
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Systematic Evaluation of Model
Comparison Algorithms using Model

Generation
Lorenzo Addazia Antonio Cicchettia

a. School of IDT, Mälardalen University, Västerås, Sweden

Abstract Model-Driven Engineering promotes the migration from code-
centric to model-based software development. Systems consist of model
collections integrating different concerns and perspectives, while semi-
automated model transformations analyse quality attributes and generate
executable code combining the information from these. Raising the ab-
straction level to models requires appropriate management technologies
supporting the various software development activities. Among these,
model comparison represents one of the most challenging tasks and plays
an essential role in various modelling activities. Its hardness led researchers
to propose a multitude of approaches adopting different approximation
strategies and exploiting specific knowledge of the involved models. In this
respect, almost no support is provided for the systematic evaluation of
comparison approaches against specific scenarios and modelling practices,
namely benchmarks.

In this article we propose Benji, a framework for the automated gen-
eration of model comparison benchmarks. In particular, by giving a set
of difference patterns and an initial model, users can generate model ma-
nipulation scenarios resulting from the application of the patterns on the
model. The generation support provided by the framework obeys specific
design principles that are considered as essential properties for the sys-
tematic evaluation of model comparison solutions, and are inherited from
the general principles coming from evidence-based software engineering.
The framework is validated through representative scenarios of model
comparison benchmark generations.

Keywords Model Comparison Benchmark; Model Comparison; Model
Matching; Model Differencing; Model Generation; Design-Space Explo-
ration; Model-Driven Engineering;

1 Introduction

Model-Driven Engineering (MDE) promotes the migration from code-centric to model-
based software development. Traditional software engineering practices envision models

Lorenzo Addazi, Antonio Cicchetti. Systematic Evaluation of Model Comparison Algorithms using Model
Generation. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object
Technology, vol. 19, no. 2, 2020, pages 11:1–22. doi:10.5381/jot.2020.19.2.a11

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a11
http://dx.doi.org/10.5381/jot.2020.19.2.a11
http://dx.doi.org/10.5381/jot.2020.19.2.a11

2 · Lorenzo Addazi, Antonio Cicchetti

as mere documentation artefacts facilitating the communication among stakeholders.
Model-driven approaches, instead, represent systems as collections of interconnected
models focusing on specific concerns [28]. Models assume the role of first-class citizens
throughout the development process, quality attributes can be evaluated earlier and
executable code is (semi-)automatically generated from these [11].

Shifting from source code to models has led intense research concerning model
management and evolution techniques in the recent years [35]. In this context, model
comparison represents one of the most challenging tasks and is essential to various
other model management activities, e.g. model versioning [5, 6], model transformation
testing [24], and model synchronisation [27].

Model comparison consists of two main phases, i.e. matching and differencing [21].
Most of the complexity commonly attributed to model comparison results from its
matching phase. Indeed, matching elements from different models can be reduced to
finding an isomorphism among their corresponding typed graph representations, which
is known to be an NP-Hard problem [33]. Although numerous approaches have been
proposed in the literature, these inevitably represent different attempts to provide
an approximate solution by exploiting structural [22, 12], language-specific [44], or
domain-specific [27, 4] knowledge about the involved models [6, 37]. In other words,

“There is no single best solution to model matching but instead the problem
should be treated by deciding on the best trade-off within the constraints
imposed in the context, and for the particular task at stake.”

– Kolovos et al. [25]

In this context, researchers and practitioners require support for evaluating and
comparing different approaches against specific application domains, languages and
modelling practices. Unfortunately, the large number of model comparison techniques
available in the literature corresponds to the almost complete absence of support for
their systematic evaluation. Here, for systematic evaluation we refer to a process sup-
ported by the fundamental principles entailed by evidence-based software engineering
[23] and empirical studies in it [42]. In this respect, it shall be possible to properly
define comparison scenarios, called benchmarks in this article, against which selected
quality attributes of the available solutions would be evaluated.

Manually defined benchmarks, e.g. [41] and [29], do not provide a plausible solution
for every use case as modelling language, application domain, applied differences and
their representation are fixed. Furthermore, their design rationale is often not accessible
and potentially biased, thus making the results unreliable and not reproducible. On
the other hand, even when existing models for a benchmark were available for reuse,
it would still be required to both precisely identify the expected comparison results
and encode those results into appropriate representations to enable the measurements
for a specific comparison approach. Therefore, the assessment of model comparison
algorithms becomes a time-consuming and error-prone task requiring deep knowledge
about both modelling language, application domain, and comparison algorithm under
evaluation. In a broader perspective, manual practices limit the possibilities of adopting
systematic approaches for the evaluation of model comparison solutions [23, 42].

In this article, we first identify the essential properties for model generation
approaches supporting the systematic generation of domain-specific model comparison
benchmarks. Based on these, a framework for the automated synthesis of domain-
specific model comparison benchmarks is designed and developed. Given a set of
difference specifications and an input model, design-space exploration is used to

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 3

produce model mutants resulting from the application of the former ones on the latter.
For each mutant, a description of the applied changes is also generated. Differences are
represented in terms of preconditions, actions and postconditions. Preconditions and
postconditions assert properties of the involved model elements before and after their
modification, respectively. Actions, instead, provide an operational specification of
the edit statement to execute. Eventually, various benchmark construction examples
integrating metamodel refactoring patterns [10] have been designed and implemented
to evaluate our automated synthesis framework.

The remainder of this article is structured as follows. Section 2 introduces model
comparison and its current evaluation practices. Section 3 illustrates the identified
properties for model generators in the context of model comparison benchmark synthe-
sis. Our proposed framework is then presented providing details as concerns expected
input, execution and produced results. In section 4, the framework is evaluated against
various examples re-adapting well-known metamodel refactorings on a simplified ver-
sion of the Ecore metamodel [38]. Section 5 compares our contribution with related
works either addressing the assessment of model comparison algorithms or generating
models with user-defined properties. Section 6 concludes the paper summarising the
obtained results and drawing possible future work directions.

2 Model Comparison

Model comparison consists in detecting differences between the models given as input.
The existing approaches can be distinguished with respect to the number of models
involved in the comparison process, i.e. two-way and n-way techniques. The first class
groups approaches limiting their comparison to two models, i.e. initial and current,
whereas the latter supports an arbitrary number of models. The remainder of this
work focuses on two-way model comparison.

Given two models, model comparison algorithms produce a difference represen-
tation illustrating the changes among these. As depicted in Figure 1, the process
is decomposed into two phases – matching and differencing [21]. First, all elements
from the first are linked with the corresponding ones in the latter. Then, a difference
representation is constructed processing the identified correspondences1.

