
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Characterizing Black-box Composition
Operators via Generated

Tailored Benchmarks
Benjamin Bennia Sébastien Mosserb Mathieu Acherc

Mathieu Paillarta

a. Université Côte d’Azur, I3S, CNRS, France

b. Université du Québec à Montréal, Québec, Canada

c. Université de Rennes 1, Inria/IRISA, France

Abstract The integration of a model composition operator into a system
is a challenging task: the properties associated with such operators can
drastically change how the developers will be able to use it. In this paper,
we describe a modelling framework that allows a software developer, who
is not an expert in model composition, to describe the interface of the
operators she wants to use, and describe the properties she expects from
them to fit her needs (e.g., idempotence, commutativity, associativity).
This abstract description is used to pilot a property-based testing approach
on generated code. We applied the approach to two case studies: feature
model composition and Git merging.

Keywords Software Composition; Testing; Composition Operator.

1 Introduction

The Separation of Concerns (SoC) paradigm advocates the design of large systems
through the composition of elementary artifacts, tackling the intrinsic complexity of
software-intensive systems. This paradigm is used in many different contexts, and at
different levels of abstraction, to tame the complexity of nowadays’ software develop-
ment. However, decomposing a system is just the hidden part of the iceberg, and it
intensively relies on composition operators that are buried in the core of the decompo-
sition framework used. For example, one can decompose the modeling of a system
into several UML diagrams, and rely on the UML package merge mechanism [ZDD06]
to recompose the whole structure in the end. Similarly, one can decompose reusable
behavior in a given system as aspects [KHH+01], and rely on the aspect weaving
mechanism to integrate these new behaviors into the legacy system. If model-driven
engineering often refer to these approaches as merging operators, we generalize it

Benjamin Benni, Sébastien Mosser, Mathieu Acher, Mathieu Paillart. Characterizing Black-box
Composition Operators via GeneratedTailored Benchmarks. Licensed under Attribution 4.0 International
(CC BY 4.0). In Journal of Object Technology, vol. 19, no. 2, 2020, pages 7:1–20.
doi:10.5381/jot.2020.19.2.a7

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a7
http://dx.doi.org/10.5381/jot.2020.19.2.a7


2 · Benni et al.

by refering to composition. For example, the intensive use of containers to deploy
micro-services architectures [BMCR18] relies on a composition operator, as a container
image is composed of its predecessors in the container build chain.

The software engineer who relies on the composition operator to implement the
system under development expects guarantees on the operator, i.e., how to integrate
this existing implentation into her own development. Consider, for example, aspect
weaving, where aspects αi ∈ A are woven into a base program p ∈ P , using the
aspect weaving operator. This operator, such as its implementation provided by
AspectJ [KHH+01], is an exogenous composition operator that weaves a single aspect
into a base program. Thus, by definition, it is ordered, and there is no guarantee
that the weaving of two different aspects will commute. When an automated engine
takes adaptation decisions with no ordering guarantee on the decision process (e.g.,
designed using machine learning techniques), aspect commutativity must be ensured.
In such a context, other composition operators exist, which are commutative by design.
For example, HyperJ [TOJ02] considers a program p as the symmetric composition
of program slices {s1, . . . , sn}, i.e., p = {s1 ⊕ . . . ⊕ sn}, with ⊕ a commutative
operator. Restricted to business processes, the Adore approach [MB13] considers
the definition of a business process p as the asymmetric weaving of a fragment f (like
AspectJ), but provides a commutative fragment merge operator (denoted as µ), i.e.,
p′ = p← µ(f1, . . . , fn).

From a software engineering point of view, the algebraic properties ensured by the
operators are essential to consider, as they shape how the composition method can
be integrated in a system. Unfortunately, the internals of composition operators are
rarely modeled, and their intrinsic complexity makes static analysis tools challenging
to use in this context. Moreover, the software composition operators are not always
defined by modeling experts, and software developers face the challenge of defining
one for their very domain, or to chose one among several existing alternatives. On
the one hand, it is difficult for developers who have no expertise in the narrow field
of software composition to face all the associated challenges used to design or reuse
such operators. As a consequence, the composition code is often complex, written
in languages that were not explicitly designed for that, and must be considered as
black-boxes. On the other hand, software testing is a well-known approach used to
validate pieces of software, regularly used by software developers to address black-box
validation.

In this paper, we propose to support software developers facing the challenge
of integrating composition operators by providing a domain-specific language that
models the elements to be composed, and the expected properties of such operators in
a domain-independent way. We then use model transformations to transform these
models into executable elements using state-of-practice tools to validate the modeled
properties on the designed elements empirically.

2 Motivating example: building a catalogue of products

We consider here the situation of a software engineer who needs to build a catalog of
existing products. This use case is typical in variability management and is classically
addressed by merging Software Product Lines (SPLs). According to this approach,
each product is considered as an SPL that does not contain any variability (as it is
a single product). Then, an union operator is used to compose all the non-variable
artifacts into an SPL that models all the input products. To perform such a task, one

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 3

Disjunction
of CNF-formula

Feature Model
Synthesis

Convert
to CNF

U
se
r

Fa
m
ili
ar

Variability
Interpretation

Check
Consistency

For each line

Catalog FM

CNFs to merge

CNF formula Logical formula

CSV

FM

Build Catalog

unsat?

N

Logical formula
GSD

Convert FM into
Logical Formula

Feature Hierarchy Heuristics

Figure 1 – Simplified activity diagram of building a catalog with Familiar

can rely on the Familiar language [ACLF13]. This language is designed to model
SPLs as Feature Models (FMs), a modeling approach tailored for software variability
that organizes features hierarchically using trees. The language is tooled with operators
to manipulate FMs and also provides a Java API to let engineers embed Familiar
inside their software. Familiar is a good example of a black-box software composition:
it relies on a complex process to achieve feature model composition, such as union or
intersection. Figure 1 describes a simplified version of the catalog-building process
using the merge union operator. Considering a set of products stored in tabular data
(i.e., CSV files), the process converts each product into an FM (i.e., a tree-structure
modelling the characteristics of the product). Then, the FMs are transformed into
logical formulas represented in Conjunctive Normal Form (CNF), and the merge
operator operates on the CNFs to create a new formula that represents the union (∪)
of the input ones (a disjunction). Finally, as the FM to CNF transformation is not
bijective, heuristics are used to transform the merged CNF into a human-readable FM.
It also involves a SAT-solving step to check the consistency of the merged FM.

