JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets
http://wuw.jot.fm/

Assembling Scenario Patterns for
Checking Model Behavior

Nisha Desai® Martin Gogolla?

a. University of Bremen, Department of Mathematics and Computer Sci-
ence, D-28334 Bremen, Germany

Abstract

Model validation and verification are crucial tasks in model-driven
software engineering. For checking behavioral model properties, operation
call sequences, i.e., dynamic scenarios, can be used, and developers must
identify relevant scenarios. Dependent on the model under consideration,
many different dynamic scenarios must be taken into account for compre-
hensive model testing, and it is a challenging task to identify them. In
order to give advice and to develop guidelines for constructing dynamic
scenarios, we assemble a catalogue of different scenario patterns that can
be applied in all models. We explain the catalogue applicability through a
collection of exemplary models and validate our proposal through a study
conducted with UML and OCL experts.

Keywords Behavioral model validation and verification; Test case; Scenario
pattern.

1 Introduction

In Model-Driven Engineering (MDE) [BCW17|, models are the essential development
artifacts. For the MDE design of complex software systems, validation and verification
of models are central tasks. Modeling languages like the UML (Unified Modeling Lan-
guage) [RJB99] applied together with the OCL (Object Constraint Language) [WK99|
can be used to describe for a system the structural aspects, e.g., in terms of invari-
ants, and the behavioral aspects, e.g., in terms of operation contracts (i.e., pre- and
postconditions). Models considered here utilize UML class models and in particular
OCL invariants and OCL contracts for determining structure and behavior.

To check and to test behavioral model properties for a UML model with associations,
attributes and operations, a developer can create dynamic scenarios. A scenario can
be static (no operation calls, only construction of object models that populate classes,
attributes and associations) or dynamic (with additional operation calls). More
detailed, the term dynamic scenario refers to a modeling unit consisting of (a) an
initial system state (an object model), (b) a finite sequence of operation calls, and

Nisha Desai, Martin Gogolla. Assembling Scenario Patterns for Checking Model Behavior. Licensed
under Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). In Journal of
Object Technology, vol. 19, no. 2, 2020, pages 19:1-27. do0i:10.5381/jot.2020.19.2.a19

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a19
http://dx.doi.org/10.5381/jot.2020.19.2.a19
http://dx.doi.org/10.5381/jot.2020.19.2.a19

2 . Nisha Desai and Martin Gogolla

(c) (ideally) system states (object models) after each operation call. If a collection of
dynamic scenarios shows common structures, the scenario collection may be abstracted
in form of a scenario pattern that puts the common aspects into the foreground.

The notions ‘scenario pattern’ and ‘dynamic scenario’ are related as follows: one
‘scenario pattern’ is an abstraction of many ‘dynamic scenarios’; a ‘dynamic scenario’
may turn out to be a positive or negative test case; with ‘positive’, we refer to a test
case in which all operation calls are executable and yield a resulting object model, and
with ‘negative’ we refer to a test case in which at least one operation call cannot be
executed without abnormalities, for example, due to a failing pre- or postcondition,
invariant or model-inherent constraint (e.g., a multiplicity constraint); in negative test
cases there may be operation calls that do not have a resulting object model.

The developer has to be careful to have in mind and to cover all necessary dynamic
scenarios for checking essential model properties. Our aim is to develop guidelines and
advice for the construction of dynamic scenarios by offering a catalogue of scenario
patterns with which dynamic scenarios can be built. Each single scenario pattern
may be understood to be a general template that can applied in concrete modeling
situations to yield scenarios. This contribution extends our previous incomplete and
short work [DG19al, where we sketched a preliminary catalogue of scenario patterns. In
the current contribution, we significantly extend the previous catalogue by introducing
new patterns and for the first time show detailed descriptions and explanations of
all patterns using different UML and OCL models. We additionally also describe the
nature and purpose of all scenario patterns, in order to ease the decision process for a
developer when to use which pattern for particular models or model fragments. We
also extend the related work.

The patterns proposed in the catalogue consider different class operations and
provide suggestions in calling these operations in different orders and in different
frequencies. The goal of the catalogue is to reduce the burden of identifying all
necessary and crucial scenarios by giving a systematic guideline to the developer for
constructing operation call sequences (i.e., dynamic scenarios) that check dynamic
model properties. The catalogue is not claimed to be complete, future work can add
new patterns.

All scenario patterns are formulated using our model behavior validation and
verification technique called filmstripping [GHH™14]. However, the scenario patterns
are described independent of our filmstripping approach and can be applied in other
tools and approaches as well [AAFR13] [TB05] [CDJ11]. In a validation study of our
approach that we have conducted with UML and OCL experts, the experts applied
the pattern approach and developed plain operation call sequences for a UML model
without invariants and without operation contracts, but in which the operations
had an imperative SOIL implementation [BG14]. In the filmstripping approach, our
tool USE (UML-Based Specification Environment) [GHD18] is employed in order to
transform a UML and OCL application model into an equivalent so-called filmstrip
model. Using our model validator [GHD18], we automatically construct test cases
in form of (filmstrip) object models for the given dynamic scenarios. By analyzing
the state transitions in the resulting filmstrip object models, behavioral properties of
a UML and OCL model can be checked. The dynamic scenarios are determined by
so-called configurations (specifications that determine how classes, associations and
attributes are populated in the filmstrip object models) and additional OCL invariants
that are not part of the application model, but serve to direct and help the process of
finding relevant test cases.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 3

The paper organization is as follows. Section 2 provides the background of our
filmstripping approach. Section 3 describes the idea behind the scenario pattern
catalogue. Detailed pattern explanations are discussed in Sect. 4. In Sect. 5 we report
on a study that we have conducted with UML and OCL experts with the aim of
checking whether the pattern catalogue can be applied in practice. Related work is
addressed in Sect. 6. The paper is closed with conclusions and future work in Sect. 7.

2 Background: Filmstripping

A UML and OCL model can describe structural properties in terms of OCL invariants
and behavioral properties in terms of operation pre- and postconditions. The model
validator in the tool USE is specifically designed for structural analysis of models
including only invariants. Therefore, in order to validate behavioral aspects, our film-
strip transformation approach [GHH™14] is used. As pictured in Fig. 1, filmstripping
transforms a given UML and OCL model, that we call an application model and
that includes invariants and pre- and postconditions, into an equivalent model, that
possesses only invariants and that we call filmstrip model. The resulting filmstrip
model involves only structural OCL constraints in form of invariants and can be
validated with the USE model validator.

configuration:
application and filmstrip

model elements

UML and OCL USE filmstrip
application model filmstripping model

Figure 1 — Overview on Filmstrip Model Validation Process in USE

additional
OCL invariants
guiding the filmstrip

USE
model validator,

test cases
(filmstrip object diagrams))|

The filmstripping approach can be explained best in terms of an example. A simple
SocialNetwork model in which a Profile can create, accept or reject a friendship
request is chosen as an example. The upper part of Fig. 2 shows the class model
of the filmstrip model. The original application model, consisting of the classes
Profile and Friendship, is contained in the filmstrip model and indicated in a
gray-shaded style. The small sequence diagram also represents application model
elements. The application model is automatically transformed into the filmstrip
model: the non-gray shaded classes and invariants (not shown in the figure) are
added. In essence, an application model sequence diagram becomes a filmstrip model
object model. Snapshot objects explicitly allow to capture single system states
from the application model. Operation call objects (suffix OpC) describe operation
calls originally expressible in the application model. Basically, each operation is
transformed into an OperationCall class with attributes for a self object on which
the operation is called and for the operation parameters. Thus, for example, the call
profile3.accept(profilel) (dotted box in the sequence diagram) is represented
by the object accept_profileopcl in the filmstrip object model. The effect of the
operation call is represented by the differences between the left and the right snapshot:
the accept operation call changes the attribute status. The four Profile and the
two Friendship objects represent different object states before and after the operation
call: E.g., the object profile2 is a later incarnation of the object profilel.

Figure 1 gives an overview on the existing filmstrip transformation and model
validation process. The filmstrip model along with a so-called configuration (specifying

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

4 . Nisha Desai and Martin Gogolla

Class diagram
0..1pred
Snapshot —
~isucc y
/num : Integer OperationCall ProfileOpC invite_ProfileOpC
«enumeration» REdORSpaEshet Tsnapshot 0.1 opc| Pred() : Snapshot aSelf : Profile anlnvitee : Profile
Status succ() : Snapshot succ() : Snapshot
T opCalls() : OrderedSet(OperationCall) N R
accepted 1snapshot I'snapshot accept_ProfileOpC decline_ProfileOpC
declined ~profile 0-1succ| aninviter : Profile aninviter : Profile
* friendship vt I& % 1ored
- - nviter N - Stri .. 1pre
Bred Friendship [~ friendshipR Tinvitel .us?r nr\g
N status - Status Invitee invite(anlnvitee : Profile) 3? Object diagram
- * friendshipE 1invitee| accept(aninviter : Profile)
0..1succ decline(aninviter : Profile) | accept_profileopci:accept_ProfileOpC |
aSelf=profile3
anlnviter=profile1
53 Sequence diagram o E I
% | /num=1 /num=2
profilet:Profile | [profile3:Profile | <
. : : (e Pt ~
| | userN="Adal
invite(profile3 ! ' \
1 Inviter Inviter
'
e = m e e e m - I 3 = N 5 P 5
accept(glrolileﬂ > Status=#pending tatus=#accepte
1+
i >
R e Invitee i
| i
Y profile3:Profile profile4:Profile
1 '
. -

Figure 2 — Application Model (gray-shaded) and Filmstrip Model (Operation Calls become
Operation Call Objects).

how the class model is populated; fixing in particular maximal upper bounds for
the objects in a class) and additional invariants are given to the model validator.
As an outcome, the model validator automatically generates test cases (filmstrip
object models like the one in the lower right of Fig. 2) using SAT-based techniques.
By analyzing snapshot changes induced by operation calls in the filmstrip model,
properties about model behavior can be checked [GH16].