Model
Matching

Model
Differencing

Difference
Model

Revised
Model

Initial
Model

Match
Representation

Figure 1 – Model Comparison

1It is worth noting that some works distinguish between representation and visualisation, where the
latter is the rendering of the detected evolution for the user in an appropriate format [12]. However,
since the benchmark synthesis does not impact visualisation per se, in the rest of this work we keep
representation and visualisation merged as defined in [21].

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

4 · Lorenzo Addazi, Antonio Cicchetti

2.1 Matching

Given two models, the matching phase consists in mapping the elements from the
first with the corresponding ones in the latter. Each mapping might involve multiple
elements from one model or the other, and provide a discrete or continuous numerical
value indicating the plausibility of their correspondence. Considering the matching
criteria, the existing approaches are grouped in four categories – identity-based,
signature-based, similarity-based, and language-specific [25]. Identity-based and
signature-based techniques assign persistent or dynamically generated unique identifiers
to model elements, respectively. The matching criteria consists in mapping elements
with the same identifier and the similarity score is binary. Similarity-based algorithms,
instead, compare model elements using similarity functions defined over their structural
features. Unlike the previous approaches, mappings are associated with continuous
values (i.e. likelihood scores), hence many-to-many matches are possible. Eventually,
language-specific approaches extend similarity-based matching by exploiting semantic
information of specific application domains or modelling languages to optimise their
matching process or refine the obtained results.

2.2 Differencing

Model differencing consists in translating the identified mappings into meaningful
change descriptions. The existing techniques are grouped in two categories – operational
and denotational differencing. The first represents changes in terms of edit primitives
applied on the initial model, whereas the latter (also known as state-based) describes
changes in terms of visible effects in the final model. Edit Scripts represent a well-known
metamodel-independent operational approach involving primitives to create, delete and
update elements – namely new, delete, set, insert, remove [5]. The notation presented
in [13], instead, provides an example of state-based approach. Given a metamodel,
an extended metamodel supporting the representation of modified model elements
is automatically derived. For each metaclass X, three corresponding metaclasses are
generated representing created, deleted and changed instances, respectively – ChangedX,
CreatedX and DeletedX.

2.3 Evaluation of comparison quality

The concept of quality in model comparison algorithms is relative to the model
management activity these are integrated into, and the evaluation criteria used to
assess their results depend on the specific use case [31]. For example, low-level
difference representations might result convenient in semi-automated workflows, e.g.
model transformation testing. However, the same difference would result hardly
readable and inconvenient in tasks involving human reasoning, e.g. manual conflict
resolution in model versioning.

Regardless of the evaluation criteria, comparison algorithms are generally assessed
constructing ad-hoc benchmarks consisting of triples of models 〈M1,M2,∆M1→M2〉
where M1 is the initial model, M2 represents a possible modified version of M1, and
∆M1→M2

acts as oracle describing the actual changes applied on M1 in order to obtain
M2. Given a model comparison benchmark, the expected differences and the actual
results produced by an algorithm in analysis can be partitioned into four categories –
false negatives, true negatives, false positives and true positives – as illustrated in
Table 1. Negatives are differences that have not been identified during the comparison

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 5

process, whereas positives consist in differences that have been identified. Both
partitions are further decomposed into true and false depending on their correctness
with respect to the expected differences. False positives, for example, represent
identified differences that were not supposed to be detected, while true positives
consist in expected differences that were successfully identified.

Negatives Positives
False True False True

Identified 7 7 3 3
Expected 3 7 7 3

Table 1 – Comparison Results – Negatives and Positives

Although an established definition of quality for model comparison algorithms
still does not exist, the current evaluation approaches share a common concept of
correctness concerning the produced results. In practice, the correctness of model
comparison algorithms is quantified adapting fundamental metrics from the field
of information retrieval on positives and negatives, namely precision, recall, and f-
measure (Equation 1–3). In particular, precision and recall compute the percentage of
correct differences over all those detected, and of correctly detected differences over
all the expected ones, respectively. Besides, f-measure combines precision and recall
into a single harmonic mean value.

Precision =
|{True Positives}|

|{True Positives}|+ |{False Positives}|
(1)

Recall =
|{True Positives}|

|{False Negatives}|+ |{True Positives}|
(2)

F −Measure = 2 ·
Precision ·Recall

Precision+Recall
(3)

Complex and application-specific evaluation criteria might be defined over positives
and negatives, as well as over precision and recall. Notably, the overall metric shown
in Equation 4 is defined to measure the effort required in order to align the results
produced by a given comparison algorithm with the expected ones, i.e. adding false
negatives and removing false positives [26]. Intuitively, this metric aims to measure
the effectiveness of a given model comparison algorithm within a model versioning
workflow.

Overall = Recall · (2−
1

Precision
) (4)

In order to enable the systematic evaluation of comparison algorithms against
quality attributes like the metrics mentioned so far, it is necessary to adopt rigorous
experimental set-ups as described in empirical software engineering state-of-the-art [42].
In particular:

• benchmarks shall be clearly linked to a purpose, i.e. the properties to measure and
the comparison scenarios in which they shall be evaluated;

• benchmarks shall be randomised, e.g. to avoid biases;

• benchmarks shall enable validity evaluations, that is how much the measurements can
be generalised to specific comparison problems.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

6 · Lorenzo Addazi, Antonio Cicchetti

According to these principles, we propose a synthesis framework for the automated
generation of comparison benchmarks. The generation process is driven by user-defined
descriptions of comparison scenarios and delivers as output random modifications
conforming to those scenarios.

3 The proposed benchmark synthesis framework

In this section, we first introduce a set of design principles for model generators to
support the automated synthesis of domain-specific model comparison benchmarks. We
identify these principles as essential to enable the systematic evaluation of comparison
algorithms. Based on the principles, the discussion proceeds illustrating Benji, a
framework for the systematic generation of model comparison benchmarks: first, the
overall framework architecture is presented; then, further details concerning runtime
model representation, involved domain-specific languages, and synthesis process are
provided.

3.1 Design Principles

The essential design principles concerning model comparison benchmark generators
involve both the specification formalism provided to the user, the generation process,
and the representation of the final results. In particular, they originate from the
state-of-the-art definition of experiment process in empirical software engineering [42]
by considering the definition, planning, and operation phases, i.e. those impacted
by the automated generation of comparison benchmarks. Subsequently, these have
been refined and specialised by reviewing the current practices in creating benchmarks
for model comparison algorithms combined with recurring features and limitations
characterising the existing model generation and model comparison approaches. In
this context, it is important to notice that the principles concern the model generation
framework and not the possible benchmarks constructed by integrating the generated
models with some metrics of interest for the user.

