
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Reproducible Construction of
Interconnected Technology Models

for EMF Code Generation
Marcel Heinza Johannes Härtela Ralf Lämmela

a. Software Languages Team, University of Koblenz-Landau, Germany

Abstract Software technologies such as the Eclipse Modeling Framework
(EMF ) involve complex usage scenarios that need to be understood or
communicated by newcomers, developers, teachers, contributors, and oth-
ers. Such different stakeholders consult scattered resources that provide
textual explanations and code examples that cover different facets of a
technology. More specifically, textual explanations can be located in i) de-
veloper literature that describes idiomatic usage of a technology, and in ii)
scientific literature that explains technology from a formal and abstract
perspective. Code examples can be located in iii) demo projects that
exemplify intended usage, and in iv) wild projects that provide complex
code examples in actual applications. In this paper, we propose annotated
megamodels of technology usage as macroscopic summaries, i.e., technol-
ogy models; these models interconnect the scattered textual explanations
and code examples. We present a methodology for the incremental con-
struction of technology models in a reproducible manner. It relies on
the systematic reduction of a corpus to ‘useful’ evidence for each incre-
ment. The manual effort of searching for representative links is reduced
by dedicated queries. We exemplify the application of the methodology
for technology models that summarize EMF code generation.

1 Introduction

Motivation – How to understand EMF? The Eclipse Modeling Framework
(EMF ) is a technology which is tightly integrated into the Eclipse IDE and serves
as a solution for basic MDE application scenarios [SBMP08]. To use EMF , several
aspects need to be understood: metamodels, models, code units, workflows, and trans-
lations may affect an EMF -based language to work properly; dedicated points (also in
generated code) can be used for the customization of an EMF -based language’s model
and editor; one needs to use two or more running Eclipse instances; each instance is
configured with different plugins; the developer has to deal with three orthogonal
resource layers (operating system, Eclipse workspace, and EMF resource system);
several design patterns are involved (Adapter, Command, Registry, and Proxy).

Marcel Heinz, Johannes Härtel, Ralf Lämmel. Reproducible Construction of Interconnected Technology
Models for EMF Code Generation. Licensed under Attribution 4.0 International (CC BY 4.0). In
Journal of Object Technology, vol. 19, no. 2, 2020, pages 8:1–25. doi:10.5381/jot.2020.19.2.a8

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a8
http://dx.doi.org/10.5381/jot.2020.19.2.a8


2 · Marcel Heinz et al.

Resources for Understanding Software Technologies Textual explanations
and code examples have been identified as essential resources for understanding API
(method) usage [Rob09, RLP13, RC15]. We assume that the problem of identifying
such resources naturally transfers to understanding technology usage beyond tech-
nologies other than APIs. The use of technology may involve artifacts other than
programs – notably models in the case of EMF. We consider four types of resources:
i.) Developer literature provides informal textual explanations. In the search for tex-
tual explanations, we focus on literature that most likely covers all facets of idiomatic
technology usage. In the case of EMF , the content of the book written by Steinberg
et al. [SBMP08] provides such coverage. (Tutorials and forum posts can be consoli-
dated as well, but their structure and quality challenge systematic exploitation.) ii.)
Scientific literature tends to provide more abstract textual explanations. In the case
of EMF, papers either explain how EMF works [BBC+05, HGG12] or how it may be
adapted and integrated [EIG+15, GGKdL14, LWWC12]. iii.) Demo projects are typ-
ically linked in developer literature to provide a collection of referential code examples
which suggest idiomatic usage. iv.) Wild projects, such as open source projects on
GitHub, provide more complex code examples that represent actual technology usage
and allow insights on how the technology is commonly used.

Contribution – Reproducible, Interconnected Technology Models We pro-
pose to interconnect textual explanations and code examples through megamodels of
technology usage, i.e., technology models. In our research on software technology,
we have modeled which and how technologies are used in specific software projects
through megamodels [FLV12, LSV13, LV14a, HLV17, HHL+17, SLH+17]. In this pa-
per, we focus on the reproducibility of technology models through existing resources.
To this end, we formulate the following research question:

How can we construct a technology model in a reproducible manner so that
it is interconnected with textual explanations and code examples?

We answer the research question essentially by means of presenting a validated method-
ology that involves formulating and executing queries to reduce the manual effort of
searching for textual explanations and code examples in selected corpora. In this
context, a query is any pattern or algorithm that leads to the reduction of the search
space. Importantly, to assure reproducibility, the queries and the resulting links to
textual explanations and code examples are persisted.

Evaluation Based on EMF Code Generation While the methodology has been
generally inspired by our previous work, we evaluate it specifically in this paper in
the context of EMF code generation by executing the methodology directly for two
exemplary technology models and provide a detailed discussion. The first technology
model summarizes idiomatic usage and the second demonstrates how a misconception
in a technology model is revealed and hence prevented in the construction process. All
artifacts that have been created for the evaluation by examples are available online.1

Road-map of the Paper Section 2 presents an illustrative technology model of
EMF code generation. Section 3 introduces the methodology. Section 4 applies the
methodology to EMF code generation. Section 5 explains limitations. Section 6
summarizes related work. Section 7 concludes the paper.

1https://github.com/softlang/megaemf

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/softlang/megaemf
http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 3

2 EMF Code Generation

Different resources exist, where EMF usage is explained. In non-scientific literature,
we find text and loose visual diagrams2 that explain EMF code generation. In MDE
literature, many researchers have summarized code generation using EMF in different
contexts, such as developer activities [HGG12], adapted EMF processes [EIG+15] and
pluggable analysis [HHL+17]. EMF has served as an exemplary technology several
times in our research [FLV12, HLV17, HHL+17, SLH+17, HHL18].

In this paper, we are concerned with the aspect that, within the context of edu-
cation or for the purpose of useful documentation of a software technology, any tech-
nology model needs to be reproducible so that it can be safely reused and referred
to. Therefore, we develop a methodology for the reproducible construction of tech-
nology models. We execute this methodology specifically to construct a reproducible
technology model on EMF code generation.

The technology model depicted in Figure 1 serves as the running example. It
provides a visual summary of the central artifact types and their relations that are
often covered in non-scientific as well as scientific literature. It relates to five types
of artifacts that are instantiated when using EMF . It summarizes how three differ-
ent types of Java code artifacts are derived using an Ecore and generator model. In
megamodeling, such derivations have been modeled as functions and their applica-
tions [HLV17, HHL+17, Zay12, FLV12, LV14b].

Figure 1 – A technology model of EMF code generation.

3 Methodology

We propose an incremental process to construct reproducible technology models.
Technology models consist of technology-specific artifact types and their relations.
In the process, artifact types and relations are added as increments one after another.
For every increment to the model, evidence is needed. Hence, every increment needs
to be aligned with concise textual explanations and idiomatic code examples. By
linking the evidence, the construction process becomes reproducible. Linked textual
explanations and code examples add value to a “meaningless diagram”.

(Query-based) Reduction Steps: Searching for textual explanations and code
examples in a corpus requires manual effort. Figure 2 summarizes the iterative pro-
cedure to systematically reduce a corpus of resources to evidence that is then linked
to the technology model. If evidence is already known from personal experience, it is
linked immediately. As long as evidence is missing, the goal is to reduce the corpus

2See, for example, https://eclipsesource.com/blogs/tutorials/emf-tutorial/

Journal of Object Technology, vol. 19, no. 2, 2020

https://eclipsesource.com/blogs/tutorials/emf-tutorial/
http://dx.doi.org/10.5381/jot.2020.19.2.a8


4 · Marcel Heinz et al.

by executing several manual as well as automated steps. At first, a promising corpus
that contains evidence needs to be selected. Then, a query is developed. Queries are
formulated and executed to reduce the search scope within a selected corpus. Here,
a query is any tool-based reduction of the corpus to candidates for linked evidence,
for example, by searching for an artifact type’s name using grep. Queries can be for-
mulated based on pattern identified in previously linked evidence and returned query
results. The query results are then manually inspected to confirm concise textual
explanations and idiomatic code examples and link them as evidence. The detection
of evidence is a continuous process. Textual explanations can be helpful to identify
code examples and vice versa. Hence, we do not intend to enforce any order in which
the different corpora are processed. They can be processed in an interleaving manner.