3 Scenario Pattern Catalogue

The aim of this chapter is to present the basic idea of our pattern catalogue. We
give an overview on all patterns that range from basic simple ones directly applicable
to advanced ones needing additional specifications, e.g., in form of OCL expressions.
The aim of our scenario patterns is to give methodological support for developers in
validating and verifying model properties about dynamics.

We start with a given class model (say, k classes named A, B, C, ...) with
operations (n operations in total named A: :opX(), B::opY(), C::0pZ(), ...). We
assume a descriptive behavioral model with OCL class invariants and OCL operation
contracts is present. The model may optionally contain explicit frame conditions, i.e.,
postconditions that completely describe an operation by stating for an operation the
changed and unchanged model parts. A dynamic scenario may then consist of a ‘start
object model’ and a sequence of operations calls ‘c.opZ(); bl.opY(); a.opXQ;
b2.0opY ()’ on particular objects. In general, different results from executing a dynamic
scenario are possible: (a) the operation call sequence (the dynamic scenario) may in
total be executable and yield an ‘end object model’; or (b) it may in between violate

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 5

some operation contract, invariant or model-inherent constraint and thus will not
be executed completely. The aim of the present approach is to develop systematic,
rich criteria and guidelines for building such dynamic scenarios that are explained by
operation call sequences. Our catalogue currently contains eleven different patterns
and is described in tabular form in Fig. 3. The table shows in the columns (1) the
pattern name, (2) an informal description of the pattern, (3) the potential number of
scenarios induced by the pattern, and (4) one or more example scenarios illustrating
the pattern. The patterns have been developed based on our work experience, and
based on dynamic scenarios that we have encountered in scenarios from example
models and student projects. The catalogue is open for extensions, and one could
discover and add more scenario patterns.

All scenario patterns proposed have their own importance and usefulness. But
not all patterns may be applicable to all models. The usefulness and applicability of
each single pattern can be shortly described as follows. The pattern ONCE can be
technically applied to all types of models as it checks whether each single operation
is executable at all. The pattern PAIR can be useful for those models in which
operations have a relationship to each other, e.g., one depends on the other. The
patterns ALLOPS and SML can also be applied to all types of models, but it would
be more practical to use them for models which have a higher number of operations;
ALLOPS may be impractical on very large models. The pattern REPEAT is useful
for checking whether a single operation can be called repeatedly without another
operation in between. Sometimes, an operation which is followed by a specific sequence
of operation calls is called again, so that a cycle of operation calls is created. For such
models, the pattern CYCLE can be applied. The pattern MOUNTAIN is useful for
models in which operations add and remove model elements (e.g., objects or links).
The pattern DEADEND applies in particular to those models which have an end object

Pattern Name |Informal Description Number of Scenarios |Example Scenario(s)
AzopX()
ONCE Each single operation once n B::opY()
C::opZ()
A:z:opX(); A:opX()
)) N AzopX(); B:opY()
PAIR Each operation pair n*n A-opX(): C--opZ()
All operations from all classes . A o
ALLOPS :0pY(); Az:opX(); C:opZ()

in single operation call sequence

Short/middle-sized/long (s/m/l)

B:
A 0
SML operation call sequences with 3 A:opX(); B:opY()
~1/4 n, ~1/2 n, ~3/4 n calls A:opX(); B::opY(); C::opZ()
REPEAT Repeatable operation at most n AzopX(); A:opX(); ..
CYCLE Operation cycles at least n*n AzopX(); B:opY(); ...; Ai:opX()
Adding and successively removing . . A n- E
MOUNTAIN objects or links no bound expressible |A:opX(); A:zopX(); ... ; BiopY(); BiopY(); ...
Dead-end call sequences; . . .
DEADEND no further call possible at end no bound expressible |A::opX(); B::opY(); C::opZ()
. . AzopX(); B::opY()
pasence [Crecin bsence o coeraten |, e opz
P q B::opY(); C::0pZ()
Call sequences leading from . {no links present}
INIT2FIN | initial to final condition/state |© POUNd expressible .. 70 B -0pY(); AopX() fall objects linked}
REGULAR Regular expressions over no bound expressible [(A::opX(); B::opY();) + (A::opX() | C::0pZ())

operation calls

Figure 3 — Catalogue of Scenario Patterns

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

6 - Nisha Desai and Martin Gogolla

model in which no operation can be executed any more. The pattern ABSENCE can
be applied to any model, and it helps the developer to analyze whether some operation
in a model is more important than the other operations. In the patterns INIT2FIN
and REGULAR, developers can create initial and final conditions on states or regular
expressions over operation calls, respectively, for checking particular behavior of the
model. These two patterns can also be applied to any model. In summary, in each
single pattern a question is stated about whether particular behavior scenarios have
been considered or not. These questions are shown in the table in Fig. 4

| Pattern | Question |

ONCE Is each single operation executable?

PAIR Are all possible operation pairs executable?

ALLOPS Is there an operation call sequence that includes all operations
from all classes?

SML Are there short, middle-sized and long operation call sequences
that in sum include as much operations and classes as possible?

REPEAT Are there operations that can be directly repeated in an operation
call sequence without any interrupting other operation?

CYCLE Are there operations that can be repeated in a single behavior

scenario with other operations in between?

MOUNTAIN | Are there operation call sequences that in the first half build up
objects or links and in the second half dismount these objects or
links?

DEADEND Are there behavior scenarios such that at the scenario end no
operation call is possible any more?

ABSENCE Are there operation call sequences such that a particular operation
is not included?

INIT2FIN Are there operation call sequences that lead from a given initial
condition or state to a final condition or state?

REGULAR Are there behavior scenarios that follow a given regular expression
over operation calls?

Figure 4 — Questions Stated by Scenario Patterns

The intention of the catalogue, as said, is to give methodological support and
advice, in the sense that, after a set of dynamic scenarios has already been constructed
in a project, the catalogue can be applied (a) to check whether all relevant scenarios for
all relevant properties have been formulated and (b) to give the developer suggestions
for further scenarios. In the following, we will instantiate all eleven patterns in an
exemplary way and show that all patterns can be applied fruitfully for smaller and
larger models.

The table in Fig. 5 summarizes the patterns and the complexity of the used models.
The table shows that the models that we have used to instantiate each pattern show
partly a highly complex constraint structure, for example, the SML model has 255 pre-
and postconditions (4th example row, 5th column). The table displays for each used
example model its complexity in terms of the (a) number of classes, associations,
operations, invariants, and pre- and postconditions, and (b) number of constructed
scenarios. The columns with suffix ‘coverage’ give a measure for the complexity of
the used OCL invariants, preconditions and postconditions: the columns indicate the
number of class model elements (attribute, association end) that are accessed in the
particular OCL constraints.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 7

Application model Filmstrip model Scenarios

gl_gle g |5 of 2 A 2|

ol 2 - 9|s5|L e Lols gfw 215|s|g ol @ = o

o ©] ®© o o ®© = @ 212 w +

olz|Zl£8|s|28|8s|ss|elel&|8|zslE|eel ¢

=|o|*Fg|2|= °|g°|8° =(Q|<|= °|& 2 2

= S| = = a =1 = £l o

£ £ =| =

ONCE - Scheduler 2134 15 3 15 8 157 1 9| 30 91 300 | 4 3 1

PAIR - CivilStatus 11113 9 1 15 33 103 | 71189 5] 208 | 9 2 2

ALLOPS - TollCollect 2|3 ([13] 55 2 21 53 229 (1473 |18| 7| 588 | 1 4 8
SML - HealthSystem 5| 0]|17] 255 | 5 0 0 1328 [29]288] 22| 17] 2634 | 3 5 148,12

REPEAT - PersonCompany | 2 | 4 | 2 8 1 18 5 48 7124177 148 | 2 6 5

CYCLE - Library s|sl7]| a1 | 2| 31 | 26 | 280 |15] 67 | 12| 10| 573 P13 >

MOUNTAIN - Library 1 7 6

DEADEND—SOf:laINetwork 5133 12 5 11 14 o5 sla271sl sl 217 2 3 2

ABSENCE - SocialNetwork 3 3 2

INIT2FIN - StudentReport 314(5 23 2 18 25 110 | 12| 43 |110| 9| 386 | 1 5 9

REGULAR - Account 11214 18 0 8 8 53 8127]19]3]| 156 | 1 1 6

Figure 5 — Evaluation: Patterns together with Evaluated Models, their Complexity and
Constructed Scenarios

Let us explain the details for one row in an exemplary way. The first row in the
table in Fig. 5 expresses the following: the behavior pattern ONCE is explained with
a UML and OCL example application model Scheduler that has 2 classes, 3 invariants,
4 operations with 15 pre- and postconditions (a single operation can have more than
1 precondition or more than 1 postcondition; for example, 2 separate preconditions
could describe independent requirements) and 3 associations; the complexity of the
invariants, pre- and postconditions, i.e., the coverage, is measured as 15, 8, 157 (e.g., the
value 15 for ‘Invariant coverage’ means that in the invariants for the model Scheduler,
15 accesses to the attributes or the association ends from the Scheduler class model
are made); the automatically transformed filmstrip model has 9 classes, 30 invariants,
9 operations, 9 associations; the coverage of the filmstrip invariants is 300; 4 test cases
are constructed, each having 3 objects in each filmstrip snapshot; in each test case
there is 1 operation call. Further details about the coverage determination can be
found in [DG19b|(pp. 77-78).

