
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Continuous Deployment of
Trustworthy Smart IoT Systems

Nicolas Ferrya Phu H. Nguyena Hui Songa Erkuden Riosb

Eider Iturbeb Satur Martinezb Angel Regob

a. SINTEF, Oslo, Norway

b. TECNALIA, Basque Research and Technology Alliance, Spain

Abstract While the next generation of IoT systems need to perform
distributed processing and coordinated behaviour across IoT, Edge and
Cloud infrastructures, their development and operation are still challenging.
A major challenge is the high heterogeneity of their infrastructure, which
broadens the surface for security attacks and increases the complexity
of maintaining and evolving such complex systems. In this paper, we
present our approach for Generation and Deployment of Smart IoT Systems
(GeneSIS) to tame this complexity. GeneSIS leverages model-driven
engineering to support the DevSecOps of Smart IoT Systems (SIS). More
precisely, GeneSIS includes: (i) a domain specific modelling language to
specify the deployment of SIS over IoT, Edge and Cloud infrastructure with
the necessary concepts for security and privacy; and (ii) a models@run.time
engine to enact the orchestration, deployment, and adaptation of these SIS.
The results from our smart building case study have shown that GeneSIS
can support security by design from the development (via deployment) to
the operation of IoT systems and back again in a DevSecOps loop. In
other words, GeneSIS enables IoT systems to keep up security and adapt
to evolving conditions and threats while maintaining their trustworthiness.

Keywords Deployment; MDE; DSL; models@run.time; IoT; DecSecOps.

1 Introduction

The next generation of IoT systems often need to perform distributed processing and
coordinated behaviour across IoT, Edge and Cloud infrastructures. Such systems,
denoted in this paper as smart IoT systems (SIS), typically rely on heterogeneous
infrastructures ranging from virtual machines running in the Cloud to gateways and
micro-controllers. They typically expose a broad attack surface and their security must
not be an afterthought. The ability to continuously evolve and adapt these systems
to their new environment is decisive to ensure and increase their trustworthiness,
quality and user experience. This includes security mechanisms, which must evolve

Nicolas Ferry, Phu H. Nguyen, Hui Song, Erkuden Rios, Eider Iturbe, Satur Martinez, Angel Rego.
Continuous Deployment of Trustworthy Smart IoT Systems. Licensed under Attribution-NoDerivatives
4.0 International (CC BY-ND 4.0). In Journal of Object Technology, vol. 19, no. 2, 2020, pages 16:1–23.
doi:10.5381/jot.2020.19.2.a16

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a16
http://dx.doi.org/10.5381/jot.2020.19.2.a16


2 · Nicolas Ferry, et al.

along with the smart IoT systems, continuously fixing security defects and dealing
with new security threats. In particular, following the DevSecOps principles [MCP17],
there is an urgent need for supporting the continuous deployment of IoT systems,
including security mechanisms, over IoT, Edge, and Cloud infrastructures [ea15]. As
an evolution of the DevOps movement, which calls for better collaborations between
developers and operators and advocates to further automate deployment to improve
the flexibility and efficiency of the delivery process. DevSecOps promotes security
as an aspect that must be carefully considered in all the development and operation
phases. However, in practice the DevSecOps of a SIS typically face two key obstacles:
(i) the high heterogeneity across Cloud, Edge, and IoT resources and (ii) complex
maintenance and evolution management of the system and its security mechanisms.

In the past years, multiple tools have emerged to support the building as well as
the automated and continuous deployment of software systems with a specific focus on
cloud infrastructures (e.g., Puppet, Chef, Ansible, Vagrant, Brooklyn, OpenTOSCA,
CloudML, etc.). However, very little effort has been spent on providing solutions
tailored to the delivery and deployment of applications across the whole IoT, Edge,
and Cloud space [NFE+19, ea15]. In particular, Cloud and Edge solutions typically
lack languages and abstractions that can be used to support the orchestration of
software services and their deployment on heterogeneous IoT devices possibly with
limited or no direct access to the Internet [NFE+19]. Moreover, there has not been
any IoT-specific deployment method dedicated to support continuous deployment of
security mechanisms together with IoT applications [NFE+19].

In this paper, we present our approach for Generation and Deployment of Smart
IoT Systems (GeneSIS)1. GeneSIS aims to support the continuous deployment of
smart IoT systems over IoT, Edge and Cloud infrastructures. Moreover, our approach
aims to support DevSecOps [MCP17] to promote security-by-design along with agility,
enabling dynamism in security protections. Thus, GeneSIS includes: (i) a domain
specific modelling language to specify the deployment of SIS over IoT, Edge and
Cloud infrastructure with the necessary concepts for security and privacy; and (ii)
a models@run.time deployment engine to enact the orchestration, deployment, and
adaptation of these SIS. More precisely, the main contributions of GeneSIS are:

1. By relying on a model-driven approach and the principle of “model once, generate
anywhere”, it enables to cope with the vast heterogeneity of IoT, Edge and Cloud
infrastructures and control the orchestration and continuous deployment of SIS
that span across this space. Particular focus has been to tackle challenges
imposed by IoT infrastructures that typically include devices with no or limited
access to the Internet.

2. It enables to cope with security and privacy concerns of SIS as it offers neces-
sary concepts to specify security and privacy requirements and to support the
automatic deployment of the associated security and privacy mechanisms.

3. By leveraging the Models@run.time approach, the same language and tool are
used for the continuous deployment of SIS (including the monitoring of the
deployment progress - i.e., monitoring if hosts are still reachable and if software
component are still running, and the dynamic adaptation of a deployment - i.e.,

1A short position paper about the GeneSIS concept was published at COMPSAC’19 [FNS+19].
This paper elaborate the language and models@run.time engine, extending it in particular with
support for security concerns.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 3

modifying how a SIS is deployed), providing a unique model-based representation
of the SIS for both design- and run-time activities.

The remainder of the paper is organized as follows. Section 2 introduces a moti-
vating example used throughout the paper. Section 3 presents the GeneSIS Modeling
language while Section 4 details the supporting execution engine. In Section 5, we
summarize how GeneSIS fulfills the identified requirements and report on the usage
of GeneSIS in the context of an industrial use case. Section 6 presents our analyses
on the state of the art of deployment and orchestration approaches for IoT Systems.
Finally, Section 7 concludes the paper.

2 Motivating Example

In this section, we describe a motivating example inspired by the smart building case
study from the ENACT H2020 project [FSS+18, FDG+20], which needs support for
the continuous deployment of its SIS together with security mechanisms. The SIS
aims at improving user comfort and energy efficiency in the building and is formed by
three different systems as illustrated by the informal diagram shown in Figure 1.

Figure 1 – Architecture of the SIS in the Smart Building example

The first system (namely IoT Smart Space in Figure 1) includes a gateway (RPI-2)
that connects to (i) a wireless sensor/actuator network using the Z-Wave protocol and
(ii) smart devices (Arduinos) physically connected to the gateway via serial port. The
second system (namely Building Control in Figure 1) is a proprietary building control
system that consists of a gateway (RPI-3) and a PLC (Programmable Logic Controller)
that uses building automation protocols (KNX, DALI, PROFIBUS, etc.) and direct
control over the devices through relays or analog/digital outputs. These two systems
communicate using a MQTT broker of the SCADA. Finally, the third system (namely
App-Server) hosts applications that commands the sensors and actuators available in
the other two systems. The App-Server interoperates with the IoT Smart Space and
the building control using a cloud-based instance of the Interoperability SMOOL IoT
middleware [NRS14] that has a semantic broker for connecting heterogeneous devices
or sources of information. More precisely, the App-Server only communicates with
the IoT Smart Space, which in turn forwards authorized and secured messages to

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


4 · Nicolas Ferry, et al.

the Building Control system. For security reason, all the messages between the App-
Server and the IoT Smart Space are checked and controlled by the SecurityEnforcer
component deployed on RPI-2. In other words, the local services on RPI-2 are deployed
together with security mechanisms ensuring that applications are allowed to access
and send authorized actuation commands to the actuators.

