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Abstract Model transformations provide an essential element to the model
driven engineering approach. Over the years, many languages tailored
to this special task, so-called model transformation languages, have been
developed. A multitude of advantages have been proclaimed as reasons to
why these dedicated languages are better suited to the task of transforming
models than general purpose programming languages. However, little
work has been done to confirm many of these claims. In this paper, we
analyse ATL transformation scripts from various sources to investigate
three common claims about the expressiveness of model transformation
languages. The claims we are interested in assert that automatic trace
handling and implicit rule ordering are huge advantages for model transfor-
mation languages and that model transformation languages are able to hide
complex semantics behind simple syntax. We use complexity measures
to analyse the distribution of complexity over transformation modules
and to gain insights about what this means for the abstractions used by
ATL. We found that a large portion of the complexity of transformations
stem from simple attribute assignments. We also found indications for the
usefulness of conditioning on types, implicit rule ordering and automatic
trace resolution.

Keywords ATL; Complexity; Expressiveness; Model Transformation Lan-
guages; Analysis.

1 Introduction

Model transformations are a pivotal part of model-driven engineering (MDE) [SK03,
Sch06]. This is also evident from the amount of transformation languages that have
been proposed, i.e. ATL [JAB+06], Henshin [ABJ+10], ETL [KPP08], Viatra [BV06]
and QVT [Kur07] just to name a few.

While the number of transformation languages and their features is ever increasing,
little time is spent on empirical studies on the use of said languages [SCD17]. A fact
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that is true not only for model transformation languages but any kind of DSL as
evident from the results of [KBM16].

The authors of [SCD17], have shown that studying the use of transformation
languages on code repositories such as the ATL Zoo 1 can provide insights into how a
transformation language is used which can help developers with language evolution.

Such studies are also necessary because there is continual debate about whether
dedicated model transformation languages are necessary at all [HSB+18, BCG19] since
GPLs like Java can also be used for writing transformations and have been discussed
as an alternative since the introduction of model transformations [SK03].

In the study described here, we apply these goals to the Atlas model Transfor-
mation Language (ATL) [JAB+06]. We are particularly interested in investigating
transformation scripts to gather data concerning the following claims which have been
made multiple times in literature:

H1 : Model transformation languages hide complex semantics behind simple syn-
tax [JABK08, KCF14, SK03, GK03].

H2 : Automatic handling and resolution of trace information by the transformation
engines is a huge advantage of model transformation languages [JABK08, LR07,
HGBR19].

H3 : Model transformation languages allow for implicit rule ordering which can lessen
the load on developers [JABK08, LR07].

One thing that immediately stands out from the three claims is that they are
intertwined. Automatic handling of traces and implicit rule ordering are both concepts
that can hide certain semantics within the transformation engine. So to investigate
their impact and provide insights into the complexity within model transformations
as a whole we devised 5 research questions to focus our research on:

RQ1 : How is the complexity of ATL transformations distributed over multiple trans-
formations and transformation components? This question forms a basis data
set for the following investigations. Its results can provide useful insights into
where the complexity in ATL transformations originates from to provide starting
points for more focused investigations. It can also help to uncover potential
strengths and weaknesses of the abstractions used by ATL (H1 ).

RQ2 : When looking at the complexity distributions of individual transformation
components, are there any salient characteristics? ATL components such as the
out-pattern consist of a set of bindings that assign values to the attributes of
the output model. The question that arises from such structures is, whether
the complexity of out-patterns stems largely from single complex bindings or a
number of simpler bindings. With this research question we aim to investigate
such effects which can indicate points where ATL does a good job of hiding
complexity (H1 )

RQ3 : How does the usage of refining mode impact the complexities of ATL modules?
ATLs refining mode was introduced to ease refinement transformations by
allowing developers to only focus on the code generating modified elements
while leaving all other elements unchanged. Accordingly, the complexity of

1https://www.eclipse.org/atl/atlTransformations/
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refining mode transformations should originate to large parts in refining activities.
Otherwise it would indicate that the refining mode fails in supporting developers
with model refinements. This in turn would be a counterexample to the claims
made in H1.

RQ4: How large is the percentage of bindings that require trace-based binding reso-
lution? Before being able to argue about the usefulness of trace information
(H2 ) for model transformations it should be investigated to what extent their
existence influences a model transformation script. If only a small proportion
of transformations utilize traces then maybe the development effort for implicit
trace handling is not worth it.