Figure 2 – Manually (‘M’) or automatically (‘A’) executed steps reduce a corpus to linked
evidence. Resources are related to steps by input and output edges, whose color hints
at whether it is unknown (black), query-related (gray), or linked (white).

The degree of manual effort for executing the methodology depends on the given
experience. If concise textual explanations and idiomatic code examples can be linked
without any querying effort, the effort is at the minimum. If no query can be formu-
lated from the beginning, the effort is at the maximum. Not every resource that can
serve as evidence for an increment may be returned by a developed query, especially,
within a restricted time window; and not every query result can serve as evidence.
We focus on what is in between: Concise textual explanations and idiomatic code
examples that are selected from systematically refined query results and then linked.
To assure the reproducibility of evidence, queries are shared as well. In the example-
driven evaluation, we emphasize reproducibility by providing reduction step protocols
in which we record input and output of each executed reduction step. This way, a
reduction step protocol instantiates the reduction procedure from Figure 2.

When the construction of a technology model is based on an unvaried or non-
representative corpus of resources, it is prone to errors, in particular, misconception
(See Section 4.2). Linking evidence helps in raising the confidence in an intercon-
nected technology model. By developing queries varied and representative evidence
can be linked. Sharing the queries makes the recovery of evidence reproducible and
facilitates linking evidence in any additional corpus. Thus, we assume that systemat-
ically interconnecting a varied and representative set of resources is more robust and
may help with constructing an interconnected technology model more quickly, when
compared to a less systematic approach.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 5

3.1 Stakeholders

We discuss five different stakeholders that benefit from an interconnected technology
model or the methodology.

Newcomers (as in EMF newcomers in our case) benefit from the result of the
modeling effort – linked textual explanations and code examples; the model may help
with understanding intertwined complex aspects [BY06]. That is, newcomers are not
at all assumed to execute the methodology, because they miss the experience that is
required for selecting evidence.

Developers (as in developers with some EMF knowledge in our case) ben-
efit from interconnected technology models to revise their knowledge; they may not
be interested in creating one; they can validate their own mental model against a
given technology model; they can find additional contextual insights from linked code
examples and textual explanations; they typically execute analogous steps already,
because the steps are natural to gain understanding of complex technology, e.g., by
searching and inspecting code samples or querying documentation [Rob09].

Teachers (as in teachers wanting to cover EMF in our case) execute the
methodology and communicate their findings. This group also includes code review-
ers [BB13], when they need to argue on what is the idiomatic (“correct”) usage of
a complex framework, such as EMF . They can provide the technology model itself;
they can communicate the linked textual explanations and code examples to illustrate
their experience; they can also create new code examples that demonstrate technol-
ogy usage according to textual explanations. There is also the related stakeholder
of authors (as in authors on content describing or involving EMF in our case) who
may want to describe the technology in a systematic and structured and comprehen-
sive manner; authors would benefit from executing the methodology, as they usually
perform similar steps.

Contributors (as in contributors to EMF itself in our case) execute the
methodology and communicate their hands on experience. They mix the properties
of teachers and developers. Most notably, this group can most reliably execute the
methodology to identify precise textual explanations and idiomatic code examples.

3.2 Textual Explanations

A common measure to communicate the trustworthiness of information is to link
high-qualitative literature as evidence. Here, we discuss the use of scientific and non-
scientific literature. We refer to the latter as developer literature in order to emphasize
the main audience. Overall, the goal is to link concise textual explanations as evidence
in a selected corpus.

3.2.1 Developer Literature

Books and web documentation typically serve as lexicons of code examples, which
are accompanied by dedicated textual explanations. They assist developers at un-
derstanding idiomatic usage. In the past, we have identified and processed developer
literature as text-based corpora on different technologies, e.g., in [SLH+17]. Further-
more, we are inspired by the search for textual explanations on API types based on

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


6 · Marcel Heinz et al.

natural language pattern [PRM15] and also consider relation extraction, e.g., based
on distant supervision [MBSJ09] as a potential approach to querying. The reduction
is subject to steps as follows:

• Formulate Query: Either, the name of an artifact type or relation is the
query. Or, parts or synonyms of a name can be concatenated to form a query.
Any pattern-based algorithms, e.g., based on Hearst Pattern [Hea92], uses the
names, parts, or synonyms as words that are in a grammatical relationship.

• Execute Query: By executing a query, we reduce a text-based corpus, e.g., a
whole book, to promising text passages that may potentially serve as evidence.
Basic tools for executing a query are grep and CTRL+F. Advanced tools are
NLP-pipeline implementations. At first, structural elements can be used as the
input instead of the whole text. For example, a glossary already refers to pages
that introduce specific concepts; a title of a chapter or (sub-) section hints at
central topics; a visual diagram emphasizes the importance of concepts.Then,
the query is applied to text passages within the respective scope, e.g., the text
in a specific subsection.

• Link Evidence: Query results are reduced to textual explanations, which ac-
tually provide evidence. A textual explanation potentially encompasses multiple
text passages and visual diagrams from which knowledge can be inferred. Such
complex textual explanations can be left out whenever more concise textual
explanations can be linked. A concise explanation is always preferable over an
ambiguous text.

3.2.2 Scientific Literature

Technologies are typically covered by research papers in that the papers explain tech-
nology usage in the context of a research contribution from a more formal perspective.
With respect to scientific sources, the goal is to reduce a corpus of papers, for ex-
ample, Google Scholar, to papers that provide concise textual explanations. For
scientific literature, the reduction steps can be compared to a systematic literature
survey [KBB+09]. Thus:

• Formulate Query: A query is a search string. It is formulated in analogy to
developer literature. The names of multiple artifact types and relations can be
used in a single search string to identify a paper.

• Execute Query: By executing a query, we reduce a corpus of papers to candi-
dates, where artifact types or relations are mentioned. The formulated query is
either executed by using a search engine, e.g., Google Scholar, or by processing
downloaded PDF files. A reasonable subset of papers can be taken from the first
results returned by a search engine. This set of query results can be steadily
increased by considering additional results or by adapting the formulated query.

• Link Evidence: At last, papers are linked that provide concise explanations.
Linking one paper can be enough, but multiple papers can complement each
other by the diversity of points of views and contexts. Research papers can cover
more advanced technology usage based on modifications such as an integration
or adaption [EIG+15]. Papers that explain adapted technology usage are not
useful for teaching idiomatic technology usage. Thus, they are not considered.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 7

3.3 Code Examples

The exhaustive recovery of code examples is motivated in our previously conducted
analysis of technology usage [HHL18]. The corpus, subject to code reduction, is a
set of software projects that relate to part of the technology model. Queries are
formulated and executed to reduce code to potential code examples.

3.3.1 Demo Projects

Developer literature is often accompanied by demo projects, which are typically simple
to understand compared to arbitrary ’wild’ projects. Developing an accurate query
for code examples is non-trivial. The textual explanations from developer literature
can add to the necessary experience on how to recognize code examples. Formulating
a query that correctly recognizes all code examples requires systematic debugging
and constant inspection of intermediate query results. Hence, the goal is to correctly
reduce the corpus of demo projects to all code examples in them for the technology
model. This effort is feasible, because it facilitates the reduction of a more complex
corpus, i.e., large wild projects, to code examples. We suggest these steps:

• Formulate Query: A query is formulated based on known indications. File
extensions and keywords can be used to discover code that relates to artifact
types. References can be resolved to find potential code examples of a relation.