For the deployment of the SIS, we consider the following two-stage scenario. In
the first stage, all the software components depicted in Figure 1 with plain border
are deployed. This includes: (i) the security and privacy mechanisms, (ii) the
software components on the Arduino boards, and (iii) the SmartEnergy application.
The SmartEnergy application gets access to sensors’ data to make decisions for
energy efficiency and send commands to control the actuators, e.g., window blinds.
In particular, it maximizes the exploitation of daylights and regulates the in-door
temperature whilst minimizing the energy consumption. If the room is bright because
of daylight, it will switch off the LED-lights, and vice versa. On the other hand, if the
room temperature is high, the IoT Energy Efficiency application may need to close
the window blinds to prevent sunlight heating the room.

In the second stage, a second application (i.e., user comfort) is deployed on the
App-Server. The SecurityEnforcer component needs to be updated with a new security
policy to provide this application with access to sensors and actuators. In addition,
because both applications can be accessed by external services, a generic and secured
API gateway is placed in front of them, making them accessible from external services
via authorised API calls.

This example motivates for the following requirements that are addressed by
GeneSIS:

• Separation of concerns and reusability (R1): A modular, loosely-coupled
specification of the data flow and its deployment is required so that the modules
can be seamlessly substituted and reused. Elements or tasks should be reusable
across scenarios.

• Abstraction and infrastructure independence (R2): It is a need to be
able to specify the orchestration and deployment of SIS over IoT, edge, and
cloud infrastructures in both a device- and platform-independent and -specific
way. In addition, a continuously up-to-date, abstract representation of the
running system is required to facilitate the reasoning, simulation, and validation
of operation activities.

• White- and black-box infrastructure (R3): Support for white- and black-
box devices is required to cope with various degrees of delegation of control over
underlying infrastructures and platforms.

• Automation and adaptation (R4): A fully automated deployment of SIS
over IoT, edge, and cloud resources is required. In addition, the deployment of a
system should be dynamically adaptable with minimal impact over the running
system (i.e., only the necessary part of the system should be adapted).

• Specify security and privacy requirements (R5): GeneSIS should support
the specification of the security mechanisms required and offered by the different
components that form the SIS.

• Automatic deployment and enforcement of generic security mecha-
nisms (R6): Support for continuously deploying security mechanisms should

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 5

be offered. In addition to deploying security mechanisms as any software compo-
nents, generic off-the-shelf security components that can be deployed in different
scenarios and context are required.

• Deployment on devices with no Internet connection (R7): Deployment
of software on tiny devices that do not always have direct access to the Internet
or even the necessary facilities for remote access is required.

Abstraction and infrastructure independence (R2) and automation (R4) are justi-
fied by the need for deploying the system on an infrastructure leveraging the IoT (i.e.,
Arduino board), Edge (i.e., Raspberry PI), and Cloud (i.e., Amazon EC2) spaces.
Separation of concerns (R1), automation and adaptation (R4), and automatic deploy-
ment of generic security mechanisms (R5) are justified by the need for dynamically (i)
adding a new software component to manage the access to the applications and (ii)
updating security policies, with minimal impact on the already running system. The
support for white- and black-box infrastructure (R3) is justified by the need to use,
in the same system, a black-box device (i.e., the Z-Wave transceiver) and white-box
devices (e.g., Raspberry PI). The support for security and privacy requirements (R5)
and enforcement (R6) is justified by the involvement in the system of actuators whose
access should be controlled, and private data must be protected. Finally, support for
deploying software on devices with no Internet connection is justified by the need to
deploy software on the two Arduinos (R7).

In the next sections, we present GeneSIS and how it addresses these requirements.

3 The GeneSIS Modelling Language

The objective of GeneSIS is to support the orchestration and deployment of IoT
systems whose software components can be deployed over IoT, Edge, and Cloud
infrastructures. The target user groups for our framework are thus mainly DevOps
engineers, software developers, and architects.

To deploy an application on the selected target environment, its application
components need to be allocated on host services and infrastructure. More precisely,
what needs to be allocated is the implementations of those components. This is often
referred as deployable artefact [BBF+18]. Some examples of deployable artefacts are
binaries, scripts, etc. A deployable artefact can be physically allocated independently
to multiple hosts (e.g., a Jar file can be uploaded and executed on different Java
runtime environments).

Where and how these deployable artefacts are allocated is specified in a deployment
model. Deployment approaches typically rely on the logical concept of software
artefacts or components [Dea07]. A deployment model is thus a connected graph that
describes software components along with targets and relationships between them
from a structural perspective [BBF+18].

GeneSIS includes a domain-specific modelling language to specify deployment
model – i.e., the orchestration and deployment of Smart IoT Systems (SIS) across the
IoT, Edge, and Cloud spaces. In the following, we provide a description of the most
important classes and corresponding properties in the GeneSIS metamodel as well as
examples in the associated textual syntax. The textual syntax better illustrates the
various concepts and properties that can be involved in a deployment model, and that
can be hidden in the graphical syntax.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


6 · Nicolas Ferry, et al.

3.1 Deployment Models for IoT, Edge and Cloud-based Systems

One of the objectives when we developed the GeneSIS Modelling language was to
keep it with minimal set of concepts, but still easily extensible. Our language follows a
component-based approach in order to facilitate separation of concerns and reusability
(for R1). Here, deployment models can be regarded as assemblies of components.

It is worth noting that we applied the type-instance pattern [AK02] to facilitate
the definition and reuse of generic type of components (addressing R1). As a result,
components can remain device- and platform-independent or specialized into device-
or platform-specific components (for R2). The type part of the GeneSIS modelling
language metamodel is depicted in Figure 2.

DeploymentModel

 properties : Property

GeneSISElement

 properties : Property

Component

 properties : Property
Link

 properties : Property

SoftwareComponent

 properties : Property

InternalComponent

 properties : Property

ExternalComponent

 properties : Property

Resource

startCommand : EString
stopCommand : EString
configureCommand : EString
installCommand : EString
 properties : Property

InfrastructureComponent

credentials : EString
ip : EString
port : EString
physicalPort : EString
needDeployer : EBoolean = false
hardwareCapabilities : EString
 properties : Property

DockerResource

image : EString
buildfile : EString
 properties : Property

SSHResource

envVariable : EString
credentials : EString
 properties : Property

Containment

 properties : Property

Communication

isController : EBoolean = false
isDeployer : EString
 properties : Property

AnsibleResource

playbook_host : EString
credentials : EString
playbook_path : EString
 properties : Property

Port

 properties : Property

ProvidedExecutionPort

 properties : Property

RequiredExecutionPort

 properties : Property

ProvidedCommunicationPort

portNumber : EInt
 properties : Property

RequiredCommunicationPort

portNumber : EInt
isMandaroty : EBoolean = false
 properties : Property

Capability

control_id : EString
Description : 

SecurityCapab... HardwareCapa...ExecutionCap...

[0..*] elements

[0..1] resources

[0..*] providedExecutionPorts

[0..1] composite

[0..*] providedCommunicationPorts

[0..*] requiredCommunicationPorts

[1..1] requiredExecutionPort

[1..1] hostedBy

[1..1] hosted[1..1] in [1..1] out

[0..1] securityCapability
[0..1] executionCapability

[0..1] RequireHardwarecapability

[0..1] OfferHardwareCapability

Figure 2 – Type part of the GeneSIS language metamodel

A Deployment Model consists of GeneSISElements. Each GeneSISElement inherits
from NamedElement2 and thus has a unique name. In addition, they can all be
associated with a list of properties in the form of key-value pairs. The two main types
of GeneSISElements are Components and Links.