Configurable – Model comparison benchmarks are constructed aggregating triples,
each consisting of an initial model, a modified version and a description of the differences
among these. Model generation approaches should support the specification of initial
model and expected differences. Furthermore, users should be able to configure
minimum and maximum number of expected applications for each difference, the
number of models to generate, and the location where to store them.

Complete – Given a benchmark specification, the generation process should perform
an exhaustive exploration of the solution space. More specifically, model generation
approaches should consider all possible combinations of differences within their respec-
tive minimum and maximum application bounds. Considering the definition provided
in [40], a generation process is complete if any finite instance model of a domain can
be generated in finite steps. In our case, the domain is composed of the initial model
and the set of available differences, i.e. the possible model manipulations and their
lower/upper bounds.

Pseudo-Random – Model generation approaches should prevent users from intro-
ducing biases during the synthesis process. At any given time, a pseudo-random
selection criteria should be adopted in selecting the difference to apply. Users should

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 7

not be able to influence the selection process in case the same difference was applicable
multiple times.

Minimal – Duplicated models do not provide additional value in model comparison
benchmarks, hence model generators should ensure no duplicates are generated. In case
the same modified model might be obtained through multiple sequences of difference
applications, the minimum length trajectory (i.e. the smallest set of modifications)
should be selected.

Visible – As a direct consequence of state-based versioning, difference applications
might overwrite or hide the results of previous ones involving common model elements.
Model generation approaches should handle overlapping and conflicting differences
throughout the synthesis process ensuring their visibility in the final models.

Adaptable – Model comparison algorithms adopt different notations and granularity
in representing their results. Model comparison benchmark generators should pro-
duce low-level and model-based change descriptions, hence allowing their conversion
to algorithm-specific notations using semi-automated transformations and without
requiring external information to be integrated.

Table 2 summarises the relationships between the design principles discussed so
far and the phases in experiment processes mentioned above and defined in [42]. It is
worth noting that analysis and presentation phases are not included since they are
related to activities following the generation of comparison benchmarks, namely the
selection of metrics and the corresponding measurement of comparison algorithms
quality attributes.

Definition Planning Operation
Configurable 3 3 3
Complete 7 7 3
Pseudo-Random 7 7 3
Minimal 7 7 3
Visible 7 7 3
Adaptable 3 3 3

Table 2 – Relationships between design principles and experiment process

3.2 Overall Architecture

Model comparison benchmarks are specified in terms of initial model and expected
differences using a dedicated domain-specific language, as illustrated in Figure 2.
Given a benchmark specification, the synthesis process consists of two phases – (A)
difference-space exploration and (B) output construction.

During the difference-space exploration phase, the benchmark specification is
used to build and solve an equivalent design-space exploration problem instance.
The obtained solutions are transformed into pairs of output models and difference
representations. Aggregating these pairs with the initial model produces a model
comparison benchmark conforming with the initial specification.

The framework is implemented using the Eclipse Modelling Framework (EMF) [1],
and Viatra-DSE, a design-space exploration framework for EMF models [17]. However,
the fundamental concepts and mechanisms proposed in this article abstract from
implementation details and specific technological choices.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

8 · Lorenzo Addazi, Antonio Cicchetti

Initial
Models

Benchmark
Specification

Difference-Space
Exploration

Modified
Models

Difference
Representation

A B uses

uses

uses

Figure 2 – Framework - Overview

3.3 Trace Representation

Representing changing model elements throughout the synthesis process requires
an appropriate formalism providing read-write access to their current state while
maintaining a read-only representation of the initial state. In our framework, model
elements are wrapped into trace objects and their representation is split into initial
and current version, as illustrated in Figure 3.

Trace ecore::EObject0..1initial

0..1current

Figure 3 – Traces - Metamodel

Model elements can be identified into three possible states – created, deleted and
preserved. Intuitively, created and deleted elements are represented as trace objects
without initial and current object links, respectively. Preserved elements, instead, are
represented as trace instances where the links target two different instances representing
initial and current state of the model element taken into account. Edit operations are
directly applied on the current model element version. Therefore, changes involving
attributes and references are represented comparing initial and current version of a
given model element. Figure 4 provides an example of a renamed model element, i.e.
where the name attribute value has been changed.

:Person

name = "John"
initial :Trace :Person

name = "Jim"
current

Figure 4 – Traces – Changed Element

3.4 Benchmark Specification

Benchmarks and differences are specified using dedicated domain-specific languages
built on top of existing technologies and designed to fulfil the Configurable and Visible
properties discussed in Section 3.1.

3.4.1 Difference Specification Language

Ensuring difference visibility requires the framework to provide means to express
properties concerning the involved model elements before and after its application, in

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 9

addition to the actual modifications to perform. The visibility of a given difference
can then be verified ensuring that the corresponding postcondition is satisfied in the
current model.

Figure 5 illustrates the abstract syntax of the difference specification language in
our framework. Model differences consist of actions, preconditions and postconditions.
An action consists of imperative edit statements to execute whenever the corresponding
difference is applied, whereas precondition and postcondition describe properties of
the involved model elements before and after the difference is applied, respectively.

Difference

 name: String

PatternAction
postcondition
precondition

action

Statement Assertion

statements assertions

parametersparameters Trace

Figure 5 – Difference Specification Language – Metamodel

The difference specification language is implemented as embedded domain-specific
language in Xtend, a flexible and expressive dialect of Java [2]. Preconditions and
postconditions are expressed using VQL, a domain-specific language for the specification
of patterns over EMF models [9].

Starting from a Person metaclass with a name string attribute, a possible renaming
difference specification is described in the following paragraphs. Each difference
specification starts with a unique name attribute, whereas precondition, action, and
postcondition are specified referencing the corresponding external definitions. In this
example, the action updates the current attribute value prepending a constant string
(i.e. changed) to the initial one, as shown in the right side of Figure 6.

let renamePerson = difference
.name("renamePerson")
.precondition(beforeRenamePerson)
.action(doRenamePerson)
.postcondition(afterRenamePerson)

.build

(a) Difference

let doRenamePerson = [person|
person.current.name =

"changed" + person.initial.name
]

(b) Action

Figure 6 – Rename Precondition - Difference and Action

The difference shall involve a single person instance such that its name attribute
has not been changed before. This precondition is specified as shown in Figure 7
left-hand side. First, initial and current instance of the preserved person are retrieved
(2 – 3). Then, their corresponding name attribute value is accessed (4 – 5). Finally,
the precondition verifies that initial and current name attribute value are equivalent
(6). Once applied the action, the involved person instance shall be preserved, while
its current name shall differ from the initial one. Figure 7 right-hand side illustrates
the corresponding postcondition, of which the only difference with respect to the
precondition is that initial and current name attribute values shall now be different
(6).