RQ5: What portion of ATL transformations use implicit rule ordering? The amount
of implicitly ordered rules compared to manual rule ordering can be a good
indication into whether the feature is well liked by developers hinting at an
advantage over manual ordering.

To answer the research questions we selected a total of 33 ATL transformations
from various sources to analyse. We use two sets of complexity measures based
on [LKRSA18] to measure the complexity of ATL transformations. A meta-model
representing the basic components of ATL modules is used to compile the complexity
values together. Information about trace usage and rule ordering is taken directly
from the models representing the ATL transformations.

The remainder of this paper is structured as follows: First in Section 2 an intro-
duction into relevant aspects of ATL is given. Section 3 defines the used complexity
measures. Afterwards in Section 4 we present our extraction and analysis procedures.
The results of our analysis are then presented in Section 5. Section 7 discusses potential
threats to the validity of the described proceedings while Section 6 places the approach
in the context of existing work. Lastly Section 8 concludes and proposes potential
future work.

2 The Atlas Transformation Language (ATL)

Specifications in ATL are organized in one of three kinds of so called Units. A unit is
either a module, a library or a query. Depending on their type, units can consist of
rules, helpers and attributes, which are a special kind of helper.

ATL uses the Object Constraint language (OCL) [OMG06] for both data types
and expressions.

2.1 Modules

Modules are used to define transformations. ATL modules are made up of three
segments (see Listing 1): the module header which defines the modules name as well
as the types of the input and output meta-models, a number of optional imports and
a set of helper and rule definitions.� �

1 module NAME
2 create OUT1:OUTTYPE1 , ...
3 [from|refining] IN1:INTYPE1 , ...
4

5 [uses LIBRARY ]*
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6 [RULEDEF|HELPERDEF ]*� �
Listing 1 – Structure of an ATL module

Libraries consist of a set of helper definitions. Libraries can be imported into
modules.

Lastly, Queries are comprised of an import section, a query element and a set of
helper definitions. Queries are used to define transformations from models to simple
OCL types rather than output models.

2.2 Helpers and Attributes

Helpers allow developers to define outsourced expressions that can be called from within
rules. Helper definitions can define a data type for which the helper is specified, called
context. ATL also allows developers to define so called Attribute helpers. The main
difference between attributes and helpers is that attributes do not accept parameters.
Attributes serve as constants that are defined for a specific context.

The definition of both traditional helpers and attribute helpers follow the same
syntax patterns (see Listing 2). The only difference lies in whether input parameters
are defined.� �

1 helper [context CONTEXTTYPE ]? def : NAME[( PARAMETERS)]? : TYPE =
EXPR;� �

Listing 2 – Syntax to define Helpers

2.3 Rules

In ATL, rules are used to specify the transformation of input models into output
models. There exist two main types of rules: called rules and matched rules. Matched
rules enable a declarative way to define how a model element of a specific type is
transformed into output model elements, while called Rules enable generation of target
model elements from imperative code. Matched rules are executed automatically on
all matching input model elements by the ATL engine.

Matched rules are comprised of four main sections (see Listing 3):
An In-Pattern which defines source model elements that are being transformed.

In-Patterns can contain a filter expression which defines a condition that must be met
for the rule to be applied.

An optional Using-Block that allows to define local variables.
The Out-Pattern which defines a number of output model elements that are created

for the model element defined in the in-pattern when the rule is applied. Each output
model element is defined by an Out-Pattern element which contains so called bindings
that assign values to attributes of the model element.

And lastly an optional Action-Block which allows the specification of imperative
code that is executed once the target elements have been created.� �

1 [lazy| unique lazy]? rule NAME {
2 from
3 INVAR : INTYPE [( CONDITION)]*
4 [using {
5 [VAR : VARTYPE = EXPR ;]+
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6 }]?
7 to
8 [OUTVAR : OUTTYPE {
9 [ATR <- EXPR ,]+

10 },]+
11 [do {
12 [STATEMENT ;]*
13 }]?
14 }� �

Listing 3 – Syntax to define matched rules

Apart from regular matched rules there are also lazy rules. They are defined
by adding the key word lazy in front of a matched rule definition. Lazy rules are
executed only when explicitly called for a specific model element that matches the
rules type and filter expression. Lazy rules can be called multiple times on the same
model element to produce multiple distinct output elements.

Unique lazy rules, defined through the unique lazy key words, change this
behaviour. Instead of producing a new model element for each call, unique lazy rules
always return the same output element when called on the same input model element.