A Component represents a reusable type of node that will compose a Deployment-
Model. A Component can be a SoftwareComponent representing a piece of software
to be deployed on a host (e.g., the Temp&HumiditySensorReader Arduino sketch to
be deployed on Arduino-1). A SoftwareComponent can be an InternalComponent
meaning that it is managed by GeneSIS (e.g., the instance of MQTT to be deployed on
RPI-3), or an ExternalComponent meaning that it is either managed by an external
provider (e.g., the SMOOL IoT middleware offered as a service) or hosted on a
blackbox device (e.g., Z-Wave transceiver) (addressing R3). A SoftwareComponent
can be associated with Resources (e.g., scripts, configuration files) adopted to manage
its deployment life-cycle (i.e., download, configure, install, start, and stop). In
particular, there are three main predefined types of resources: Docker-Resource (see
Listing 1), SSH-Resources, and AnsibleResources.
{

"_type": "/internal/mqtt",

2Due to space limitation, the NamedElement class is not represented in Figure 2

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 7

"name": "MQTTBroker",
"properties": [],
"version": "0.0.1",
"provided_execution_port": [{

"name": "6c4b4d0d-d9d7-4e70-98e8-0e9f3b302285"
}],
"docker_resource": {

"name": "f3e3feba-056e26a7-9225-5b9edf5f1820",
"image": "eclipse-mosquitto:1.6.8",
"command": "",
"port_bindings": {

"1883": "1883",
"9001": "9001"

}},
"required_execution_port": {

"name": "80c0d0cb-421f-411d-8c75-bd01e56d29fd",
"needDeployer": false

},
"provided_communication_port": [{

"name": "bd3provf-f691-4a46-b9cd-14bab0f9a8e0",
"port_number": "1883",

}],
"required_communication_port": [{

"name": "bd3f34af-f691-4a46-b9cd-14bab0f9a8e0",
"port_number": "1883",
"isMandatory": false

}]
}

Listing 1 – An example of Internal component

An InfrastructureComponent provides hosting facilities (i.e., it provides an
execution environment) to SoftwareComponents. The properties IP and port represent
the IP address and port that can be used to reach the InfrastructureComponent (see
Listing 2). The property needDeployer depicts that a local connection is required to
deploy a SoftwareComponent on an InfrastructureComponent via a Physical-Port
(e.g., the Arduino board can only be accessed locally via serial port, see Listing 2).
This property is typically used for devices with no direct access to Internet, which can
only be reached indirectly via other devices (e.g., a RaspberryPi gateway), configured
by GeneSIS (addressing R7).
{

"_type": "/infra/device",
"name": "arduino1",
"properties": [],
"version": "0.0.1",
"provided_execution_port": [{

"name": "a0bfe966-a952-47e4-8580-c36dc288e57d",
"capabilities": [{
"_type": "/capability/hardware_capability",
"name": "bus_i2c",
"control_id": "I2C",
"description": "Temperature and Humidity sensors plugged I2C"

}]
}],
"port": [],
"physical_port": "/dev/ttyACM0",
"device_type": "arduino",
"needDeployer": true

}

Listing 2 – An example of Infrastructure component

Components are connected through two kinds of Ports: communication ports
and execution ports. A communication port represents a communication interface
of a component. A ProvidedCommunicationPort provides a feature to another com-
ponent (e.g., MQTT provides an interface on port 1883, see Listing 1), while a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


8 · Nicolas Ferry, et al.

RequiredCommunicationPort consumes a feature from another component. The
property isMandatory of RequiredCommunicationPort represents that the Internal-
Component depends on this feature (e.g., the ProxyController component hosted on
RPI-3 will not work if the communication with the PLC is not properly set up, see
Listing 3). The property portNumber represents the logical port that can be used to
interact with the component.
{

"name": "Proxy_to_TempAndHumidity",
"properties": [],
"src": "/ProxyController/53a937cd-492c-a1d8-dc2ea16d8154",
"target": "/TempAndHumidityReader/16826ee6-4349-894b-66cbfbbe5284",
"isControl": true,
"isDeployer": true,
"isMandatory": false

}

Listing 3 – An example of Communication

An execution port represents the execution interface of a component (i.e., the
execution environment offered by a component to other components). A Provided-
ExecutionPort represents that the component provides execution environment fa-
cilities (e.g., Arduino-1 provides an execution environment for the Temp&Humidity-
SensorReader sketch, see Listing 2), while a RequiredExecutionPort represents that
the internal component requires an execution environment from another component
(e.g., the SmartEnergyApp requires hosting from a Docker engine). Only internal
components can have a RequiredExecutionPort since they are managed by GeneSIS.

There are two main types of Links: Hostings and Communications. A Hosting
depicts that an InternalComponent will execute on a specific host. This host can
be any component, meaning that it is possible to describe the whole software stack
required to run an InternalComponent. A Hosting can be associated with Resources
specifying how to configure the components so that the contained component can
be deployed on the container component. A Communication represents a commu-
nication binding between two SoftwareComponents. A Communication can be as-
sociated with Resources specifying how to configure the components so that they
can communicate with each other. Finally, the property isDeployer specifies that
the InternalComponent (one of the endpoint of the Communication) hosted on an
InfrastructureComponent with the needDeployer property should be deployed from
the host of the other SoftwareComponent (the other endpoint of the Communication)
(e.g., the artefact to be executed on Arduino-1 will be deployed from the RPI-2). This
property is important as several host may have a local access to the host with limited
Internet access but only one should run the deployment agent. The property isLocal
indicates that the source and target of the communication have to be deployed on the
same host.

GeneSIS is an extensible language. Subtypes of SoftwareComponents can be
added to the GeneSIS modelling language in the form of plugins, in order to support
user-defined elements for deployment. These plugins can be dynamically loaded in the
supporting execution engine.

3.2 Specific Support for Security

The concept of Capability can be used to specify that a component provides or
requires a specific feature. Capabilities are used to validate that one component
is fulfilling the requirements from another one. A Capability is defined by a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 9

description and a controlId, which is a unique identifier for different type of
capabilities. Capabilities are attached to Ports. A required Port may require
SecurityCapabilities (i.e., the SmartEnergyApplication can only be accessed with
proper authorizations, see Listing 4) (addressing R5) and ExecutionCapabilities
(i.e., a specific execution environment or a feature is required for the component
to execute). By contrast, a provided Port may offer SecurityCapabilities and
ExecutionCapabilities. For a deployment model to be valid, all the required capa-
bilities must match a provided capability.
{

"name": "fe1fdedf-2736-4c1e-97ee-a4584852bf4d",
"capabilities": {

"_type": "/capability/security_capability",
"name": "Access_control",
"control_id": "AC1/OAuth",
"description": "External services can only access the app when authenticated"

},
"port_number": "1880"

}

Listing 4 – An example of Port with SecurityCapabilities

The ports attached to an InfrastructureComponent can expose a set of hardware-
Capabilities, which represents the interfaces toward specific hardware facilities
attached to the component (i.e., the temperature and humidity sensors attached to
Arduino-1 are accessible via I2C, see Listing 2). This is important as (i) the software
component that will use the hardware facility must know how to access it and (ii)
in case a software component is using a specific interface for accessing a hardware
facility we must ensure that the required interface matches what is offered by the
InfrastructureComponent.