This process strongly relies on the fact that the merge union operator is (i) idem-
potent (as the very same product can be present several times in the input dataset),
(ii) commutative (as the input order of the products is not guaranteed) and (iii)
associative (as the merge operator is binary, then being applied in sequence to merge
a set of products). However, considering the complexity of the mechanisms involved
in the operator implementation and the fact that it uses heuristics, it is not possible
to demonstrate that the composition operator guarantees such properties at the im-
plementation level. Unit tests can be defined to validate chosen cases, but it is up to
the operator’s developer to invest in such a testing effort. In Familiar, the test suite1
represents 125 test files that implement 626 unit tests (∼ 18, 500 lines of codes). As a
consequence, a developer who wants to integrate Familiar to build product catalogue
has no guarantee about how the opeprator will behave in her context, and it is up to
her to setup an experiment to validate that these three properties are respected by
Familiar.

1https://github.com/FAMILIAR-project/familiar-language/tree/master/familiar.test

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/FAMILIAR-project/familiar-language/tree/master/familiar.test
http://dx.doi.org/10.5381/jot.2020.19.2.a7


4 · Benni et al.

3 Background

In the previous section, we presented an real example of composition operator, and
the assumption that one makes when using it regarding its algebraic properties.
In this section, we perform a mapping between algebraic properties defined at the
mathematical level and the impact of such properties on how a composition operator
can be used in an operational context.

3.1 Algebraic foundations of composition laws

We saw in the previous section that a simple process (i.e., using an existing operator to
apply it to our context) triggered challenges that were not expected at the beginning.
Also, according to the complexity of the composition operator, there is no formal proof
that the operator’s implementation respects the fundamental algebraic properties. We
underline that the previous section depicted an example, and that these characteristics
are not tied-up to the Familiar use-case. In this section, we define composition
operators from an algebraic point of view and map the associated properties to
benefits available for software engineers.

From an algebraic point of view, a composition law is defined as a binary operation,
denoted as •, defined over three sets of elements representing the elements to be
composed: its domain (E × F ) and its codomain (G): • : E × F → G. When
E = F = G, • defines an internal law, for example when two models (e.g., UML class
diagrams) are merged to produce a new one. If E 6= F ∧ (G = E ∨ G = F ), the
operator • defines an external law, which can be right-external (i.e., E 6= F ∧G = E)
or left-external (E 6= F ∧G = F ). For example, in Adore, weaving is a right-external
law (where fragments operate on business processes to yield enriched processes), and
the merge operator µ is an internal law that operates on fragments to compose them:

←: Process × Fragment → Process
µ : Fragment × Fragment → Fragment

For the sake of concision, we consider in this paper only internal laws. However, it
is possible to extend this work to external laws, but it makes the notations cumbersome
and triggers a lot of duplicated definitions according to the left or right "externality"
of the law. Thus, we consider here a magma M = (E, •), defined as a set E equipped
with an internal composition law. By definition of an internal law, the application of
• yields an element of E. If the law is not total (i.e., not defined for every element
of E), the magma is considered as partial, but it does not impact its compositional
properties.

To assess properties, one needs to compare models. A prerequisite of model
comparison is the definition of a preorder : ∼ ⊆ E ×E. A preorder is a binary relation
defined as reflexive (∀e ∈ E, e ∼ e) and transitive (∀x, y, z ∈ E3, (x ∼ y ∧ y ∼ z) ⇒
x ∼ z). If the preorder is antisymmetric (∀x, y ∈ E2, (x ∼ y ∧ y ∼ x) ⇒ y = x), it
defines an order relation, denoted as ≤. On the contrary, if the preorder is symmetric
(∀x, y ∈ E2, x ∼ y ⇒ y ∼ x), it defines an equivalence relation, denoted as ≡.

In the Familiar ecosystem, as described in the first subsection of this section, the
magma is in our case defined as MF = (FM,∪), the merge union operator (denoted
as ∪) and the set of features models FM. The equivalence relation used to assess
properties is defined on top of the compare function available in the language, which
can detect that an FM is a refactoring of another one, meaning that they model the
very same set of products even if their shape is different.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 5

3.2 From software engineers’ needs Ni to algebraic properties Pi

Considering a magma M = (E, •) and an equivalence relation ≡, we can address
several needs encountered by software developers in terms of algebraic properties to
be guaranteed by the operator. Even if this list would cover all the classical properties
from a mathematical point of view, it cannot cover all the domain-specific needs
that can exist for each developer. The idea here is to define a “standard library" of
properties to be used by developers, and we will describe in the technical contribution
section how this library can be extended to fit more specific needs.

N1: Support multiple equivalent elements. Composition might be required
in an environment where the dataset to be composed is unreliable. For example,
in our motivating example the set of products to be composed might contains the
same product several times. Another relevant point here is the consideration of a
composition system exposed over a network. In distributed systems, as message
delivery is unreliable by design, techniques such as the multiple sending of the very
same message can be applied to reduce the rate of message loss. If the operator is
compatible with these requirements, it helps the design of the composition process:
each received message will trigger a composition. If this property is not ensured, it is
up to the software developers to build a mechanism that will take care of duplicated
elements. From an algebraic point of view, this property relates to idempotence (P1),
defining that for an idempotent law, an element composed with itself yields the initial
element. This property can also be used to simplify composition equations, as it is
useless to involve the same model multiple times in the composition (saving CPU time,
for example).

∀x ∈ E, x • x ≡ x (idempotent) (P1)

In our previous example, the merge union operator on feature model is expected to
be idempotent, as its semantics defines that considering f = f ′ ∪ f ′′, then f models all
the products contained in f ′ and all the ones contained in f ′′, and no other else. Thus,
g = f ∪ f must contains all the products contained in f , and no other else, meaning
that g ≡ f . Classically, package merge in UML is also expected to be idempotent by
definition. An example of a non-idempotent composition operator is aspect weaving,
where, for example, weaving multiple times a logging aspect will result in multiple
logs at runtime.

N2: Foldable operators. Operators are mathematically related to composition
laws, defined as binary entities. It is also a classical decomposition technique applied
by software developers, to solve the problem for two elements and then iterate over the
set of elements to handle to eventually build the expected results. This approach is
strongly advocated by functional languages that implement fold operators to compose
binary functions. For example, in Scala, one can build the sum of the first 100 integers
by applying the foldLeft operator to the list of elements and the binary + operator.

100∑
i=0

i = 0 + 1 + . . .+ 100 (1 to 100).foldLeft(0)(_+_)

Even if this approach seems natural, it can only be applied in a legit way if the
developers have guarantees on the fact that the sequential application of the operator
will yield the expected result. From an algebraic point of view, this is related to
the notion of alternativity and associativity. Alternativity (P2) is a weaker form of

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


6 · Benni et al.

associativity, considering only two models instead of three. A law is alternative when
defined as left-alternative (P2l) and right-alternative (P2r). Associativity (P3) is a
stronger form of alternativity, where the operator is also left-associative (P3l) and
right-associative (P3r) at the same time.