4 Scenario Pattern Explanations

Model validation and verification are conducted using our filmstripping approach,
and the proposed catalogue is applied for constructing different test cases. Complete
explanations for all eleven scenario patterns with different UML and OCL models
and the constructed filmstrip object models are shown in this section. The short
paper [DG19a] only discussed two patterns (PAIR, SML).

4.1 Each operation once (ONCE)

Nature and purpose. In the pattern ONCE, each single operation of the model should be
executed as the only operation in a scenario, i.e., if the model has in total n operations
then n different scenarios are considered. The pattern checks the behavior of each
single operation separately, before possibly checking further behavior in the context of
other operations with other patterns. With this pattern, a necessary condition for the

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

8 - Nisha Desai and Martin Gogolla

A

Scheduler

Class diagram

* waiting Waiting 0..1 schedWaiting

Init()

New(p : Process)
Ready(p : Process)
Swap()

Process * ready Ready 0..1 schedReady]|
pid:Integer |0 1active Active 0.1 schedActive

Figure 6 — Class Model of the Scheduler Application Model

consistency of the model can be verified by checking whether each single operation is
executable at all.

Ezample. The Scheduler model [SA05] is chosen to explain this pattern. The model
(Fig. 6) has classes Process and Scheduler. The class Scheduler has four operations:
(a) the operation Init to initiate a new scheduler, (b) the operation New to add a new
process to the waiting queue, (c) the operation Ready to put a process that is currently
in the waiting queue either into the ready queue (if the other process is active) or
directly activate the process, and (d) the operation Swap to swap the currently active
process by putting it into the waiting queue. These four operations are separately
executed, and the scenarios are constructed in the form of filmstrip object models
using the model validator. The filmstrip object models for the operation Ready and
the operation Swap are shown in Fig. 7 and Fig. 8, respectively, and the others can be
found in [DG19b].

ok Object diagra e = OB Object diagram : &E H
ready_scheduleropc1:Ready_SchedulerOpC | swap_scheduleropci:Swap_SchedulerOpC |
p=process4 aSelf=scheduler2
aSelf=scheduler1

process2:Process
pid=3
Active
scheduler2:Scheduler scheduler1:Scheduler
Ready Waiting
process3:Process | process3:Process |
pid=1 pid=2
Figure 7 — Filmstrip Object Model - Oper- Figure 8 — Filmstrip Object Model - Oper-

ation Ready ation Swap

4.2 Each operation pair (PAIR)

Nature and purpose. The nature of this pattern is to consider all the pairs of operations,
i.e., if the model has n operations, then n*n pairs are considered. It is checked whether
a pair can be executed or not. The result has to be compared with the expected
behavior. The intention is to detect relationships between operations.

Ezample. The CivilStatus model (Fig. 10) is chosen for the demonstration. The model
has three non-query operations, namely birth, marry and divorce. Thus, there are

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 9

nine possible pairs. In the configuration, two Person objects are provided for each
snapshot. The model validator tries to execute all operation pairs in order to construct
scenarios as filmstrip object models using the constructed filmstrip model and the
configuration that in particular fixes maximal upper bounds for the objects in a class.

Operations birth(aGender:Gender) | marry(aSpouse:Person) | divorce()
birth(aGender:Gender) yes yes no
marry(aSpouse:Person) no no yes
divorce() no yes no

Figure 9 — Executable and Non-Executable Operation Pairs

In Fig. 9, the pairs that could be executed, indicated with [yes], and that could
not be executed, indicated with [no|, are shown. For example, the birth-divorce
operation pair cannot be executed because the operation divorce cannot be executed
without marrying. In the same way, other executable and non-executable pairs can
be understood, and the behavior of the operation pairs is validated. The constructed
filmstrip object model for the executable marry-divorce pair is shown in Fig. 11, and
the filmstrip object models of other executable pairs can be found in [DG19b]. In this
pattern, not only the executable pairs are interesting, but also the non-executable
pairs give feedback to the developer with regard to negative test cases.

‘e E

aSelf=personé aSelf=person2

aSpouse=person3

39 Object diagram

Class diagram
«enumeration»
0..1 husband Civstat
Person single personi:Person personS:Person |

gender : Gender 0 Twife married g ger

civstat : Civstat - divorced i i i

birth(aGender : Gender,

() «enumeration» Mg

marry(aSpouse : Person) Gender

divorce()
female - —

spouse() : Set(Person) gender=#female gender=#female
male i ried i i

Figure 10 — Class Model of the
CivilStatus Application Model

Figure 11 — Filmstrip Object Model -
marry-divorce Operation Pair

4.3 All operations in single operation call sequence (ALLOPS)

Nature and purpose. The ALLOPS pattern proposes that all operations from all
classes should be executed within one single scenario. The purpose is to show that all
operations can be successfully executed in the sense that all pre- and postconditions
and invariants can be satisfied in a single scenario. For better understanding, we
explain this with the abstract example in Fig. 12.

The abstract example model in Fig. 12 has three operations, and there are three
operation calls, namely, ol.0p1(), 02.0p2() and 03.0p3(). In the figure, INVS,
PRE and POST refer to all invariants, preconditions and postconditions of the model,
respectively. Before and after executing each single operation all invariants are satisfied.
Before and after the individual operation calls the respective pre- and postconditions
are satisfied as well (e.g., before the call 01.0p1() the preconditions PRE1 and after
the call the postconditions POST1 are valid in the respective object model). Earlier in
the introduction, we have called such a unit consisting of an object model sequence and

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

10 . Nisha Desai and Martin Gogolla

INVS U PRE U POST PRE =PRE1 U PRE2 U PRE3
POST =POST1 UPOST2 U POST3

satisfies
o1.001 Dynamic
op1() 02.0p2() 03.0p3() Scenario
Object Object Object Object
Moadel 0 Model 1 Model 2 Model 3
satisfies satisfies satisfies satisfies
INVS INVS INVS INVS
PRE1 POST1
PRE2 POST2
PRE3 POST3

Invariants as constraints: Meaning given by all satisfying object models
Consistency: Existence of one object model satisfying all invariants

Dynamic scenario: Object model sequence with operation calls in between

Invariants and contracts as constraints: Meaning given by all satisfying dynamic scenarios
Consistency: Existence of one dynamic scenario satisfying all invariants and all contracts

Figure 12 — Abstract Scenario - All Operation Calls

Class diagram n“ ﬂ' E
* south|)
Point Connection
name : String north Truck
/northSize : Integer num : String
/southSize : Integer debt : Integer
init(aN : Stri init(aN : Stri
init(aName : String) . Current init@Num Stnr?g)
northConnect(aNorth : Point) " enter(entry : Point)

. 0..1current truck| X
southConnect(aSouth : Point) move(target : Point)
northPlus() : Set(Point) pay(amount : Integer)
southPlus() : Set(Point) bye() : Integer
namelsKey() : Boolean numlsKey() : Boolean
noCycles() : Boolean

e e ———————— ———————

Figure 13 — Class Model of the TollCollect Application Model

operation calls in between a dynamic scenario. When all invariants and the pre- and
postconditions are satisfied, we call it a satisfying dynamic scenario. Such a satisfying
dynamic scenario is a constructive proof for the consistency of the invariants with
the pre- and postconditions, in the sense that there exists an operation call sequence
satisfying all pre- and postconditions and invariants and in which all model operations
occur. This is analogous to a constructive proof for satisfiability of a set of invariants by
providing a single object model in that all invariants are satisfied. A satisfying dynamic
scenario including all operations shows that the pre- and postconditions (contracts)
and invariants are not contradicting each other, because they can be satisfied.