Finally, the property isController depicts that the SoftwareComponent associ-
ated to the attribute is controlled by the other (e.g., all messages going to the Arduino
should pass through the service hosted on RaspberryPi, see 3).

4 The GeneSIS Deployment Engine

From a deployment model specified using the GeneSIS Modelling language, the
GeneSIS deployment engine is responsible for: (i) provisioning cloud resources, (ii)
deploying the SoftwareComponents, (iii) setting up communication between them,
and (iv) monitoring the status of the deployment.

4.1 Overall Architecture

The GeneSIS deployment engine implements the Models@run.time pattern to sup-
port the dynamic adaptation of a deployment with minimal impact on the running
system (addressing R4). Models@run.time [BBF09] is an architectural pattern for
dynamic adaptive systems that leverage models as executable artefacts that can be
applied to support the execution of the system. Models@run.time provides abstract
representations of the underlying running system, which facilitates reasoning, analysis,
simulation, and adaptation. A change in the running system is automatically reflected
in the model of the current system. Similarly, a modification to this model is enacted
on the running system on demand. This causal connection enables the continuous evo-
lution of the system with no strict boundaries between design- and run-time activities
(addressing R2).

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


10 · Nicolas Ferry, et al.

Figure 3 – The GeneSIS models@run.time architecture

Our engine is a typical implementation of the Models@run.time pattern. When a
target model is fed to the deployment engine, it is compared (see Diff in Figure 3) with
the GeneSIS model representing the running system. Finally, the adaptation engine
enacts the adaptation (i.e., the deployment) by translating the difference between the
current and the target models into one or several of the following deployment steps.
After the deployment, the engine synchronize the current GeneSIS model with the
actual deployment result.

Overall a deployment process typically consists in the following steps:

1. Check infrastructure: This step consists in checking if the hosts specified in
the deployment model are reachable (e.g., is the docker remote API accessible
at the address specified in the deployment model).

2. Provision and instantiate resource: In the case of cloud solutions, this step
consists in provisioning the cloud resources and running the proper execution
environment as specified in the deployment model. For container technologies,
this step consists in pulling the image of the container and running it with the
set up specified in the deployment model (e.g., access to file system, specifying
open ports).

3. Set up host environment: This step consists in preparing the environment
for installation and configuration. In particular, environment variables can be
exported to expose specific data or deployment information (e.g., IP address of
a virtual machine provisioned during deployment, ports numbers).

4. Installation and configuration: This step consists in running scripts and
commands to configure and install software on the host. This includes ensuring
that the software components in the deployment topology can communicate with
each other.

5. Start: This step consists in starting the deployed software artefacts.

When decided by the end-user, the GeneSIS deployment engine can deploy on
a target InfrastructureComponent a monitoring agent. This agent is an instance

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 11

of netdata3 and provide information about the performance and health status of the
InfrastructureComponent, including data about the SoftwareComponents it hosts.

Finally, the deployment engine can delegate part of its activities to deployment
agents running on the field (see Section 4.2.2 for more details).

In the following subsections, we detail the specific support offered by GeneSIS for
(i) deployment on Edge and IoT infrastructures, including devices with no or limited
access to the Internet, and (ii) security.

4.2 Support for Continuous Deployment on IoT and Edge Infrastructures

GeneSIS provides the following support for the continuous deployment of Software
components on IoT and Edge devices.

4.2.1 ThingML Components for Platform and Hardware Independent Deployable Artefacts

Contrary to the Cloud, IoT and Edge resources are typically very heterogeneous
and cannot always benefit from the abstraction offered by virtualization techniques
as they potentially provide limited computing and storage capacities. The software
components to be deployed on such resources are typically tailored for them (in
term of optimization and programming language, etc.), making their reuse difficult.
From the GeneSIS perspective, this dramatically reduces the possibilities to adapt
a deployment (e.g. migration of component from one host to another) and to reuse
SoftwareComponents across deployments, leading to an explosion in the combinatory
of component type (potentially one component type per IoT and Edge device).

To overcome this issue, GeneSIS offers specific support for the deployment of
ThingML components. It is worth noting that (i) a ThingML component is a regular
InternalComponent (it inherits from InternalComponent) and (ii) GeneSIS is not
bound to ThingML components (i.e., GeneSIS can be used without).

ThingML is an open source IoT framework that includes a language and a set
of generators to support the modelling of system behaviours and their automatic
derivation across heterogeneous and distributed devices on the IoT and edge spaces.
The ThingML code generation framework has been used to generate code in different
languages, targeting around 10 different target platforms (ranging from tiny 8 bit
microcontrollers to servers) and 10 different communication protocols [HFMH16].
ThingML models can be platform specific, meaning that they can only be used to
generate code for a specific platform (for instance to exploit some specificities of the
platform); or they can be platform independent, meaning that they can be used to
generate code in different languages.

The deployment of a ThingML InternalComponent by GeneSIS, not only consists
in the deployment of the code generated by ThingML on a specific platform, but also
in the actual generation of this code. The GeneSIS deployment engine proceed as
follows. It first identifies the platform on which the ThingML InternalComponent
should be deployed. Then it consumes the ThingML models attached to the component
and uses ThingML to generate the code for the identified platform. If required, the
generated code is further built and packaged before being deployed. Thanks to this
mechanism, a ThingML InternalComponent can easily be migrated from one host to
another. In other words, this means that the same ThingML code can be dynamically
migrated from one device and platform to another without necessarily relying on a
virtualization technology for lower footprint.

3https://github.com/netdata/netdata

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


12 · Nicolas Ferry, et al.

4.2.2 Deployment Agents

It is not always possible for the GeneSIS deployment engine to directly deploy
software on all hosts. For instances, tiny devices do not always have direct access
to the Internet or even the necessary facilities for remote access (in such case, the
access to the Internet is typically granted via a gateway) and for specific reasons (e.g.,
security) the deployment of software components can only be performed via a local
connection (e.g., a physical connection via a serial port). In such case, the actual
action of deploying the software on the device has to be delegated to the gateway
locally connected to the device.

The GeneSIS deployment agent aims at addressing this issue (addressing R7). It
is generated dynamically by GeneSIS based on the artefact to be deployed and its
target host. It is implemented as a Node-RED application. The typical architecture
of a deployment agent is depicted in Figure 4.

Figure 4 – Architecture of a deployment agent

This architecture is inspired by the four main steps of a deployment procedure and
is implemented with Node-RED nodes from the following four groups.

Code generation nodes. The aim of this type of node is to generate, from source
code or specification languages, the code or artefact to be deployed on a target device.
In the context of our motivating example, we created a ThingML compilation node,
which consumes ThingML models and generates code in a specific language. The
desired language is specified as a property of the node (e.g., Arduino sketch in our
example). The code generation is achieved by using the ThingML compiler. In order to
trigger a compilation, code generation nodes consume as input a start compilation
message. Once the compilation is successfully completed, they send a generation
success message that includes the location of the generated code. Finally, a compile
on start property can be set to true enabling to trigger the compilation when the
node is instantiated. By contrast, the deletion of an instance of the node results in
the deletion of the generated code.

Deployment configuration nodes. This type of node aims at preparing the actual
deployment of a software component (being generated by code generation nodes or
not). This typically consists in generating configuration files. For instance, we
created a Docker deployment configuration node that generates a “docker-compose"
file as well as the relevant Dockerfile files depending on the target device. These
nodes typically consume messages from the code generation nodes – i.e., generation
success messages that include details about the location of the artefact to be deployed.
The retrieval of such a message triggers the actual generation of the configuration
file. Once this process is completed, it generates a message containing the location
of both the artefact to deploy and the configuration files. Removing an instance of
configuration nodes results in the deletion of all the configuration files it has generated.