∀x, y ∈ E2, (x • x) • y ≡ x • (x • y) (left-alternative) (P2l)
∀x, y ∈ E2, y • (x • x) ≡ (y • x) • x (right-alternative) (P2r)
∀x, y, z ∈ E3, (x • y) • z ≡ (x • y) • z (left-associative) (P3l)
∀x, y, z ∈ E3, (x • y) • z ≡ x • (y • z) (right-associative) (P3r)

In the previous example, knowing that the binary + operator is associative allows
the developer to use both foldLeft and foldRight functions to work on sets of
integers. In the Adore example, the fragment merge operator µ has to be associative
to support the composition of n fragments (with n > 2) at the very same location
in the code. According to its definition, the Familiar merge-union operator is also
expected to be associative. The same goes for the UML package merge.

N3: Avoid useless compositions. Performing a composition can be time and
resource consuming, considering the complexity of the task to be achieved. For
example, the UML package merge relies on name matching in models, which is known
to be slow when applied to large models. The Adore approach relies on structural
mappings to compose fragments, relating the composition to sub-graph isomorphisms
detection, which is known to be a NP-Complete problem. In Familiar, the merge
union relies on SAT-solving logical formulas, and even considering the recent advances
in this domain, it remains a resource-expensive computation.

We already saw in N1 how the idempotence property P1 can address this need, by
avoiding to trigger a composition if the element is going to be composed with itself.
Three additional properties can be taken into account in this context : regularity (P4),
identity (P5), and absorption (P6). Regularity follows an idea similar to idempotence,
stating that if two elements y and z composed with a base element x yield equivalent
elements, then y ≡ z. The identity property relies on the exhibition of a remarkable
element n that is neutral for the considered composition. For example, considering
the addition of integers, 0 is a neutral element. In feature modeling, the empty feature
model (i.e., a feature model that does not contain any product) is neutral considering
the merge union operator. The absorption property works the other way around,
through the exhibition of an absorbing element z (also named a zero) that will absorb
any other elements composed of itself. For example, the number zero is an absorbing
element when considering the multiplication of integers. In feature modeling, the
feature model that contains all the possible products is absorbing w.r.t the merge
union operator. Like for alternativity and associativity, identity and absorption are
defined as left- or right- properties. It is easy to demonstrate that when an element is
both left-identical and right-identical (respectively absorbing), then it is unique.

∀x, y, z ∈ E3, (x • y ≡ x • z)⇒ y ≡ z (left-regular) (P4l)
∀x, y, z ∈ E3, (y • x ≡ z • x)⇒ y ≡ z (right-regular) (P4r)
∀x ∈ E,∃il ∈ E, il • x ≡ x (left-identical) (P5l)
∀x ∈ E,∃ir ∈ E, x • ir ≡ x (right-identical) (P5r)
il ≡ ir • il ≡ ir (identity unicity) (P5)
∀x ∈ E,∃zl ∈ E, zl • x ≡ zl (left-absorbing) (P6l)
∀x ∈ E,∃zr ∈ E, x • zr ≡ zr (right-absorbing) (P6r)
zl ≡ zr • zl ≡ zr (zero unicity) (P6)

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 7

N4: Order-Independence. As we described in the introduction, order matters
when composing things. Considering an operator that is order-dependent, it is up to
the developer to take care of the order of composition. This problem is a combinatorial
one, considering that the selection of k elements among n (denoted as Ak

n) has an order
of magnitude of n! in the worst case. Unfortunately, when a composition is required,
the models to be composed have already been selected beforehand. It means that
they all need to be composed (so n = k, denoted as An), pushing the combinatorial
space to its worst case, e.g., five elements to compose lead to 120 ordered sequence
candidates, and it is up to the developer to take this into account.

Ak
n =

n!

(n− k)!
An = An

n =
n!

0!
= n!

This situation is classically encountered, for example, when weaving aspects into a
base program using AspectJ. The language provides an ordering mechanism to define
a partial order among aspects to be woven on shared join points. A similar mechanism
is defined in the J2E ecosystem, where one can define so-called interceptors to change
component behavior. When multiple interceptors are deployed on the very same
component, the runtime engine follows an approach close to a Decorator pattern
and executes the interceptors in the declared order. State-of-the-art code rewriters
(e.g., Spoon [PMP+15], Coccinelle [PLHM08]) rely on a declared application
order when several rewriting must be done at the sale location in the source code.
The opposite approach is to define an order-independent operator. This is the case
for the Familiar merge union, which is expected to yield the same result for any
ordered input sequence, as its semantics rely on the set union. Adore follows a
similar approach, and the fragment composition operator is order-independent by
design. Being order-independent can also simplify runtime execution. For example,
in the GreyCat [FHMC18] database engine, we demonstrated that using an order-
independent operator allowed us to remove a time-consuming reconciliation step when
processing requests. It multiplied by 20 the number of supported queries per second,
handling ∼ 20, 000 queries per second instead of 1, 000 on reference benchmarks. From
an algebraic point of view, it relates to the commutativity (P7) property.

∀x, y ∈ E2, x • y ≡ y • x (commutative) (P7)

N5: Compose composition laws. The previous needs are defined for a given
magma, in isolation. However, we saw in the introduction that classical composition
approaches could rely on several operators. For example, Adore relies on (i) a weaving
operator to integrate fragments into a business process, and (ii) a merge operator
to compose fragments when required. The Familiar language is a language defined
to manipulate feature models and then provides several merge operators as well as
intersection, aggregation and slicing operators. The software developer needs to take
care of the composition of the different laws, as it might impact the way the different
elements can be composed together. A classical example is to consider multiplication
and addition over integers, where it is possible to propagate a multiplication over an
addition: a× (b+ c) = (a× b) + (a× c). But it is not legal to perform the propagation
the other way around: a+ (b× c) 6= (a+ b)× (a+ c). In the feature modeling context,
for example, the intersection of feature models is expected to support propagation
over the union operator (according to set theory).

From an algebraic point of view, it leads to the property of distributivity (P8) and
the definition of a ringoid. Considering two magmas M = (E,⊕) and M ′ = (E,⊗), a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


8 · Benni et al.

ringoid R = (E,⊕,⊗) defines an algebraic structure where ⊗ distributes over ⊕. To
be distributive, ⊗ must be left-distributive and right-distributive at the very same
time (this property is then trivial to demonstrate when ⊕ is commutative). Still
considering feature models (FM) union (∪) and intersection (∩), the ringoid is in this
case RF = (FM,∪,∩).