Lastly, called rules are defined in a similar fashion to matched rules (see
Listing 4). The main difference between the two being that called rules do not
contain an In-Pattern and allow the definition of required parameters.� �

1 rule NAME([PARAMETER ,]*) {
2 [using {
3 [VAR : VARTYPE = EXPR ;]+
4 }]?
5 to
6 [OUTVAR : OUTTYPE {
7 [ATR <- EXPR ,]+
8 },]+
9 [do {

10 [STATEMENT ;]*
11 }]?
12 }� �

Listing 4 – Syntax to define called rules

2.4 Refining mode

The refining mode is a special execution mode for ATL rules which is intended to
assist developers with refactoring models, i.e., endogenous transformations.

Normally, the ATL engine only produces output model elements for input elements
on which rules are executed on. When using the refining mode however, the ATL
engine executes all rules on matching input elements and produces a copy of all
unmatched elements. This way developers are able to focus solely on the refining part
of their refactoring efforts according to the language developers.
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3 Complexity Measures

There exist several approaches for measuring complexity of model transformation lan-
guages and ATL in particular ([DRDRIP15, Vig09, TSMGD+11, KGBH10, LKRSA18]).
Most of these approaches use a simple metric that relates the number of transformation
components such as rules or helpers to the complexity of a transformation module.
In our opinion, however, the number of rules or helpers alone does not capture the
complexity of model transformations well enough. For that reason, we opted to adopt
the complexity measure proposed by [LKRSA18] which includes not only the number
of transformation components but also the complexity of expressions used within the
transformation.

In the following, the complexity measures will be explained.

3.1 Syntactic complexity

The syntactic complexity c(τ) of a transformation specification τ is defined based on the
complexity of expressions and activities within the defined transformation [LKRSA18].
The general idea behind it being that the complexity of each construct is comprised of
a static value for the construct itself plus the sum of the complexities of its contained
elements.

The complexity of a module as defined in Listing 1 would be comprised of the
sum of the complexities for its contained helper definitions and rule definitions. The
complexity of rules, defined as shown in Listings 3 and 4, is then comprised of the
complexity of their contained from-block (In-Pattern), the to-block (Out-Pattern),
the using-block and do-block plus a static value of 1 for the rule itself.

The complexity of In-Patterns is defined by their contained filter expression and a
static value for the construct itself, while the complexity of Out-Patterns is defined by
a static value for the construct as well as the sum of the complexities of all contained
Out-Pattern elements and their contained bindings. An overview over the most
important complexity measure definitions can be found in Table 1 for expressions and
Table 2 for activities/structural elements2.

We adopted the complexity measure with slight modifications since we disagreed
with certain defined values. The following adjustments were made to the definition
from [LKRSA18]:

First, the complexity of helpers was adapted to also include the complexity of their
context. The reason for this change being the fact that the context of a helper has to
be considered when trying to understand its function. Furthermore, in our opinion
there is no difference between attribute and operation helpers, the additional, static
complexity attributed to both types of helper definitions was aligned at 1. For this the
static complexity of attribute helpers was reduced from 3 to 1 and that of operation
helpers was increased from 0 to 1.

Action blocks were given an additional static complexity value of 1 which was
missing from the definitions of [LKRSA18]. This aligns it with the static complexity
that is attributed to all elements contained within rules, i.e. In-Patterns, Out-Patterns
and Using-blocks.

The complexity attributed to operation calls was increased to 1 to align it with that
of attribute and navigation calls. In our opinion calling an operation on an object is

2Full definitions can be found in https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-c
omplexities/blob/master/ATL/transformations/qvt/transforms/complexity.qvto
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just as complex as accessing one of its attributes. For the same reason the complexity
for collection operation calls was also increased to 1 as well.

Table 1 – Definitions of expression complexity measure based on [LKRSA18].

Expression e Complexity c(e)

Numeric, boolean or String value 0

Identifier iden 1

Attribute call source.attr c(source) + 2

Operation call source.op(p1, ..) 2 + c(source) +
∑

i c(pi)

Operator call e1 op e2 c(e1) + c(e2)

CollectionOperation call source− > op(p1, ..) 2 + c(source) +
∑

i c(pi)

if e1 then e2 else e3 endif c(e1) + c(e2) + c(e3) + 1

let v : t = e1 in e2 c(t) + c(e1) + c(e2) + 4

CollectionExpression Col{e1, ..} 1 +
∑

i c(ei)

Primitive Type (Integer,String,...) 1

Collection Type Col(t) 1 + c(t)

3.2 Computational complexity

The computational complexity is an extension of the syntactic complexity. Its goal
is to more closely capture the underlying complexity of transformation definition
with respect to outsourced expressions and called transformation rules. To achieve
this, the complexity of Operation Calls is calculated by taking the complexity of
the called operation into account instead of adding a static value regardless of the
called operation. For example given a helper sample of syntactic complexity 12, the
call sample() has a syntactic complexity of 2 whereas its computational complexity
amounts to 12.