Deployment nodes. These nodes aim at enacting the deployment of a software
component on a specific target. In our motivating example, we created an Arduino
deployment node that (i) builds and uploads an Arduino sketch on the Arduino board

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 13

using the Arduino CLI4 and (ii) installs the libraries required for its proper execution.
These nodes typically consume messages from the configuration nodes. Removing an
instance of a deployment node results in the termination of the deployed software (e.g.,
killing a docker container, or deploying a dummy Arduino sketch).

Communication nodes. After deployment, it can be important to communicate
with the deployed software artefacts, for instance to monitor the status of a deployment.
Communication nodes are regular Node-RED I/O nodes such as serial port for Arduino
board or HTTP requests for REST services. In any case, a MQTT node is added to
the agent and is used to provide GeneSIS with information about the status of a
deployment (i.e., the agent inform the GeneSIS deployment engine about the state
and result of a deployment). Thanks to this modularity, components from each of these
groups can be seamlessly and dynamically composed for different types of deployments.
Once a deployment agent has successfully completed its activities (i.e., the deployment
is completed) the GeneSIS deployment engine automatically terminates the agent.

4.3 Support for Security

The GeneSIS deployment engine provides not only general support for deploying
security components as any other components but also customised support (for R6).

4.3.1 General Support for Security Components

GeneSIS supports the deployment of security components as any other software
components. Their deployment and configuration are managed using Resources,
meaning they can be configured via exposed APIs and configuration files. GeneSIS
offers a library of off-the-shelf security components that can be selected for instantiation
in the deployment model. For example, built-in cryptography components can be
selected and configured to provide secure communication between IoT components
using SSL/TLS. Another example is the security API gateway presented in our
motivating example (see Section 2), which is configured to secure the access to the
smart energy and user comfort applications. A security component to be deployed
together with an IoT application can be declared in GeneSIS with SecurityCapabi-
lities in a provided port. A required port of a SoftwareComponent that requires a
matching SecurityCapabilities can be bound with the provided port of the security
component that provides such SecurityCapabilities. Before enacting a deployment,
the GeneSIS deployment engine validates the correctness of the provided deployment
model. In particular, it ensures that all the required SecurityCapabilities match a
provided SecurityCapability.

4.3.2 Reusable Security Components for IoT Platforms

IoT systems are typically built on top of IoT platforms such as SMOOL or FIWARE5,
which often act as an intermediary for the communications between the things within
the IoT environment. They provide a proper ground for building mechanisms, in
different applications and scenarios, to control and monitor these communications.

GeneSIS provides a generic sub-type of InternalComponent for the deployment of
security mechanisms and policies built on top of such IoT platforms. In this paper, we
present its application to the SMOOL IoT platform, which is used in our motivating

4https://playground.arduino.cc/Learning/CommandLine
5https://www.fiware.org

Journal of Object Technology, vol. 19, no. 2, 2020

https://playground.arduino.cc/Learning/CommandLine
https://www.fiware.org
http://dx.doi.org/10.5381/jot.2020.19.2.a16


14 · Nicolas Ferry, et al.

example. SMOOL [NRS14] is an open-source middleware for IoT smart spaces,
developed and maintained by Tecnalia. This platform consists of a server (Semantic
Information Broker - SIB) and tools for creating clients (or Knowledge Processors -
KPs) in Java, C++ and other languages. The created clients can communicate by
using different protocols such as TCP, Bluetooth or WebSockets. The structure of the
messages exchanged among clients follows the SMOOL OWL ontology.

The SMOOL ontology embeds the necessary concepts to attach metadata to message
payloads, in particular related to the following security concepts: Authentication,
Authorization, Confidentiality, Integrity, and Non-repudiation. For each of these, a
security type and a security data can be defined (e.g., for Authorization, OAuth 2.0
can be a security type and the access token can be the security data). By using
security properties as semantic data, SMOOL provides a mean to easily embed security
monitoring and control to existing IoT environments (security-by-design). DevOps
teams can define SMOOL clients that leverage these security properties to check and
enforce security concepts on messages requiring security controls. This can be done with
the SMOOL clients built-in security metadata checker to verify messages exchanged
among them. In cases where a deeper control is needed, a specialised security metadata
checker can be included in SMOOL clients, with additional privileges to watch and
process the security metadata in messages exchanged, in the same way it is done with
business logic concepts such as sensed temperature or gas values. This provides a
fine-grained control on critical messages that may have significant security impact in
the IoT system such as orders to actuators. More precisely, a client code can conduct
security checks based on policies to be fulfilled by ontology concepts by using any of
these options: (i) the default security metadata checker (for minimal configuration),
(ii) a custom security metadata checker implemented in the development phase (for
full control of security), and (iii) a custom security metadata checker for integration
with external security services.

GeneSIS provides the support to relieve developers from manually specifying and
maintaining security monitoring and control mechanisms in the code of a SMOOL
client. Instead, a developer can define its own SMOOL client, focusing on its business
logic. Once the client is ready, s/he can specify how to deploy it also indicating the
security and monitoring mechanisms that should apply to its SMOOL client. GeneSIS
will then inject within the SMOOL client the necessary code to perform the security
checks before actually deploying it.

To do so, we created a generic security component as a subtype of Internal-
Component that represents a SMOOL client as a deployable artefact. This client can
follow any of the security check options discussed above and is implemented with
ThingML code, which integrates (i) the necessary SMOOL libraries and (ii) the
SMOOL client business logic. The main rationale behind this choice is the following.
ThingML offers an extra abstraction layer that provides the ability to wrap the code and
dependencies that compose a SMOOL client and to inject into it the necessary security
code. In addition, it provides GeneSIS with a standard and platform-independent
procedure to generate, compile, configure, and deploy the implementation of the
security mechanisms. Similar approach could be applied to other IoT platform. When
deploying this component, the GeneSIS deployment engine injects the security policy
into the ThingML code of the SMOOL client, before it compiles this code to generate
the actual implementation of the SMOOL client with the corresponding security policy.
Finally, the application is built and deployed. This component exposes a property
securityPolicy that represents the security policy to be implemented by the security

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 15

mechanism (i.e., the policy to be adopted by the SMOOL security metadata checker).
In the case of our motivating example, we control the actuation orders to change the
position of the blinds. Every actuation order must be accompanied by a valid security
key before executing the order as depicted in Listing 5. In this way, GeneSIS allows
DevOps teams to reconfigure and update security mechanisms by design, in line with
the evolution of IoT applications and the development of security and privacy risks.
{

"_type": "/internal/SMOOLSecurity",
"name": "SecurityEnforcer",
...
"security_Policy": [["BlindPositionActuator", "Authorization"]],
...

}

Listing 5 – Security policy

5 Synthesis

In this section, we discuss how our approach addresses the requirements defined
in Section 2 and we report on the use of GeneSIS in the context of the Kubik
laboratory6. The Kubik test facility is a three floors smart building owned by Tecnalia
and designed for testing and research. This infrastructure allows to develop and
validate innovative products and systems to optimize energy efficiency in buildings,
from its conceptualization to its implementation. The IoT system deployed in the
laboratory is similar to the one presented in our motivating example. The GeneSIS
deployment model of the system is depicted in Figure 5 using the graphical syntax
of GeneSIS. Excerpt of the deployment model in the textual syntax are presented
in Section 3, whilst the whole deployment model can be found in the GeneSIS code
repository7. In the following, we provide details about the actual implementation of
the smart building’s components.

Figure 5 – GeneSIS deployment model

6https://www.tecnalia.com/images/stories/Catalogos/CAT_KUBIK_EN_dobles.pdf
7https://gitlab.com/enact/GeneSIS/docs/examples

Journal of Object Technology, vol. 19, no. 2, 2020

https://www.tecnalia.com/images/stories/Catalogos/CAT_KUBIK_EN_dobles.pdf
https://gitlab.com/enact/GeneSIS/docs/examples
http://dx.doi.org/10.5381/jot.2020.19.2.a16


16 · Nicolas Ferry, et al.

