Boolean ↪→
UBoolean that lifts Boolean values to their corresponding
probabilities (Bertoa et al. 2019), we also define the embed-
ding relationship UBoolean ↪→ SBoolean that lifts probabil-
ities to opinions—hence obtaining the complete embedding
chain Boolean ↪→ UBoolean ↪→ SBoolean.

3.1. Extension strategy
To extend the datatypes, we apply type embedding (Boute 1990),
which is one kind of subtyping (Liskov & Wing 1994). Note
that embedding, subtyping and inheritance are different con-
cepts (Clerici & Orejas 1988). In broad terms, inheritance
among classes represents that objects of the subclass inherit the
internal structure and code of the superclass and, in addition,
can have new features (attributes, methods, relationships, etc.).

In contrast, subtyping refers to the part of the objects’ be-
havior that can be observed from the outside (America 1991),
namely, the operations that are applied to them. In algebraic
terms, subtyping leads to a conceptual hierarchy that is based on
behavioral specification. Then, we say that type A is a subtype
of type B (denoted as A <: B) if all elements of A belong
to B and the operations of B, when applied to elements of A,
behave the same as those of A (America 1987). For instance,
Integer is a subtype of Real because an Integer number can be
viewed as a Real number whose decimal part is zero. Moreover,
operations that are defined on the type Real, when applied to
numbers of the type Integer, behave as those operations of type
Integer. As stated in (Bertoa et al. 2019), the subtyping relation
cannot be directly applied between all the OCL and UML types.
For example, one might think that the type Boolean could be
viewed as a subtype of the type Integer, but this would imply
the definition of its values as {0, 1} instead of { f alse, true}.

Type embedding permits the definition of such relation-
ship by specifying the corresponding (injection) isomorphism
{ f alse, true} ↔ {0, 1} and then using subtyping, which re-
sults in many useful mathematical properties. For example,
Boolean values were embedded into probabilities in (Bertoa
et al. 2019) by considering the corresponding isomorphism
{ f alse, true} ↔ {0.0, 1.0} and by replacing truth tables by
probabilistic calculus. With respect to the behavior of the op-
erations, the fact that ↔ is an isomorphism and that <: is a
subtyping relation, ensures that the behavior of the operations
of the embedded type is respected when lifted to the embedding
supertype.

3.2. Type SBoolean
The new type SBoolean, which extends types Boolean and
UBoolean, is defined by a quadruple (b, d, u, a), where all the
components are in the range [0,1], and b + d + u = 1. Values
of type SBoolean represent opinions in subjective logic.

The embedding of a UBoolean value x = (true, c) into type
SBoolean is achieved by assigning the opinion wx = (c, 1−
c, 0, c) to x. Considering the embedding of type Boolean into
UBoolean, we have that Boolean values true and false cor-
respond, respectively, to opinions (1, 0, 0, 1) and (0, 1, 0, 0).
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not ( ) : SBoolean
post : ( r e s u l t . b = s e l f . d ) and ( r e s u l t . d = s e l f . b ) and ( r e s u l t . u = s e l f . u ) and ( r e s u l t . a = 1−s e l f . a )

and ( s : SBoolean ) : SBoolean
post : r e s u l t . b = s e l f . b * s . b + i f ( s e l f . a = 1 and s . a = 1) then 0 −− to avoid t h a t (1− s e l f . a * s . a ) = 0

else ((1− s e l f . a ) * s . a * s e l f . b * s . u+ s e l f . a*(1−s . a ) * s e l f . u * s . b ) /(1− s e l f . a * s . a ) ) endif and
r e s u l t . d = ( s e l f . d + s . d− s e l f . d * s . d ) and
r e s u l t . u = ( s e l f . u * s . u + i f ( s e l f . a = 1 and s . a = 1) then 0 −− to avoid t h a t (1− s e l f . a * s . a ) = 0

else ((1−s . a ) * s e l f . b * s . u+(1− s e l f . a ) * s e l f . u * s . b ) /(1− s e l f . a * s . a ) ) endif and
r e s u l t . a = s e l f . a * s . a

or ( s : SBoolean ) : SBoolean
post : r e s u l t . b = ( s e l f . b + s . b − s e l f . b * s . b ) and

r e s u l t . d = s e l f . d * s . d + i f ( s e l f . a=0 and s . a=0) then 0 −− to avoid t h a t s e l f . a+s . a−s e l f . a * s . a = 0
else ( s e l f . a*(1−s . a ) * s e l f . d * s . u+s . a*(1− s e l f . a ) * s e l f . u * s . d ) / ( s e l f . a+s . a−s e l f . a * s . a ) ) endif and

r e s u l t . u = s e l f . u * s . u + i f ( s e l f . a=0 and s . a=0) then 0 −− to avoid t h a t s e l f . a+s . a−s e l f . a * s . a = 0
else ( s . a * s e l f . d * s . u+ s e l f . a * s e l f . u * s . d ) / ( s e l f . a + s . a − s e l f . a * s . a ) ) endif and

r e s u l t . a = s e l f . a + s . a − s e l f . a * s . a
imp l i es ( s : SBoolean ) : SBoolean

post : r e s u l t = s e l f . not ( ) . or ( s )
xor ( s : SBoolean ) : SBoolean

post : r e s u l t . b = ( s e l f . b − s . b ) . abs ( ) and r e s u l t . d = 1.0 − ( s e l f . b − s . b ) . abs ( ) − s e l f . u * s . u and
r e s u l t . u = s e l f . u * s . u and r e s u l t . a = ( s e l f . a − s . a ) . abs ( )