Moreover the complexity of used variables is also resolved by taking the definition
expression of the variable into account instead of using a static value of 1.

4 Methodology

Apart from the selection of the ATL transformation modules to analyse, we strongly
oriented our proceedings along the research questions from section 1.

4.1 Module Selection

The selection of ATL modules was aimed to achieve a wide spread of transformations
based on their source, purpose and size in terms of lines of code. We also aimed to
achieve an even distribution of modules that use the refining mode and modules that
do not.

For this purpose, we searched GitHub for ATL projects by using the search string
‘ATL transformation‘ and included all novel (meaning not present in the ATL zoo)
transformations for which we were also able to find the input and output meta-models
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Table 2 – Definitions of complexity measure for ATL elements/activities based
on [LKRSA18]. ATL elements are capitalized while expression elements are written
in lower case.

ATL element A Complexity c(A)

Module H1, .., R1, ..
∑

i c(Hi) +
∑

i c(Ri)

Helper helper context c def : n : t = e c(c) + c(t) + c(e)

MatchedRule rule N {From Using To Do} c(From) + c(To) + c(Do) + c(Using)

CalledRule rule N(p) {Using To Do} c(To) + c(Do) + c(Using)

VariableDefinition n : t = e c(t) + c(e) + 3

InPattern from s : t (f) c(f) + c(t) + 3

OutPattern o : t {B1, ..} c(t) +
∑

i c(Bi) + 2

Binding n <- e c(e) + 2

ActionBlock do {S} c(S)

S1;S2 c(S1) + c(S2)

if e then S1 else S2 c(e) + c(S1) + c(S2) + 1

for v : e do S c(e) + c(S) + 1

Binding Statement v <- e c(v) + c(e) + 1

Table 3 – Meta-data about the analysed transformation modules.

Data minimum average maximum total

LOC 39 408 1364 13455
Rules 1 14 55 460
Helpers 0 11 74 376
Bindings 2 112 487 3695

since those were required for parts of our analysis(see Section 4.4). This resulted
in a total of 16 transformation modules. Additionally we included the R2ML2XML
transformation from [vAvdB11] and the families2persons transformation from the
ATL zoo because it is a widely used example for model transformations. We then
supplemented the set of transformations with transformations from the ATL zoo to
try and achieve an even distribution between modules that use the refining mode and
modules that do not.

The result was a set of 33 ATL transformations (some meta-data about the
transformations can be found in Table 3). Of those 33 transformations, 15 use the
refining mode of ATL while 18 are exogenous transformations. A complete overview
over the selected transformations, including names and sources can be found under
https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-complexities/blob
/master/ATL/resources/input/cases/justifications.
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4.2 RQ1,2: How is the complexity of ATL transformations distributed over
multiple transformations and transformation components and are there
any salient characteristics?

To be able to collect and analyse complexity data of ATL transformations and relevant
elements thereof a meta-model was constructed 3. Its structure was designed to be
able to break down the full representation of an ATL transformation into the basic
components that make up ATL transformations as described in Section 2. With this
structure it is also possible to investigate where the complexity of entire ATL modules
and rules originate from, e.g. whether a rule is complex because of its size or due to a
few complex contents like filter expressions. The design of the meta-model followed
the principles of abstraction and pragmatics. Compared to the ATL meta-model our
developed meta-model focuses solely on those parts of the ATL transformations we
are interested in and provides an easy way to track their complexity and the origin
thereof.

To transform transformation modules into a model of the presented meta-model and
to calculate the complexities of its components along the way, a QVT-o transformation 4

was defined. Its correctness was evaluated using unit tests: A test module containing at
least one of each activities/expressions for which a complexity value can be calculated
was defined. The complexity values for each element was calculated manually based
on the previously introduced complexity definition. Afterwards the results of the
transformation were manually compared with the manually calculated complexity
values. Discrepancies between the complexity values were investigated and corrected.

In order to collect data for analysis, the tested transformation was applied to the
33 ATL transformations.