Ezample. This pattern is demonstrated with the TollCollect model (Fig. 13). It has
two classes Point and Truck and in total eight operations. The class Point has three
operations, namely init to initialize a point, northConnect to connect to the north
point, and southConnect to connect to the south point. The class Truck has five
operations, namely init to initialize the truck, enter to enter the point connection

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 11

er— nt_PointopG
aName='H'
aSelf=point10 nii1Po
name='H'
InorthSize=0
it truckopotinit Tuuckopd Lol
aNum="1"
aSelf=truck2
| tuckd Tiuck |
I 2 i num='1"
aSouth=point21 debt=0
aSelf=point12 = — connectiod o -
point13:Point point22:Point
name="H' name='B'
/northSize=0 InorthSize=1
/IsouthSize=1 /southSize=0
| enter_truckope Lienter_TruckOpc)
aSelf=truck4 ?
entry=point13 point14:Paint
name="H'
InorthSize=0
/southSize=1
aNorth=point5 num="1" / Current
aSelf=point14 debt=1 i
Mw point15:Point
name='"M" name="H'
/northSize=0 /northSize=1
IsouthSize=2 /IsouthSize=1
| move_truckopc:move,_TruckOpC!
aSelf=trucké
target=pointé
iz Poi
name='M"
truckZ:Truck /northSize=0
= num='1" / /southSize=2
debt=2
amount=2
aSelf=truck7 ?
1
| truck8:Truck |
4 num="1"
aSelf=truck8 debt=0
Caice | pointo:Point |
name='M"
truck9 Truck /noﬂhS|.ze=0
. | /southSize=2
num="1
debt=0

Figure 14 — Filmstrip Object Model - All Operation Calls

network at a particular point, move to drive from the current point to another point,
pay to pay a particular amount, and bye to exit the point connection network and
to obtain back a possible over-payment. In this pattern, all operations are executed
once in a single scenario. In the configuration, for all operations the range is given as
1..1, which makes sure that all operations show up exactly once in the scenario. The
filmstrip object model for this scenario is shown in Fig. 14.

4.4 Short/middle-sized/long operation call sequences (SML)

Nature and purpose. In this pattern, three scenarios with a short, middle-sized and
long sequence of operation calls are considered. The goal of this pattern is to approach
system behavior incrementally. Here we have decided that a developer starts with a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

12 . Nisha Desai and Martin Gogolla

scenario which has a short sequence, then a middle-sized one is considered, and in the
end a long sequence is constructed. Instead of taking exactly three scenarios (SML), one
could construct, if desired, four or five scenarios with increasing number of operation
calls. In order to make the general goal concrete, we decided for taking three scenarios.
Step by step, the level of scenario complexity is increased which can help for a better
analysis of model behavior. Ideally, if possible, the involved operations in the small,
medium-sized and long scenario are disjoint to each other, so that a broader spectrum
of operation call sequences is gained.

Class diagram

‘e E

Prescription

drug : String
amount : Integer * prescription
creator : String

setDrug(aDrug : String)
setAmount(anAmount : Integer)
setCreator(aDoctor : String)

IncludesP 0..1 healthRecord
HealthRecord

linkHealthRecord(aHealthRecord : HealthRecord) linkMedicallnfo(aMedicallnfo : Medicallnfo)
linkMedicallnfo(aMedicallnfo : Medicallnfo) linkPrescription(aPrescription : Prescription)
* prescription linkOwner(anOwner : Patient)
BasedOn IncludesM. 0..1 healthRecord 0..1 healthRecord
0..1 medicallnfo BelongsTo
Medicallnfo " medicallnfo 0..1 owner
description : String Patient
creator : String name : String
open : Boolean setName(aName : String)
setDescription(aDescription : String) linkHealthRecord(aHealthRecord : HealthRecord)
setCreator(aDoctor : String) linkTreatedBy(aDoctor : Doctor)
setOpen(anOpen : Boolean) * treats
linkHealthRecord(aHealthRecord : HealthRecord) Treats|
* treatedBy

linkPrescription(aPrescription : Prescription)

Doctor

linkTreats(aPatient : Patient)

—_—eYeY .
Figure 15 — Class Model of the HealthSystem Application Model

Ezample. For this pattern, a HealthSystem model is chosen, being an adaptation
of the model developed in [Brul7]. The model has been modified according to our
requirements, as it originally did not have any operations or contracts. We have used
the approach from [DG19a] for schematically constructing operations in classes: for
each attribute, an operation set‘AttributeName’ is constructed, which manipulates
the attribute value; for each role name, an operation link‘RoleName’ is constructed,
which adds a specific link. For example, in Fig. 15, the class Patient has the attribute
name, so we have the operation setName, which will manipulate the name attribute of
a Patient object. Patient is associated with the classes HealthRecord and Doctor
with the role names healthRecord and treatedBy, resp. Therefore, we have the
operations linkHealthRecord and linkTreatedBy, which will construct links for
BelongsTo and Treats, resp. The post- and frame conditions of the operations are
specified using our developed PCDL approach [DG19¢|. The model is non-trivial and
has many operations making it suitable for this pattern.

The model has seventeen operations, and in order to fulfill the pattern criteria,
three scenarios with four, eight and twelve operation calls are constructed using the
model validator. To assure that each called operation occurs at most once in the
scenario, the operations specification is given in the range 0..1 in the configuration. One
additional invariant (detailed in [DG19b]) is specified which makes sure that initially
(a) there are no links between objects, (b) all String-valued attributes are empty (),

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 13

39 Object diagram ==

|linktreats,_doctorope.linkTreats_DoctorQpC|
aDrug="string1" aSelf=doctor5
aSelf=prescription5 aPatient=patient1

= " " 5 — — selDescript callnio0pd
aHealthRecord=healthrecord4 aDescription="string33"
aSelf=patient5 aSelf=medicalinfo5

description="string33"
creator="
open=false

RiaiE —
drug="string1"
amount=0
creator="

Figure 16 — Filmstrip Object Model - Short Operation Call Sequence

(c) Boolean attribute values are false and (d) Integer attribute values are 0. Figure 16
is the filmstrip object model with the short operation call sequence (4 calls; the call
sequences with 8 and 12 calls can be found in [DG19b]).

4.5 Repeatable operation (REPEAT)

Nature and purpose. In the scenario pattern REPEAT, the same operation should be
executed repeatedly without any other interrupting call to a different operation. This
pattern analyzes the operation properties by checking whether each single operation
can be executed repeatedly or not, according to the specific operation behavior.

Class diagra = X
Company
Person WorksFor WEDE Smng
ing |* location : String
name : String |* employee * employer
hire(p : Person)

fire(p : Person)

Figure 17 — Class Model of the PersonCompany Application Model

Ezample. To demonstrate the pattern, the PersonCompany model (Fig. 17) is chosen.
In the model, a company can hire and fire people, and to check the behavior, two
scenarios are constructed. In the first scenario (Fig. 18), the operation fire is

repeatedly executed (5 times), and in the second scenario (in [DG19b]), the operation
hire is called repeatedly.

4.6 Operation cycles (CYCLE)

Nature and purpose. The first and last operations in the operation call sequence should
be the same in this scenario pattern. The task of this pattern is to validate model

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

14 . Nisha Desai and Martin Gogolla

Ob Object diagram

Hwe_companyopcd.fie_CompanyOpC | | company<:Company|
aSelf=company2 name='Sun'
p=personé location="Hanover'

|fire_companyopc3:fire_CompanyOpC| | company@:Company |
aSelf=company4 name='Sun’
p=person27 location="Hanover'

person26:Person

|

aSelf=company6 name="Sun’
p=person16 location="Hanover'
|
aSelf=company5 name='Sun’
p=person21 location="Hanover'

aSelf=company3 name='Sun’
p=person8 location='Hanover'

Figure 18 — Filmstrip Object Model - Operation fire

Class diagram

User
name : String
0.1 user address : String
= / init(@Name : String, anAddress : String)
* col
signature : String D Borrows borrow(aCopy : Copy)

numReturns : Integer return(aCopy : Copy)
init(aSignature : String, aBook : Book)
:J;:ronvz)(auser : User) m title Strivng _
Py authSet : Set(String)
1book] Year : Integer
init(aTitle : String, anAuthSet : Set(String), aYear : Integer)

Book

Figure 19 — Class Model of the Library Application Model

behavior by checking whether a cyclic call of operations is possible or not, allowing
possibly other operation executions to occur between the first and last operation call.
Ezample. The Library model (Fig. 19) in which users can borrow and return book
copies, is used to demonstrate this pattern. To construct a cyclic scenario, the first
and last operation calls in the scenario are specified by additional invariants. The
invariants along with the configuration are given to the model validator. The cyclic
scenarios for the operations borrow and return of the class User are constructed. The
scenario in the form of a filmstrip object model for the operation borrow of the class
User is shown in Fig. 20. For the operation return of the class User the constructed
scenario is in [DG19b]. The additional invariants for the operation borrow are shown
below.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 15

,;DP Object diagram -

aCopy=copy1
aSelf=user3

borrow_useropc2:borrow_UserOpC

| borrow_copyopci:borrow_CopyOpC | borrow_useropc3:borrow_UserOpC
aUser=user2 aCopy=copy3
aSelf=copy6 aSelf=user1
| return_useropc3:return_UserOpC |
| return_copyopc3:return_CopyOpC |
aCopy=copy5
aSelf=copy4 aSelf=user4

userb5:User user2:User userd:User user1:User userf:User
name="Ada’ [(>— name='Ada’ K> name='Ada' <>—— name='Ada’' O—' name='Ada’'
address="FL" address='"FL" address="FL' address="FL' address='FL'
Borrows Borrows Borrows
copy4:Copy copy6:Copy | copy5:Copy | copy3:Copy copy2:Copy

signature="ab02' K>—

signature='ab02" K> signature="ab02' K> signature='ab02" K>—

numReturns=1

numReturns=2

numReturns=2 numReturns=3

signature="ab02'
numReturns=3

Figure 20 — Filmstrip Object Model - Cyclic borrow Operation Calls

context Snapshot inv firstOpC:
self .pred()=null implies self.opc.oclIsKindOf (borrow_UserOpC)

context Snapshot inv lastOpC:
self.succ()=null implies self.pred.opc.oclIsKindOf (borrow_UserOpC)

4.7 Adding and successively removing objects or links (MOUNTAIN)

Nature and purpose. Here, in the pattern MOUNTAIN, an operation call sequence
should be considered that initially has no objects or links, then incrementally adds
objects or links until a peak number is reached and afterwards successively removes
the objects or links until no more objects or links are present anymore. This scenario
will use additional invariants that require respective objects or links to exist.