equ iva len t ( s : SBoolean ) : SBoolean
post : r e s u l t = s e l f . xor ( s ) . not ( )

equals ( s : SBoolean ) : Boolean
post : r e s u l t = ( s e l f . b=s . b ) and ( s e l f . d=s . d ) and ( s e l f . u=s . u ) and ( s e l f . a=s . a )

d i s t i n c t ( s : SBoolean ) : Boolean
post : r e s u l t = not ( s e l f . equals ( s ) )

p r o j e c t i o n ( ) : Real −− r e tu rns the pro jec ted p r o b a b i l i t y o f the op in ion
post : r e s u l t = s e l f . b + s e l f . a * s e l f . u

toUBoolean ( ) : UBoolean −− convers ion to UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = s e l f . p r o j e c t i o n ( ) )

Listing 2 OCL specification of SBoolean operations.

The operations supported by type SBoolean extend those
of type UBoolean, as defined in (Bertoa et al. 2019). We have
defined the basic operations (not, and, and or) and secondary
operations (implies, equivalent, and xor) of the traditional
Boolean algebra by extending them to subjective logic. As-
suming that all values are independent, Listing 2 specifies the
SBoolean-type operations.

We have preserved the semantics of the operations equals()
and distinct(): two SBoolean values are the same if
and only if their quadruples match (both operations return
a Boolean value). Other comparison operations, namely
equivalent() and xor(), compare two SBoolean values and
return another SBoolean value.

Finally, a conversion operation, toUBoolean(), allows
SBoolean values to be converted into UBoolean by using the
projected probability defined for subjective opinions, using the
operation projection(), which projects the opinion into the
corresponding probability at the base of the triangle (see Fig. 2).

3.3. Algebraic properties of SBoolean operations
The operations defined for type SBoolean are generalisations of
binary logic and probability operations, as discussed in (Jøsang
2016). In case the opinions acting as operands of the operations
are equivalent to Boolean values true or false, the result of
any subjective logic operation is always equal to that of the
corresponding propositional/binary logic operation. Similarly,
when the opinions are equivalent to traditional probabilities, the
result of any subjective logic operator is always equal to that of
the corresponding probability operator.

In case the operand opinions contain degrees of uncertainty,
the operations will produce derived opinions that always have
correct projected probabilities. However, not all the algebraic

properties of SBoolean operations can be ensured when dealing
with values that have some associated uncertainty.

In particular, due to the way in which we have defined the
operations, it is easy to prove that the following properties hold
for every pair of opinions A and B of type SBoolean (operator
“ .
=” corresponds to the operation equals() of type SBoolean,

see above).

– not(not(A)) .
= A

– not(A or B) .
= not(A) and not(B) (AND Mor-

gan’s Law)
– not(A and B) .

= not(A) or not(B) (OR Morgan’s
Law)

– Operation and is commutative, associative and its identity
element is (1, 0, 0, 1).

– Operation or is commutative, associative and its identity
element is (0, 1, 0, 0).

The secondary operations (xor, implies and equivalent)
of type SBoolean work with Boolean and UBoolean values
as before and respect their properties, even when lifted to
SBoolean values. In particular:

– Operation implies is non-commutative and associative,
since (A implies B) .

= (not A or B).
– Operation equivalent is commutative and associative.
– Similarly, xor is commutative and associative.

Special care must be taken when dealing with dependent
opinions, because the expressions above assume independence.
To deal with this, in case A and B are dependent, we should use
A and B|A instead (or, equivalently, A|B and B).

In addition, different logic formulas that are traditionally
equivalent in propositional logic do not necessarily have equal
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uncer ta in tyMaximized ( ) : SBoolean
−− r e tu rns the corresponding SBoolean wi th max . u n c e r t a i n t y

post : l e t p = s e l f . p r o j e c t i o n ( ) in
i f ( s e l f . a=1 and ( p=1 or s e l f . u=1) ) or

( s e l f . a=0 and s e l f . b=0) then
r e s u l t . b = 0 and r e s u l t . d = 0 and
r e s u l t . u = 1 and r e s u l t . a = s e l f . a

else i f ( p < s e l f . a ) then
r e s u l t . b = 0 and r e s u l t . d = 1 − ( p / s e l f . a ) and
r e s u l t . u = p / s e l f . a and r e s u l t . a= s e l f . a

else
r e s u l t . b = ( p−s e l f . a ) /(1.0− s e l f . a ) and r e s u l t . d = 0.0 and
r e s u l t . u = (1.0−p ) /(1.0− s e l f . a ) and r e s u l t . a = s e l f . a

endif endif endif

Listing 4 Specification of uncertaintyMaximized().

opinions. For example, the distributivity of conjunction over
disjunction, expressed as x ∧ (y ∨ z) ⇔ (x ∧ y) ∨ (x ∧ z),
does not hold with opinions. In general, all operations that
propagate non-null uncertainty may produce slightly differ-
ent results. Therefore, in this context, formulas that involve
SBoolean values should be algebraically simplified, if possible,
before the final results are computed to avoid both the unneces-
sary propagation of uncertainty and to respect the independence
of the expression variables. For instance, although the formu-
las (A ∧ B) ∨ (B ∧ A) and A ∧ B are equivalent, we should
evaluate the latter.