Apart from the raw complexity data, we resorted to using several diagrams such
as histograms, violin and alluvial plots as well as code snippets to investigate the
complexity distribution, both syntactical and computational, of ATL transformations.

In order to better understand the meaning behind the complexity values example
code snippets for each component were extracted from the 33 selected transformation
modules. The code snippets were selected so that their complexity values correspond
to the components median complexity within the data set. One such code snippet can
be seen in Listing 5. All used snippets can be found under https://spgit.informat
ik.uni-ulm.de/stefan.goetz/mtl-complexities/tree/master/ATL/resources/
input/medians.� �

1 helper context SimpleClass!Class def: associations: Sequence(
SimpleClass!Association)=

2 SimpleClass!Association.allInstances () -> select(asso | asso.
value = 1);� �

Listing 5 – Helper with a syntactic complexity corresponding to the median of all helper
complexities.

3the meta-model can be found under https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl
-complexities/-/tree/master/ATL/metamodels/ATLComplexity/model

4https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-complexities/blob/master/ATL/
transformations/qvt/transforms/complexity.qvto
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4.3 RQ3: How does the usage of refining mode impact the complexities of
ATL modules?

As explained in Section 1, we also intended to analysed ATL modules using the refining
mode as a example of how transformation languages hide semantics.

To do so, we used the 15 selected transformation modules that use refining mode
and analysed their complexities separately and in comparison to those modules not
using the refining mode.

4.4 RQ4: How large is the percentage of bindings that require trace-based
binding resolution?

To investigate the usefulness of trace-based binding resolution (and thus to an extent
that of implicit trace management) we resorted to analysing how often it is used in
transformation modules. A high proportion of trace-based resolutions used would then
indicate their usefulness. Since trace-based binding resolution only happens along
reference types of the input and output elements we extracted all reference types per
module element for all output meta-models. For this we used a simple Java-program
that given an Ecore-file would produce a list of reference types for each contained
EClass.

Afterwards the bindings within all selected transformation modules were analysed
for usage of the extracted reference types. The amount of bindings that use traces
compared to simple assignments was then analysed on the basis of these results.

4.5 RQ5: What portion of ATL transformations use implicit rule ordering?

Similar to the trace usage, the usefulness of implicit rule ordering can be indicated by
the distribution of implicitly ordered transformation elements compared to explicitly
ordered ones.

Called and lazy matched rules all get explicitly ordered by developers when calling
them while matched rules enable the ATL transformation engine to traverse the source
model and implicitly order their execution. Thus the ratio of matched rules to called
and lazy rules gives an indication into how relevant implicit rule ordering is for model
transformations.

Data for this analysis can be gathered from both the complexity distributions from
RQ 1 as well as directly from the number of definitions.

5 Result Summary and Analysis

We present the results of our analysis in this section in accordance with the research
questions posed in Section 1.

5.1 RQ1: How is the complexity of ATL transformations distributed over
multiple transformations and transformation components?

Figures 1 and 2 show alluvial plots over the distribution of syntactic complexity and
computational complexity respectively of module elements within ATL transformation
modules. They display how much of the complexity of all investigated transformations
originate in which components beginning with the modules themselves following the
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definitions down to the contained expressions and the static value associated with
each component.

Interestingly, while making up nearly 45% of all top level definitions, Helpers
only contribute to roughly 18% of the total complexity of a transformation module 5.
The largest portion of complexity is attributed to matched rules which contribute
to over 3/4 of the total complexity of transformation rules while accounting for 53% of
all top level definitions. And lastly called Rules, which are not widely represented in
our data sets, while making up about 1% contribute to 5% of the overall complexity
of modules.
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Figure 1 – Distribution of syntactic complexity over all ATL modules.

Another observation that can be made from Figure 1, is that about 80% of
the syntactic complexity of (lazy) Matched-rules stems from their Out-Patterns
while only 15% come from In-Patterns and a nearly negligible 5% originate in
action- and using blocks. Following this trend downwards 73% of the complex-
ity of these rules stems from their contained bindings, i.e assigning a value to

5the raw data can be found under https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-c
omplexities/tree/master/ATL/data
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attributes of the output model element. Meaning most effort in transformations
is spent not in selecting the correct model elements to transform but simply as-
signing the output values (see Section 5.2 for a more detailed discussion). This
effect is still present when looking at the computational complexity distribution
(as shown in Figure 2) which rules out the possibility that the effect is created
by outsourcing of filter conditions in In-Patterns through helpers. This leads us to:
Observation 1: Over half of the effort spent in writing ATL transformations is spent
assigning values to the output model.
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Figure 2 – Distribution of computational complexity over all ATL modules.
Furthermore the 15% of matched rules syntactic complexity that comes from