• Execute Query: By executing a query, all artifacts in selected software projects
are reduced to potential code examples. Feasible tools to execute queries may
range from rule-based reasoners [HHL18] to handcrafted miners, e.g., grep.

• Link Evidence: For demo projects, no reduction takes place when linking
evidence. The results from the queries overlap with the actual code examples.
In demo projects, all code examples are assumed to be idiomatic.

3.3.2 Wild Projects

Other than demo project, software projects in the ’wild’ are not systematically focus-
ing on exemplifying technology usage. Such projects reflect the actual usage of a tech-
nology. Different kinds of repositories exist on GitHub ranging from projects devel-
oped by students to professionally maintained open source frameworks, like ANTLR
or Xtext. GitHub can be queried by using its API to identify a set of promising
repositories, where the technology is used [HHL18, KMK+15]. Here, the goal is to
reduce a corpus of wild projects to code examples that tend to be more complex than
those in demo projects. We suggest these steps:

• Formulate Query: The queries that have been developed for demo projects
can be reused. While the queries have been tested against sandbox examples,
complex wild projects may introduce additional difficulties. In this case, query
results need to be manually sampled and inspected. Then, patterns need to
be determined within the sample to systematically improve the queries. Such
sampling is illustrated in Section 4.1. If the queries are adapted, the linked
code examples from demo projects and wild projects are used for regression
tests. This way, we make sure that queries are improved and not changed for
the worse.

• Execute Query: Executing a query is analog to demo projects.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


8 · Marcel Heinz et al.

• Link Evidence: The selection of useful code examples in wild projects de-
pends on who the interconnected technology model is shared with. Complex
logic and mixed use of other technologies are obstacles to correctly understand-
ing idiomatic technology usage. While considering all code examples can be
interesting to gain empirical insights, a small set of handpicked code examples
can be sufficient for teaching.

4 Evaluation by Examples

We evaluate the methodology by executing and discussing it in detail for two differ-
ent technology models. First, we demonstrate a smooth construction process for a
technology model of EMF code generation, where all parts of the technology model
can be linked to evidence in every type of resource. Second, we discuss how executing
the methodology helps to reveal misconceptions in a technology model.

The methodology can be executed with any set of tools. For illustration, we
cover different tools to execute queries in literature as well as software projects. To
query for textual explanations, we demonstrate the use of CTRL+F. To query for
code examples, we present two tools. For the smooth construction, we use the query
engine that is developed in [HHL18]. For the misconception, we recover code examples
by using the GitHub search API.

4.1 Modeling Code Generation

Figure 3 – We incrementally construct the technology model from Figure 1 in the order
that is depicted here (1-7). We present the respective evidence in this Section.

The technology model in Figure 1 is inspired by a conceptual model in [HGG12].
It summarizes code generation in EMF through the following increments that were
added in this order: every EMF project contains an Ecore model, which is recognizable
by a ‘.ecore’ file extension; a generator model encodes the configuration for code
generation; the generator model is derived from an Ecore model (see Create Generator
Model); we consider three types of generated Java files, namely an interface, an
interface implementation, and an Adapter Factory ; all generated Java files are derived
from the generator model (see Generate Java Code).

4.1.1 Developer Literature

For textual explanations, we focus on a corpus that most likely covers all facets of
idiomatic technology usage. For EMF , the corpus is the content of the book written
by Steinberg et al. [SBMP08]. It covers all facets of EMF usage in detail. It can
be seen as the referential corpus, because it is cited in most of the related scientific

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 9

literature and it is advertised in a banner ad on EMF’s website that says: ‘Buy the
book. Hence, it is recommended by contributors of EMF .

In this exemplary construction process, our goal is to link initial textual expla-
nations that define artifact types and their relations. Instead of processing all text
passages, structural elements, such as a table of content, can be used to reduce the
effort. For each artifact type and relation, we identify relevant subsections by running
queries against the table of contents. Figure 4 presents exemplary titles of (sub-) sec-
tions in [SBMP08]. The section titles help us to identify primary textual explanations
of artifact types and relations. For the type Generator model, a relevant subsection
can be easily recognized. The artifact type is initially defined in Subsection 2.4.4.
‘The Generator Model’.

Figure 4 – The section titles help us to identify subsections, where types and relations are
initially defined, for example, the artifact type Generator model is defined in the re-
spective Subsection 2.4.4. ‘The Generator Model’.

An excerpt of a reduction step protocol is sketched in Table 1, where each row
documents one executed reduction step. In the presented examples, we name the
respective input and output of each executed reduction step to identify the textual
explanation for Ecore model. The query only relates to one word (‘Ecore’) of the
increment’s name (‘Ecore model’). The query is run against the table of contents.
Thus, it returns the titles subsections.

ID Step In Out Automation

1 Formulate Query Experience:
Name ‘Ecore model’

Query:
‘Ecore’

M

2 Execute Query Corpus Resource:
Table of Content

Query: See 1

Query Results:
Subsection 2.3.1,
Subsection 2.3.5
Subsection 4.2.4
...

A

3 Link Evidence Query results:
See 2

Linked :
Subsection 2.3.1

M

... ... ... ... ...

Table 1 – Excerpt of the reduction step protocol for the developer literature, specifically,
for the type Ecore model.

The links to textual explanations are accompanied by dedicated rationales in Ta-
ble 2. Explanations of Ecore model are introduced in Subsection 2.3.1; in the same
query results, we also identify Subsection 12.4.4 that is called ”Ecore2GenModel”
which explains the relation Create Generator model; introductory explanations on
the generator model can be found by querying for ”Generator” in Subsection 2.4.4;
in the query results for ”Generator”, we also identify Subsection 12.4.5 that is called
”Generator”, which provides the textual explanations for the relation Generate Java

Code. Java artifacts and hints at the relation Generate Java Code can be identified
in Section 2.4.1 by querying for ”Generate”. In the initially linked subsections, there
is no concise explanation on the derivation of the generator model or code genera-

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


10 · Marcel Heinz et al.

tion. Concise explanations are presented later in Subsection 12.4.4 Ecore2GenModel
and Subsection 12.4.5 Generator, where the processes that trigger the derivation are
explicitly named and explained.

Type/Relation Links Rationale

T:Ecore Model
Subsection 2.3.1
”The Ecore
(Meta) Model”

- Explains what an Ecore model is
and what its structural parts
represent.

T:Generator Model
Subsection 2.4.4
”Generator Model”

- Explains that a generator model
contains configuration aspects.

R:Create Generator Model
Subsection 2.4.4
”Generator Model”

- Explains that the generator model
refers to and decorates the Ecore
model with code generation config.

Subsection 12.4.4
”Ecore2GenModel”

- Explains the process artifact
which creates the generator model
based on an Ecore model.

T:Interface
Subsection 2.4.1
”Generated Model Classes”

- Explains that an interface is
generated and is a subtype of EObject.

T:Interface Implementation
Subsection 2.4.1
”Generated Model Classes”

- Explains that a respective interface
implementation is also generated.

T:Adapter Factory
Subsection 2.4.2
”Other Generated “Stuff””

- Explains what the skeleton Adapter
Factory is used for.

R:Generate Java Code
Subsection 2.4.1
”Generated Model Classes”

- Explains that Java interfaces as well
as their implementations are generated.

Subsection 2.4.2
”Other Generated Stuff”

- Explains that an adapter factory is
generated, e.g., POAdapterFactory.

Subsection 12.4.5
”Generator”

- Explains the process artifact
which executes code generation.

Table 2 – Types and relations are linked to textual explanations in the book. The quoted
text passages and rationales support the links to relevant subsections.