Ezample. To explain this pattern, the Library model (Fig. 19) is used. The User class
of the Library model includes the operations borrow and return, which respectively
add and remove the Borrow links between the User and Copy objects. The three
invariants shown below ensure that the constructed scenario first increments and then
decrements the number of Borrow links.

context Snapshot inv initNoLink:
self .pred()=null implies self.user.copy->size()=0

context Snapshot inv increments:
(self.pred()<>null and self.pred() .num<=3) implies
self .user.copy->size()=self.pred() .num

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

16 - Nisha Desai and Martin Gogolla

context Snapshot inv decrements:
(self.pred()<>null and self.pred() .num>=4) implies
self .user.copy->size()=self.opCalls()->size()-self.pred() .num

In the invariants, the expression self .user.copy->size() determines the number
of Borrow links in the snapshot. The integers 3, 4 in the expressions self.pred() .num
<= 3 and self.pred() .num >= 4 care for the size of the mountain, i.e., until the
fourth snapshot (third operation call) a link will be added, and from the fifth snapshot
(fourth operation call) a link will be removed.

Furthermore, the invariants are reusable in the sense that the developer only needs
to change the expression which defines the number of links, and the integers which
define the top of the mountain. In the configuration, the snapshot is specified in the
range 7..7. Figure 21 shows the constructed filmstrip object model, in which first three
Borrow links are added (operation borrow) and then three Borrow links are removed
(operation return). The filmstrip object model also contains the Book objects not
shown in Fig. 21.

4.8 Dead end call sequences (DEADEND)

Nature amd purpose. In the scenario pattern DEADEND, no further operation call
should be possible at the end of the operation call sequence. In a model, sometimes
operations require a specific call sequence and further execution of an operation call is
forbidden. Not all models are applicable to this pattern, as an end object model is
required in which no operation can be called.

Ezample. The pattern is demonstrated using the SocialNetwork model (Fig. 2), in
which a user can initiate a friendship with an invite, and then another user can accept
or decline the friendship request. To realize the pattern, in the configuration, two
Profile objects are specified, and the operation specification is in the range 2..3. In
the constructed scenarios (filmstrip object models), only two operation calls exist. The
first operation call is an invite, and the other operation call is an accept (Fig. 22) or

—
gbobjemdiagram‘ﬁ'ﬁ e i s e i v bl B
aCopy=copy1 aCopy=copy10 aCopy=copy19

aSelf=user1 aSelf=user3 aSelf=user5

aCopy=copy16 aCopy=copy11 aCopy=copy6

aSelf=user2 aSelf=user4 aSelf=useré

ser2:User user3:User userd:User user5:User user6:User userz:User
name='Ada" K>——— name='Ada' K>—— name="Ada" K>—— name=Ada’ [C—— name='Ada’ K>— name="Ada’
address='NY" address="NY" address='NY" address='NY" address='NY" address='NY"
Borrows
| copy2.Copy. | copyZ.Copy |
signature='ab03"

signature="ab03'
numReturns=1
numReturns=0

Borrows

| _copyiZ:Copy | | c00y20:Copy |

signature='ab01" signature="ab01"

numReturns=4 numRetums=5

Borrows
opy11:Cop 12:Cop

signature="ab02' K >— signature='ab02"

0 1

Figure 21 — Filmstrip Object Model - Number of Borrow Links: 0,1,2,3,2,1,0 (Mountain)

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 17

a decline (Fig. 23). As there are only two Profile objects, no further operation call
is possible. If the operation specification is given in the range 3..3, then the filmstrip
object model generation for this scenario is unsatisfiable. This implies that in this
example, after two operation calls, no further operation call is possible, and there is a
dead end.

g;u Object diagram " 3; Object diagram @i s s a B
— = invite_P 0nC T decline_P 5

aSelf=profile2 aSelf=profile5 aSelf=profile2 aSelf=profile5

anlnvitee=profile1 anlnviter=profile3 anlnvitee=profile1 anlinviter=profile3

userN='Bob'

Inviter

userN='Bob'

Jnviter

friendshipS5:Friendshij

status=#declined

status=#accepted

status=#pending

status=#pending

Invitee
profile5:Profile

Figure 22 — Filmstrip Object Model -
invite-accept Operation Call

Figure 23 — Filmstrip Object Model -
invite-decline Operation Call

4.9 Absence of an operation in an operation call sequence (ABSENCE)

Nature and purpose. The pattern ABSENCE requires that all operations should be
called in the scenario except one which is intentionally left absent. This pattern
helps to identify crucial operations that have to be present in all scenarios. From
the operation signature viewpoint, all operations may look similar, but by using this
pattern, one can analyze whether some operations are more important than others. In
particular, feedback in the sense that no operation sequence can be found may occur
for this pattern. The pattern tries to give a judgement on operation importance and
tries to answer the question: Is the operation really needed?

Ezample. The SocialNetwork model (Fig. 2) is again used to demonstrate this pattern.
It has three operations (invite, accept, decline). According to the pattern, three
scenarios are possible by keeping each single operation absent, one at a time, i.e.,
absence of invite, absence of accept or absence of decline. In the configuration,
two Profile objects are specified in each snapshot. The constructed scenario with
absence of accept, shows the operation call sequence invite-decline (Fig. 23), and
absence of decline shows the operation call sequence invite-accept (Fig. 22). The
scenario generation for absence of invite is unsatisfiable because without a friendship
invite there cannot be an accept or a decline for a friendship request, i.e., the operation
accept or decline cannot be called without the operation invite. The conclusion is
that the operation invite plays somehow a more important role in the model than
the operations accept or decline.

4.10 Operation call sequences leading from an initial to a final condition
(INIT2FIN)

Nature and purpose. This pattern provides an opportunity to the developer to give
specific initial and final conditions so that an operation call sequence is constructed that
leads from an initial to a final state or condition. This pattern helps to check particular

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

18 Nisha Desai and Martin Gogolla

Class diagram

Report
Student B
deniR advisee : Student Teacher
reg.lster(aTeacher : Teacher) 1Stuzt:mem Oe;;(;rr;pon advisor : Teacher - ReportTeacher
deliver() N delivered : Boolean report
viewMark(aReport : Report) : Integer

T teacher grade(aReport : Report, aMark : Integer)

viewMark(aReport : Report) : Integer
mark : Integer

Figure 24 — Class Model of the StudentReport Application Model

ob Object diagram

aSelf=student1 advisee=student2
aTeacher=teacher1 advisor=teacher2
delivered=false
mark=0
| deliver_studentopci.deliver_StudentOpC Q
aSelf=student2 | celtif Runell |
advisee=student3
advisor=teacher3
delivered=true
| grade_teacheropci:grade_TeacheropC| mark=0
aMark=2
aReport=report2 | report3:Report |
aSelf=teacher3 advisee=student4
advisor=teacher4
— delivered=true
| viewmark_teacheropci.viewMark_TeacherOpC | mark=2
aReport=report3
result=2

aSelf=teacher4

aSelf=student15 | report10:Report |
aTeacher=teacher5 advisee=student16
advisor=teacheré
delivered=false
| cegister, studentopc3-register, StudentOpC| mak=0
aSelf=student26
aTeacher=teacher6 | teportiS:Report |
advisee=student27
advisor=teacher7
delivered=false
| viewmark_studentopc:viewMark,_StudentOpC | mark=0
aReport=reporté
result=2
aSelf=student?