The Temp&HumiditySensorReader.ino is an Arduino program that reads the
temperature and humidity values from the Grove - Temperature&Humidity Sensor Pro
and sends the data to the Sensor Service via serial port. The SmartDisplay.thingml
is a ThingML program to display messages on the TFT LCD Arduino display. The
Sensor Service is a NodeJS application that receives the temperature and humidity
data. Similarly, the ProxyController component is implemented in NodeJS. The
user comfort and smart energy applications are implemented using Node-RED, whilst
the ExpressGateway component is an instance of the NodeJS Express API Gateway
framework8. The SMOOL server is deployed in the Cloud and is implemented in
Java. The SCADA exposes an MQTT interface and is represented as the MQTT
software component. Finally, the Security Enforcer is an application generated by
using ThingML for deployment of security behaviour, and SMOOL for connectivity
and application logic.

Separation of concerns and reusability (R1):
As depicted in Figure 5, several component types were reused (e.g., Node-RED
components) in the deployment model. In addition, new component types were
created and integrated to the GeneSIS component repository (e.g., ExpressGateway,
MQTTBroker). These components are typical candidates for reuse in other scenarios.
The component-based design of the GeneSIS modelling language ensures that the
provisioning and deployment models are modular and loosely-coupled. In addition,
the type-object pattern in the metamodel of the GeneSIS modelling language ensures
that component types can be reused across several models.

Abstraction and Infrastructure independence (R2):
In the context of Kubik we demonstrated the deployment of software component over
the whole IoT, Edge and Cloud space. By leveraging MDE techniques, the GeneSIS
modelling language offers a single domain-specific modelling language and abstraction
that enables the management of application deployed on IoT, Edge, and Cloud
infrastructure. Independently of IoT layers, these resources as well as the software
components can be abstracted in a homogeneous way as components. In addition,
by applying the Models@run.time pattern, the GeneSIS execution environment
provides an abstract and up-to-date representation of the running system that can be
dynamically manipulated.

White- and black-box infrastructure (R3):
In the context of Kubik, both the SMOOL server and the PLC are considered
as ExternalComponent not managed by GeneSIS. Nevertheless, it is possible to
seamlessly orchestrate these components with all the other InternalComponents.
The GeneSIS modelling language embeds the necessary concepts for the GeneSIS
execution environment to distinguish and orchestrate white-box (i.e., resources on top
of which GeneSIS can manage a software stack) and black-box resources (i.e., resources
coming with a software stack that cannot be manipulated). More specifically, we refer
here to the concept of InternalComponent and ExternalComponent, respectively.

Automation and adaptation (R4):
From a deployment model, GeneSIS supports the fully automated deployment of
a SIS. By applying the Models@Run-time pattern GeneSIS provides developers

8https://www.express-gateway.io/

Journal of Object Technology, vol. 19, no. 2, 2020

https://www.express-gateway.io/
http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 17

with the means to adapt the deployment of a SIS. In our evaluation we updated the
deployment by adding the User Comfort application, the ExpressGateway, and the
SecurityEnforcer component. Thanks to the adoption of the Models@run.time pattern,
only these parts of the application were adapted.

Specify Security Requirements (R5):
As depicted in Section 3, when modelling the deployment of the Kubik smart IoT
system, several required and provided SecurityCapabilities were specified. In
particular related to the need for the ExpressGateway and the SecurityEnforcer,
GeneSIS provides mechanisms for specifying security and privacy capabilities provided
and required by a component.

Automatic Deployment and Enforcement of Generic Security Mechanisms (R6):
GeneSIS offers support for the deployment of security mechanisms. In particular, a
specific component type can be used for the generic deployment of security monitoring
and control mechanisms on IoT platforms. In the context of Kubik, the RPI3 (Building
Control) and the two Arduinos depicted in Figure 5 cannot be accessed without proper
authorization. The smart building apps are built on top of the SMOOL platform
and uses clients implemented in Java. The GeneSIS-SMOOL security component
was used to deploy the SecurityEnforcer component, automatically injecting this
security policy into the SMOOL client. The SecurityEnforcer will allow passing
only messages of type “BlindPositionActuator” containing some specific data in the
Authorization concept. The security_policy property of the SecurityEnforcer
InternalComponent was thus specified as indicated in Listing 5. The security policy
was injected in the ThingML code of the SMOOL client and compiled to Java, in
turn. The proper Maven manifest was automatically created and used to build the
application before deployment.

Devices with no Internet Connection (R7):
By leveraging the concept of deployment agent, the GeneSIS execution environment
can be extended to Edge devices, which, in turn, can deploy software components
on devices only accessible locally. In the context of Kubik, the two Arduinos in the
building do not offer remote access and can only be accessed via their serial connections
with RPI-2. The deployment of the software components on these devices must be
enacted by a deployment agent. Figure 6 depicts the deployment agent generated
to deploy the SmartDisplay.thingml component. From the left to the right, the
first node is a code generation node, which generates Arduino code from a ThingML
program. The second is a deployment node responsible for deploying the generated
Arduino code onto the Arduino board. The third node is used to format the status
message, which is sent back to the GeneSIS execution engine by the last node.

Figure 6 – Deployment agent generated by GeneSIS

By addressing all these requirements, and in particular R6 and R4, GeneSIS
provides support for the DevSecOps of SIS. In the context of the smart building,
once the User Comfort application has been added, its security policy has also been
enforced in the SecurityEnforcer. Later, to enable remote accesses via authorised
calls to some services of the Smart Energy and the User Comfort applications, an

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


18 · Nicolas Ferry, et al.

Express Gateway has been added and deployed by GeneSIS. These function and
security updates show how GeneSIS supports DevSecOps for the evolution of the
smart building.

6 Related Work

Software deployment has been evolving from deployment of component-based commer-
cial desktop software [PDC01], deployment of component-based distributed applica-
tions [Gro06], to deployment on Cloud resources, and more recently deployment for IoT
systems over IoT, Edge, and Cloud infrastructure. Even though some core concepts
from deployment of component-based applications such as capability, port in [Gro06]
can be inherited for deployment on Cloud or IoT resources, they need to be tailored
and customized to fully address the specificities of these environments. For some years
now, multiple tools have been available on the market to support the deployment
and configuration of software systems, e.g., Puppet9, Chef10. These tools were first
defined as configuration management tools aiming at automating the installation and
configuration of software systems on traditional IT infrastructure. Recently, they have
been extended to offer specific support for deployment on cloud resources. Meanwhile,
new tools emerged and were designed for deployment of cloud-based systems or even
multi-cloud systems (i.e., systems deployed across multiple cloud solutions from differ-
ent providers) such as CloudMF [FCS+18], OpenTOSCA [dSBK+16], Cloudify11, and
Brooklyn12. Those are tailored to provision and manage virtual machines or PaaS
solutions. In addition, similar tools focus on the management and orchestration of
containers, e.g., Docker Compose13, Kubernetes14. Opposed to hypervisor virtual
machines, containers such as Docker containers leverage lightweight virtualization
technology, which executes directly on the operating system of the host. As a result,
Docker shares and exploits a lot of the resources offered by the operating system thus
reducing containers’ footprint. These characteristics mean container technologies are
not only relevant for Cloud but can also be used on Edge devices.