4.1.2 Scientific Literature

We find scientific literature evidences for a technology model by querying Google
Scholar. In Google Scholar, query results are already ranked according to relevance
based on: ‘the full text of each document, where it was published, who it was written
by, as well as how often and how recently it has been cited in other scholarly litera-
ture.’3 Table 3 presents reduction step protocol. First, we combine words from the
names of all artifact types and relations to a single query in row 1. Only ten results
are returned. We generally skip books and slide decks as well as student’s work, such
as M.Sc. or diploma theses. For the naive query (see row 1, Table 3), we only find
the paper written by Hebig [HGG12] that confirms all artifact types and relations as
expected, because our technology model is inspired by a contained diagram. Then, we
formulate a shorter search string: ‘EMF "generator model" generate Java’. 429
results are returned. We process papers in the order of their appearance in query

3https://scholar.google.com/intl/en/scholar/about.html

Journal of Object Technology, vol. 19, no. 2, 2020

https://scholar.google.com/intl/en/scholar/about.html
http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 11

results until we have linked five results that redundantly cover artifact types and
relations.

ID Step In Out Automation

1 Formulate Query Experience:
All names of types

Query:
‘EMF ”Ecore model”
”Generator model”
Interface Implementation
”Adapter Factory”’

M

2 Execute Query Corpus Resource:
Google Scholar

Query: See 1

Query Results:
2x EMF book
2x eclipsecon slides
5x Student theses
Hebig et al [HGG12]

A

3 Link Evidence Query results:
See 2

Linked :
Hebig et al [HGG12]

M

4 Formulate Query Expertise:
Focus on ‘Java code
is derived from a
generator model’

Query:
EMF ”generator model”
generate Java

M

5 Execute Query Corpus Resource:
Google Scholar

Query Results:
429 heterogeneous results

A

6 Link Evidence Query results:
See 5

Linked :
[KRbA+10, BEJ10],
[BS15, KGRP17]

M

Table 3 – The reduction step protocol for the scientific literature.

Table 4 summarizes the results of processing scientific literature. We execute the
queries that we used for the developer literature and execute them with CTRL+F in
the reduced set of papers (see row 3 and 6, column ”Out” in Table 3). By reading
the returned text paragraphs that contain a query result, we are able to determine
which artifact type and relation is covered. In the end, we either simply advise to read
the paper, or we highlight the existence of central figures explicitly. The rationales
explain why a highlighted figure is linked and also cite central textual explanations
when we link a paper as a whole.

Type/Relation Links Rationale

All [HGG12, Fig. 3] Uses the same names.

T:Ecore model,
T:Generator model,
R:Create Generator Model

[KRbA+10, Fig. 1] Text and model refer to:
”Ecore metamodel”, ”GenModel model”,
”EMF Ecore2GenModel transformation”.

T:Ecore model,
T:Generator model,
R:Create Generator Model

[BEJ10] The introduction explains the dependency
of the generator model to Ecore model
on the fragment level.

All except
-T:Adapter Factory

[BS15] ‘The EMF code generator is always
invoked on a so called generator model’

All except
-T:Adapter Factory

[KGRP17] ‘the GenModel is consumed by a built-in
model-to-text transformation’

Table 4 – Linked scientific literature that explains the artifact types and relations.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


12 · Marcel Heinz et al.

4.1.3 Demo Project

The EMF book [SBMP08] is accompanied by a set of projects that can be downloaded
online4. They are demo projects. We select one demo project as our corpus. It is
called ‘PrimerPO’ and illustrates the basics described up to Chapter 4. If we wanted
to focus on advanced EMF usage, such as the use of different code pattern, we would
have to systematically process Chapter 10, construct technology models that represent
the pattern, and then search for code examples in all the demo projects. For now,
this basic demo project is sufficient.

We use a rule-based approach (QegaL) for the automated detection of code ex-
amples in GitHub repositories [HHL18]. Inference of type and relation instances is
driven by monotonously adding facts to a triple store. Thus, artifacts are represented
by URIs and relations are encoded as triples. During the inference, declarative rules
search in the triple store and a project for new facts. If one of the rules succeeds,
it adds the respective triple(s) – adding a new triple triggers all rules again. This
process stops, when no facts can be added anymore. Table 5 summarizes executed
reduction steps for the demo projects, which are fully committed to the query engine
to perform an exhaustive analysis on GitHub.

ID Step In Out Automation

1 Formulate Query Experience:
search for file endings
.java, .genmodel, .ecore

Query:
see Listing 1
+ ‘.java’ query

M

2 Execute Query Corpus Resource:
Project PrimerPO

Query: See 1

Query Results:
PrimerPO.ecore
PrimerPO.genmodel
Item.java
..
PPOPackage.java
...

A

3 Link Evidence Query results:
See 2

Linked :
see Table 6

M

... ... ... ... ...

Table 5 – Excerpt of the reduction step protocol for the demo project PrimerPO. ‘.java’
files returned by the query are manually filtered. For instance, PPOPackage does not
exemplify any modeled type.

In an initial query, we follow the file-ending information that is given in Figure 3.
Listing 1 presents the documented queries that are implemented in QegaL.

1(?ecoreModel, sl:manifestsAs, sl:File) //every file
2Extension(?ecoreModel,”ecore”) //with the file extension ’.ecore’
3→ (?ecoreModel, sl:instanceOf, sl:EcoreModel). //is an Ecore model
4

5(?generatorModel, sl:manifestsAs, sl:File) //every file
6Extension(?generatorModel,”genmodel”) //with the file extension ’.genmodel’
7→ (?generatorModel, sl:instanceOf, sl:GeneratorModel). //is a Generator model

Listing 1 – QegaL queries identify examples of the Ecore- and generator model.

We detect the derivation of the generator model from an Ecore model by iden-
tifying an encoded reference. For instance, the file ‘PrimerPO.genmodel’ contains
the XMI element <foreignModel>PrimerPO.ecore</foreignModel>. The rules for
detecting the derivation relation based on this tag and the common parent folder are
presented and documented in Listing 2.

4http://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885

Journal of Object Technology, vol. 19, no. 2, 2020

http://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 13

1(?generatorModel, sl:instanceOf, sl:GeneratorModel) //Generator Model
2(?generatorModel, sl:partOf, ?folder) //Folder
3StrXml2(?generatorModel,”//foreignModel/text”,?foreignModel) //Ecore name via XPATH
4UriConcat(?folder,”/”,?foreignModel, ?ecoreModel) //folder + Ecore name = Ecore URI
5→ (?ecoreModel, sl:CreateGeneratorModel,?generatorModel).

Listing 2 – QegaL queries to identify code examples for the derivation relation between the
Generator model and the Ecore model.

Developing accurate queries is complicated. Hence, we use links to code examples
that should not result from a query as test artifacts. Such test artifacts can also
be shared. The principle is exemplified in Listing 3. We interpret the artifact type
Interface as an interface corresponding to a model class. Here, ‘*Package.java’ and
‘*Factory.java’ files do not exemplify interfaces. The file ‘PpoPackage.java’ is also an
interface but not a model class. Next, it is assured that the adapter factory is not
confused with the file ‘PpoFactory.java’.

1<:/src/ppo/PpoPackage.java> sl:instanceOf sl:Interface.
2<:/src/ppo/PpoFactory.java> sl:instanceOf sl:Interface.
3<:/src/ppo/PpoFactory.java> sl:instanceOf sl:AdapterFactory.

Listing 3 – We test based on false-positive triples.

To abbreviate explanations, Figure 5 summarizes the ideas behind the queries
to recognize code examples for the relation Generate Java Code. Previous research
can be consulted for more details on incremental querying [HHL18]. Chapter 4 of the
EMF book can be consolidated for the required experience to develop the query.

Figure 5 – This sketch illustrates the ideas for querying for code examples of the technol-
ogy model. The type hierarchy and references in the generator model are resolved.

