
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Model Finding in the EMF Ecosystem

Jesús Sánchez Cuadradoa Martin Gogollab

a. University of Murcia (Spain)

b. University of Bremen (Germany)

Abstract The EMF framework is the main meta-modelling framework
used nowadays. It has a rich ecosystem of plug-ins and tools built with and
for it, including the option of enriching meta-models with OCL constraints.
However, the EMF ecosystem lacks usable model finding approaches. Given
a meta-model, a model finder automatically searches for models that satisfy
a given set of formulas (e.g., OCL constraints). This feature can be used
for a number of purposes, including model verification and model synthesis.

In this paper, we present an approach to support model finding in
the EMF ecosystem that is designed to realize several scenarios including
model consistency, example generation, partial solution completion and
scrolling. Moreover, it allows several OCL variants to be plugged-in via
an intermediate representation. This approach has been realized in a
tool called EFinder. We have assessed the usability of the approach
by implementing three advanced application scenarios and evaluated its
verification capabilities by analyzing OCL constraints from an external
OCL dataset containing about 300 valid EMF/OCL specifications. Our
model finder is able to process about 65% of these EMF/OCL models.

Keywords Model, Meta-model, EMF model, Model validation and verifi-
cation, Constraint solving, Model finding

1 Introduction

The Eclipse Modeling Framework (EMF) is nowadays one of the most commonly used
meta-modeling frameworks, with a rich ecosystem of tools and extensions built around
it. This includes language workbenches like Xtext and Sirius, model transformation
and model management languages like ATL, Epsilon, and QVT Operational. EMF
also features an implementation of the Object Constraint Language (OCL), allowing
the developer to enrich EMF meta-models with OCL constraints, to evaluate the
conformance of models and to validate models [Ecl17]. Moreover, many EMF-based
tools make use of this OCL implementation or implement its own OCL variant, in
order to express constraints or to use OCL as a navigation language (e.g., ATL and
Sirius).

Given the first-order logic like nature of OCL, several works have put forward
techniques to perform model finding for a given meta-model over OCL constraints (e.g.,

Jesús Sánchez Cuadrado, Martin Gogolla. Model Finding in the EMF Ecosystem. Licensed under
Attribution 4.0 International (CC BY 4.0). In Journal of Object Technology, vol. 19, no. 2, 2020,
pages 10:1–21. doi:10.5381/jot.2020.19.2.a10

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a10
http://dx.doi.org/10.5381/jot.2020.19.2.a10

2 · Jesús Sánchez Cuadrado and Martin Gogolla

[KG12,GBCC12,SSB19]). Taking advantage of recent progress in SAT solving (for
boolean satisfiability problems), a model finder takes a set of constraints written in
some high-level language like OCL and some high-level model (in UML terms called a
class diagram, or an Ecore meta-model in EMF), translates it to a SAT problem and
applies a SAT solver to find a model (in UML terms called an object diagram) satisfying
the constraints for the given meta-model. This technique is effective in many scenarios
including model validation [GHD18] and transformation verification [CGdL17a].

However, despite the practical importance of the EMF framework in the community,
model finding is generally not included in mainstream EMF-based tools. The reason
could be that there is no working and reliable model finder that seamlessly integrates
with EMF and different OCL variants. In this paper, we propose a framework that
brings model finding capabilities into the EMF ecosystem. The framework aims to
satisfy the following requirements:

1. It must provide robust model finding based on constraints written in OCL.
In addition to basic satisfiability checking, we aim at providing support for
additional features currently not supported in existing EMF finders such as
partial model completion (i.e., the ability to extend an existing model to satisfy
the given constraints) and scrolling (i.e., to retrieve all valid models).

2. It must integrate seamlessly with EMF, which means it must naturally process
EMF meta-models, i.e., consume and output EMF models using regular EMF
resources.

3. It must cover a wide range of OCL features.

4. It must support several variants of OCL, and new variants should be easily
supported in the future.

To achieve these goals, we have implemented a flexible model finding architecture
based on a configurable and extensible intermediate OCL representation. As a model
finding backend we apply the USE Model Validator [KG12,GHD18] (USE MV), which
is a robust model finder for UML class diagrams and OCL constraints. We have
implemented translations from EMF/OCL [EOT19], AQL [AT19] and ATL [JABK08]
and enhanced our backend with internal transformations that provide support for OCL
features like tuples, iteration and recursive operations which are not supported natively
by USE MV. Moreover, in addition to conceptual limitations there are technogical
issues which has been addressed in order to increase the usefulness of our approach
(e.g., package flattening, renaming of reserved keywords, etc.). This approach has been
realized in a tool, named EFinder, which is available for download as an additional
contribution. We illustrate the applicability of our proposal with three scenarios that
extend EMF with model finding, namely: model verification, automatic construction of
examples to demonstrate a graphical notation and cross-artifact verification. Moreover,
we have evaluated the expressiveness of EFinder against a third-party OCL dataset.
Organization. The paper is organised as follows. Section 2 introduces a running
example and the architecture of our framework. The technical contribution is presented
in Sect. 3, which discusses technical details about the translation process. Then, Sect. 4
further shows the usefulness of our approach by illustrating three application scenarios.
Section 5 describes the tool and Sect. 6 reports on the evaluation results. Finally,
Sect. 7 presents related work, and Sect. 8 summarizes the results and future work.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 3

2 Overview

This contribution is motivated by the need for providing the EMF ecosystem with a
robust model finder to enable automatic reasoning over EMF models. This section
motivates and introduces model finding with a running example and presents the
architecture of our approach.