3.4. Further operations
3.4.1. Conflicting opinions A fundamental assumption be-
hind subjective logic is that different individuals may hold dif-
ferent opinions about the same statement. The degree of conflict
is a measure of the difference between opinions. It is defined
as the product of other two measures between opinions: the
projected distance (difference between the projected probabil-
ities of the opinions) and the conjunctive certainty (common
certainty of the opinions). Then, given two opinions wA

x and
wB

x , we can define (Jøsang 2016):

p ro j ec t i veD i s t ance ( s : SBoolean ) : Real =
( s e l f . p r o j e c t i o n ( ) − s . p r o j e c t i o n ( ) ) . abs ( ) /2

c o n j u n c t i v e C e r t a i n t y ( s : SBoolean ) : Real =
(1.0− s e l f . u ) *(1−s . u )

degreeOfConf l i c t ( s : SBoolean ) : Real =
s e l f . p ro j ec t i veD i s tance ( s ) * s e l f . c o n j u n c t i v e C e r t a i n t y ( s )

Listing 3 Operations for defining conflicting opinions.

3.4.2. Uncertainty maximized An interesting operation is
uncertaintyMaximized(), which computes the opinion with
the same projected probability but with maximum uncertainty.
Graphically, it corresponds to the opinion Ωx that is obtained
by projecting the original opinion ωx upwards along the pro-
jector line, parallel to the base rate director line. Therefore, the
projected probabilities of ωx and Ωx are the same.

The specification of the uncertaintyMaximized() opera-
tion is shown in Listing 4.

We can define equivalence classes using the projection()
operation, whereby two opinions belong to the same class
if their projections are the same. Given one opinion “X”,
the opinion with maximum uncertainty of the equivalence
class of X is X.uncertaintyMaximized(), and the one with

less degree of uncertainty is SBoolean(X.projection(),
1-X.projection(),0,X.baseRate()). Graphically, they
correspond to the intersection points of the projector line in
the uncertainty triangle. The points in the segment of the projec-
tor line inside the triangle belong to the same equivalent class,
because they all have the same projected probability.

3.5. Collections of SBoolean
OCL defines an abstract datatype Collection, with a set of
operations common to all kinds of collections, plus a set of op-
erations which are specific to each subtype: Set, OrderedSet,
Bag and Sequence. We also need to extend these operations to
deal with SBoolean values.

As described in (Bertoa et al. 2019), when extending collec-
tions with uncertain values, they are evaluated in the higher type
of the type hierarchy of the elements of the collection. In particu-
lar, when a Sequence is composed of values of types Boolean,
UBoolean and SBoolean, the type of the collection would be
Sequence(SBoolean) and the corresponding operations will
be evaluated in this type.

Logic predicates in collection operations that in the origi-
nal OCL/UML specification return Boolean values — such as
forAll and exists — may now be of type SBoolean, and
therefore the operations may also return a SBoolean value.

As we did for UBoolean, we do not allow logic predicates
of type SBoolean to act as filters to select elements from collec-
tions, since in order to do this, we clearly need to decide whether
an element belongs or not to a collection; this is the case, for in-
stance, of operations such as select, any, or collect. The op-
eration projection(), which allows us to know the probabil-
ity of a SBoolean value, is used to map SBoolean values into
Boolean. This is analogous to the use of the confidence()
operation to convert UBoolean values to Boolean, using a
threshold value above which the uncertain Boolean is consid-
ered to be true.

3.6. The Lookout system revisited
Let us go back to the Lookout example described in Sect. 2.2,
where attributes isEnemy and isArmed had some associated
probabilities, e.g., 0.8 and 0.9, respectively. Columns 1 and 2 of
Table 1 show different values for the subjective opinions by the
operator of the lookout about these attributes. Note that we have
maintained the (objective) probabilities of attributes isEnemy
and isArmed as their base rates (i.e., their prior probabilities).
Column 3 shows the result of the derived expression that cal-
culated the value of attribute isDangerous, which is now a
subjective opinion, i.e., a SBoolean value. The last column
shows the projected probability for that resulting opinion.

The first row of the table shows the situation in which the
operator simply respects the initial probabilities, and therefore
the projected probability is the same as before (i.e., 0.72). How-
ever, when changing the operator’s degrees of belief, disbelief
and uncertainty, the results also change. This has a significant
influence on the projected probabilities of the results, which
now range between 0.630 and 0.970. This means that now we
are able to take into account the level of trust that the opera-
tor has on the prior probabilities assigned to the two variables
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Table 1 Results for isDangerous depending on various values of isEnemy and isArmed.

isEnemy isArmed isDangerous Proj.

(0.80, 0.20, 0.00, 0.80) (0.90, 0.10, 0.00, 0.90) (0.720, 0.280, 0.000, 0.720) 0.720

(0.80, 0.10, 0.10, 0.80) (0.90, 0.10, 0.00, 0.90) (0.746, 0.190, 0.064, 0.720) 0.792

(0.80, 0.00, 0.20, 0.80) (0.90, 0.10, 0.00, 0.90) (0.771, 0.100, 0.129, 0.720) 0.864

(0.90, 0.10, 0.00, 0.80) (0.90, 0.10, 0.00, 0.90) (0.810, 0.190, 0.000, 0.720) 0.810

(0.90, 0.05, 0.05, 0.80) (0.90, 0.10, 0.00, 0.90) (0.823, 0.145, 0.032, 0.720) 0.846

(0.90, 0.00, 0.10, 0.80) (0.90, 0.10, 0.00, 0.90) (0.836, 0.100, 0.064, 0.720) 0.882

(0.70, 0.30, 0.00, 0.80) (0.90, 0.10, 0.00, 0.90) (0.630, 0.370, 0.000, 0.720) 0.630