∀x, y, z ∈ E3, x⊗ (y ⊕ z) ≡ (x⊗ y)⊕ (x⊗ z) (left-distributive) (P8l)
∀x, y, z ∈ E3, (y ⊕ z)⊗ x ≡ (y ⊗ x)⊕ (z ⊗ x) (right-distributive) (P8r)

4 A Language to support developers during characterization

In the previous section, we described a set of classical needs encountered by software
developers who have to perform tasks related to software composition regardless of the
domain in which it is used. These needs are valid in different contexts: (i) a software
developer who wants to integrate an existing composition operator into a piece of
software and (ii) a software developer facing the challenge to define a composition
operator from scratch. When developing a composition operator from scratch, it is
most likely that this operator will be included in a bigger system, as a portion of
it. As depicted in Fig. 1, developing a operator from scratch may involve various
steps, different external libraries, and heuristics-based algorithm. In this context, the
need to characterize the composition operator and the listed needs still hold but our
proposition will act as a canvas to ease the development from scratch of such operator.

Even if our proposition can be applicable in both of these contexts, it may appear to
be more useful when helping a developer already facing a legacy composition operator
that needs to be characterized before being used.

In this section, we describe the technical part of our contribution, i.e., the definition
of a Domain-Specific Language (DSL) to support developers when facing the previously
described situations and associated needs. We designed this DSL with three objectives:

• Provide a way for a regular software developer to model composable elements,
relations and operators in a language-independent way;

• Provide a set of standard properties for composition operators extensible accord-
ing to the user needs;

• Automate the generation of the glue code to allow software developers to focus
on their added-value, i.e., the description of the expected properties and the
binding to existing operators.

4.1 Modelling Composable Elements

As the targeted user for the DSL is a regular software developer, we chose to leverage
a very restricted version of the MOF, where users can only model Concepts that
contain named Attributes (Fig. 2). This is the least minimum for the definition of a
composition operator and can be integrated into classical MDE tools (e.g., transformed
into an EMF metamodel) thanks to a model transformation. We made this choice
to provide a lightweight language to the developers, whose abstract syntax can be
integrated into state-of-the-art approaches only when necessary. To support the reuse
of structural parts of the designed elements, we provide a generalization relation (using
the <: symbol), and Traits to model abstract concepts that cannot be instantiated
by themselves. Traits are used at the model level to organize the elements and avoid

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 9

Law

name: String

A

ModelC

name: String

Relation

name: String

A

TraitC ConceptC

InternalLawC

Attribute

name: String

C

required: Boolean
contained: Boolean
ordered: Boolean

Element

name: String

A
1..*

contents

1..*
atts

1 
type

super
*

*
ops

*
rels

ClosedRelationC

1 
mult

SINGLE
MULTIPLE

E MULTIPLICITY

Figure 2 – Simplified meta-modelling language dedicated to internal composition

Listing 1 – Example of composable elements described with the DSL

1 model example
2 trait A { required name: String }
3 concept B <: A { value: Integer }
4 concept C { elems: B[0..n] unordered contained }
5

6 operator merge: B x B -> B
7 operator union: C x C -> C
8 relation equivalence: C x C

duplication but are not kept at composition time, where only concrete elements can
be used.

The language is developed using the Antlr tool. Based on the designed grammar,
we parse the textual representation of the elements, and rely on a Visitor pattern
to generate two artifacts: (i) a UML-like representation of the designed elements
using PlantUML 2 (for documentation purposes), and (ii) a set of Java classes
that implement the structure of the composable elements. The toolchain is driven
thanks to the definition of a Maven plugin, which looks for a description file in the
src/resources directory of the project and triggers the compiler and the associated
code generator at compile time.

We depict in List. 1 a simple example modelled using the DSL. The context is as
follows: the developer has written her concepts and relation using the DSL (as depicted
in List. 1), and using only this description, our proposition generates a Java framework
in which the developer can bind her already existing implementations of the described
concepts, or start developing it if necessary. She implements the generated-interfaces
that provide a strong guidance for her to focus on what is necessary to assess the
property she expects. At the implementation level, she can bridge the generated
classes to her legacy operator, or implement the missing parts when necessary.

We describe in Fig. 3 as a UML class diagram, the Java framework generated
from the toy example. The code is designed for extension, as it intensively relies on
interfaces to implement the modelled concepts (described List. 1 l.3,4). A Factory
is provided to instantiate concrete classes based on these interfaces, following the same

2https://plantuml.com

Journal of Object Technology, vol. 19, no. 2, 2020

https://plantuml.com
http://dx.doi.org/10.5381/jot.2020.19.2.a7


10 · Benni et al.

example-gen

impl

Visitor

visitB(b: B)
visitC(c: C)

VisitableEment

accept(v: Visitor)

ExampleFactory

createB(name: String): B
createC(): C

B

getName(): String
setName(name: String)

getValue(): Integer
setValue(value: Integer)

merge(that: B): B

C

getElems(): Set<B>
setElems(elems: Set)
addElem(elem: B)

union(that: C): C

equivalence(that: C): Boolean

BMergeOperator

apply(left: B, right: B): B

CUnionOperator

apply(left: C, right: C): C

CEquivalenceRelation

apply(left: C, right: C): Boolean

Law
T

apply(left: T, right: T): T

Relation
T

apply(left: T, right: T): Boolean

BImpl

name: String
value: Integer

CImpl

ExampleFactoryImpl

*
elems

Figure 3 – Java framework generated based on the model described in List. 1

approach as the EMF to provide an extensible back-end. Operators and relations
(described in List. 1 l.6-8) are reified as dedicated concepts, and also embedded into
the composable elements to provide syntactical sugar for the end-user (i.e., if an
operator op is defined on a concept C, considering c1 and c2 two instances of C, one
can call c1.op(c2)). The trait A does not exist anymore, as it was only used to
support code decomposition at the model level.