Besides, few tools such as Resin.io and ioFog are specifically designed for the IoT.
In particular, Resin.io provides mechanisms for (i) the automated deployment of code
on devices, (ii) the management of a fleet of devices, and (iii) the monitoring of the
status of these devices. Resin.io supports the following continuous deployment process.
Once the code of the software component is pushed to the Git server of the Resin.io
Cloud, it is built in an environment that matches the targeted hosting device(s) (e.g.,
ARM for a Raspberry Pi) and a Docker image is created before being deployed on the
hosting device(s). However, Resin.io offers limited support for the deployment and
management of software components on tiny devices that cannot host containers.

Regarding the deployment of elements of hardware and software that are to operate
in harmony within a networked system, the Software Communications Architecture
(SCA) [ADR09] and the IoT deployment model of GeneSIS share some basic concepts.
The SCA is an open architecture that specifies a standardized infrastructure for a
software-defined radio (SDR). The SDR SCA specification has commonalities with our

9https://puppet.com/
10https://www.chef.io/chef/
11http://cloudify.co/
12https://brooklyn.apache.org
13https://docs.docker.com/compose/
14https://kubernetes.io

Journal of Object Technology, vol. 19, no. 2, 2020

https://puppet.com/ 
https://www.chef.io/chef/
http://cloudify.co/
https://brooklyn.apache.org
https://docs.docker.com/compose/
https://kubernetes.io
http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 19

GeneSIS approach in particular the concepts of components, ports, and resources
[ADR09]. However, the SDR SCA specification requires an SCA-compliant system for
elements of hardware and software to operate within. In other words, the SCA is tightly
tied to the specific needs for standardizing the development of SDRs, which is much
less heterogeneous than the IoT domain in terms of communication means, systems
of systems, which may span all the layers of Cloud, Edge, IoT devices. Moreover,
the SCA does not have any concept about supporting the deployment on devices not
directly accessible (i.e., what GeneSIS is able to do with deployment agents).

In [NFE+19], we conducted a systematic literature review (SLR) to systematically
reach a set of 17 primary studies of orchestration and deployment for IoT. As for
the continuous deployment tools mentioned before, these approaches mainly focus on
the deployment of software systems over edge and cloud infrastructures whilst little
support is offered for the IoT space. When this feature is available, it is often assumed
that a specific bootstrap is installed and running on the IoT device. A bootstrap is a
basic executable program on a device, or a run-time environment, which the system in
charge of the deployment rely on (e.g., Docker engine). Approaches such as Calvin
run-time [MBS+17], WComp [LRRT15], or D-LITE [CGDLR11], D-NR [GBLL15]
all rely on their specific run-time environment where mechanisms such as dynamic
component loading or class loading are typically used. Contrary to these approaches,
GeneSIS does not rely on a specific bootstrap but instead leverage common run-time
environments such as Docker, Node.js, SSH.

To the best of our knowledge, none of the approaches and tools aforementioned
have specifically been designed for supporting deployment over IoT, edge, and cloud
infrastructure. In particular, they do not provide support for deploying software
components on IoT devices with no direct or limited access to internet.

7 Conclusion

In this paper, we have presented the GeneSIS modelling language and framework.
GeneSIS enables the continuous deployment and orchestration of Smart IoT Systems
(SIS) by leveraging upon model-driven techniques and methods. The GeneSIS
modelling language supports the platform-independent specification of SIS deployment
including software pieces installation and configuration over IoT, Edge, and Cloud
resources, which are modelled in an endogenous way through the concept of component.
The language expressiveness has been optimised to specify: IoT components, security
concerns, dependencies between deployable artefacts, as well as how and from where
they should be deployed. The associated Models@Run.time deployment environment
provides mechanisms for the dynamic provisioning, deployment, and adaptation of
SIS, including specific support for the deployment of security mechanisms. This
environment can delegate part of its duty to deployment agents, that are dynamically
generated and can execute on the field when devices cannot be accessed remotely.
Our case study shows how GeneSIS enables the security-by-design of SIS that are
able to modulate a variety of security features at operation depending on real needs.
The system requirements may change during its lifetime and still the re-deployment
by GeneSIS of enhanced security features into already running applications makes
it possible that SIS adapt to evolving conditions and threats while keeping their
trustworthiness.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


20 · Nicolas Ferry, et al.

Acknowledgments The research leading to these results has received funding from
the European Commission’s H2020 Programme under grant agreement numbers 780351
(ENACT).

References

[ADR09] C. R. Aguayo Gonzalez, C. B. Dietrich, and J. H. Reed. Understanding
the software communications architecture. IEEE Communications
Magazine, 47(9):50–57, 2009.

[AK02] Colin Atkinson and Thomas Kühne. Rearchitecting the UML infras-
tructure. ACM Transactions on Modeling and Computer Simulation,
12(4):290–321, 2002.

[BBF09] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Mod-
els@run.time. IEEE Computer, 42(10):22–27, 2009.

[BBF+18] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessandro
Rossini, Arnor Solberg, Manuel Wimmer, Gerti Kappel, and Frank
Leymann. A systematic review of cloud modeling languages. ACM
Comput. Surv., 51(1):22:1–22:38, February 2018.

[CGDLR11] Sylvain Cherrier, Yacine M Ghamri-Doudane, Stéphane Lohier, and
Gilles Roussel. D-lite: Distributed logic for internet of things services.
In 2011 International Conference on and 4th International Conference
on Cyber, Physical and Social Computing, pages 16–24. IEEE, 2011.

[Dea07] Alan Dearie. Software deployment, past, present and future. In Future
of Software Engineering, 2007. FOSE’07, pages 269–284. IEEE, 2007.

[dSBK+16] Ana C Franco da Silva, Uwe Breitenbücher, Kálmán Képes, Oliver
Kopp, and Frank Leymann. Opentosca for iot: automating the de-
ployment of iot applications based on the mosquitto message broker.
In Proceedings of the 6th International Conference on the Internet of
Things, pages 181–182. ACM, 2016.

[ea15] Andreas Metzger et al. Cyber physical systems: Opportunities and
challenges for software, services, cloud and data. NESSI white paper,
2015.

[FCS+18] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym
Lushpenko, and Arnor Solberg. Cloudmf: Model-driven management
of multi-cloud applications. ACM Transactions on Internet Technology
(TOIT), 18(2):16, 2018.

[FDG+20] Nicolas Ferry, Jacek Dominiak, Anne Gallon, Elena González, Eider
Iturbe, Stéphane Lavirotte, Saturnino Martinez, Andreas Metzger,
Victor Muntés-Mulero, Phu H. Nguyen, Alexander Palm, Angel Rego,
Erkuden Rios, Diego Riviera, Arnor Solberg, Hui Song, Jean-Yves
Tigli, and Thierry Winter. Development and operation of trustworthy
smart IoT systems: The ENACT framework. In Jean-Michel Bruel,
Manuel Mazzara, and Bertrand Meyer, editors, Software Engineering
Aspects of Continuous Development and New Paradigms of Software
Production and Deployment, pages 121–138, Cham, 2020. Springer
International Publishing.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 21

[FNS+19] Nicolas Ferry, Phu Nguyen, Hui Song, Pierre-Emmanuel Novac,
Stéphane Lavirotte, Jean-Yves Tigli, and Arnor Solberg. Genesis:
Continuous orchestration and deployment of smart iot systems. In 2019
IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), volume 1, pages 870–875. IEEE, 2019.

[FSS+18] Nicolas Ferry, Arnor Solberg, Hui Song, Stéphane Lavirotte, Jean-Yves
Tigli, Thierry Winter, Victor Muntés-Mulero, Andreas Metzger, Erku-
den Rios Velasco, and Amaia Castelruiz Aguirre. Enact: Development,
operation, and quality assurance of trustworthy smart iot systems. In
DevOps’18 International workshop, pages 112–127. Springer, 2018.