In-Patterns shows that conditioning the application of transformation is a relevant
task for model transformations. The low proportion especially when considering
the computational complexity rather suggests that the conditioning on types (as
opposed to filter conditions without pre conditioning on types) which ATL does for
all matched rules by default alone already provides a useful abstraction for model
transformations. This assumption is supported by the fact that about 25% of all
matched rules get by with only using the standard type conditioning without any
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additional filter expression in the In-Pattern. Of those 25% only 12% (which there-
fore constitute only 3% of all matched rules) are trivial transformation rules. Simple
transformations in the context of this paper mean transformations that contain no
filter condition and only assign attributes from the input model element to the output
model element without doing any additional operations. The fact that a large portion
of transformations get by with only the default conditioning on types in ATL leads us to:
Observation 2: Conditioning on types provides an abstraction well suited for model
transformations.

5.2 RQ2: When looking at the complexity distributions of individual trans-
formation components, are there any salient characteristics?

16
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65
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Binding

C
om
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Complexity Type computationalComplexity syntacticComplexity

Figure 3 – Syntactic complexity distribution of Bindings.

As previously mentioned, the proportion of the complexity of bindings within
transformations also stands out in Figure 1. Bindings alone make up over half of
the complexity of transformations, a trend, that persists even when looking at the
computational complexity of transformation modules. Interestingly, the complexity
within bindings is very unevenly distributed. Figure 3, which shows a violin and box
plot for the syntactic complexity distribution of bindings (note the logarithmic scale of
the y axis), illustrates this. The majority of all bindings have a syntactic complexity
5 (b5 = 60%). This corresponds to directly accessing an attribute of an object as
shown in Listing 6, calling a helper on said object or accessing a global attribute
(thisModule.attribute).

Further analysis shows that a total of 93% of all bindings with a syntactic com-
plexity of 5 do indeed stem from direct accesses of attributes of the input model
element (b5a = 93%). Only 2% are global attribute accesses and the last 5% orig-
inate from helper calls on the source model element. This is also indicated by the
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fact that a majority of bindings have a computational complexity of 7 which can
only correspond to accessing attributes on input elements. In summary, this leads us to:
Observation 3: Over half (b5 ∗ b5a = 56%) of all bindings are used to map one attribute
of an input model element to one attribute of an output model element.

Adding to this point, only 5% of bindings with a syntactic complexity of 5 stem
from trivial transformations, i.e., transformations that simply map attributes from
an input element to an output element without doing any meaningful filtering or
modification of the content. This reinforces Observation 3 since we can rule out that
the majority of bindings with complexity of 5 stem from trivial transformations which
do by definition only contain bindings of this or lower complexity .

Looking at ATL modules as a whole Observation 3 means that 33% of their total
syntactic complexity comes from the activity of copying input model attributes to
output model attributes.� �

1 rule MedianBinding {
2 from s : Families!Member
3 to t : Persons!Female (
4 fullName <- s.firstName
5 )
6 }� �

Listing 6 – Rule containing a binding with a syntactic (computational) complexity of 5 (7)

That much of the complexity of transformation modules comes from bindings
means that the main effort when writing model transformations in ATL consists
of defining how the output should look which is actually one of the main goals of
model transformation languages. This in turn suggests that ATL does a good job
in abstracting away other tasks in model transformation such as model traversal,
conditioning on types as shown in Section 5.1, tracing and rule ordering to which we
will come in Sections 5.4 and 5.5.

5.3 RQ3: How does the usage of refining mode impact the complexities of
ATL modules?

Given the observations from the previous sections we would expect that the syntactic
complexity distribution of bindings to deviate away from 5 (and the computational
complexity form 7) since the refining mode is designed to enable developers in focusing
only on the refining part of the transformation.

In the transformations investigated for this paper this is however not the case as
can be seen in Figure 4, the median syntactic complexity of bindings remains 5 and
that of computational complexity remains 7.