4.2 Binding interfaces to composition operators

Based on the previously generated framework, the software engineer can now focus
on the definition of the concrete implementation of the operators and relations, as
the boilerplate code was automatically generated. To perform this task, one has to
extend the generated interfaces, as described in Fig. 4. According to this approach, a
composition operator is a function class that defines a binary method named apply,
creating a new element based on the input ones. We decided to avoid side effects in
the definition of a composition, as it is classically safer when designing a composition
operator to yield a new element instead of modifying one of the inputs. To create
the composed element, the software engineer can use any method, e.g., creating a
new algorithm from scratch, or calling an external tool or an API. Thanks to the
code generated at the previous step, calling the operator on the concrete concept
will automatically call the actual operation implemented by the software engineer.
If a developer have to create a new operator from scratch, we also leverage the
DSL to generate an set of action-based commands that allows her to manipulate her
composable elements.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 11

example-gen

example-usr

BMergeOperator

apply(left: B, right: B): B

CUnionOperator

apply(left: C, right: C): C

CEquivalenceRelation

apply(left: C, right: C): Boolean

Law
T

apply(left: T, right: T): T

Relation
T

apply(left: T, right: T): Boolean

BMergeOperator CUnionOperatorCEquivalenceRelation

Figure 4 – Making a model composable using interface realization

Listing 2 – Example of properties described with the DSL

1 /* Property to be associated to an operator */
2 property associative(op: Operator , =: Relation , {a,b,c}):
3 op(op(a,b), c) = op(a, op(b,c))
4

5 /* Property to be associated to a relation */
6 property transitive (=: Relation , {a,b,c}):
7 a = b && b = c && a = c

4.3 Ensuring properties on composition operators

Thanks to the language used to model the elements and the extensible framework
generated concerning operators and relations, we now reach a state where one can
reason about the artifacts at the algebraic level. Using the same DSL as the one
used to model concepts, relations and properties, one can design properties, and bind
these properties to operators and relations. Thanks to this approach, we provide in a
standard library a definition of the properties {P1, . . . P8} that address the classical
needs of software developers. A developer can also use the same mechanism to design
a domain property, specific for domain-requirements (List. 2).

To model properties, we used a functional approach. A given property is then
defined as a function that takes as input elements, operators and relations and assembles
them into a boolean function. We show in List. 2 an example of the associative
property (P3) for an operator. As stated in Sec. 3, it is also important to ensure
properties on the designed relations, as an operator assessment mechanism entirely
relies on the assumption that the relations conform to their algebraic definitions. It
is then possible to express properties to be associated with relations using the same
approach in the language (e.g., relation transitivity in List. 2). In both cases, a
property takes as input a set of free variables, being operators, relations, or model
elements.

Defining properties according to free definition allows us to define a standard library
of properties, without being tied to a particular implementation. We use binding
mechanisms to bind the free variables exposed (by the definition) to concrete elements.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


12 · Benni et al.

Listing 3 – Binding properties to operators and relations

1 import stdlib.ace
2 import example.ace
3

4 declare C:: equivalence as transitive
5 declare C::union as associative with equivalence
6 declare C::union as commutative with equivalence

In List. 3, we use the import keyword to load3 the definitions of the standard library
and the model shown in List. 1. Then, we declare three bindings, to associate
the properties (here associativity and commutativity) to the operator (here union)
according to a given relation (here equivalence). We also declare that the equivalence
relation is expected to be transitive.

According to our assumptions, the software developer can use many techniques to
implement the contents of the composition operators and relations, leading to arbitrary
complex code. In this context, we can only consider a validation approach, instead of
a verification one such as static code analysis. We decided to rely on a Property-Based
Testing (PBT) approach using the reference framework QuickCheck [CH00] at the
implementation level. In a PBT approach, one implements the expected properties as
tests taking “elements” as parameters. Then, dedicated generators are used to feed
the tests with concrete elements, and the validation approach relies on a probabilistic
approach: if a property was true in thousands of instances, one could reasonably
think that this property will still be true in real-life usage. Nevertheless, if one
counterexample is identified, then the framework can exhibit the specific case that
breaks the property.

Based on this approach and the modelled elements, we leverage the models to
generate tailored QuickCheck code that will act as characterization benchmarks for
the considered operators and relations. For each declaration, we generate a dedicated
test using the QuickCheck API. To feed the test with instances, we generate code
skeletons, for instance, generators based on the arity of models elements used in the
property definition. An example of such code is shown in List. 4.

According to our approach, the validation of a composition operator by a software
developer is now restricted to its minimum: (i) describe the elements to be composed,
(ii) describe the signature of the operators and relations, (iii) provide an implementa-
tion of these elements using any necessary means, and finally (iv) fill in the blanks the
instance generator generated to feed the characterization benchmark.

5 Case studies: Familiar & Git

The previous section described the internal mechanisms of our contribution from a
technical point of view. In this section, we validate the approach by leveraging the
framework to assess an existing operator, the Familiar merge union used in our
motivation example, and on the Git merge use-case to show why our proposition is

3The importation semantics is the same as the #include C pre-processor directive.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 13

Listing 4 – Example of tailored characterization benchmark using QuickCheck

1 @RunWith(JUnitQuickcheck.class)
2 public class C_Union_Is_Commutative { // aka CUIC
3 @Property(mode = EXHAUSTIVE)
4 public void holds(@From(CUIC_Gen.class) C_2_Tuple inputs) {
5 C a = inputs.getC1();
6 C b = inputs.getC2();
7 assertTrue(a.merge(b).equivalence(b.merge(a)));
8 }
9 }

10

11 public class CUIC_Gen extends Generator <C_2_Tuple > {
12 public CUIC_Gen () { super(C_2_Tuple.class); }
13

14 public C_2_Tuple generate(
15 SourceOfRandomness sourceOfRandomness ,
16 GenerationStatus generationStatus) {
17 C_2_Tuple instance = new C_2_Tuple ();
18 // Generation code goes here
19 return instance;
20 }
21 }

not tied-up to Familiar. We described in the previous section how one could use the
language and the generated framework to create a new operator.

5.1 Composing Feature Models using Familiar

5.1.1 Modelling an existing ecosystem

This modelling step starts with the definition of the elements to be composed (here
feature models), and the signatures of the associated operators and relations. For
the sake of concision, we do not demonstrate here how one can extensively assess
the operator. We will instead zoom in details into the validation of two properties,
associativity and commutativity. In List. 5, we use our modelling language to describe
the signatures of the equivalence relation and the merge union operator. We then
bind the associative and commutative properties to the operator. As the fundamental
idea of the approach is to be lightweight and easy to integrate, we model a feature
model f ∈ FM as a named element containing a serialized version of the feature model,
using Familiar textual syntax. This is a strength of the approach, as we can use the
language to characterize any operator (assuming that one can call it from Java code).

5.1.2 Integrating the operators and relations

We now extend the associated interfaces generated by the compiler, that act as
Adapters between the characterization benchmark and the Familiar language
ecosystem and associated APIs. We describe in List. 6 how to perform such an
adaptation, which relies on the implementation of two classes realizing the interfaces
generated from the model description (List. 5), the first class (l.1-10) targets the

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


14 · Benni et al.