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

10 · Lorenzo Addazi, Antonio Cicchetti

1 pattern beforeRenamePerson(person) {
2 Trace.initial (person, init_person);
3 Trace.current (person, curr_person);
4 Person.name (init_person, init_name);
5 Person.name (curr_person, curr_name);
6 init_name == curr_name;
7 }

(a) Precondition

1 pattern afterRenamePerson(person) {
2 Trace.initial (person, init_person);
3 Trace.current (person, curr_person);
4 Person.name (init_person, init_name);
5 Person.name (curr_person, curr_name);
6 init_name != curr_name;
7 }

(b) Postcondition

Figure 7 – Rename Person - Precondition and Postcondition

3.4.2 Benchmark Specification Language

The model comparison benchmark generator should be configurable, hence support the
specification of initial models and differences with minimum and maximum number of
expected applications. Furthermore, users should be able to specify an upper bound
on the number of generated models and the location where to store them.

Figure 8 illustrates the abstract syntax of the benchmark specification language
included in our framework. Benchmark specifications consist of an initial model
and a set of bounded differences. The initial model is referenced using its resource
location, whereas bounded differences correlate existing difference specifications with
a non-negative integer lower and upper bound on the number of expected applications.
Benchmark instances also keep track of maximum number of models to synthesize and
output path in the filesystem.

Benchmark

 outputFolder: String
 maxInstances: Int

BoundedDifference

 lowerBound: Int
 upperBound: Int

Model

 uri: String
differencesmodels

differenceDifference

Figure 8 – Benchmark Specification Language - Metamodel

The benchmark specification language is implemented as embedded domain-specific
language in Xtend. Figure 9 provides a sample benchmark specification expecting three
kinds of differences to be applied, i.e. renamePerson, deletePerson and createPerson.
The first corresponds to the difference illustrated in the previous section, whereas the
remaining ones describe the creation and deletion of person instances, respectively.
Each difference is associated with minimum and maximum number of expected
applications, e.g. renamePerson is optional and can be applied at most two times for
each generated model. The expected number of generated models can be specified
as integer or left unbound with ALL, a special value used to generate all possible
combinations of difference applications.

3.5 Difference-Space Exploration

Difference-space exploration represents the core stage of the generation process. Given
a benchmark specification, this task consists in searching for those modified versions
of the initial model containing the expected differences. In our framework, this phase

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 11

benchmark.model("path/to/initial/model")
.difference(0, 2, renamePerson)
.difference(1, 1, deletePerson)
.difference(0, 1, createPerson)

.build.generate(ALL, "path/to/output/folder")

Figure 9 – Benchmark Specification Language - Example

is realised constructing and solving a design-space exploration problem instance. The
choice of formulating the process as a design-space exploration problem is based upon
the successful application of these techniques to automate similar tasks requiring the
search for models with specific characteristics, e.g. model transformation testing [36].

In our framework, model comparison benchmark specifications are mapped to rule-
based design-space exploration problem instances [18]. In these, each problem consists
of initial models determining the initial exploration space, goals distinguishing final
from intermediate solutions, global constraints required to be satisfied throughout the
exploration process and model manipulations representing the available operations to
manipulate one state into another. Once solved the problem instance, solutions consist
in sequences of model manipulations, i.e. solution trajectories. The following para-
graphs illustrate how benchmark specifications are mapped into constraint-satisfaction
problems over models.

Initial Models – The initial model is transformed into an equivalent trace represen-
tation. Each model element is split into an initial and current version linked using a
trace instance. Initial and current version of a given model element are completely
equal at the beginning of the exploration process.

Goals – Lower and upper bounds associated with each difference are enforced using
a dedicated goal over the solution trajectories. Given a solution trajectory T and a
difference D, the goal verifies that the number of applications for D in T falls within
its lower and upper bound values

LB(D) ≤ CNT (D,T) ≤ UB(D) (Bounds Goal)

where CNT (D,T) computes the occurrences of differenceD within a solution trajectory
T , LB(D) retrieves the lower bound associated with D and UB(D) retrieves the upper
bound associated with D in the benchmark specification.
Generating models not containing any difference with respect to the initial model
must be avoided. In other words, all solution trajectories must contain at least one
difference application. Moreover, given that each difference is associated with an upper
bound over the number of expected applications in the specification, the maximum
number of difference applications for each solution corresponds to the sum of all the
upper bounds. Consequently, given a trajectory T , the length of solution trajectories
is bound as follows:

1 ≤ LEN(T) ≤ UB+ (Length Goal)

where UB+ is the sum of all upper bounds for each difference in the benchmark
specification.

Global Constraints – Representing differences in three correlated portions, i.e.
precondition, action, and postcondition, is not enough to satisfy the visibility design

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

12 · Lorenzo Addazi, Antonio Cicchetti

principle. In this respect, the framework shall also check and ensure its satisfaction
throughout the exploration process. Global constraints are verified over all intermediate
and final solutions, hence represent a suitable mechanism. Given a solution trajectory
T , the following global constraint verifies that the visibility postcondition is fulfilled
for each applied difference Di composing the trajectory.

POST (D), ∀Di ∈ T = {D0, ..., Dn} (Visibility Constraint)

where POST (D) checks that difference D is visible in the current model.

Model Manipulations – Model manipulations rules are automatically extracted
from the differences listed in a given benchmark specification. In detail, preconditions
are mapped to guards and actions as rule bodies.

3.6 Output Construction

Given the solution trajectories resulting from the difference-space exploration, the
output construction phase handles the final step of the benchmark generation process.
Each trajectory is applied on the initial model to generate the final ones, while an
operation recorder keeps track of the applied changes and constructs the corresponding
difference representation as illustrated in Figure 10.

Operation Recorder

D1 DnDn-1D0
...D1 DnDn-1D0

...D1 DnDn-1D0
...D1 DnDn-1D0

...

Solution Trajectories

D1 DnDn-1D0
...