(0.70, 0.15, 0.15, 0.80) (0.90, 0.10, 0.00, 0.90) (0.669, 0.235, 0.096, 0.720) 0.738

(0.70, 0.00, 0.30, 0.80) (0.90, 0.10, 0.00, 0.90) (0.707, 0.100, 0.193, 0.720) 0.846

(0.80, 0.20, 0.00, 0.80) (0.90, 0.05, 0.05, 0.90) (0.746, 0.240, 0.014, 0.720) 0.756

(0.80, 0.10, 0.10, 0.80) (0.90, 0.05, 0.05, 0.90) (0.771, 0.145, 0.084, 0.720) 0.831

(0.80, 0.00, 0.20, 0.80) (0.90, 0.05, 0.05, 0.90) (0.797, 0.050, 0.153, 0.720) 0.907

(0.90, 0.10, 0.00, 0.80) (0.90, 0.05, 0.05, 0.90) (0.839, 0.145, 0.016, 0.720) 0.850

(0.90, 0.05, 0.05, 0.80) (0.90, 0.05, 0.05, 0.90) (0.852, 0.098, 0.051, 0.720) 0.888

(0.90, 0.00, 0.10, 0.80) (0.90, 0.05, 0.05, 0.90) (0.865, 0.050, 0.085, 0.720) 0.926

(0.70, 0.30, 0.00, 0.80) (0.90, 0.05, 0.05, 0.90) (0.653, 0.335, 0.013, 0.720) 0.661

(0.70, 0.15, 0.15, 0.80) (0.90, 0.05, 0.05, 0.90) (0.691, 0.193, 0.116, 0.720) 0.775

(0.70, 0.00, 0.30, 0.80) (0.90, 0.05, 0.05, 0.90) (0.730, 0.050, 0.220, 0.720) 0.888

(0.80, 0.20, 0.00, 0.80) (0.90, 0.00, 0.10, 0.90) (0.771, 0.200, 0.029, 0.720) 0.792

(0.80, 0.10, 0.10, 0.80) (0.90, 0.00, 0.10, 0.90) (0.797, 0.100, 0.103, 0.720) 0.871

(0.80, 0.00, 0.20, 0.80) (0.90, 0.00, 0.10, 0.90) (0.823, 0.000, 0.177, 0.720) 0.950

(0.90, 0.10, 0.00, 0.80) (0.90, 0.00, 0.10, 0.90) (0.868, 0.100, 0.032, 0.720) 0.891

(0.90, 0.05, 0.05, 0.80) (0.90, 0.00, 0.10, 0.90) (0.881, 0.050, 0.069, 0.720) 0.931

(0.90, 0.00, 0.10, 0.80) (0.90, 0.00, 0.10, 0.90) (0.894, 0.000, 0.106, 0.720) 0.970

(0.70, 0.30, 0.00, 0.80) (0.90, 0.00, 0.10, 0.90) (0.675, 0.300, 0.025, 0.720) 0.693

(0.70, 0.15, 0.15, 0.80) (0.90, 0.00, 0.10, 0.90) (0.714, 0.150, 0.136, 0.720) 0.812

(0.70, 0.00, 0.30, 0.80) (0.90, 0.00, 0.10, 0.90) (0.752, 0.000, 0.248, 0.720) 0.931
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Figure 3 Content of the extended org.tzi.use.uml.ocl.type package.

Figure 4 Content of the extended org.tzi.use.uml.ocl.value package.

isEnemy and isArmed, and the degree of uncertainty that the
operator holds about them, which may influence the decision
about whether the alarm should be raised or not. For example,
if the threshold for raising the alarm is 0.75, there are many
situations described in Table 1 where it will be raised, although
it was not when just plain probabilities were used. This way,
now we are able to take into consideration additional relevant
information when making our decisions, which was neglected
before. Likewise, we could dismiss opinions with very high
degrees of uncertainty, since they could be misleading.

Note that the only modification required in the model is
to replace the type of the appropriate UBoolean variables to
SBoolean. All OCL expressions remain the same, the only
change being that they are now evaluated in the upper type of
the hierarchy.

4. Tool Support
USE (Gogolla et al. 2007) is an open-source modeling tool
that enables the development and validation of UML models
enriched with OCL expressions. In (Bertoa et al. 2019), we
extended the USE native implementation to include uncertain
datatypes as a proof of concept, and we provided a stable imple-
mentation in (Ortiz et al. 2019). Now, we have added the type
SBoolean to our implementation.1

USE is implemented in Java, and its modular architecture
separates the Types, Values and Expressions in three differ-
ent packages. Despite its graphical interface, the specification
of models in USE is textual, and comprises different languages
which are used for different purposes: a language for the defini-

1 The code is available for download from our Git repository: https://github.com/
atenearesearchgroup/uncertainty

l i t e r a l returns [ ASTExpression n ] :
t = ` t rue ` { $n = new ASTBooleanLi teral ( t r ue ) ; }

| f = ` fa l se ` { $n = new ASTBooleanLi teral ( f a l s e ) ; }
| i =INT { $n = new ASTIn tege rL i t e ra l ( $ i ) ; }
| r =REAL { $n = new ASTRealL i tera l ( $r ) ; }
| s=STRING { $n = new ASTSt r i ngL i t e ra l ( $s ) ; }