Listing 5 – Lightweight modelling of Familiar feature models

1 import stdlib.ace
2 model fm
3

4 trait NamedElement { required name: String }
5 concept FM <: NamedElement { required contents: String }
6

7 relation equivalence: FM x FM
8 operator union: FM x FM -> FM
9

10 declare FM:: union as associative with equivalence
11 declare FM:: union as commutative with equivalence

application of the equivalence relation, and the second class (l.11-21) targets the
application of the merge union operator. In both cases, we leverage a Familiar
shell to transform the serialized model into a Familiar one, and then rely on the
language API to achieve the required task. The equivalence is classically delegated to
a comparison framework (e.g., List. 6, line 8). The internal merge operator defined
by Familiar is configured according to our needs to build the merged model, which is
then serialized into our FM concept (List. 6, line 23).

5.1.3 Generating Feature Models instances

The last effort required by the developer is to fill in the code skeleton that will be used
to generate instances of feature models used to feed the characterization benchmark. It
is necessary to create two different generators: the associativity property is defined on
FM3 and the commutativity one on FM2. However, both rely on the same principles,
so we here only describe the binary generator. As the merge union operator works to
create a family of products, benchmarking it with totally random and disjoint models
would have little if no interest.

It is out of the scope of this paper to describe in detail the structure of a feature
model and how to generate one from scratch, and we only give here an intuition of the
process. As a feature model is a tree-based structure, the generation is done recursively.
Sub-trees are generated, and we randomly chose a way to assemble the sub-trees. This
method allows one to obtain a base feature model b. Then, we randomly select several
alterations to be applied to b to derive a similar feature model. The idea here is to
generate almost equivalent trees, that will stress the merge algorithm.

5.2 Validation on Git merge properties

To highlight that our proposition is not tied-up to the Familiar use-case or any partic-
ular application domain, we applied it on the Git merge operation, a frequent operation
that happens in distributed code versioning systems. When multiple developers worked
on the same file concurrently, the version control system has to build the consolidated
version of the file that integrates all the modifications using a merge operation. From
our point-of-view this merge operation is a legacy composition operator that composes
modifications together, checks for eventual conflicts, and applies these modifications
on a codebase to yield an updated one.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 15

Listing 6 – Adapting the Familiar ecosystem to the model

1 public class FMEquivalenceRelation
2 implements fm.FMEquivalenceRelation {
3

4 public Boolean apply(FM left , FM right) {
5 FMLShell _shell = FMLShell.instantiateStandalone(null);
6 FeatureModelVariable vl = _shell.parse(left.getContents ());
7 FeatureModelVariable vr = _shell.parse(right.getContents ());
8 return vl.compare(vr).equals(Comparison.REFACTORING);
9 }

10 }
11

12 public class FMMergeOperator implements fm.FMMergeOperator {
13

14 public FM apply(FM left , FM right) {
15 String rName = left.getName () + "_U_" + right.getName ();
16 FeatureModelVariable rContents =
17 new FMLMergerBDD(Arrays.asList(left , right),
18 FDOverApproximationStrategy.SYNCHRONIZED_FLA)
19 .mergeFMs(Mode.StrictUnion);
20 return FMFactory.createFM(rName , rContents.toString ());
21 }
22 }

The way the merge operation works is as follow: when one is merging two parallel
branches of development, shes merges distant modifications (i.e., made by an other
developer) with her own modifications. She expects that if the other developer
would have done the merge, the result would have been the same, i.e., the two
resulting codebase would be exactly the same. Assessing if the code-merge operation
is commutative is then critical. However, the code of the merge recursive operator is
made of 3892 lines of C code that make such an assessment really difficult4

Mapped to our proposition, the modeling step starts with the definition of the
elements to be composed (here Code), and the signatures of the associated operators
(git-merge) and property (commutativity). In List. 7, we use the DSL to describe
the signatures of the equivalence relation and the merge operator. We then bind the
commutative property to the operator. The framework abstractions will be mapped to
Code (l.4), and stubs for equivalence (l.6) and merge (l.5) operation are automatically
generated.

At the implementation level, the merge operator executes a system call to invoke
the git-merge command. The equivalence operation is implemented as follows: two
files are equivalent if there is no differences between them, i.e., computing the Unix
‘diff’ on these yield an empty set.

Using this newly implemented classes that use our proposition, one can then assess
if the merge operator is commutative, considering a reference corpus of merge scenarios.
Where the Familiar case study referred to randmoly generated instances, in this case

4https://github.com/git/git/blob/108b97dc372828f0e72e56bbb40cae8e1e83ece6/
merge-recursive.c

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/git/git/blob/108b97dc372828f0e72e56bbb40cae8e1e83ece6/merge-recursive.c
https://github.com/git/git/blob/108b97dc372828f0e72e56bbb40cae8e1e83ece6/merge-recursive.c
http://dx.doi.org/10.5381/jot.2020.19.2.a7


16 · Benni et al.

Listing 7 – Lightweight modeling of Git merge operation

1 import stdlib.ace
2 model code
3

4 concept Code { required path: String }
5 operator merge : Code x Code -> Code
6 relation equivalence: Code x Code
7 declare Code:: merge as commutative with equivalence

we bound our generators’ skeleton to a database that contains thousands of merge
scenarios. Based on this setup, the framework did not identify any cases where the
commutativity property was violated, comforting us in the fact that the operator can
be used in a distributed environment.

5.3 Discussions

By abstracting the domain of software composition and capturing it into a domain-
specific language, we believe that the designed language and tool suite provides strong
support for software developers who are not experts in software composition. We tried
to keep the language as minimalist as possible by only specifying the structure and
the signature of the composition artifacts. As a consequence, the developer can choose
to rely on our metamodel to develop a composition operator or use the generated code
skeletons to adapt an existing ecosystem to the characterization benchmark.

By providing a standard library that implements classical algebraic properties
{P1, . . . , P8}, we free the developer from this knowledge. It is not his/her responsibility
anymore to find the right way to assess an algebraic property on a domain-specific
operator, based on needs identified at the software developer level. It is out of the
scope of this paper to make an automatic link between software developers needs Ni

and the associated properties Pj . However, a goal modelling approach to map how
each property contributes to a need can be considered to tackle this challenge, and it
is one of the perspectives of this work.