2deliver_s oac

aSelf=student28

| reporti7.Report |

advisee=student29

advisor=teacher9
delivered=true
mark=0
| deliver_studentopc3:deliver_StudentOpC|
aSelf=student19

| reporti4:Report |
advisee=student20
advisor=teacher10
delivered=true
mark=0

Figure 25 — Filmstrip Object Model - Initial and Final State Conditions

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 19

Class diagram

Acc

num : Integer
bal : Integer
locked : Boolean

open(aNum : Integer)
deposit(anAmount : Integer)
payout(anAmount : Integer)
lock()

Figure 26 — Class Model of the Account Application Model

properties of operations by accordingly specifying initial and final requirements.
Ezample. The pattern is demonstrated using the StudentReport model (Fig. 24), in
which a student can register and deliver a report, a teacher can give grades, and both
can view the marks. To construct the scenario using this pattern, the initial and final
state conditions are given to the model validator together with the configuration. In
the initial state condition (initNotReport), no reports exist, and in the final state
condition (finAllReportDelivered), there exist at least one report, and all existing
reports must be delivered. In the configuration, the operation specification is in the
range 9..9. The scenarios in the form of filmstrip object models are constructed, and
one is shown in Fig. 25. The figure shows that initially there is no report and in the
final snapshot, three reports exist and all are delivered, i.e., the given initial and final
state conditions are satisfied. The filmstrip object model also contains the Student
and Teacher objects not shown in Fig. 25.

context Snapshot inv initNotReport:
self.pred()=null implies self.report->size() = 0

context Snapshot inv finAllReportDelivered:
self.succ()=null implies self.report->size() <> 0 and
self.report->forAll(r|r.delivered)

4.11 Regular expressions over operation calls (REGULAR)

Nature and purpose. In the scenario pattern REGULAR, an operation call sequence
should be constructed according to a given regular expression over operations, which
can be expressed in terms of additional OCL invariants. The intention of this pattern
is to check whether a scenario that satisfies the given regular expression can be
constructed or not.

Ezample. In order to explain this pattern, the Account model (Fig. 26) is used
which has one class Acc. The class Acc has four operations: (a) open to specify the
account number and to unlock the account, (b) deposit to deposit a specific amount
in the account which increases the balance accordingly, (c) payout to payout the
amount from the account which decreases the balance accordingly, and (d) lock to
lock an open account. To fulfill the criteria for this pattern, the regular expression
open() ; [deposit () ;payout () ;1+lock() ; is specified, and the corresponding OCL
invariants are shown below.

context Snapshot inv openFirst:
open_AccOpC.allInstances->forAll(open|open.pred() .pred()=null)

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

20 - Nisha Desai and Martin Gogolla

Sloheceem.. Ay
open_accopcl:open_AccOpC payout_accope2:payout_AccOpC payout_accopci:payout_AccOpC
aSelf=acc2 anAmount=5 anAmount=5
aNum=88 aSelf=acc5 aSelf=acc6
anAmount=5 anAmount=10 aSelf=acc7
aSelf=acc3 aSelf=acc4
3A acc5:Acc accd:Acc acch:Acc acc7:Acc accl:Acc
num=88 |~ num=88 |~ num=88 |~ num=88 |~ {num=88 L~ fnum=88
bal=100 bal=105 bal=100 bal=110 bal=105 bal=105
" locked S . KA Tal e

Figure 27 — Filmstrip Object Model - Regular Expression

context Snapshot inv lockLast:
lock_AccOpC.allInstances->forAll(lock]|lock.succ().succ()=null)

context Snapshot inv depositPayout_evenUnevenSnapshot:
deposit_AccOpC.allInstances->forAll(d|d.pred() .num.mod(2)=0) and
payout_AccOpC.allInstances->forAll(p|p.pred() .num.mod(2)=1)

In the configuration, the operation specification is in the range the 6..6. Based
on the given invariants and the configuration, the scenario in the form of a filmstrip
object model is constructed and shown in Fig. 27. As seen in the figure, the first
and last operation call are open and lock, respectively, and in between two times a
deposit-payout operation call sequence is constructed. This complete operation call
sequence satisfies the given regular expression.

5 Approach Validation by a Study with Specialists

Study goal: The goal of the study was to validate whether our approach utilizing
patterns for developing behavioral test scenarios can be practically applied and whether
developers would accept the pattern idea and use the patterns for creating new test
cases in situations where some test cases are already present in a project.

Study subjects and process: In total, 11 subjects participated in the study. All
subjects (a) posses a master in computer science (8 subjects; among them 5 subjects
working at University of Bremen, 3 subjects working in industry; subjects at University
of Bremen with 1-4 years work experience; subjects in industry 0.5-7 years work
experience) or (b) are as students in the process of writing their master thesis (3
subjects). All subjects possess detailed know-how in object-oriented modeling, UML
and OCL and our deployed tool USE through participation in a 14 week, 3 x 90 minutes
per week university course. The study took place in two rounds.

In Round 1, the topic of the study was introduced by a modeling example: A
car rental UML model (see Fig. 28) with 4 classes, 11 data-valued attributes and
9 operations realized in SOIL (Simple Ocl-like Imperative Language) [BG14|. The
subjects were told that: “The model is (purposefully) not completed yet. Some
important parts like OCL invariants, pre- and postconditions are missing. However,
all operations have a preliminary SOIL implementation that explains the intended

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

21

Assembling Scenario Patterns for Checking Model Behavior

“Apeay
.. —
(leusa 092, 5Z-04, 0Z-01, 'BPE)Y00Q BPEFOIS; §)
= (epeyoaa ey mau gl
_ == [(vossadiies < {EpeElRS| (fzusg}ies (a0} 125 15 We ZrJNuITenuSo; 4|
a Ansay {JBLUZ3JYDUBIG M3 G|
[(Adwpou=epard | dpses<-saouesu)e :nm.._uu_ (XN, " ZHZH ANJUUIZUSG] 5
E “uoissaidxa 130 Jau3 (Zuagieg mau; §|
_ (.. "Jeyed, "008)uurgon; g, pua
[! ! uoissaidxa JDQ slenjeny F (.£00. "BNMENY, B JJUIEDE; Z] pua
- “ n_=:____w¢u_¢ FTNT] —_ {.009)uU0SIa4 MaU {BPE)UOSISd MAU; | _Q__um_Um = QUpaITyes
0.~ T > Im a.F ‘NISETE = [SETYES

- ?" EEEEENCEENT
|||||||||||| =l

LO0) B2, BRY U

(AuS © ssejiene 'BUMIS @ wnpBageip

BULS © ss80Uea

151 puewwo) H h

‘NISIHE = NISIUBS
ubaq
(Buig : DUpaIoE

o BULAS | WnnBad | gea ‘Buls | MISETE BULS | MISHHE)IUI
——Ll— L L L &7 suonesado
_qum”mumvouL _ ;ur_Em”_EEou_ i Ik Ncoi i [EEER] aun_ _ Uos 124 Epe lepa oy Bl | oupan
Ouingad M Bus © e
42 Odnad auee | 2N BUS sy
HN|=SSE(D4ED weifep 2auanbag £ fisouea senquue
EFTR ANSUNG (Yaue.g © yaueige 'BuLls | sseindede 'BULS | qunue 'BULES | quodde 'Uosiad | Shoe]yoog JaE : (fepsy - [epEyE)RRRY uosiad sse2
DU [ree—— T (epmy : ppayelesspend || | Smmmmrr
8 9 8 'f 8
usapog : pajEoues . [(E0)es 24ea '(uosiad)es | syia)0 'AuLns mhu.a.cw:_c_ suogesadg Aismg _|
asiBl=pauInz. BUMS : SeBles s - dpe SUONPUODISOG/-81d [
a3 =palaaued BuLS < guun Youeg SJUBLEAL| _|
\008,=558|3/80 15 U Zh=IpE S @ yousig 10 IBDEUSY
(SE0L=0mun EN =R ewey Jegyauelg &
0Z-0L=gwosy |ejusyyouelg g
e | [epua UDSIEdIEIUSY &
[l epe 00 N R T R
1= _n_/,*q (Buls © Jppasoe 'BULIS | psee BUS © RIS uosiagyouelg &
N SUOIBRDO
£00,=04paa st] Era Buls SoMRRa | e .Jm ssv i B
apwale el | | eeastiEe) Buas - el e
BT MR 03 =hasd BUMS © S ;,QW_E,M "
I EET [EEE] uoziad uosiad &
= A.F wesbep a0 &S E A .p weiGep sS61) m mmmm“”._mb m
== = o 7w
Efz Bz [e]ws[n o #a]<|-a]E][w] ¢ HEEEE
disH sufng mak =9mS wp3 Ad
5 = asn'psied 350 5

Figure 28 — UML Model Used in the Study with UML and OCL Specialists

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

22 . Nisha Desai and Martin Gogolla

functionality of the operation (preliminary means that some operations might not
operate as one would expect, for example in exceptional cases, like empty set, empty
string or the like). Your task is to develop behavioral test cases (tests for the operations
and operations sequences) in form of SOIL command sequences (positive test cases, in
the sense that everything works in a proper way as expected; negative test cases, in
the sense that on execution an error is reported). Your test cases should check whether
the current model meets your expectations, i.e., whether operation calls induce the
respective system changes, return the desired result (if applicable), or show an error
message in case of illegal operation calls.”