This indicates the usefulness of the changes made to the refining mode with the
introduction of the 2010 ATL compiler. Since 2010 refining mode allows real in-place
transformations which means that rules only need to specify changes to elements
while all the other elements remain untouched. And because the main effort in the
investigated transformations, which were all defined for ATL compilers prior to 2010,
is spent on copying attributes from the input model element (98% of all bindings) to
its output counterpart, newer versions of the ATL compiler would heavily reduce this
necessary overhead, allowing developers to focus solely on actually refining models.
To us this suggests that the current versions of ATLs refining mode can significantly
reduce unnecessary overhead for refining transformations. There is also an observation
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to be made from this:
Observation 4: GitHub and especially the ATL Zoo lack samples of ATL transformations
using the refining mode with compiler versions at least as current as 2010.
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Figure 4 – Complexity distribution of Bindings in refining mode.
Furthermore, Injjj Patterns in refining mode are, on average about twice as complex

as in non refining modules. Moreover only a small portion (∼ 7%) of In-Patterns do
not contain a filter expression at all compared to 1/3 of In-Patterns in non refining
mode.

This leads us to two additional observations:
Observation 5: When refining models, filters are more heavily used than when trans-
forming between different meta-models.

Observation 6: Filter expressions are more complex in refining mode due to having to
select elements with more specific properties.

5.4 RQ4: How large is the percentage of bindings that require trace-based
binding resolution?

About 15% of all bindings in the analysed transformation modules require traces.
While this makes it apparent that traces are less frequently required than one would
expect, it still demonstrates their necessity since 15% is not a negligible proportion.
This leads us to:
Observation 7: Bindings that require traces constitute a significant part of the model
transformations considered.

It is also worth mentioning that while such trace resolution can save developers
substantial amounts of time they can also be a source of errors.

Considering the complexity of the bindings that require traces also reveals something
interesting. About half of all bindings that require traces have a syntactic complexity
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of 5 and computational complexity of 7. This shows how well automatic trace handling
can hide complexity. The developer can simply access the input model element
that is supposed to be transformed into the correct output model element and the
transformation engine handles resolving and referencing. Would the developer have
to take care of this process manually both syntactic and computational complexity
would be significantly higher since this would require identifying and accessing the
corresponding output model element through additional code.

5.5 RQ5: What portion of ATL transformations use implicit rule ordering?

In the ATL modules analysed for this study, a total of 460 rules are defined. Of those
364 or 79% are matched rules, 84 or 18% are lazy matched rules which need to be
invoked to transform model elements and only 12 or 2% are called rules.

Our results, deviate slightly from the results found by [SCD17] but still reveal the
same preference trend of ATL developers:
Observation 8: Developers strongly prefer matched rules over lazy matched rules and
called rules.

Since matched rules allow for implicit model traversal and rule ordering this can
indicate that these concepts provide good support for transformation developers. This
is also evident from the fact that the proportion of Out Pattern complexity (both
syntactic and computational) to Action Block complexity is far more balanced in
called rules than in (lazy) matched rules (see Figures 1 and 2) again indicating that
called rules require more structural code such as calling other rules and conditioning.

6 Related Work

In [DRDRIP15], the authors analyse the impact of input and output meta-models
on, amongst other things, the complexity of ATL transformations. For this purpose
they use a number of meta-model metrics and correlate these with metrics for ATL
transformations using Spearman’s rank correlation coefficient. Their findings include a
high correlation between the number of structural features of the output meta-models
and the number of used bindings in an ATL transformation module. An insight which
can be reflected upon in our results. In contrast to the complexity measures applied in
this work however, the measures proposed for complexity in their work is confined to
the number of structural features such as bindings or helpers of ATL transformations
rather than the complexity of their structure and contained expressions. Which is not
to say that the applied measure is not indicative of the complexity of transformations
rather that it is only part of what makes a transformation complex in our opinion.

The authors of [vAvdB11] propose the usage of cyclomatic complexity to measure
the complexity of helpers. They also envision incorporating the complexity of the
contained OCL expression into its complexity measure. Similarly to [DRDRIP15], they
also use the number of different transformation components as metrics for measuring
ATL transformations. The described metrics are applied to seven transformations.
And the resulting values are then related to quality attributes, based on the assessment
of nineteen experts, such as understandability, maintainability and conciseness using
Kendall’s τb correlations. Notable results include a significant correlation between the
number of transformation rules and conciseness and the number of out-patterns and
understandability. In comparison to this, we try to draw direct conclusions about the
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structure and structure of transformations from our gathered data instead of about
quality features.

In [Vig09] the complexity of ATL transformations is related to a variety of intro-
duced metrics. Most of the related metrics are once again quantifications of different
components within ATL modules such as the number of matched rules or average
number of filters used in rules. They also relate the cyclomatic complexity to com-
plexity much like [vAvdB11]. As previously mentioned we believe that the number of
components are only part of what makes transformations complex which is why the
used complexity measure in this paper also incorporates the complexity of expressions.