. . .
| `UBoolean ` LPAREN ubve= cond i t i ona l Imp l i esExp ress ion COMMA

ubpe=add i t i veExpress ion RPAREN
{ $n = new ASTUBooleanLiteral ( $ubve . n , $ubpe . n ) ; }

| `SBoolean ` LPAREN ubve=add i t i veExpress ion COMMA
udve=add i t i veExpress ion COMMA
uuve=add i t i veExpress ion COMMA
uave=add i t i veExpress ion RPAREN

{ $n = new ASTSBooleanLiteral ( $ubve . n , $udve . n ,
$uuve . n , $uave . n ) ; }

. . . ;
uncer ta in tyType returns [ ASTType n ] :

name=( ` UReal ` | ` UInteger ` | ` UBoolean ` | ` UStr ing ` | ` SBoolean ` )
{ $n = new ASTSimpleType ($name) ; } ;

Listing 5 Extended USE grammar.

tion of class models, namely OCL; SOIL (Büttner & Gogolla
2014) for the generation of object diagrams, and a language for
invoking commands from the USE console shell, among others.

The first step when adding a new datatype to the tool is to
update the ANTLR grammar of its languages. For illustration
purposes, Listing 5 shows an excerpt of the modified OCL
grammar.

The structure of the packages Types and Values is reflected
in figures 3 and 4, respectively. The elements in white are the
USE original classes, the interfaces and the elements shaded in
gray are the classes we have added in our previous work, and
the classes shaded in purple are the contribution of this work.

The new classes SBooleanType and SBooleanValue im-
plement the Adapter design pattern (Gamma et al. 1995), acting
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Occupancy

occupants : UBoolean

AlarmCenter

/highTemp : UBoolean

/highCOLevel : UBoolean

/smoke : UBoolean

/occupancy : UBoolean

/fireAlert : UBoolean

/urgentCall : UBoolean

TempSensor

temperature : UReal

SmartHouse

ReliableElement

isReliable : UBoolean

SmokeDetector

smoke : UBoolean

COSensor

coPPM : UReal

alarmCentre1
house0..1

coSensor1

house0..1

occupancy1

house0..1

smokeDetector1

house0..1

tempSensor1

house0..1

Figure 5 Class diagram for the SmartHouse system.

cs:COSensor

isReliable=UBoolean(true, 0.98)
coPPM=UReal(20.5, 0.01)

ts:TempSensor

isReliable=UBoolean(true, 0.99)
temperature=UReal(31.0, 0.01)

ss:SmokeDetector

isReliable=UBoolean(true, 0.96)
smoke=UBoolean(true, 0.92)

ac:AlarmCenter

isReliable=UBoolean(true, 0.99)
/highTemp=UBoolean(true, 0.99)
/highCOLevel=UBoolean(true, 0.98)
/smoke=UBoolean(true, 0.8832)
/occupancy=UBoolean(true, 0.8633)
/fireAlert=UBoolean(true, 0.8483118336)
/urgentCall=UBoolean(true, 0.7323476059)

os:Occupancy

isReliable=UBoolean(true, 0.97)
occupants=UBoolean(true, 0.89)

h:SmartHouse

Figure 6 Object diagram for the SmartHouse system.

as a wrapper for the already existing classes. We have also modi-
fied the original USE classes to add the operations that allow the
identification of the new datatypes as their supertypes of the orig-
inal datatypes, when applicable. For instance, we have added
to the class BooleanType the methods isTypeOfSBoolean()
and isKindOfSBoolean().

To make the new type available for its use as part of OCL
expressions, we decided to overload the existing Boolean op-
erators such as and, or, implies, etc. In this way, a user
can perform any logic operation with any Boolean parameter
regardless of whether it is uncertain or not.

5. Evaluation
To evaluate our proposal we have developed several case studies
using the subjective logic extension to OCL to assess its expres-
siveness. One of them is presented next in subsection 5.1. It was
the example that we used in our usability tests. In addition, we
have carried out an empirical evaluation with users to study the
usability of our proposal by checking that it could be effectively
used by UML and OCL modelers. The experiments conducted
and their results are described in subsection 5.2.

5.1. A Smart House System
Imagine a smart house equipped with four types of sensors that
monitor its temperature, level of CO (measured in parts per mil-
lion, PPM), smoke, and the presence of people inside. Figure 5
shows the system modeled in USE. Sensor measurements are

represented using the uncertain types UReal or UBoolean to
capture the inherent imprecision (measurement uncertainty) of
these devices. In addition, the class ReliableElement is used
to represent the confidence (also referred to as trust, or degree
of belief (Burgueño et al. 2018; Burgueño, Clarisó, et al. 2019))
that a user assigns to the readings of each sensor, by means of a
UBoolean value that specifies how trustworthy the device is.

Other devices (whose type is AlarmCenter) are installed
in the houses, too. They provide four indicators, one for each
possible situation that can be detected by the sensors: high tem-
perature, high CO level, smoke and occupancy (i.e., presence
of people in the house). Furthermore, a fireAlert signal is
raised if the first three warnings (high temperature, CO and
smoke) are set. An urgentCall signal is activated if warnings
fireAlert and occupancy are on. The values of the attributes
of the AlarmCenter can be derived from the values of the sen-
sors, using the derivation rules shown in Listing 6. Note how
the degree of belief (i.e., the trust) on each device is taken into
account when computing the resulting value of each signal.

Figure 6 shows an object diagram with a concrete house.
The reliability of each sensor varies from the more trustworthy
temperature sensor to the cheaper smoke detector. Based on the
sensor readings and on their assigned confidences, the likelihood
of a fire in that house is almost 0.85, while the need for urgent
reaction due to the presence of people inside the house is 0.73.