In Round 2, we have been offering to the subjects the pattern approach in form of
a paper, a condensed 14-page version of the current contribution. We asked to read
the paper and let the subjects develop further test cases. In addition, we included a
questionnaire about whether subjects without knowing the scenario pattern approach
applied one or many patterns implicitly in Round 1 and whether subjects developed
new test cases with previously unknown patterns.
Study results: The table in Fig. 29 gives an overview on the number and structure
of developed test cases by the subjects, i.e., the number of positive and negative
cases and the number of tested operation calls and commands. Basically there is no
difference between Round 1 and Round 2. The length of negative test cases is slightly
greater than for positive ones.

Round1 Round2

numTestCases 67 numTestCases 42
numPosTestCases 35numPosTestCases 22
numNegTestCases 32 numNegTestCases 20

avgNumOpsTestCases 14,9numOpsTestCases 14,7
avgNumOpsPosTestCases 13,6 numPosOpsTestCases 13,8
avgNumOpsNegTestCases 16,1 numNegOpsTestCases 15,5

Figure 29 — Overview on Obtained Test Cases Developed by Subjects

The table in Fig. 30 compares the tested operations in the two rounds. It is
interesting to see that the patterns lead to a slightly different use of operations. In
Round 2 the degree of operations more related to the end of the ‘natural’ operation
cycle increased. We conclude that the patterns gave rise to fully consider all options
in operation call sequences whereas in Round 1 some cornerstones were missing in the
test cases.

Average Op# create# init# provideCar# charge# book# cancel# pickUp# return#

Roundi 14,88 488 463 134 031 169 034 122 046

Round2 14,67 4,38 | 3,79 1,48 0,60 1,95 0,31 1,00 1,17

Ascending or Descending < pare N Va /7 A > N 7
Change Round1 to Round2 0,99 0,80 0,82 1,10 1,90 1,16 0,90 0,82 2,52

Figure 30 — Comparison Round 1 vs. Round 2: Tested Operations

The table in Fig. 31 shows the subjects’ opinion on implicit use of the patterns
in Round 1 and on explicit use of the patterns in Round 2. In fact, some patterns
proved to be more popular than others. It is also remarkable, that the marked patterns
ONCE, ALLOPS, REPEAT, and CYCLE were applied by a relative high number of
subjects for the first time in Round 2. So these patterns did de facto have an impact
on the constructed test cases.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 23

Subject Patterns Roundl Patterns Round2 Patterns Round2 not Roundl
Ada it {ONCE,PAIR,ALLOPS,REPEAT} {ONCE,PAIR,ALLOPS,REPEAT}
Bob ONCE,PAIR, DEADEND} ONCE,PAIR,REPEAT} REPEAT}

Cal REPEAT,ABSENCE, INIT2FIN} ONCE,SML,REPEAT,CYCLE} ONCE,CYCLE}

Dan PAIR,ALLOPS,REPEAT,CYCLE,ABSENCE} {ONCE,PAIR,ALLOPS,REPEAT,CYCLE,ABSENCE} {ONCE}

Eve SML,ABSENCE} PAIR,SML,REPEAT,ABSENCE} PAIR,REPEAT}

{
1
{
1
{
{
1
1
{
{

Flo REPEAT,INIT2FIN} PAIR,SML,REPEAT, ABSENCE, INIT2FIN} PAIR,SML,ABSENCE}
Gil PAIR,MOUNTAIN} REPEAT,CYCLE,MOUNTAIN,ABSENCE} REPEAT,CYCLE,ABSENCE}
Hal PAIR,SML} PAIR,ALLOPS} ALLOPS}
Ike PAIR,REPEAT,ABSENCE} ONCE,REPEAT,CYCLE,MOUNTAIN,ABSENCE} {ONCE,CYCLE,MOUNTAIN}
Jay REPEAT,DEADEND,ABSENCE,INIT2FIN} [{ONCE,ALLOPS,CYCLE} ONCE,ALLOPS,CYCLE}
Kim SML,REPEAT,INIT2FIN} ALLOPS,REPEAT,MOUNTAIN} ALLOPS,MOUNTAIN}

Pattern Use Roundl Pattern Use Round2 Pattern Use only Round2 Sum Pattern Use
ONCE 1 6 [5 | 7
PAIR 5 6 3 11
ALLOPS 1 5 | 4 | 6
SML 3 3 1 6
REPEAT 6 9 4 15
CYCLE 1 5 4 6
MOUNTAIN 1 3 2 4
DEADEND 2 o o 2
ABSENCE 5 5 2 10
INIT2ZFIN 4 1 o 5
REGULAR 0 0 o 0

Figure 31 — Comparison Round 1 vs. Round 2: Applied Patterns by Subjects

As a summary, we conclude that the idea of the patterns was on the one hand
already familiar to the subjects, on the other hand some patterns were accepted very
well in order to construct new test cases for situations not considered before.

6 Related Work

In order to compare our contribution to similar works, we first present related ap-
proaches that propose or use different patterns for model specification and model
checking, and then we discuss related work considering approaches which aim at
helping in designing and generating test cases.

Pattern-based approaches: The authors in [AT06] present a library of reusable
OCL specification patterns to simplify the constraint definition in a UML/OCL
behavioral model. The work [FHKS18] introduces a model and a scenario-based
pattern catalog to ensure the quality of specifications for the Modal Sequence Diagrams
(MSD) requirement language. The paper [GKC07| introduces Cobra patterns, which
provide model templates to assist developers in constructing goal and UML models that
capture system requirements and their constraints. In contrast to [AT06], [FHKS18|
and [GKCO07], we propose scenario patterns to guide developers in constructing dynamic
scenarios in order to build test cases. In [BMSJ15], the authors propose a catalog of
anti-patterns that analyze a typical constraint interaction that cause correctness or a
quality problem in UML class models and suggest possible repairs. Our catalogue does
not contain anti-patterns, however, negative test cases can be constructed. In [DFB19],
the authors propose a temporal property language based on property patterns for a
model-based testing approach using UML/OCL models. However, our patterns can
be directly applied for checking model behavior properties.

Test case generation approaches: In [CDJ11], the authors propose a scenario
expression language in order to describe scenarios as operation sequences to generate
functional test cases. [LS06] presents an algorithm which is based on the formal opera-

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

24 . Nisha Desai and Martin Gogolla

tional semantics for deriving tests from sequence diagram specifications. In [MLMK13],
a test specification language is introduced for specifying a test suite that validates the
correct behavior of UML activities based on f{UML (Foundational UML). In [LBZ09],
the authors describe the use of a genetic algorithm to generate test cases from finite
state machines for class behavioral testing. In contrast to [CDJ11], [LS06], [MLMK13|
and [LBZ709], we do not propose or use any explicit algorithms or languages for
generating test cases. In [BKLW10|, the authors put forward a method to generate
test data on a higher-order representation of OCL models. However, we are not
transforming OCL constraints into any other representation. The authors in [SHS03]
and [VT98] described an approach to generate test cases automatically from state
charts. In [PM18], a tool is presented that is called TCGen in order to automatically
generate test cases using different testing criteria starting from UML models. In
contrast to [SHS03], [VT98] and [PM18], our work provides methodological suggestion
and advice for developers to construct the test cases. [AAFR13] proposes an approach
for specifying and analyzing temporal properties expressed in TOCL (Temporal logic
extension of OCL), and these properties are checked against behavioral scenarios. In
contrast, our approach focuses directly on behavioral scenario construction. [TBO05]
presents a prototype generator for generating traces to test model behavior.

In our recent paper [DG19a], a preliminary catalogue of scenario patterns is
sketched, and in the current paper, we significantly extend the catalogue, show the
explanations of all patterns and describe their nature and purpose. In contrast to
other mentioned works, our approach proposes a catalogue of patterns for developing
dynamic scenarios in order to construct test cases independent of testing techniques
and shows how behavioral patterns are applied.

7 Conclusion and Future Work

In this contribution, we have extended our existing catalogue for scenario patterns.
The catalogue can be applied in a UML and OCL model for developing operation call
sequences that check dynamic model properties. We have described the nature and
purpose of all scenario patterns in order to ease the process of applying the patterns
for the considered model. We have explained the complete catalogue by different
UML and OCL models. The approach was validated by a study with UML and OCL
experts.

As future work, we intend to apply the catalogue to other approaches for checking
dynamic model properties and to include more patterns. Furthermore, we plan to give
more support on the technical level for particular interesting patterns. For example, the
work with the pattern INIT2FIN could be automated in a tool by merely specifying an
initial and a final OCL condition and upper class bounds, or the pattern MOUNTAIN
could be specified only by the peak number of objects or links from a fixed class
or association. Last but not least, we plan to provide support for determining the
patterns that can be applied in the model under consideration.

References

[AAFR13] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi
Ray. An approach to analyzing temporal properties in UML class models.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

[ATO6]

[BCW17]

[BG14]

[BKLW10]

[BMSJ15]

[Brul7]

[CDJ11]

[DFB19]

[DG19a]

[DG19b)]

[DG19c]

[FHKS18|

|GH16]

Assembling Scenario Patterns for Checking Model Behavior - 25

In Frédéric Boulanger, editor, Proc. 10th Int. Workshop MoDeV Va,
pages 77-86. CEUR-WS.org, 2013.