The numbers of ATL transformation components have also been used in [TSMGD+11]
to make comparisons between several transformation modules to investigate the feasi-
bility of applying transformations to transformation modules. The authors concede
that the applied metrics need further research and development and predict that such
measures could assist with identifying aspects of ATL transformations to optimize.

Similarly [KSW+13] analysed the ATL Zoo with the goal to gain insights about the
frequency of use of reuse mechanisms. For this the authors devised a semi-automated
process to extract and analyse projects from the ATL zoo. They found that reuse
mechanisms are exclusively used within a transformation and that helpers are the
most frequently used reuse mechanism while only little rule inheritance is used. In
contrast to their work, our focus does not directly relate to reuse mechanisms although
the computational complexity was introduced in part to account for the outsourcing
of complexity due to reuse mechanisms.

7 Threats to validity

This section addresses the potential threats to validity identified for the performed
study.

The transformations evaluated for the purpose of this study were chosen from
various sources to reduce the influence of programming habits of individual transforma-
tion engineers. Consequently the purposes and characteristics of the transformations
vary immensely. To be able to compare transformation modules using refining mode
with modules that do not use refining mode we also aimed to use a similar amount
of respective transformation modules. While this strengthens the external validity
of our comparison it can potentially lead to a reduction in the external validity of
our other findings since an even distribution of refining and non refining modules is
potentially less representative of the overall ATL ecosystem. Given the selection of
transformation modules it is also not possible to draw representative conclusions about
model transformation languages in general but rather for ATL specifically.

There is of course a discussion to be held about the complexity measure used.
As discussed in Section 6 most research uses the number of elements as basis for
complexity measures. We and [LKRSA18] argue that this alone does not fully cover
the complexity of transformations. The syntactic complexity measure used in this
study uses the complexity of expressions and activities as defined in Tables 2 and 1.
The number of elements are also taken into account in these definitions but do not
constitute the majority of the complexity value of an ATL transformation this is
reserved to the complexity of expressions used within the transformation modules as
evident from Figure 1. While we are missing a formal validation of the measures used
we believe that this indicates their overall usefulness. The computational complexity
is then a natural extension of the syntactic complexity to more closely resemble the
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actual complexity that is hidden in operation calls in expressions.

8 Conclusion and Future Work

In this work we presented our results of analysing ATL modules to provide insights
into three common claims about the advantages of model transformation languages,
namely that transformation languages hide complex semantics behind simple syntax,
that automatic trace handling in transformation languages is advantageous and that
implicit rule ordering supports developers in defining transformations.

For this purpose we used two complexity measures to investigate how complexity
is distributed over ATL transformation modules which we applied to a total of 33
modules. We also analysed the proportions of matched rules compared to other types
of rules and the proportion of bindings that require trace information to be resolved.

We found, that while transformations can get complex, the complexity originates
mainly in definitions of how the output models should be populated rather than how
the transformation should be executed. To us this provides an indication for how well
ATL abstracts away from certain tasks necessary for model transformation such as
model traversal, rule ordering and trace handling.

We have also shown that conditioning on types is well suited for model transforma-
tions since a total of 22% of all non-trivial matched rules get by with only filtering on
types. This also provides a clear example why implicit rule ordering can be beneficial
for model transformation definitions since developers can simply define to which kind
of input model element a transformation should apply and the transformation engine
handles execution.

This is further supported by the fact that we found that nearly 80% of all defined
rules are matched rules which make use of exactly this mechanism.

Next we analysed required trace information in bindings. We came to the conclusion
that while bindings that do require trace information are outweighed by those that do
not, they still constitute a significant portion of model transformations. And while this
suggests that automatic trace handling is advantageous further research is necessary
to more precisely capture its impact.

Lastly we compared the complexities of transformation modules using the refining
mode with those that do not. We found that while the complexity of matched rules
defined in a refining module is much higher, the increase in complexity can be attributed
to an increase in simple bindings. A fact we were able to attribute to the use of older
ATL compilers which did not allow in-place refinements.

For future work, we are interested in repeating the described proceedings on
transformations written in general purpose programming languages. While the resulting
values can not be compared directly, the complexity distributions can be used to gain
insights into where the complexity in these transformation definitions lie. Which we
believe can produce further contributions to the discussion of GPLs vs MTLs for
defining model transformations.
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