The type hierarchy and references from generator models to Java files need to be
resolved for accurate queries. We use the following indications for code examples.
Ecore models and generator models contain packages and classes in analogy to the
generated code. For every generator package, there exists a Java package. For every
generator class, there exists a Java interface and an implementation. To identify code
examples of the respective Java interfaces, we search for interfaces that (transitively)
extend ‘EObject’. Then, a respective interface implementation can be found based on
its ‘implements’ reference in the class signature that refers to a previously identified
interface. As the last artifact type, adapter factories can be recovered based on an
‘extends’ reference in the signature of an interface to the interface ‘AdapterFactory’.
Next, we recover code examples of the relation Generate Java Code itself. We iden-
tify each generator package in the generator model. Each generator package refers to
a respective Ecore package. The Ecore package has to be part of an Ecore model that
we have identified earlier. We build qualified names, such as ‘ppo.Item’, to identify
each generator class in the generator model. The qualified name of the Java pack-
age, where the generated code is located, can be derived from the respective Ecore

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


14 · Marcel Heinz et al.

package, because the namespace is defined there. For every Java file, we determine
the qualified names as well. In the end, we match the qualified names of generator
classes with the qualified names of interfaces. Interface implementations can then
be connected with generator classes based on the respective interfaces. Through the
generator classes, the generated Java code is connected with the generator model.

Because we need to assure that all code examples are matched correctly, we man-
ually persist links to the correct code examples in the demo project first. Table 6
presents respective exemplary links to code examples of artifact types and relations.

Type/Relation Links Rationale

T:EM <:/model/PrimerPO.ecore> Ecore Model Query
(see Listing 1)

T:GM <:/model/PrimerPO.genmodel> Generator Model Query
(see Listing 1)

R:EtoG (<:/model/PrimerPO.ecore>,
<:/model/PrimerPO.genmodel>)

Foreign Model Query
(see Listing 2)

T:Int <:/src/ppo/Item.java>,.. Extends Queries
(see Figure 5)

T:Impl <:/src/ppo/impl/ItemImpl.java>,.. Implements Queries
(see Figure 5)

T:AF <:/src/ppo/util/PpoAdapterFactory.java> Package Reference Query
(see Figure 5)

R:GtoJ (<:/model/PrimerPO.genmodel>,
<:/src/ppo/Item.java>), .. ,

(<:/model/PrimerPO.genmodel>,
<:/src/ppo/impl/ItemImpl.java>), .. ,

(<:/model/PrimerPO.genmodel>,
<:/src/ppo/util/PpoAdapterFactory.java>)

Reference Queries
(see Figure 5)

Table 6 – Linked code examples from the demo project PrimerPO. We only link one
code example for each artifact type. More links can be viewed online. Abbreviations:
EM=Ecore Model, GM=Generator Model, EtoG=Create Generator Model, Int=Interface,
Impl=Interface Implementation, AF=Adapter Factory, GtoJ=Generate Java Code.

4.1.4 Wild Project

Based on an investigation in wild repositories, we gain insights into whether the
technology model in Figure 1 is commonly instantiated in terms of code examples.
We initiate the reduction by considering all repositories on GitHub. Then, the first
query aims to identify repositories that use EMF . Many repositories exist that use
EMF to varying extent. Here, we focus on ”vanilla” EMF usage [HHL18]. Thus,
repositories need to be excluded when they contain a mix of different technologies,
such as Xtext or acceleo, which may distort the technology usage. For example, EMF
code generation is influenced by the use of Xtext, since the code (and an Ecore model)
is derived from a grammar. For inspecting more general or advanced usage of EMF ,
such exclusion criteria can be dropped. Table 7 summarizes this initial reduction that
results in the top ten repositories selected based on their star rating.

In analogy to debugging code, we search for potentially missed code examples to
optimize the accuracy of queries. For example, we search for code examples of the
type Interface that are not the target of any Generate Java Code relation. The

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 15

ID Step In Out Automation

1 Formulate Query Expertise:
What co-technologies
distort vanilla usage

Query:
QegaL query described
in [HHL18]
based on file endings
e.g. excluding projects
with ‘.xtext’

M

2 Execute Query Corpus Resource:
GitHub

Query: See 1

Query Results:
1438 repos
list available online

A

3 Link Evidence Query results:
See 2

Linked :
top ten sorted by stars
see Table 8

M

4 Execute Query Corpus Resource:
Linked repos from step 3

Query:
see Table 6
for an overview

Query Results:
see Table 8

A

... ... ... ... ...

Table 7 – Excerpt of the reduction step protocol for the wild projects. It presents how the
set of all repositories on GitHub is reduced to vanilla EMF repositories [HHL18].

respective query is provided in Listing 4. It is executed on the triplestore that results
from executing the developed queries that return links to code examples.

By sampling based on the integrity of code examples, we find one generator model
that refers to a ‘.uml’ file instead of an Ecore model (see R:EtoG, column [3], in
Table 8). As a result, the queries that are summarized in Figure 5 cannot match any
Ecore package. Hence, the relation GenerateJavaCode (R:GtoJ in Table 8) cannot be
instantiated (see R:GtoJ, column [3] in Table 8). Because we focus on idiomatic usage,
where a generator model is based on an Ecore model instead of a ‘.uml’ model, the
query is not refined. Moreover, we also find repositories, where no model interfaces
that extend EObject are recognized at all.

1SELECT DISTINCT ?i WHERE {
2?i sl:instanceOf sl:Interface .
3FILTER NOT EXISTS{ ?g sl:GenerateJavaCode ?i. }
4}

Listing 4 – SPARQL queries for sampling query results to refine queries.

In Table 8, we present the results of querying selected GitHub projects to identify
code examples of the technology model. We choose the top ten repositories sorted by
star rating for further inquiry and sort them by their name. Several empty cells exist
especially for the Java code-related columns, where we were unable to recover code
examples for the Java artifact types. Still, the table shows that code examples of the
technology model exist in multiple repositories.

4.1.5 Summary

We have presented and recorded how the methodology is executed for a technology
model that depicts common EMF usage. Textual explanations are identified using
CTRL+F ; in demo projects, code examples are linked first to develop queries in a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


16 · Marcel Heinz et al.

Type Links Rationale
/Relation [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

T:EM 1 1 1 3 2 2 2 1 1 2 Ecore Model Query
(see Listing 1)

T:GM 1 2 1 5 2 2 2 1 1 2 Generator Model Query
(see Listing 1)

R:EtoG 1 1 5 2 1 2 1 1 2 Foreign Model Query
(see Listing 2)

T:Int 111 2 2 12 46 6 5 Extend EObject Queries
(see Figure 5)

T:Impl 82 2 2 15 46 6 4 Implements Queries
(see Figure 5)

T:AF 3 1 1 4 1 1 2 Package Reference Query
(see Figure 5)

R:GtoJ 167 5 38 93 13 4 Reference Query
(see Figure 5)

Table 8 – Quantified links to ten vanilla EMF repositories (see column [1]-[10]). Ab-
breviations: EM=Ecore Model, GM=Generator Model, EtoG=Create Generator Model,
Int=Interface, Impl=Interface Implementation, AF=Adapter Factory, GtoJ=Generate Java
Code.

test driven manner; in wild projects, the queries are executed to find more complex
code examples and check their commonness.

4.2 Revealing Misconception

In the second application of our methodology, we demonstrate how the execution of
the methodology is robust enough to prevent misconception. We draw an example
from our experience of teaching and conducting research on EMF usage. The concept
of different model layers is often hard to understand for newcomers, which includes
students and inexperienced developers. The technology model in Figure 6 summarizes
a hypothetical misconception on the generated Model API. We summarize what is
depicted as follows. Any generated model API consists of model classes written in
Java. A student may explain the last relation as follows: ‘Every model class is an
EClass’ while using the relation subtype of instead of instance of.

Before executing the reduction steps, we explain the misconception in this model.
The technology model states that every model class inherits from EClass. Hence,
a model class, which is at the level of metamodels, inherits from a class that is
part of the metametamodel. Scientific literature clarifies the correct alignment of
EMF terminology to the common model layers (model, metamodel, and metameta-
model) [BBC+05, BHJ+05, GNF12].