The work described here suffers from two main limitations. First, the validation
used only two case studies to check the feasibility of the approach and two ecosystems
for validation purposes, but we did not validate with actual users the DSL and how we
can improve it. We underlined that our proposition can capture operator as complex
as the Familiar merge process, and as broadly used as the git-merge operator, in
various application domain, still a qualitative validation may be of interest.

The second limitation is a side-effect of relying on PBT to implement the character-
ization benchmark: a lot of the complexity is pushed to the definition of the generators.
It is a classical problem in software testing, as purely random instances might not be
relevant for the property to be checked, and considering that the exploration space of
all instances of a given concept is gigantic. The code required to generate the instances
of feature models in this section was by far the one requiring more engineering efforts
in the whole process. This contribution does not have the ambition to contribute
to software testing and is purely reusing results from the state-of-t he-art at this
level. So, if some breakthrough is made in this field, our proposition will benefit
from it. Moreover, we believe that PBT is a good trade-off for software composition,
considering that the two other alternatives are (i) being ignorant (or equipped with

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 17

some handwritten unit tests) or (ii) having to (re-)implement the operator in a way
that it can be statically analyzed and proved (which is far from being realistic in
real-life case studies).

6 Related Work

Model Composition. Model composition was extensively studied by the community,
to tame the design of complex models [PB03] or to support the definition of meg-
amodels [SKS+20]. The need to characterize the properties of an operator was already
emphasized in a manifest for model merging [BCE+06]. Our work complements this
idealized version of a merge operator by providing an empirical way of assessing such
properties when static analysis is not available.
Validating model transformations. Research efforts from the modelling commu-
nity have to lead to test model transformations as a first-class citizen. Some research
works aim at building frameworks to efficiently perform tests of model transforma-
tions [FSB04], acknowledging the need and difficulty to test such transformations
properly. Tracts [GV11] are a way to specify how to test model transformations. A
tract focuses on applying the transformation in a particular context of use and comes
with a test suite that one can automatically execute [VGB+12]. One can also generate
random input models via a dedicated DSL [GBR05]. In any case, these approaches
require to implement the composition operator as a model transformation, which is
not always possible or relevant.
Testing software composition. Much work has been done toward testing that the
result of the composition is correct, at the domain-level, and not the composition
operator itself, e.g., [SPJF02, TBKC07]. These works addressed domain-specific
questions or problems that involve a composition operator but does not address
property assessment. Generating relevant sets of test cases is a difficult task. Several
works have been done (often using machine learning techniques or meta-models) to
generate meaningful test cases, e.g., [Tan19, DAFP+19]. Meaningful and effective
generation of test cases are complementary to our contribution.
Metamorphic testing. Metamorphic testing is an approach that alleviates the
oracle problem by working on so-called metamorphic relations [CKL+18]. One has to
define these relations that hold regardless of the input values (e.g., π − x1 = x2 −→
sin(x1) = sin(x2)). Once built, these relations can be automatically checked on top
arbitrarily chosen test cases (e.g., manually or randomly chosen). The majority of the
tools used in metamorphic automation are initially meant for PBT. The core idea of
PBT is to specify a property that should hold regardless of its input, and automatically
find, if possible, the smallest counterexample possible to be shown to the user.

7 Conclusions & Perspectives

In this paper, we described why software composition operators need to be validated
before being used, as the relationship between composition code and algebraic proper-
ties is not always evident but vital to assess. We described several needs encountered
by software developers facing the challenge of working with software composition
without being an expert in this field. We also showed according to various examples
that this situation is encountered in many different contexts, from aspect weaving to
J2E application servers, in both academic and industrial contexts. We proposed a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


18 · Benni et al.

DSL-based approach to allow software developers to model the elements to be com-
posed and the composition operators associated with these concepts. Based on this
model, the compiler generates a framework for the developer, who only has to focus on
writing code related to composition. The framework was designed to be lightweight, to
support the creation of a brand new operator as well as the integration of an existing
one. Then, the very same model is leveraged to generate a tailored benchmark based
on algebraic properties defined in a standard library. Using a PBT-based approach,
properties are probabilistically validated to provide feedback to the developers, using
a reference implementation of PBT in the Java ecosystem.

We identify several interesting perspectives for this work. First of all, as we already
stated, the generators are a limitation of the approach that derives from PBT itself. It
is tough to identify how to generate relevant instances for a given operator. However,
as the DSL was designed to support composition, it might be possible to capture at
the language level meta-data that can describe the relevance of using a given operator
in a given context. These meta-data can then be exploited to create generators that
will use this domain of expert knowledge. Another essential dimension of software
composition operators benchmarking from a software developer’s point of view is
related to performance testing. According to the performance of an operator, it might
not be possible to use it in a given context, e.g., operators that take seconds to compose
cannot be used in a real-time context. Following the same idea of using meta-data, we
will investigate how extra information can be provided at the model level to guide the
definition of performance benchmarks. For example, how to simplify the definition of
a benchmark that measures the execution time of a given operator according to the
size of its input.

References

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
FAMILIAR: A domain-specific language for large scale management of
feature models. Sci. Comput. Program., 78(6):657–681, 2013.

[BCE+06] Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan
Niu, and Mehrdad Sabetzadeh. A Manifesto for Model Merging. In
International Workshop on Global Integrated Model Management, page
5–12, New York, NY, USA, 2006. ACM.

[BMCR18] Benjamin Benni, Sébastien Mosser, Philippe Collet, and Michel Riveill.
Supporting Micro-services Deployment in a Safer Way: a Static Anal-
ysis and Automated Rewriting Approach. In Symposium on applied
Computing, Pau, France, April 2018.

[CH00] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In (ICFP ’00), Montreal, Canada,
September 18-21, 2000, pages 268–279. ACM, 2000.

[CKL+18] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave
Towey, TH Tse, and Zhi Quan Zhou. Metamorphic testing: A review of
challenges and opportunities. ACM Computing Surveys, 51(1):4, 2018.

[DAFP+19] Emanuele De Angelis, Fabio Fioravanti, Adrián Palacios, Alberto Pet-
torossi, and Maurizio Proietti. Property-based test case generators for
free. In Dirk Beyer and Chantal Keller, editors, Tests and Proofs, pages
186–206, Cham, 2019. Springer International Publishing.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a7


Characterizing Black-box Composition Operators · 19

[FHMC18] François Fouquet, Thomas Hartmann, Sébastien Mosser, and Maxime
Cordy. Enabling lock-free concurrent workers over temporal graphs
composed of multiple time-series. In International Symposium on
Applied Computing, SAC, April 2018.

[FSB04] Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in model-
driven engineering: testing model transformations. In International
Workshop on Model, Design and Validation, 2004., pages 29–40,
November 2004.