Initial Model

Current Trajectory

applied Modified
Model

Difference
Representation

Figure 10 – Framework - Output Construction

The operation recorder is currently implemented using EMF.Edit, the standard
EMF change monitoring support utilities [1]. The applied differences are represented
using the internal EMF.Edit mechanism, that adopts a state-based approach similar
to the one proposed in [13] (see Section 2.2). In this way, by considering the design
principles discussed in Section 3.1, the framework fulfils the adaptable property by
providing low-level and model-based difference representations.

4 Evaluation

In order to evaluate the framework proposed in this article against the design princi-
ples presented in Section 3.1, various model comparison benchmark generation use
cases have been designed. In particular, the evaluation process consisted in imple-
menting the refactoring patterns composing the Metamodel Refactoring Catalogue
using Simplified Ecore as base metamodel [38]. We have chosen this catalogue due
to several aspects: it includes both “primitive” and “complex” manipulations, thus

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 13

stimulating the expressiveness of the benchmark definition languages, their usability,
and for validating principles like completeness and visibility; it targets a very well
investigated evolution problem for MDE that still poses challenges and is tightly
related to model manipulation detection. For each design principle, corresponding
benchmark specifications have then been defined, executed and verified.

4.1 Simplified Ecore

In Simplified Ecore, models consist of root packages containing all other elements.
Packages are uniquely identified by their Universal Resource Identifier (URI) attribute
value and might contain three possible types of instances: packages, classes and
datatypes. Classes represent the core modelling concept of the metamodel. Each
instance contains attributes and references. An opposite reference can be defined in the
latter case. Finally, all elements provide a name attribute extending the NamedElement
metaclass. The metamodel is illustrated in Figure 11.

abstract class NamedElement {
String name

}

class DataType extends NamedElement {}

class Package extends NamedElement {
String uri
contains Package[0..*] subPackages
contains Class[0..*] classes
contains DataType[0..*] dataTypes

}

class Class extends NamedElement {
Boolean abstract
refers Class[0..*] super
contains Attribute[0..*] attributes
contains Reference[0..*] references

}
class Attribute extends NamedElement {
refers DataType type

}
class Reference extends NamedElement {
refers Class type
refers References opposite

}

Figure 11 – The Simplified Ecore Metamodel

4.2 Metamodel Refactorings Catalogue

In the metamodel refactoring catalogue, operations are classified with respect to two
aspects – granularity and operation types. Granularity indicates the nature of the
transformation and can be atomic or composite. The first encompasses refactorings
consisting of single editing operations, whereas the latter involve multiple operations.
Table 3 illustrates the complete refactoring catalogue along with information regarding
whether or not the refactoring has been successfully implemented in the evaluation.

All refactorings have been successfully implemented using our framework. Among
the implemented patterns, those in the table that are marked with a star (*) required
complex reasoning in their precondition and postcondition. The increasing complexity
can be related to the existence of universal quantifiers over properties of the involved
model elements and their non-trivial implementation in terms of model constraint
patterns, i.e. constraints over multiple instances [8].

4.3 Design Principles

In the following, we recall the essential properties defined in Section 3.1 and discuss
exemplary benchmark specifications to illustrate how the evaluation of our framework
has been performed against those properties2.

2The interested reader can access the full replication package at https://github.com/loradd/
se.mdh.idt.benji.examples

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/loradd/se.mdh.idt.benji.examples
https://github.com/loradd/se.mdh.idt.benji.examples
http://dx.doi.org/10.5381/jot.2020.19.2.a11

14 · Lorenzo Addazi, Antonio Cicchetti

Name Granularity Operation Types Implementation
Rename Package Atomic Change 3

Rename Uri Package Atomic Change 3

Delete Package Composite Delete 3

Add Package Atomic Add 3

Add Class Atomic Add 3

Rename Class Atomic Change 3

Delete Class Composite Delete 3

Extract Class Composite Change, Add 3

Merge Classes Composite Add, Delete, Change 3*
Add Attribute Atomic Add 3

Delete Attribute Atomic Delete 3

Change Attribute Type Atomic Change 3

Add Reference Atomic Add 3

Delete Reference Atomic Delete 3

Split References Composite Add, Delete 3*
Merge References Composite Add, Delete, Change 3*

Change Reference Type Atomic Change 3

Extract Superclass Composite Add, Delete 3

Change Class Abstract Atomic Change 3

Restrict Reference Atomic Change 3

Flatten Hierarchy Composite Add, Delete, Change 3*
Push Down Attribute Composite Delete, Add 3

Table 3 – Evaluation – Metamodel Refactorings Catalogue

Complete

Evaluating the framework against the completeness design principle required verifying
that models resulting from all bounded difference combinations are generated. The
same results must be produced on multiple iterations if no limit on the number of
models is provided. The initial model is illustrated in Figure 12 and consists of two
class instances. One class extends the other, which in turn contains an attribute
instance.

attribute:Attribute super:Class class:Class

Figure 12 – Complete – Initial Model

The benchmark specification is illustrated in Figure 13 and includes two optional
differences, i.e. Push Down Attribute and Rename Class. No limit is provided on the
number of models to generate and no conflict exists among the differences.

benchmark.model("./resources/input/Input.xmi")
.difference(0, 2, renameClass)
.difference(0, 1, pushDownAttribute)
.build.generate(ALL, "./resources/output")

Figure 13 – Complete– Benchmark Specification

The generation process terminated in 1,2 seconds and correctly produced all
distinct models resulting from all non-empty difference combinations as illustrated in
Figure 14. In particular, each item is a set of one or more differences, distinguished
by their name and applied to a selected object in the initial model. So for example,
the first set of generated differences is a renameClass metamodel refactoring applied

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 15

to the instance called class, while the last item generated is a set including three
manipulations: renameClass metamodel refactorings applied to class and super and a
pushDownAttribute refactoring involving all the items included in the input model.

{renameClass(class)}, {renameClass(super)},
{pushDownAttribute(super, class, attribute)}, {renameClass(class), renameClass(super)},

{renameClass(class), pushDownAttribute(super, class, attribute)},
{renameClass(super), pushDownAttribute(super, class, attribute)},

{renameClass(class), renameClass(super), pushDownAttribute(super, class, attribute)}

Figure 14 – Complete – Expected Difference Combinations

Pseudo-Random

Evaluating the framework against the pseudo-random design principle required verify-
ing that different models conforming to the specification are produced re-iterating the
generation process with a limit on the number of expected results (without a limit the
generation would produce each time the same entire set of possible modifications due
to completeness).