4.2.1 Developer Literature

We again consider the book by Steinberg et al [SBMP08]. Formulate Query: We
specifically focus on the extends relation with the queries ”extends EClass”, ”subclass

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 17

Figure 6 – This technology model summarizes a potential misconception on EMF .

of EClass”, and ”subtype of EClass”, and just for ”EClass”. Execute Query: We
execute the queries for the full text, because no result is returned when we apply the
query to the table of contents. For the first three queries, no result can be found
in the full text as well; for the last, we find out that Section 5 contains many query
results. It explains the Ecore metametamodel that includes EClass as a class, but it
does not suggest extending this class in a metamodel. Link Evidence: No textual
explanation can be found in the query results. Either, the modeled technology usage is
too advanced to be covered in the book. Or, it is just not intended by the contributors.

4.2.2 Scientific Literature

Next, we consolidate Google Scholar. Formulate Query: We use the same search
strings that we used for developer literature, but we add ‘EMF model’ as a prefix and
add surrounding quotes so that exact matches are retrieved, e.g., ‘EMF model ”sub-
type of EClass”’. Execute Query: Only one result is returned for ”extends EClass”;
a student’s report project reports about problems when extending EClass [Sai10]. In
analogy, only one result is returned for ”subclass of EClass”, a PhD thesis [Riv10]
formalizes laws between instances of EClass. For the third query ”subtype of EClass”,
four results are returned. Link Evidence: From the last query we find papers on
EMF profiles [LWWC11, LWWC12]. They describe how EMF is adapted in order
to introduce stereotypes as a concept at the metametamodel layer. Since, we avoid
papers that describe adaption, no paper is linked.

4.2.3 Demo Projects

We take all demo projects as the corpus. Formulate Query: We search for classes
that contain ”extends EClass” in the class signature. Execute Query: No results
are returned. We cannot draw any new conclusion from this, since the examples are
aligned with the book’s text passages.

4.2.4 Wild Projects

We use the GitHub search API for query execution. Formulate Query: We search
for classes that contain ”extends EClass” in the type signature. Execute Query: As
expected, not many repositories exist. The code search returns 1, 041 code examples.
Link Evidence: The results almost always include (<? extends EClass>). We
exclude such cases. We find actual examples in an implementation of Petri Nets5,
where an interface called Node extends EClass. In this repository, not every inter-
face extends EClass. Subtyping EClass is only used in very rare occasions. For the
identified code examples, we assume that they are related to the identified scientific
literature on EMF profiles [LWWC11, LWWC12]. The repository is not linked in the

5github.com/cmodw/emf-profiles_testpetrinet

Journal of Object Technology, vol. 19, no. 2, 2020

github.com/cmodw/emf-profiles_testpetrinet
http://dx.doi.org/10.5381/jot.2020.19.2.a8


18 · Marcel Heinz et al.

papers, but there exists a respective repository with more code examples on EMF
profiles for the same user6.

4.2.5 Summary

In summary, we presented the execution of the methodology for a misconception in a
technology model, for which no textual explanations can be found in developer litera-
ture. We identify textual explanations in scientific literature that describe a modifica-
tion of EMF’s metametamodel. The lack of code examples in demo projects and wild
projects implies that the included extends relation does not represent idiomatic usage.
In a hypothetical construction process, it is removed from the technology model.

5 Limitations

The evaluation in Section 4 is based on ‘validation by examples’ [Sha03] with the
authors of this paper as executors. Thus, we essentially answered the research question
of Section 3 by the provision of a methodology for constructing a technology model
in a reproducible manner so that it is interconnected with textual explanations and
code examples and then validating the methodology by examples.

This approach did not allow us to explore the limitations of the methodology,
e.g., its dependence on experience of those executing the steps. Ultimately, controlled
experiments – in which subjects execute the methodology for given tasks – could be
expected to be useful in evaluating the methodology more thoroughly.

In this section, we sketch a hypothetical controlled experiment to make explicit
a few hypotheses underlying the proposed methodology and to reveal its potential
limitations. We would like to emphasize that the completion of this sketch into
an actual experiment design and performing the experiment would represent a very
significant challenge, but we contend that the discussion of the hypothetical setup is
insightful nevertheless.

In a controlled experiment, one would present tasks to the participants so that
they need to connect a given technology model with textual explanations and code
examples as presented in Section 4. As the dependent variable, one measures time
needed by participants for task completion. In the analysis, one is interested in what
variables influence the time.

Experience The first independent variable is the experience of a participant. This
paper’s validation is limited in so far that we did not involve stakeholders with dif-
ferent levels of experience who execute our methodology. Experience is difficult to
objectively measure. It is typically recorded in a questionnaire that captures a sub-
jective estimate before the experimented is started. We hypothesize that the time
depends on the given experience. If precise textual explanations and idiomatic code
examples can be linked without any querying effort, the time is at a minimum. If no
query can be formulated from the beginning, the time is at a maximum.

Complexity The second independent variable is the complexity of the technology
model. This paper’s validation is limited in so far that we did not execute the method-
ology for constructing a broad range of technology models. (The different facets of
the methodology were based though on separate megamodeling efforts, as cited in the

6github.com/cmodw

Journal of Object Technology, vol. 19, no. 2, 2020

github.com/cmodw
http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 19

paper.) To cover more complex aspects, it is harder to find textual explanations and
code examples. We hypothesize that more time is needed to find links, because more
queries and more complex queries have to be developed.

Quality of Resources The third independent variable is the quality of textual
explanations and code examples. This paper’s validation is limited in so far that we
made subjective decisions on what is added as an increment and what evidence is
linked. An external gold standard is still abundant and can only be gained by efforts
of an experienced community, e.g., by involving EMF contributors. A related issue is
that the set of linked resources for a given technology model is not uniquely defined,
unless we highly constrain the underlying corpora. Thus, the task results produced
by the subjects in a controlled experiment would need to be checked for correctness
and possibly graded, which does not appear to be straightforward.

6 Related Work

Megamodeling Technology Usage We draw our main inspiration from related
work in linguistic architecture of software starting with its introduction in [FLV12].
There, we suggest using language-centric megamodels to describe software applica-
tions and capture the use of different technologies and languages. Its semantics and
interpretation is then discussed in [LV14a]. In [HLV17], we describe a survey of meg-
amodelling literature that summarizes common vocabulary; we also axiomatize some
types and relationships used in megamodels for technology usage. In [HHL+17], more
tool support and conceptual principles for linguistic architecture models are intro-
duced, where links between megamodel elements (entities and relations) and code are
systematically supported. In [Zay12, LZ13, Zay14], megamodels are ‘renarrated’, i.e.,
they are presented in a sequential, story-telling manner. In this previous work, scat-
tered elements of analysis of demo projects, wild projects, developer literature, and
scientific literature show up. In the present paper, we generalize these experiences
into a methodology for interconnecting resources within technology models.

Technology Usage Related work interested in technology usage is diverse. Under
the premise of better understanding state-of-the-art practices, related work covers the
systematic analysis of MDE technology usage in open source repositories [HHL18,
RRH+18, KMK+15]. Similar analysis has been conducted for large industrial set-
tings [MSSvdB17]. The different shapes of the Model-View-Controller model has
been analyzed in different technologies in [DD19]. Research focused on API usage
examines, for instance, sequences of method calls [RBK+13], type usage [ZM19],
multi-level patterns [SBAS15] or code examples [LDZ19]. The textual explanations
of APIs are subject to research conducted in [PRM15]. The usage of graph query
languages is examined in [SHL+19]. The usage of databases in Android application
has been discussed in [LGWH17]. The evolution of testing library usage has been
subject to research conducted in [ZM17]. However, such related work does not come
up with a methodology like ours, because typically such work does not aim at mod-
eling technology usage. Opposed to the previously listed work, our paper focuses on
technology usage in terms of artifacts and their relations. We aim at constructing a
technology model supported by the usage analysis of a particular technology.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


20 · Marcel Heinz et al.