Jorg Ackermann and Klaus Turowski. A library of OCL specification pat-
terns for behavioral specification of software components. In Eric Dubois
and Klaus Pohl, editors, Advanced Information Systems Engineering,
18th Int. Conf., Proc., pages 255-269. Springer, 2006.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice, Second Edition. Synthesis Lectures on
Software Engineering. Morgan & Claypool Publishers, 2017.

Fabian Biittner and Martin Gogolla. On OCL-Based Imperative Lan-
guages. Journal on Science of Computer Programming, FElsevier, NL,
92:162-178, 2014.

Achim D. Brucker, Matthias P. Krieger, Delphine Longuet, and
Burkhart Wolff. A specification-based test case generation method
for UML/OCL. In Jiirgen Dingel and Arnor Solberg, editors, Proc.
MODELS, pages 334-348. Springer, 2010.

Mira Balaban, Azzam Maraee, Arnon Sturm, and Pavel Jelnov. A
pattern-based approach for improving model quality. Software and
Systems Modeling, 14(4):1527-1555, 2015.

Achim D. Brucker. OCL examples, 2017. https://git.
logicalhacking.com/HOL-0CL/ocl-examples/src/branch/master/
health_system.

Kalou Cabrera Castillos, Frédéric Dadeau, and Jacques Julliand.
Scenario-based testing from UML/OCL behavioral models - applica-
tion to POSIX compliance. STTT, 13(5):431-448, 2011.

Frédéric Dadeau, Elizabeta Fourneret, and Abir Bouchelaghem. Tempo-
ral property patterns for model-based testing from UML/OCL. Software
and Systems Modeling, 18(2):865-888, 2019.

Nisha Desai and Martin Gogolla. A Catalogue of Scenario Patterns
for Validating and Verifying Model Behavior. In Michel Chaudron
and Joerg Kienzle, editors, Proc. IEEE/ACM MODELS 2019 Satelite
FEvents (MODELS 2019). IEEE, 2019.

Nisha Desai and Martin Gogolla. Addendum to: Assembling Scenario
Patterns for checking Model Behavior. https://tinyurl.com/y5qdjkt9, 80
pages, 2019.

Nisha Desai and Martin Gogolla. Developing comprehensive postcondi-
tions through a model transformation chain. Journal of Object Technol-
ogy, 18(3):5:1-18, July 2019.

Markus Fockel, Jérg Holtmann, Thorsten Koch, and David Schmelter.
Formal, model- and scenario-based requirement patterns. In Slimane

Hammoudi, Luis Ferreira Pires, and Bran Selic, editors, Proc. 6th
MODELSWARD, pages 311-318. SciTePress, 2018.

Martin Gogolla and Frank Hilken. Model Validation and Verification
Options in a Contemporary UML and OCL Analysis Tool. In Andreas
Oberweis and Ralf Reussner, editors, Proc. Modellierung (MODEL-
LIERUNG’2016), pages 203—218. GI, LNI 254, 2016.

Journal of Object Technology, vol. 19, no. 2, 2020

https://git.logicalhacking.com/HOL-OCL/ocl-examples/src/branch/master/health_system
https://git.logicalhacking.com/HOL-OCL/ocl-examples/src/branch/master/health_system
https://git.logicalhacking.com/HOL-OCL/ocl-examples/src/branch/master/health_system
http://dx.doi.org/10.5381/jot.2020.19.2.a19

26 - Nisha Desai and Martin Gogolla

[GHD18]

|GHH*14]

|GKC07|

[LBZ109)

[LS06]

[MLMK13|

[PM18]

[RIBYY]

[SA05]

[SHS03|

[TBO5|

[VTOs]

[WK99]

Martin Gogolla, Frank Hilken, and Khanh-Hoang Doan. Achieving
Model Quality through Model Validation, Verification and Exploration.
Journal on Computer Languages, Systems and Structures, Elsevier, NL,
54:474-511, 2018. Online 2017-12-02.

Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and
Robert B. France. From Application Models to Filmstrip Models: An
Approach to Automatic Validation of Model Dynamics. In Hans-Georg
Fill, Dimitris Karagiannis, and Ulrich Reimer, editors, Proc. Model-
lierung (MODELLIERUNG’2014), pages 273-288. GI, LNI 225, 2014.

Heather Goldsby, Sascha Konrad, and Betty H. C. Cheng. Goal-oriented
patterns for UML-based modeling of embedded systems requirements. In
Tenth IEEE Int. Symposium on High Assurance Systems Engineering,
pages 7-14. IEEE Computer Society, 2007.

Jinhua Li, Wensheng Bao, Yun Zhao, Zhibing Ma, and Huangzhen
Dong. Evolutionary generation of unique input/output sequences for
class behavioral testing. Computers € Mathematics with Apps, 57(11—
12):1800-1807, 2009.

Mass Soldal Lund and Ketil Stglen. Deriving tests from UML 2.0 se-
quence diagrams with neg and assert. In Hong Zhu, editor, Proc. Int.
Workshop Automation of Software Test AST, pages 22-28. ACM, 2006.

Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel.
A framework for testing UML activities based on f{UML. In Frédéric
Boulanger, editor, Proc. 10th Int. Workshop MoDeVVa, pages 1-10.
CEUR-WS.org, 2013.

Constanza Pérez and Beatriz Marin. Automatic generation of test cases
from UML models. CLEI Electron. J., 21(1), 2018.

James E. Rumbaugh, Ivar Jacobson, and Grady Booch. The unified
modeling language reference manual. Addison-Wesley-Longman, 1999.

Percy Antonio Pari Salas and Bernhard K. Aichernig. Automatic test
case generation for OCL : a mutation approach. In Technical Report, Int.
Institute for Software Technology, 2005.

Dirk Seifert, Steffen Helke, and Thomas Santen. Test case generation for
UML statecharts. In Manfred Broy and Alexandre V. Zamulin, editors,
Perspectives of Systems Informatics, 5th Int. Conf. PSI, pages 462-468.
Springer, 2003.

Anastasia Tircuit and Boumediene Belkhouche. Object-oriented behav-

ioral testing through trace generation. In Méario Guimaraes, editor, Proc.
43nd Annual Southeast Regional Conf., pages 306-310. ACM, 2005.

Marlon Erthal Righi Vieira and Guilherme Horta Travassos. An ap-
proach to perform behavior testing in object-oriented systems. In
TOOLS 1998: 27th Int. Conf., pages 318-327. IEEE, 1998.

Jos B Warmer and Anneke G Kleppe. The object constraint language :
precise modeling with UML. Reading, Mass. : Harlow : Addison-Wesley,
1999.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a19

Assembling Scenario Patterns for Checking Model Behavior - 27

About the authors

L |

Nisha Desai is a former Ph.D. student at the University of Bre-
men in the Department of Mathematics and Computer Science in
Germany. She has worked on improving and optimizing quality
assurance techniques for behavioral models. Besides the inter-
est in UML/OCL modeling, she is fond of software design and
development. Currently, she is working as a research engineer
at Institut fiir Angewandte Systemtechnik Bremen GmbH, and
engaging herself in different European research projects. Contact
her at nisha@informatik.uni-bremen.de.

Martin Gogolla is professor for Computer Science at Univer-
sity of Bremen, Germany and is the head of the Research Group
Database Systems. His research interests include software develop-
ment with object-oriented approaches, formal methods in system
design, semantics of languages, and formal specification. Martin
Gogolla is actively participating in the MODELS community and is
involved in the organisation of the OCL workshops. Martin Gogolla
is Associate Editor of the Springer journal on Software and Sys-
tems Modeling. In his group, foundational work on the semantics
of and the tooling for UML, OCL and general modeling languages
has been carried out. The group develops the OCL and UML tool
USE (UML-based Specification Environment) since about 15 years.
The tool is internationally and nationally widely accepted and
employed for research and teaching and in software production.
Contact him at gogolla@informatik.uni-bremen.de

Acknowledgments Reviewers and ECMFA program chairs kept us running. They
provided critical, very fruitful contributions that helped a lot to improve the work.
Naturally, the remaining deficiencies are due to the authors.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:nisha@informatik.uni-bremen.de
mailto:gogolla@informatik.uni-bremen.de
http://dx.doi.org/10.5381/jot.2020.19.2.a19

	Introduction
	Background: Filmstripping
	Scenario Pattern Catalogue
	Scenario Pattern Explanations
	Each operation once (ONCE)
	Each operation pair (PAIR)
	All operations in single operation call sequence (ALLOPS)
	Short/middle-sized/long operation call sequences (SML)
	Repeatable operation (REPEAT)
	Operation cycles (CYCLE)
	Adding and successively removing objects or links (MOUNTAIN)
	Dead end call sequences (DEADEND)
	Absence of an operation in an operation call sequence (ABSENCE)
	Operation call sequences leading from an initial to a final condition (INIT2FIN)
	Regular expressions over operation calls (REGULAR)

	Approach Validation by a Study with Specialists
	Related Work
	Conclusion and Future Work
	Bibliography
	About the authors