The problem with this model, again, is that there is no indi-
cation about the uncertainty, or lack of knowledge, of the user
about some of the statements and confidence values assigned
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context AlarmCenter
highTemp : UBoolean derive :

s e l f . house . tempSensor . temperature > UReal (30 .0 ,0 .01 ) and
s e l f . house . tempSensor . i s R e l i a b l e

highCOLevel : UBoolean derive :
s e l f . house . coSensor .coPPM > UReal (20 .0 ,0 .01 ) and
s e l f . house . coSensor . i s R e l i a b l e

smoke : UBoolean derive :
s e l f . house . smokeDetector . smoke and
s e l f . house . smokeDetector . i s R e l i a b l e

occupancy : UBoolean derive :
s e l f . house . occupancy . occupants and
s e l f . house . occupancy . i s R e l i a b l e

f i r e A l e r t : UBoolean derive :
highTemp and highCOLevel and smoke and s e l f . i s R e l i a b l e

u rgen tCa l l : UBoolean derive :
f i r e A l e r t and occupancy

Listing 6 Derivation expressions for attributes of class
AlarmCenter.

to the smart house elements, e.g., about their reliability or level
of trust. Subjective logic, and in particular type SBoolean, can
be very useful to represent and manage such kind of epistemic
uncertainty. For example, it can be used to specify a user’s sub-
jective belief in the occurrence of a smoke alert from a particular
room, which is near the kitchen. The alert is raised quite often
and therefore no one trusts it very much.

The advantage of our extension is that, as it happened with
the Lookout case study, updating the model to explicitly repre-
sent the users level of ignorance and uncertainty can be achieved
by simply upgrading some of the attribute types to SBoolean.
In this case, we only need to change the type of attribute
isRealiable in the abstract class ReliableElement, so it
can represent subjective opinions. The types of the derived
attributes of class AlarmCenter need to be updated, too, since
they use the value of attribute isRealiable in their derivation
expressions, now of type SBoolean. Apart from that, no other
changes are required because the type system automatically
evaluates all expressions in the appropriate types.

5.2. Usability

The use of subjective logic in UML variables and OCL ex-
pressions increases the expressiveness of the models. Logical
variables are now much more informative because they include
the level of uncertainty of the belief agent, which helps to under-
stand both the strength of the agent’s belief that a proposition
is true (called credence in statistical terms (Critch 2019)), and
their degree of ignorance about it.

However, the complexity of having to handle a quadruple
of values instead of a single number cannot be neglected. In
particular, with such a rich type, the usability of our OCL exten-
sion could be compromised. In general, the trade-off between
usability and expressiveness is common in all notations, and it
has been extensively studied in query languages (Freitas et al.
2012) and lately in different kinds of software models (Sirjani
2018; Ivanchikj & Pautasso 2019). The fundamental reason for
this trade-off is that greater expressiveness increases complex-
ity, hindering usability as users require more time and effort to
understand the new concepts, learn the notation, and operate
with them.

To evaluate the usability of the subjective logic OCL ex-
tension, we designed a usability experiment following the US
Government guidelines and recommendations on usability test-
ing (US Department of Health & Human Services 2020). Ac-
cording to that report, usability testing aims at evaluating a
product or service by testing it with representative users. Nor-
mally, during a test, participants try to complete typical tasks
with the goal to identify usability problems, collect qualitative
and quantitative data, and determine the participants’ satisfac-
tion with the product.

5.2.1. Usability testing Usability is defined by ISO/IEC
as “the degree to which a product or system can be used by
specified users to achieve specified goals with effectiveness, ef-
ficiency and satisfaction in a specified context of use” (ISO/IEC
25010:2011 2011). This quality characteristic is composed and
described by five sub-characteristics: Appropriateness recog-
nizability, Learnability, Operability, User error protection, and
User interface aesthetics. Given the nature of our proposal, in
this work, we are particularly interested in two of these sub-
characteristics:

– Learnability: Degree to which a product or system can
be used by specified users to achieve specified goals of
learning to use the product or system with effectiveness,
efficiency, freedom from risk and satisfaction in a specified
context of use.

– Operability: Degree to which a product or system has
attributes that make it easy to operate and control.

It is important to distinguish between the perceived and the
objective usability. The former one (also called subjective us-
ability) refers to how a user experiences the interaction, being
dependent on perception and personal attitudes. In contrast, the
objective usability is independent of user experience. For exam-
ple, a perceived usability would measure how long a user felt
he or she waited, while the objective usability would measure
how long the user actually waited. In our case, the perceived
usability was measured by directly asking our participants to
rate the learnability and operability of the elements that they
had to handle (in this case, subjective logic attributes and OCL
expressions). The objective usability was measured by asking
them to perform a set of tasks with UML models and OCL
expressions, and evaluating their responses according to the
correctness of their answers.

5.2.2. The experiment To evaluate the usability of the new
concepts and of their implementations in terms of the extended
UML and OCL datatypes, and in particular the new SBoolean
type, we designed an experiment that was carried out in March
2020. The experiment consisted of two parts. The first one
(with a duration of 60 minutes) was dedicated to explaining the
main concepts and datatypes used in the experiment, employing
a case study to illustrate them. The second part (also with a
duration of 60 minutes) consisted in a test with several questions
that the experiment participants should answer about a different
case study, to check whether they understood the concepts and
were able to successfully apply them.
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The test used an online questionnaire for participants to re-
spond, which is available at https://encuestas.uma.es/16117/
lang-en. Its description points to the link from where the sub-
jects could download the bundle that contains all the experiment
documentation, the models, and the USE tool extended with
uncertain datatypes.