[GBR05] Martin Gogolla, Jørn Bohling, and Mark Richters. Validating UML
and OCL models in use by automatic snapshot generation. Software &
Systems Modeling, 4(4):386–398, November 2005.

[GV11] Martin Gogolla and Antonio Vallecillo. Tractable Model Transformation
Testing. In Modelling Foundations and Applications, pages 221–235,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. An overview of AspectJ. In European
Conference on Object-Oriented Programming, September 2001.

[MB13] Sébastien Mosser and Mireille Blay-Fornarino. ADORE, a logical meta-
model supporting business process evolution. Sci. Comput. Program.,
78(8):1035–1054, 2013.

[PB03] Rachel Pottinger and Philip A. Bernstein. Merging models based
on given correspondences. In Johann Christoph Freytag, Peter C.
Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger,
and Andreas Heuer, editors, VLDB 2003, Berlin, Germany, Septem-
ber 9-12, 2003, pages 826–873. Morgan Kaufmann, 2003. URL:
http://www.vldb.org/conf/2003/papers/S26P01.pdf, doi:10.
1016/B978-012722442-8/50081-1.

[PLHM08] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles
Muller. Documenting and automating collateral evolutions in linux
device drivers. SIGOPS Oper. Syst. Rev., 42(4):247–260, April 2008.
doi:10.1145/1357010.1352618.

[PMP+15] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon: A library for implementing analyses and
transformations of java source code. Software: Practice and Experience,
46:1155–1179, 2015. doi:10.1002/spe.2346.

[SKS+20] Rick Salay, Sahar Kokaly, Alessio Di Sandro, Nick L. S. Fung, and
Marsha Chechik. Heterogeneous megamodel management using
collection operators. Software and Systems Modeling, 19(1):231–
260, 2020. URL: https://doi.org/10.1007/s10270-019-00738-9,
doi:10.1007/s10270-019-00738-9.

[SPJF02] Andreas Speck, Elke Pulvermuller, Michael Jerger, and Bogdan
Franczyk. Component composition validation. International Jour-
nal of Applied Mathematics and Computer Science, 12:581–589, 2002.

[Tan19] C. Tan. A model-based approach to generate dynamic synthetic test
data. In 2019 12th IEEE Conf. on Software Testing, Validation and Ver-
ification, pages 495–497, April 2019. doi:10.1109/ICST.2019.00063.

Journal of Object Technology, vol. 19, no. 2, 2020

http://www.vldb.org/conf/2003/papers/S26P01.pdf
http://dx.doi.org/10.1016/B978-012722442-8/50081-1
http://dx.doi.org/10.1016/B978-012722442-8/50081-1
http://dx.doi.org/10.1145/1357010.1352618
http://dx.doi.org/10.1002/spe.2346
https://doi.org/10.1007/s10270-019-00738-9
http://dx.doi.org/10.1007/s10270-019-00738-9
http://dx.doi.org/10.1109/ICST.2019.00063
http://dx.doi.org/10.5381/jot.2020.19.2.a7


20 · Benni et al.

[TBKC07] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe
composition of product lines. In Proceedings of the 6th international
conference on Generative programming and component engineering -
GPCE07, GPCE ’07, pages 95–104, New York, NY, USA, 2007. ACM
Press. doi:10.1145/1289971.1289989.

[TOJ02] Peri L. Tarr, Harold Ossher, and Stanley M. Sutton Jr. Hyper/j: multi-
dimensional separation of concerns for java. In Will Tracz, Michal
Young, and Jeff Magee, editors, ICSE 2002, Orlando, Florida, USA,
pages 689–690. ACM, 2002. doi:10.1145/581339.581447.

[VGB+12] Antonio Vallecillo, Martin Gogolla, Loli Burgueño, Manuel Wimmer,
and Lars Hamann. Formal Specification and Testing of Model Transfor-
mations, pages 399–437. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012. doi:10.1007/978-3-642-30982-3_11.

[ZDD06] Alanna Zito, Zinovy Diskin, and Juergen Dingel. Package merge in UML
2: Practice vs. theory? In International Conference on Model Driven
Engineering Languages and Systems, pages 185–199. Springer, 2006.

About the authors

Benjamin Benni is a PhD student at Université Côte d’Azur,
working on software composition mechanisms. In his PhD thesis,
he applied software composition to various software ecosystems,
such as the Docker container system, or the Spoon code rewriting
engine. Contact him at benni@i3s.unice.fr, or visit
https://www.i3s.unice.fr/~benni/

Sébastien Mosser is Professeur of Software Engineering at Uni-
versité du Québec à Montréal, where he leads a research group
working on scalable software composition. Since 2007, he applied
software composition to various domain such as business processes,
databases and IoT. Contact him at mosser.sebastien@uqam.ca,
or visit https://ace-design.github.io

Mathieu Acher is Associate Professor at University of Rennes 1
and a member of the DiverSE team (Inria/IRISA). His research
interets are related to any form of variability (in software, in videos,
in 3D printing, in data, etc.). He is also the lead architect and
maintainer of the Familiar language. Contact him at mathieu.
acher@irisa.fr, or visit https://www.mathieuacher.com.

Mathieu Paillart is a graduate student (M.Sc.) in Software
Architecture at Université Côte d’Azur. He developed the initial
prototype and associated tooling of the DSL described in this
paper during a research internship at UQAM.
Contact him at mathieu.paillart@etu.univ-cotedazur.fr.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.1145/1289971.1289989
http://dx.doi.org/10.1145/581339.581447
http://dx.doi.org/10.1007/978-3-642-30982-3_11
mailto:benni@i3s.unice.fr
https://www.i3s.unice.fr/~benni/
mailto:mosser.sebastien@uqam.ca
https://ace-design.github.io
mailto:mathieu.acher@irisa.fr
mailto:mathieu.acher@irisa.fr
https://www.mathieuacher.com
mailto:mathieu.paillart@etu.univ-cotedazur.fr
http://dx.doi.org/10.5381/jot.2020.19.2.a7

	Introduction
	Motivating example: building a catalogue of products
	Background
	Algebraic foundations of composition laws
	From software engineers' needs Ni to algebraic properties Pi

	A Language to support developers during characterization
	Modelling Composable Elements
	Binding interfaces to composition operators
	Ensuring properties on composition operators

	Case studies: Familiar & Git
	Composing Feature Models using Familiar
	Modelling an existing ecosystem
	Integrating the operators and relations
	Generating Feature Models instances

	Validation on Git merge properties
	Discussions

	Related Work
	Conclusions & Perspectives
	Bibliography
	About the authors