[GBLL15] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor CM Le-
ung. Developing iot applications in the fog: a distributed dataflow
approach. In Internet of Things (IOT), 2015 5th International Confer-
ence on the, pages 155–162. IEEE, 2015.

[Gro06] Object Management Group. Deployment and configuration of
component-based distributed applications specification. OMG Available
Specification Version 4.0 formal/06-04-02, 2006.

[HFMH16] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
Thingml: A language and code generation framework for heteroge-
neous targets. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems,
MODELS ’16, page 125–135, New York, NY, USA, 2016. Association
for Computing Machinery.

[LRRT15] Stéphane Lavirotte, Gaëtan Rey, Gérald Rocher, and Jean-Yves Tigli. A
generic service oriented software platform to design ambient intelligent
systems. In Proceedings of the 2015 ACM International Conference on
Pervasive and Ubiquitous Computing, pages 281–284. ACM, 2015.

[MBS+17] Amardeep Mehta, Rami Baddour, Fredrik Svensson, Harald Gustafs-
son, and Erik Elmroth. Calvin constrained-a framework for iot applica-
tions in heterogeneous environments. In 37th International Conference
on Distributed Computing Systems, pages 1063–1073. IEEE, 2017.

[MCP17] Håvard Myrbakken and Ricardo Colomo-Palacios. Devsecops: A mul-
tivocal literature review. In Antonia Mas, Antoni Mesquida, Rory V.
O’Connor, Terry Rout, and Alec Dorling, editors, Software Process
Improvement and Capability Determination, pages 17–29, Cham, 2017.
Springer International Publishing.

[NFE+19] Phu H. Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane
Lavirotte, Jean-Yves Tigli, and Arnor Solberg. Advances in deployment
and orchestration approaches for IoT - a systematic review. In 2019
IEEE International Congress On Internet of Things (ICIOT), pages
53–60. IEEE, 2019.

[NRS14] Adrian Noguero, Angel Rego, and Stefan Schuster. Towards a smart
applications development framework. Social Media and Publicity, 27,
2014. URL: https://bitbucket.org/jasonjxm/smool,2011-2020.

[PDC01] Allen Parrish, Brandon Dixon, and David Cordes. A conceptual foun-
dation for component-based software deployment. Journal of Systems
and Software, 57(3):193 – 200, 2001.

Journal of Object Technology, vol. 19, no. 2, 2020

https://bitbucket.org/jasonjxm/smool, 2011-2020
http://dx.doi.org/10.5381/jot.2020.19.2.a16


22 · Nicolas Ferry, et al.

About the authors

Nicolas Ferry is a Research Scientist at the Secure IoT Soft-
ware group, SINTEF Digital. He holds a Ph.D. degree from the
University of Nice. His research interest includes model-driven
engineering, domain-specific languages, Internet of Things, cloud-
computing, self-adaptive systems, and dynamic adaptive systems.
He has actively contributed to various national and international
research projects such as the REMICS, CITI-SENSE, MC-Suite

and MODAClouds EU projects, and is Technical Manager of H2020 ENACT project.
He has also served as a program committee member of international conferences and
workshops. Contact him at nicolas.ferry@sintef.no.

Phu H. Nguyen is a Research Scientist at SINTEF, as a member
of the Secure IoT Software group with a focus on tools and method-
ologies for software development and operation of heterogeneous
and autonomous, yet secure and privacy-aware systems spanning
across the Cloud, the Edge, and the IoT. He has experience from
working in international research projects as well as research and
development projects with industry in Norway. He has a very
international education and research background, from Vietnam

(BSc) to the Netherlands (MSc), Luxembourg (Ph.D.), and Norway. He is also an
active reviewer and PC member of high-impact journals, conferences, and workshops.
Contact him at phu.nguyen@sintef.no.

Hui Song is Research Scientist with the Secure IoT Software
group, SINTEF Digital. His research interests are focused on
the software engineering practices and tools, and the application
of them on Cloud and IoT. He received his PhD from Peking
University. Before joining SINTEF, he has working experience
in the National Institute of Informatics (NII), Japan, and Trinity

College Dublin, Ireland. Contact him at hui.song@sintef.no.

Erkuden Rios , after working six years for Ericsson Spain, cur-
rently she is senior scientist of Cybersecurity research team at
TECNALIA, Spain. She is currently the coordinator of the Secu-
rity WP in the H2020 ENACT project on Secure and Privacy-aware
Smart IoT Systems as well as in the H2020 SPEAR project on
Secure Smart Grids. Previously, she was the coordinator of the
H2020 MUSA project on Multi-cloud Security, successfully ended
in 2017, as well as the chair of the Data Protection, Security and

Privacy in Cloud Cluster of EU-funded research projects, launched by DG-CNECT
in April 2015. Furthermore, she has worked in multiple large European and Spanish
projects on cybersecurity and trust such as POSEIDON, PDP4E, TACIT, RISC,
ANIKETOS, SWEPT, CIPHER and SHIELDS. Her main research interests include
Trust and Security, Risk Management, and AI for Cybersecurity. Contact him at
erkuden.rios@tecnalia.com.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:nicolas.ferry@sintef.no
mailto:phu.nguyen@sintef.no
mailto:hui.song@sintef.no
mailto:erkuden.rios@tecnalia.com
http://dx.doi.org/10.5381/jot.2020.19.2.a16


Continuous Deployment of Trustworthy Smart IoT Systems · 23

Eider Iturbe is a senior researcher of Cybersecurity team at
TECNALIA, Spain. Eider graduated in Telecommunication En-
gineering from the University of the Basque Country (Spain) and
in the European Master of of Project Management at the same
university. Before joining Tecnalia in 2009, she worked for software
consultancy firms where she acquired management skills and a
great technical expertise in the cyber security field. She has worked

in multiple large European and Spanish projects on cybersecurity, privacy and trust
such as SPEAR, ENACT, SPARTA, POSEIDON, PDP4E, TACIT, and MUSA. Her
main research interests include Cyber Security, Privacy, Risk Management, and AI for
Cybersecurity. Contact him at eider.iturbe@tecnalia.com.

Satur Martinez is a Cybersecurity Researcher at TECNALIA,
Spain. His research interests are focused on Cybersecurity in all
its aspects, Machine Learning and Big Data where he accumulates
more than 20 years of experience. Before joining to Tecnalia, he
worked at Panda Security as cybersecurity researcher and threat
hunter. Contact him at satur.martinez@tecnalia.com.

Angel Rego works as a senior scientist for the Cybersecurity
research team at TECNALIA, Spain. He has been involved in
many EU-funded research and development projects related with
real time data collecting, analysis and managing, web applications,
microservices, Internet of Things and Cyber Physical Systems. Mr.
Rego is co-author of the patent EP3144841A1 (System, method
and device for preventing cyber attacks). Contact him at angel.
rego@tecnalia.com.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:eider.iturbe@tecnalia.com
mailto:satur.martinez@tecnalia.com
mailto:angel.rego@tecnalia.com
mailto:angel.rego@tecnalia.com
http://dx.doi.org/10.5381/jot.2020.19.2.a16

	Introduction
	Motivating Example
	The GeneSIS Modelling Language
	Deployment Models for IoT, Edge and Cloud-based Systems
	Specific Support for Security

	The GeneSIS Deployment Engine
	Overall Architecture
	Support for Continuous Deployment on IoT and Edge Infrastructures
	ThingML Components for Platform and Hardware Independent Deployable Artefacts
	Deployment Agents

	Support for Security
	General Support for Security Components
	Reusable Security Components for IoT Platforms


	Synthesis
	Related Work
	Conclusion
	Bibliography
	About the authors