We run the experiment with 8 subjects on March 13, 2020,
and with 6 participants on March 19, 2020. The first experi-
ment was conducted partly in the University of Malaga faculty
premises, with some participants and instructors on-site and
others attending remotely via teleconference. We used a pro-
jector for the people in the lab, and the instructor screen was
shared for remote participants. The second experiment was
entirely conducted remotely. Since the test was designed from
the start to be carried out using remote access, and based on
an online questionnaire, no significant problems occurred and
participation went smoothly.

In both experiment executions, the first part (explanations
of general uncertainty and of subjective logic) took 1 hour, as
planned. Slides were used to explain the concepts, and a short
document with the contents of the slides was given in advance
to participants. The second part, where participants answered
the questionnaire, was conducted offline. One of the instruc-
tors remained online during two hours after the experiment, in
case any subject required assistance with the USE tool, had
any incident, or required any clarification about the questions.
No questions were asked nor assistance was required by the
subjects.

The materials used during the experiment, as well as the
complete responses and results, are available from our web
site (Muñoz et al. 2020). In the following, we describe the main
sections of the questionnaire and the results of the experiment.

Pre-test. The first section of the questionnaire was dedicated
to collect the basic information about the participants, namely
their degree (BSc, MSc, PhD), and level of knowledge and
expertise with OCL and USE.

Learnability. To evaluate the Learnability of our proposal, we
asked participants to answer six questions about the concepts
that we have explained during the first part of the experiment.
They included both general questions about uncertainty and
concrete questions on the new type system, in particular about
type SBoolean and the interpretation of its values.

Operability. To assess the Operability of our approach, we
introduced a new model of a system, namely the Smart House
example described above in subsection 5.1, which did not con-
tain any subjective information. Then, we asked participants
five questions about how they would introduce type SBoolean
into that system. They had to implement their proposed changes
in USE and test them for correctness. Finally, they had to re-
spond some questions about the results of executing the system
with a concrete object diagram, and how the results obtained
could be interpreted.

Perceived Usability. The third and last section of the ques-
tionnaire asked participants about how easy or difficult they
thought that the new concepts were to understand and to operate

Degree Group1 Group2 All subjects

PhD 4 6 10
MSc 3 0 3
BSc 1 0 1
Total 8 6 14

USE Experience Group1 Group2 All subjects

None 2 2 4
Low 4 1 5
Medium 2 2 4
High 0 1 1

OCL Experience Group1 Group2 All subjects

Knowledge level 4.4 7.2 5.6
Years of experience 6.0 7.3 6.6

Table 2 Participants’ profiles.

Group1 Group2 All subjects

Perceived
Learnability 6.25 7.00 6.57
Operability 7.50 8.17 7.79
Usability 6.88 7.58 7.18

Objective
Learnability 9.38 8.89 9.17
Operability 7.08 9.67 8.19
Usability 8.23 9.28 8.68

Table 3 Usability test results (scores between 0 and 10).

with. One of the questions asked them about their personal and
subjective opinion about the expressiveness of the new type
system.

5.3. Results
A total of 14 subjects participated in the experiment, split into
two groups of 8 and 6 people each. Although Nielsen and
other authors maintain that five users are enough for usability
testing (Turner et al. 2006; Nielsen 2020), other authors suggest
the rule of 16± 4 participants (Alroobaea & Mayhew 2014). By
using two groups of 8 and 6 subjects with the same experiment,
we tried to cover both situations. In fact, the similarity of the
results obtained by both groups, and their correlation with the
results of the two groups combined, seem to support Nielsen’s
theory.

Table 2 shows the profiles and experience with OCL and
with the tool USE of the experiment participants. Ten of them
(71%) held a PhD, and four of them (29%) did not have any
previous experience with the tool USE. We asked participants to
rate their knowledge about OCL (0-10) and the number of years
of experience with UML and OCL. The level of knowledge
about OCL ranged between 1 and 9, with an average of 5.6 (4.4
in the first group, 7.2 in the second). Participants’ experience
with UML and OCL ranged between 1 and 15 years, with an
average of 6.6 years (6.0 in the first group, 7.3 in the second)

The general results of the experiment are presented in Ta-
ble 3. Participant responses were scored between 0 and 10.
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The upper part of the table shows the results for the perceived
learnability and operability questions, as well as the combined
usability. The lower part shows the results of the tests for the
objective usability evaluation, i.e., the one actually exhibited by
the experiment participants. Interestingly, the users considered
(perceived usability) that the proposal is more difficult to use
that their actual achievements show (objective usability).

When analysing in detail the outcomes of the experiment
by groups, the results were generally quite homogeneous. For
example, having no previous experience with USE did not have
a significant influence on the results. More precisely, excluding
the users with no previous experience with USE implied only a
change of 1.78% with respect to the global results. The results of
the PhD candidates were also similar in average (1.77% higher)
when compared with the global results regarding the objective
usability, although their perceived usability was 16% lower. The
slightly higher scores of the second group are correlated to the
higher level of knowledge and years of experience with OCL of
its participants.

6. Related Work

Representing and reasoning about degrees of belief can be done
using different theories. First, probability theory (Feller 2008),
and in particular Bayesian probabilities, are the classical models
used for quantifying subjective beliefs (de Finetti 2017), where
Boolean values are assigned probabilities that represent the
likelihood that the values are true. Related to this, the concept
of credence is a statistical term that refers to a measure of
belief strength, which expresses how much an agent believes
that a proposition is true (Critch 2019). This approach has the
advantage of simplicity: probability theory is well-known and
understood by most domain experts, who could more easily use
it to represent confidence in their model elements—particularly
when the betting analogy is used to determine the values of their
degrees of belief.