The initial model is borrowed from the completeness validation as depicted in
Figure 12. The benchmark specification is shown in Figure 15 and includes two
optional differences, i.e Push Down Attribute and Rename Class. No conflict exists
among the differences, and differently from the completeness validation sample only
one model is expected to be generated.

benchmark.model("./resources/input/Input.xmi")
.difference(0, 2, renameClass)
.difference(0, 1, pushDownAttribute)
.build.generate(1, "./resources/output")

Figure 15 – Pseudo-Random – Benchmark Specification

The generation process has been repeated 100 times, each iteration produced a
difference combination among those listed in Figure 14 and required an average time
of 1,1 seconds to complete.

Visible

Evaluating the visibility design principle requires verifying that all applied differences
are clearly identifiable in the generated models, hence the framework discards results
containing conflicting and overlapping differences. The initial model consists of a
package instance containing a class instance, as illustrated in Figure 16.

package:Packageclass:Class

Figure 16 – Visible – Initial Model

The benchmark specification includes two mandatory and conflicting differences, i.e.
consisting of contradicting modifications on the same model elements, as illustrated in
Figure 17.

In this example, deleteClass overrides renameClass, i.e. obliterates all applied
modifications if executed on the same model element, hence models containing both

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

16 · Lorenzo Addazi, Antonio Cicchetti

benchmark.model("./resources/input/Input.xmi")
.difference(1, 1, deleteClass)
.difference(1, 1, renameClass)
.build.generate(ALL, "./resources/output")

Figure 17 – Visible – Benchmark Specification

differences should not be generated. Given the initial model, executing the benchmark
specification produced no solution as expected.

Minimal

Evaluating the framework against the minimality design principle requires verifying
that the minimal sequence of difference applications is preferred over the others in
case of multiple paths producing the same model.

For the initial model we consider again the one introduced in Figure 16. The bench-
mark specification is illustrated in Figure 18 and includes three optional differences,
i.e. createClass, deleteClass and createAndDeleteClass, which aggregates the previous
ones.

benchmark.model("./resources/input/Input.xmi")
.difference(0, 1, createClass)
.difference(0, 1, deleteClass)
.difference(0, 1, createAndDeleteClass)
.build.generate(ALL, "./resources/output")

Figure 18 – Minimal – Benchmark Specification

The evaluation focused on the model resulting from the application of either the
createAndDeleteClass or both the createClass and deleteClass differences. Observing
the explored trajectories throughout the generation process, the first is correctly
preferred over the latter given its shorter length. In case of bounded specifications, the
property still holds as shorter trajectories are evaluated before longer ones adopting a
breadth-first search strategy. Consequently, the difference trajectory consisting of both
createClass and deleteClass will always produce a duplicated model and be discarded,
since already explored by applying createAndDeleteClass.

5 Related Work

This section discusses existing literature related to the framework proposed in this
work. In particular, the discussion focuses on approaches proposing manually built
model comparison benchmarks or design guidelines to perform such task. Moreover,
existing model generation languages or frameworks in the context of model-driven
engineering are illustrated.

Model Comparison Benchmarks

The vast literature related to model comparison algorithms generally proposes manually
constructed benchmarks focusing on specific modelling languages, differences, and
application domains. In [41], the authors propose a benchmark for the evaluation of
model comparison techniques over metamodels. More specifically, the benchmark is
composed by a set of metamodels, paired with each other by a difference specification.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 17

Given its manual construction, the benchmark would be difficult to maintain or evolve
in case the metamodels would change or other difference specifications would be
required. Furthermore, the definition criteria and the granularity of the specified
differences is not documented, hence the benchmark construction process per se is
neither reproducible nor reliable. Finally, the benchmark is specifically meant for
metamodel comparison use cases.

The model comparison benchmark proposed in [29] includes specific edit operations
that have been observed to cause issues in existing model comparison algorithms.
These operations are defined over fixed target modelling languages, hence narrowing
the applicability of the benchmark. Since no difference model is provided to illustrate
the detailed correspondences among the involved models, users would need to manually
reconstruct the benchmark, potentially introducing errors and biases.

The M2BenchMatch tool assists users in selecting the best performing comparison
approach over a given pair of models [26]. Given the models and the expected differ-
ences among them, the tool executes and evaluates multiple comparison algorithms.
However, requiring the user to provide the expected differences a priori can limit
the practical usefulness of the tool. In fact, despite automating the comparison of
multiple algorithms, the user still needs to manually specify both the involved models
and the correspondences among them, a tedious and error-prone task especially when
needing large experiments. In this context, the framework proposed in this work might
represent a convenient solution to generate input data for the M2BenchMatch tool.

Model Generation Frameworks

Various approaches addressing the automated synthesis of models have been proposed
in the literature. In general, such approaches provide support for the specification
of complex structural constraints that the generated models are expected to satisfy.
The generated models are obtained starting from an initial model, or by creating
instances conforming to a given metamodel, or through combinations of both of them.
The following paragraphs describe representative model generation approaches, while
Table 4 compares them against the design principles driving the development of the
framework proposed in this work.

The Epsilon Model Generation (EMG) framework supports the specification of
semi-automated model generators [32]. A specification is composed of creation and
linking rules, where the first support the creation of model elements and the latter
allow users to aggregate elements and specify complex structural constraints over them.
Both number of expected models and element instances can be specified. However,
the framework does not support the specification of an initial model. Furthermore,
the generation process does not provide information regarding the operations that
produced a given model, i.e. difference models. Finally, the framework does not
provide support to guarantee that conflicting operations are avoided, hence that all
specified operations are visible in the generated models.

Wodel is a domain-specific language for model mutation, where mutations consist
of modified versions of an initial model [15]. Programs contain information regarding
the number of expected mutants, the output folder where to store the generated
models and the location of the initial models. The actual modifications to perform
are expressed in terms of mutation operators, that are sequences of built-in edit
primitives. However, the language does not generate difference descriptions along
with each mutation. Despite being possible to integrate post-processor components
elaborating the generated models, constructing difference models a posteriori would

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

18 · Lorenzo Addazi, Antonio Cicchetti

require the assistance of a model comparison algorithm. In fact, each mutant would
need to be compared with the initial model, hence introducing undesired influences
due to the chosen algorithm. Furthermore, the language does not ensure each applied
modification to be visible in the generated models, i.e. it does not consider possible
overlapping changes among conflicting operations, neither discards possible duplicated
models from the resulting set.

The SiDiff Model Generator (SMG) is designed to support the controlled generation
of realistic test models for model comparison tools [30]. Given a set of edit operations
and an initial model, the tool selects and applies modifications using a probabilistic
distribution resembling real-world edit interactions for a given application domain or
modelling language. If needed, the generator is able to generate model histories, i.e.
sets of consecutively modified models, and difference representations describing the
applied changes. However, the framework does not guarantee the applied changes to
be visible in the generated models and does not handle possible conflicts among them.
In fact, despite being possible to constrain the generated models, the notation used to
represent model elements does not support reasoning about their changes over time.