Ontology Evaluation We are also inspired by research on ontology evaluation.
Gold standard-based evaluation is a prominent method in this field [DS06]. In our
case, we cannot make use of this method, because a gold standard does not exist yet.
In a corpus-based ontology evaluation [RTSP12], an ontology is evaluated based on
how well it covers a given corpus. We can draw analogies to this method, because we
are interested in covering corpora of code examples as well as textual explanations.

7 Conclusion

Summary We have provided a methodology for the reproducible construction of
technology models that are interconnected with textual explanations and code ex-
amples. Such interconnected models can assist newcomers and developers at under-
standing technology usage and help teachers and contributors to share and extend
their experience. We envisage that the reproducible construction of interconnected
technology models can be used to provide a systematic approach to communicating
textual explanations and code examples. It complements existing forms of patterns
that assist at understanding complex software [PGG+15].

We start from an initial (possibly incomplete and incorrect) technology model,
without interconnections, which is set up as a ‘working assumption’. The technol-
ogy model is subsequently linked to valuable textual explanations and code examples
so that it becomes more than just a visual summary. To this end, developer liter-
ature, scientific literature, demo projects, and wild projects are processed. Artifact
types and relations are confirmed or rejected based on manually or automatically ex-
ecuted queries. Evidence is then integrated into the model as links. Importantly, the
methodology features a reduction procedure that is aimed at minimizing the manual
effort for identifying and then linking concise textual explanations and idiomatic code
examples.

Future Work This paper covers initial efforts on modeling the EMF technology.
There are clearly more EMF usage aspects that one may want to discuss in detail,
but we selected code generation to cover important basics of EMF . The longer-term
research goal (with regard to EMF ) is to construct a reference model of EMF usage
as a gold standard of interconnected text and code resources. A complete technology
model for EMF is to be expected only by an iterative process that involves the
community to further decrease subjectivity introduced by manual steps. Technology
models need to be continuously challenged and revised.

Beyond the scope of EMF, we would like to see that the proposed methodology
can be shown to help with broader efforts on developing a comprehensive ontology in
software engineering [Gon15], and more specifically, the software language engineering
body of knowledge (SLEBOK) [CLW17]. To this end, further refinements of the
proposed methodology may be needed as well as additional forms of validation, as
discussed in Section 5. We hypothesize that exploring interconnected technology
models with dedicated tool support, for example, similar to [RLP13], may help in
understanding EMF , and possibly other complex technology, such as Xtext.

References

[BB13] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. ICSE, pages 712–721,

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 21

2013.

[BBC+05] Jean Bézivin, Christian Brunette, Régis Chevrel, Frédéric Jouault, and
Ivan Kurtev. Bridging the generic modeling environment (gme) and
the eclipse modeling framework (emf). In Proc. OOPSLA, 2005.

[BEJ10] Enrico Biermann, Claudia Ermel, and Stefan Jurack. Modeling the
“ecore to genmodel” transformation with emf henshin. Transformation
Tool Contest, page 153, 2010.

[BHJ+05] Jean Bézivin, Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev, and
William Piers. Bridging the ms/dsl tools and the eclipse modeling
framework. In Proc. OOPSLA, 2005.

[BS15] Thomas Buchmann and Felix Schwägerl. On a-posteriori integration
of ecore models and hand-written java code. In Pascal Lorenz, Marten
van Sinderen, and Jorge S. Cardoso, editors, Proc. ICSOFT-PT, 2015.

[BY06] Mordechai Ben-Ari and Tzippora Yeshno. Conceptual models of soft-
ware artifacts. Interacting with Computers, 18(6):1336–1350, 2006.

[CLW17] Benôıt Combemale, Ralf Lämmel, and Eric Van Wyk. SLEBOK: the
software language engineering body of knowledge (dagstuhl seminar
17342). Dagstuhl Reports, 7(8):45–54, 2017.

[DD19] Dragos Dobrean and Laura Diosan. An analysis system for mobile
applications MVC software architectures. In Proc. ICSOFT, 2019.

[DS06] Klaas Dellschaft and Steffen Staab. On how to perform a gold stan-
dard based evaluation of ontology learning. In PRoc. ISWC, pages
228–241, 2006.

[EIG+15] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Mas-
simo Tisi, and Jordi Cabot. EMF-REST: Generation of RESTful APIs
from Models. CoRR, abs/1504.03498, 2015.

[FLV12] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. Modeling the
linguistic architecture of software products. In Proc. MODELS, pages
151–167, 2012.

[GGKdL14] Antonio Garmendia, Esther Guerra, Dimitrios S. Kolovos, and Juan
de Lara. EMF Splitter: A Structured Approach to EMF Modularity.
In XM@MoDELS, 2014.

[GNF12] José Manuel Gascueña, Elena Navarro, and Antonio Fernández-
Caballero. Model-driven engineering techniques for the development
of multi-agent systems. Eng. Appl. of AI, 25(1):159–173, 2012.

[Gon15] Cesar Gonzalez-Perez. How ontologies can help in software engineer-
ing. In Proc. GTTSE, 2015.

[Hea92] Marti A. Hearst. Automatic acquisition of hyponyms from large text
corpora. In Proc. COLING, pages 539–545, 1992.

[HGG12] Regina Hebig, Gregor Gabrysiak, and Holger Giese. Towards patterns
for mde-related processes to detect and handle changeability risks. In
Proc. ICSSP, pages 38–47, 2012.

[HHL+17] Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, and
Marcel Heinz. Interconnected linguistic architecture. Programming
Journal, 1(1):3, 2017.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


22 · Marcel Heinz et al.

[HHL18] Johannes Härtel, Marcel Heinz, and Ralf Lämmel. EMF patterns of
usage on github. In Proc. ECMFA, pages 216–234, 2018.

[HLV17] Marcel Heinz, Ralf Lämmel, and Andrei Varanovich. Axioms of
linguistic architecture. In Proc. MODELSWARD, pages 478–486.
SCITEPRESS, 2017.

[KBB+09] Barbara A. Kitchenham, Pearl Brereton, David Budgen, Mark Turner,
John Bailey, and Stephen G. Linkman. Systematic literature reviews
in software engineering - A systematic literature review. Information
& Software Technology, 51(1):7–15, 2009.

[KGRP17] Dimitrios S. Kolovos, Antonio Garćıa-Domı́nguez, Louis M. Rose, and
Richard F. Paige. Eugenia: towards disciplined and automated devel-
opment of gmf-based graphical model editors. Software and Systems
Modeling, 16(1):229–255, 2017.

[KMK+15] Dimitrios S. Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontze-
los, Sophia Ananiadou, and Richard F. Paige. Assessing the use
of eclipse MDE technologies in open-source software projects. In
OSS4MDE@MoDELS, 2015.

[KRbA+10] Dimitrios S. Kolovos, Louis M. Rose, Saad bin Abid, Richard F.
Paige, Fiona A. C. Polack, and Goetz Botterweck. Taming EMF and
GMF using model transformation. In Dorina C. Petriu, Nicolas Rou-
quette, and Øystein Haugen, editors, Proc. MODELS, 2010.

[LDZ19] Binbin Liu, Wei Dong, and Yinzhu Zhang. Accelerating api-based pro-
gram synthesis via API usage pattern mining. IEEE Access, 7:159162–
159176, 2019. doi:10.1109/ACCESS.2019.2950232.

[LGWH17] Yingjun Lyu, Jiaping Gui, Mian Wan, and William G. J. Halfond. An
Empirical Study of Local Database Usage in Android Applications. In
ICSME, pages 444–455. IEEE Computer Society, 2017.