There are some extensions to OCL to deal with probabil-
ities. For example, the Predictive, Probabilistic Architecture
Modeling Framework (P2AMF) (Johnson et al. 2014), adds a
probabilistic inference mechanism to OCL which is capable of
probabilistic reasoning about business and IT architecture mod-
els expressed in UML. In (Bertoa et al. 2019), we proposed an
extension of UML and OCL type Boolean, called UBoolean
(Uncertain Boolean), which provides a probabilistic extension
to binary logic. It was used in (Burgueño et al. 2018) to assign
confidence to model elements, and in (Burgueño, Clarisó, et al.
2019) to assign credence to model statements.

Bayesian probabilities have been criticized for not being able
to effectively represent uncertainty, with various counterexam-
ples that cannot be successfully addressed by probability theory,
e.g., the Ellsberg paradox (Liu 2018; Jøsang 2001). Several au-
thors have proposed other approaches to tackle these problems,
including possibility theory (based on fuzzy logic (Zimmermann
2001; Russell & Norvig 2010; Troegner 2010)), plausibility
(a measure in the Dempster-Shafer theory of evidence (Shafer
1976)) or uncertainty theory (Liu 2018). The comparison among
these theories falls out of the scope of this paper, although in-

teresting discussions can be found in (Liu 2018) and in (Jøsang
2016).

However, these approaches also exhibit some problems when
dealing with partial knowledge. The Transferable Belief Model
(TBM) (Smets & Kennes 1994) addresses the same concepts
considered by the Bayesian model, except it does not rely
on probabilistic quantification, but on a more general system
that defines belief functions based on the Dempster-Shafer
model (Shafer 1976). Belief functions are transformed into
probabilities only when decisions need to be made. This en-
ables the modeler to take partial knowledge into account, which
is essential when dealing with subjective beliefs.

Unfortunately, all these logics and formalisms for represent-
ing degrees of beliefs, including the TBM, have the disadvantage
that the degree of uncertainty held by a agent about a system
statement is not explicitly represented, as we discussed in the
introduction of the paper. This is why we have explored the use
of an alternative option, Subjective Logic, to introduce the ex-
plicit representation of uncertainty as an extension of Bayesian
probability theory, hence combining the simplicity of classical
probabilities with an expressive treatment of uncertainty as a
first-class element. As our evaluation experiments show, the
usability of this approach is fairly acceptable.

The OMG is working on a metamodel for the precise spec-
ification of uncertainty (PSUM) (Object Management Group
2017). It is based on the U-Model (Zhang et al. 2016) and the
Uncertum conceptual model (Zhang et al. 2019), which is sup-
ported by a UML profile (UUP, the UML Uncertainty Profile)
that enables the inclusion of uncertainty in test models. UUP
defines three measure packages (Probability, Ambiguity, and
Vagueness) to facilitate annotating modeling elements with dif-
ferent uncertainty information and measures. We consider that
these specifications are complementary to our work, since they
remain at a higher level of abstraction (most of the information
the UML profile captures is in textual form, i.e., using Strings),
whilst we are interested in not only representing belief state-
ments but also, and more importantly, in operating with them
at the OCL logic level. Therefore we need our specifications
(statements and their types) to be part of the OCL type system.

Finally, other authors have proposed different extensions to
OCL to incorporate new features, such as aggregation func-
tions (Cabot et al. 2010), temporal logic (Dou et al. 2014;
Ziemann & Gogolla 2003), fuzzy logic (Troegner 2010), as-
pects (Khan et al. 2019), or randomness (Vallecillo & Gogolla
2017). These proposals suggest the addition of new operations,
but not extensions to the OCL primitive datatypes. Other works
propose changes to the underlying OCL type system (Kyas
2005). This is not our case since we do not propose any modifi-
cation, just an extension.

7. Conclusions and Future Work
When working with systems that operate in real environments or
interact with physical elements, we are often required to manage
knowledge that is vague, incomplete, or approximate. As stated
in (Jøsang 2016), one of the advantages of subjective logic over
traditional probabilistic logic is that the user’s partial ignorance
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and lack of evidence can be explicitly represented in the models,
taken into account during the analyses, and explicitly expressed
in the conclusions.

This paper has described an extension of the OCL and UML
datatype Boolean that enables the representation of subjective
uncertain opinions, together with a set of logical operators for
reasoning with uncertain propositions in order to reach better
informed decisions.

We analyzed the typical trade-off between expressiveness and
usability of the proposal, conducting an empirical experiment
to assess the learnability and operability of the new type and of
its values and operators. Participants agreed that the new type is
more informative since it now contains information of interest
that could not be captured before. However, they also felt that
the new values were more complex to understand and to operate
with. Interestingly, this perception was completely subjective,
and the final results of the test proved it wrong — participants
were in fact able to handle and operate with these concepts quite
successfully.

As part of our future work, we plan to conduct further exper-
iments and usability tests to confirm these results with different
groups, e.g., industrial modelers, or participants with wider
ranges of skills. Carrying out usability tests comparing Sub-
jective Logic with other logics (such as Fuzzy Logic or the
TBM) could be interesting, too. We also plan to extend our
previous works on the representation of Belief Uncertainty (Bur-
gueño, Clarisó, et al. 2019) by using Subjective Logic instead
of probabilities.
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