The authors in [16] proposed a template language supporting the generation of
test models with specific focus on testing the performance of model transformations.
Template specifications describe the expected elements and structural properties of
the generated models. The specifications are transformed and provided to an external
model generator. Once produced, the generated models are transformed back to the
initial formalism. This approach focuses on generating large-scale models to evaluate
the scalability of model transformations. Models are generated from the ground up
and specified in terms of the elements these should contain, rather than obtained
applying user-defined differences over initial models. Consequently, the approach is
not usable to evaluate model comparison tools. Intuitively, no difference description is
generated as none is actually applied.

EMG Wodel SMG [16] Benji
Configurable 3 3 3 7 3
Complete 3 3 3 7 3
Pseudo-Random 3 3 3 7 3
Minimal 7 7 7 7 3
Visible 7 7 7 7 3
Adaptable 7 7 7 7 3

Table 4 – Model Generation Frameworks – Design Principles Comparison

Design-Space Exploration

Design-Space Exploration is an automated search process where multiple design alter-
natives satisfying a set of constraints are discovered and evaluated using goal functions.
Numerous approaches exploiting DSE techniques have been proposed and successfully
applied in different domains, e.g. model merging [14], software security [20], circuit
design [43, 19], embedded system development [7, 34]. In practice, three main classes
of approaches integrating MDE with DSE techniques have been identified – model
generation, model adaptation and model transformation [39]. The main differences
among these approaches regard the input artefacts, the adopted exploration techniques,
and the required expertise about the problem and the application domain. The DSE
mechanism exploited by the framework proposed in this paper pertains to the model

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 19

adaptation class3.

6 Conclusion and future works

The ever increasing adoption of model-driven engineering practices for complex soft-
ware system development introduced the need for appropriate model management and
evolution technologies. Model comparison, i.e. the identification of the differences ex-
isting among models, represents an essential task within numerous model management
activities. The intrinsic hardness of detecting and analysing correspondences among
models led researchers to propose a multitude of approaches, each relying on different
approximation strategies exploiting structural, language-specific or domain-specific
knowledge of the involved models. However, the large number of model comparison
approaches corresponds to the almost complete absence of support for their systematic
evaluation.

This article proposes the automated synthesis of model comparison benchmarks as
a way to systematically evaluate model comparison approaches, and hence to support
a well-founded experimentation process [23, 42]. In this respect, it first introduces
a set of principles for the design of appropriate model generation mechanisms, and
then it presents a framework meeting those principles, called Benji. In particular,
given a set of difference specifications and an input model, users can generate mutant
models resulting from the application of the first on the latter. Model differences are
expressed in terms of preconditions, actions and postconditions by using a dedicated
domain-specific language. Moreover, the generation process relies on design-space
exploration techniques to produce the final solutions. Each of the generated models
is associated with a model-based executable description of the applied changes. The
approach has been validated through various benchmark use cases, aimed to both
stress its expressive support for the specification of model comparison benchmarks
and differences, and to confirm its adherence to the properties for systematic model
comparison benchmark generators.

Possible future works include the implementation of external domain-specific
languages to make the specification of pre-/postconditions and model manipulations
more user friendly. Moreover, it could be interesting to generate model histories, i.e.
sequences of consequent model versions, even though we expect to face non-trivial
representation challenges to solve. Eventually, the framework has been evaluated
focusing on its compliance with the essential properties of model comparison benchmark
generators. However, further industrial experiments might provide essential feedback
regarding the robustness of the framework, e.g. scalability, usability. Performance gains
might result from introducing task-level parallelism in the exploration process and merit
further investigation. The achieved speedup is inversely proportional to the frequency
of synchronisation among tasks, hence the effectiveness of introducing parallelism
here depends on the extent to which the exploration process can be restructured to
minimise inter-task dependencies. Finally, the actual adoption of the framework for
comparing existing model comparison algorithms might prove and provide further
insights concerning the adaptability of the generated difference descriptions.

3For the sake of space, we refer the reader to [3] for a thorough discussion about why this class
suits better than the others our benchmark synthesis purposes.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

20 · Lorenzo Addazi, Antonio Cicchetti

References
[1] Eclipse Modeling Framework (EMF) - Website, 2020. Accessed: 2020-02-09.
[2] Xtend - Website, 2020. Accessed: 2020-02-09.
[3] L. Addazi. Automated synthesis of model comparison benchmarks, 2019.
[4] L. Addazi, A. Cicchetti, J. D. Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio.

Semantic-based model matching with EMFCompare. In ME@MODELS, 2016.
[5] M. Alanen and I. Porres. Difference and union of models. In P. Stevens, J. Whit-

tle, and G. Booch, editors, UML 2003 - The Unified Modeling Language. Modeling
Languages and Applications, pages 2–17, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[6] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model versioning approaches.
IJWIS, 5:271–304, 2009.

[7] T. Basten, E. van Benthum, M. Geilen, M. Hendriks, F. Houben, G. Igna, F. Reckers,
S. de Smet, L. J. Somers, and E. Teeselink. Model-driven design-space exploration for
embedded systems: The octopus toolset. In ISoLA, 2010.

[8] G. Bergmann. Translating ocl to graph patterns. In MoDELS, 2014.
[9] G. Bergmann, Z. Ujhelyi, I. Ráth, and G. Varró. A graph query language for emf

models. In ICMT, 2011.
[10] L. Bettini, D. D. Ruscio, L. Iovino, and A. Pierantonio. Edelta: An approach for

defining and applying reusable metamodel refactorings. In MODELS, 2017.
[11] J. Bézivin. On the unification power of models. Software and Systems Modeling,

4:171–188, 2005.
[12] C. Brun and A. Pierantonio. Model differences in the eclipse modeling framework.

2008.
[13] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A metamodel independent approach

to difference representation. Journal of Object Technology, 6:165–185, 2007.
[14] C. Debreceni, I. Ráth, G. Varró, X. D. Carlos, X. Mendialdua, and S. Trujillo. Auto-

mated model merge by design space exploration. In FASE, 2016.
[15] P. Gómez-Abajo, E. Guerra, and J. de Lara. Wodel: a domain-specific language for

model mutation. In SAC, 2016.
[16] X. He, T. Zhang, M. Pan, Z. Ma, and C.-J. Hu. Template-based model generation.