[LSV13] Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. The
101haskell chrestomathy: A whole bunch of learnable lambdas. In
Proc. IFL, page 25, 2013.

[LV14a] Ralf Lämmel and Andrei Varanovich. Interpretation of linguistic ar-
chitecture. In Proc. ECMFA, pages 67–82, 2014.

[LV14b] Ralf Lämmel and Andrei Varanovich. Interpretation of Linguistic Ar-
chitecture. In Proc. ECMFA 2014, volume 8569 of LNCS, pages 67–
82. Springer, 2014.

[LWWC11] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot.
From UML profiles to EMF profiles and beyond. In Proc. TOOLS,
pages 52–67, 2011.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot.
EMF profiles: A lightweight extension approach for EMF models.
Journal of Object Technology, 11(1):1–29, 2012.

[LZ13] Ralf Lämmel and Vadim Zaytsev. Language support for megamodel
renarration. In Proc. Extreme Modeling co-located with MODELS
(2013), pages 36–45, 2013.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1109/ACCESS.2019.2950232
http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 23

[MBSJ09] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant
supervision for relation extraction without labeled data. In Keh-Yih
Su, Jian Su, and Janyce Wiebe, editors, Proc. ACL, pages 1003–1011,
2009.

[MSSvdB17] Josh GM Mengerink, Alexander Serebrenik, Ramon RH Schiffelers,
and Mark GJ van den Brand. Automated analyses of model-driven ar-
tifacts: obtaining insights into industrial application of mde. In Proc.
IWSM-Mensura, pages 116–121. ACM, 2017.

[PGG+15] Ana Pescador, Antonio Garmendia, Esther Guerra, Jesús Sánchez
Cuadrado, and Juan de Lara. Pattern-based development of domain-
specific modelling languages. In Proc. MoDELS, pages 166–175, 2015.

[PRM15] Gayane Petrosyan, Martin P. Robillard, and Renato De Mori. Discov-
ering information explaining API types using text classification. In
Proc. ICSE, pages 869–879, 2015.

[RBK+13] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and
Tristan Ratchford. Automated API property inference techniques.
IEEE Trans. Software Eng., 39(5):613–637, 2013.

[RC15] Martin P. Robillard and Yam B. Chhetri. Recommending reference
API documentation. Empirical Software Engineering, 20(6):1558–1586,
2015.

[Riv10] José Eduardo Rivera. On the semantics of real-time domain specific
modeling languages. PhD thesis, Ph. D. thesis, Universidad de Málaga,
2010.

[RLP13] Coen De Roover, Ralf Lämmel, and Ekaterina Pek. Multi-dimensional
exploration of API usage. In Proc. ICPC, pages 152–161. IEEE Com-
puter Society, 2013.

[Rob09] Martin P. Robillard. What makes apis hard to learn? answers from
developers. IEEE Software, 26(6):27–34, 2009.

[RRH+18] Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino,
Ralf Lämmel, and Alfonso Pierantonio. Systematic recovery of MDE
technology usage. In Proc. ICMT, pages 110–126, 2018.

[RTSP12] Marco Rospocher, Sara Tonelli, Luciano Serafini, and Emanuele Pi-
anta. Corpus-based terminological evaluation of ontologies. Applied
Ontology, 2012.

[Sai10] David Saile. Integrating twouse and ocl-dl, 2010. Student project.
University of Koblenz-Landau.

[SBAS15] Mohamed Aymen Saied, Omar Benomar, Hani Abdeen, and Houari A.
Sahraoui. Mining Multi-level API Usage Patterns. In SANER, pages
23–32. IEEE Computer Society, 2015.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[Sha03] Mary Shaw. Writing good software engineering research paper. In
Lori A. Clarke, Laurie Dillon, and Walter F. Tichy, editors, Proc.
ICSE, pages 726–737. IEEE Computer Society, 2003.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a8


24 · Marcel Heinz et al.

[SHL+19] Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, and
Steffen Staab. Empirical study on the usage of graph query languages
in open source Java projects. In SLE, pages 152–166. ACM, 2019.

[SLH+17] Simon Schauss, Ralf Lämmel, Johannes Härtel, Marcel Heinz, Kevin
Klein, Lukas Härtel, and Thorsten Berger. A chrestomathy of DSL
implementations. In Proc. SLE, pages 103–114, 2017.

[Zay12] Vadim Zaytsev. Renarrating linguistic architecture: a case study. In
Proc. MPM@MoDELS 2012, pages 61–66. ACM, 2012.

[Zay14] Vadim Zaytsev. Understanding Metalanguage Integration by Renar-
rating a Technical Space Megamodel. In Proc. GEMOC@Models, 2014.

[ZM17] Ahmed Zerouali and Tom Mens. Analyzing the evolution of testing
library usage in open source Java projects. In SANER, pages 417–421.
IEEE Computer Society, 2017.

[ZM19] Hao Zhong and Hong Mei. An Empirical Study on API Usages. IEEE
Trans. Software Eng., 45(4):319–334, 2019.

About the authors

Marcel Heinz Marcel Heinz is a research assistant in the software
languages team at the University of Koblenz-Landau. He is work-
ing towards a Ph.D. His general interests are in Software Language
Engineering, Modeling and Knowledge Engineering. His research
focus is on assisting at the comprehension of software languages
and software technologies. Contact him at heinz@uni-koblenz.de
or visit http://www.softlang.org.

Johannes Härtel Johannes Härtel received his MSc in Com-
puter Science from the University of Koblenz-Landau Germany
in 2016 where he is currently working as researcher. He is
doing his PhD on tool and language support for mining soft-
ware repositories. His research interests include mining soft-
ware repositories, software language engineering, natural lan-
guage processing, functional programming and model-based tech-
niques. Contact him at johanneshaertel@uni-koblenz.de or visit
http://www.softlang.org.

Journal of Object Technology, vol. 19, no. 2, 2020

http://www.softlang.org
http://www.softlang.org
http://dx.doi.org/10.5381/jot.2020.19.2.a8


Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 25

Ralf Lämmel Ralf Lämmel is Software Engineer at Facebook
since 2018 and Professor of Computer Science (currently on leave
of absence) at the University of Koblenz-Landau in Germany
since 2007. In the past, he had held positions at the University
of l’Aquila, Microsoft, the Free University of Amsterdam, CWI
(Dutch Center for Mathematics and Computer Science), and the
University of Rostock, Germany.
His research and teaching interests include software language en-
gineering, software reverse engineering, software re-engineering,
mining software repositories, functional programming, grammar-
based and model-based techniques, and, more recently, megamod-
eling. In his current work at Facebook, he applies machine learn-
ing (in a broad sense) in an infrastructural context while develop-
ing an increasing interest in data engineering and science.
He is one of the founding fathers of the international summer
school series on Generative and Transformational Techniques on
Software Engineering (GTTSE) and the international conference
on Software Language Engineering (SLE). He is the author of
Springer textbook on Software Language Engineering: Software
Languages: Syntax, Semantics, and Metaprogramming, Springer,
2018, which received the Choice Award ”Outstanding Academic
Title” in 2019. Contact him at laemmel@uni-koblenz.de or visit
http://www.softlang.org.

Journal of Object Technology, vol. 19, no. 2, 2020

http://www.softlang.org
http://dx.doi.org/10.5381/jot.2020.19.2.a8

	Introduction
	EMF Code Generation
	Methodology
	Stakeholders
	Textual Explanations
	Developer Literature
	Scientific Literature

	Code Examples
	Demo Projects
	Wild Projects


	Evaluation by Examples
	Modeling Code Generation
	Developer Literature
	Scientific Literature
	Demo Project
	Wild Project
	Summary

	Revealing Misconception
	Developer Literature
	Scientific Literature
	Demo Projects
	Wild Projects
	Summary


	Limitations
	Related Work
	Conclusion
	References
	About the authors