Software & Systems Modeling, pages 1–42, 2017.
[17] Á. Hegedüs, Á. Horváth, and G. Varró. A model-driven framework for guided design

space exploration. 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 173–182, 2011.

[18] Á. Horváth and G. Varró. Dynamic constraint satisfaction problems over models.
Software and Systems Modeling, 11:385–408, 2010.

[19] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A fast and accurate noc
power and area model for early-stage design space exploration. 2009 Design, Automa-
tion and Test in Europe Conference and Exhibition, pages 423–428, 2009.

[20] E. Kang. Design space exploration for security. 2016 IEEE Cybersecurity Development
(SecDev), pages 30–36, 2016.

[21] P. Kaufmann, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. An
introduction to model versioning. In SFM, 2012.

[22] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh. Search-based meta-
model matching with structural and syntactic measures. Journal of Systems and
Software, 97:1–14, 2014.

[23] B. A. Kitchenham, T. Dybå, and M. Jorgensen. Evidence-based software engineering.
In Proceedings of the 26th International Conference on Software Engineering, ICSE
’04, page 273–281, USA, 2004. IEEE Computer Society.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

Systematic Evaluation of Model Comparison Algorithms using Model Generation · 21

[24] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model comparison: a foundation for
model composition and model transformation testing. In GaMMa ’06, 2006.

[25] D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F. Paige. Different models for
model matching: An analysis of approaches to support model differencing. 2009 ICSE
Workshop on Comparison and Versioning of Software Models, pages 1–6, 2009.

[26] L. Lafi, J. Feki, and S. Hammoudi. M2benchmatch: An assisting tool for metamodel
matching. 2013 International Conference on Control, Decision and Information
Technologies (CoDIT), pages 448–453, 2013.

[27] Y. Lin, J. T. Gray, and F. Jouault. DSMDiff: A differentiation tool for domain-specific
models. 2007.

[28] J. Ludewig. Models in software engineering - an introduction. Software and Systems
Modeling, 2:5–14, 2003.

[29] P. Pietsch, K. Mueller, and B. Rumpe. Model matching challenge: Benchmarks for
Ecore and BPMN diagrams. Softwaretechnik-Trends, 33, 2013.

[30] P. Pietsch, H. S. Yazdi, and U. Kelter. Generating realistic test models for model
processing tools. 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 620–623, 2011.

[31] P. Pietsch, H. S. Yazdi, U. Kelter, and T. Kehrer. Assessing the quality of model
differencing engines. Softwaretechnik-Trends, 32, 2012.

[32] S. Popoola, D. S. Kolovos, and H. Hoyos. Emg: A domain-specific transformation
language for synthetic model generation. In ICMT, 2016.

[33] R. C. Read and D. G. Corneil. The graph isomorphism disease. Journal of Graph
Theory, 1:339–363, 1977.

[34] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE
Wireless Communications, 11:54–61, 2004.

[35] B. Selic. The pragmatics of model-driven development. IEEE Software, 20:19–25, 2003.
[36] S. Sen, B. Baudry, and J.-M. Mottu. On combining multi-formalism knowledge to

select models for model transformation testing. 2008 1st International Conference on
Software Testing, Verification, and Validation, pages 328–337, 2008.

[37] M. Stephan and J. R. Cordy. A survey of model comparison approaches and applica-
tions. In MODELSWARD, 2013.

[38] J. Sztipanovits, S. Neema, and M. J. Emerson. Metamodeling languages and metapro-
grammable tools. In Handbook of Real-Time and Embedded Systems, 2007.

[39] K. Vanherpen, J. Denil, P. D. Meulenaere, and H. Vangheluwe. Design-space explo-
ration in model driven engineering : an initial pattern catalogue. In MODELS 2014,
2014.

[40] D. Varró, O. Semeráth, G. Szárnyas, and Á. Horváth. Towards the Automated Gen-
eration of Consistent, Diverse, Scalable and Realistic Graph Models, pages 285–312.
Springer International Publishing, Cham, 2018.

[41] M. Wimmer and P. Langer. A benchmark for model matching systems: The heteroge-
neous metamodel case. Softwaretechnik-Trends, 33, 2013.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Ex-
perimentation in Software Engineering. Springer Publishing Company, Incorporated,
2012.

[43] Y. Xie, G. H. Loh, B. Black, and K. Bernstein. Design space exploration for 3d
architectures. JETC, 2:65–103, 2006.

[44] Z. Xing and E. Stroulia. UMLDiff: an algorithm for object-oriented design differenc-
ing. In Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, 2005.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a11

22 · Lorenzo Addazi, Antonio Cicchetti

About the authors

Lorenzo Addazi is a Ph.D. student in parallel modelling and
programming languages for heterogeneous embedded systems at
IDT, Mälardalen University (Sweden). His research interests also
include model-driven software engineering, model versioning and
comparison, hybrid modelling, domain-specific languages, soft-
ware language engineering and programming models. Contact him
at lorenzo.addazi@mdh.se, or visit http://www.es.mdh.
se/staff/3276-Lorenzo_Addazi.

Antonio Cicchetti is an Associate Professor at the Industrial
Software Engineering research group in IDT, Mälardalen University,
Västerås (Sweden). His current research topics include domain-
specific and general-purpose modelling languages, model transfor-
mations, and the management of consistency in multi-view/multi-
paradigm design frameworks. Moreover, he works on the introduc-
tion/enhancement of model-based techniques in industrial contexts.
Contact him at antonio.cicchetti@mdh.se, or visit http:
//www.es.mdh.se/staff/198-Antonio_Cicchetti.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:lorenzo.addazi@mdh.se
http://www.es.mdh.se/staff/3276-Lorenzo_Addazi
http://www.es.mdh.se/staff/3276-Lorenzo_Addazi
mailto:antonio.cicchetti@mdh.se
http://www.es.mdh.se/staff/198-Antonio_Cicchetti
http://www.es.mdh.se/staff/198-Antonio_Cicchetti
http://dx.doi.org/10.5381/jot.2020.19.2.a11

	Introduction
	Model Comparison
	Matching
	Differencing
	Evaluation of comparison quality

	The proposed benchmark synthesis framework
	Design Principles
	Overall Architecture
	Trace Representation
	Benchmark Specification
	Difference Specification Language
	Benchmark Specification Language

	Difference-Space Exploration
	Output Construction

	Evaluation
	Simplified Ecore
	Metamodel Refactorings Catalogue
	Design Principles

	Related Work
	Conclusion and future works
	Bibliography
	About the authors