2.1 Running example

As a running example, let us consider a subset of the relational data model, in
other words a subset of SQL. Fig. 1 shows its Ecore meta-model and Listing 1
contains its associated invariants written in the Complete OCL variant1. A table,
also called a Rel[ational] Schema, possesses attributes that are categorized as key
or non-key attributes (isKey). Each attribute is typed through a datatype. A table
can be populated with a number of rows that possess components for the attributes,
technically realized by attribute map objects that are typed through attributes and
that in turn refer to value objects.

RelModel

RelSchema

name : EString
key() : Attribute

Attribute

name : EString
isKey : EBoolean = false

DataType

name : EString

Row

attrValue(a
Attribute) :
EString

AttrMap

Value

content : EString

[0..*] schemas

[0..*] rows

[0..*] datatypes

[0..*] attributes

[1..1] datatype_

[0..*] columns

[1..1] attribute

[1..1] value

[1..1] dt

[1..1] typing

[0..*] rows

Figure 1 – Ecore meta-model for relational schema.

1 import ’relschema.ecore’
2
3 context RelSchema inv uniqueAttributeNames:
4 self.attributes−>forAll(a1, a2 | a1.name = a2.name implies a1 = a2)
5
6 context RelSchema inv relSchemaKeyNotEmpty:
7 self.key()−>notEmpty()
8
9 context Row inv keyMapUnique:

10 Row.allInstances()−>forAll(self2 |
11 self<>self2 and self.typing = self2.typing implies
12 self.typing.key()−>exists(ka | self.attrValue(ka) <> self2.attrValue(ka)))
13
14 context Row inv hasAttrMapForAllAttr:
15 self.typing.attributes−>forAll(aRS| self.columns.attribute−>one(aAM| aRS.name=aAM.name)) and
16 self.columns.attribute−>forAll(aAM| typing.attributes−>one(aRS| aRS.name=aAM.name)) and
17 self.columns−>size() = relSchema.attributes−>size()

Listing 1 – OCL constraints.

1It is an OCL dialect which provides a Xtext-based editor and compiles to Pivot OCL [EOT19]

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

4 · Jesús Sánchez Cuadrado and Martin Gogolla

rs1: RelSchema

name = ‘People’

r1: Row

a1: Attribute

name = ‘name’
isKey =true

a2: Attribute

name = ‘age’
isKey =false

dt1: DataType

name = ‘String’

dt2: DataType

name = ‘Integer’

m1: AttrMap

v1: Value

content= ‘8’

m2: AttrMap

v2: Value

content= ‘Luis’

CREATE TABLE People (
name VARCHAR,
age INT,
PRIMARY KEY(name)

);
INSERT INTO People VALUES
(‘Luis’, 8)

RelSchema = (1..1)
Attribute = (2..2)
Row = (1..1)
AttrMap = (1..2)
Value = (1..4)
RelSchema_attributes=(1..2)
DataType_name =

{‘String’, ‘Integer’}
Value_content =

{‘Luis’, ‘Irene’,
‘8’, ‘9’, ‘10’}

Bounds configuration

Figure 2 – Witness model generated by the model consistency scenario.

Using our model finder we are interested in providing support to the following
features in the EMF ecosystem.
Model Consistency checks whether the model can be instantiated by at least one
object model given a finite search space, i.e., proving that the meta-model multiplicities
together with the OCL invariants are not contradictory. In this case, a witness model
is generated proving that such a model exists. A model finder could instantiate a
model similar to the one shown in Fig. 2 (for the sake of clarity, the corresponding
SQL statements that would generate an equivalent schema and database state are
shown in the lower left as a note). In this case, the model has a single RelSchema with
two attributes, for which there is a single row. Typically, a model finder requires a
so-called configuration where obligatory upper bounds for the number of objects per
class (e.g., exactly one Row object), optional attribute values (e.g., ‘String, ‘Integer’
for datatype names) and optional upper bounds for the number of links per reference
(e.g., up to 2 links, i.e., RelSchema.attributes->size) are stated. On the basis of such
a configuration, the object model is constructed, and, by this, the consistency of the
stated multiplicities from the class model together with the explicit OCL invariants is
proved.
Partial Solution Completion assumes a partially described object model is present
which may not (yet) satisfy the model invariants; then a model finder would try to
find a completion in terms of objects, references and attribute values such that a valid
object model satisfying all constraints is generated. In the example, if the object
v1:Value would not exist, the model finder would complete the model, adding at least
one object, filling the attributes with some valid values and establishing appropriate
links for the object v1:Value.
Scrolling refers to the capability of generating all possible models, within the given
bounds, which conform to the meta-model and satisfy its associated OCL invariants.
This is particularly interesting in combination with approaches like “Partitioning with
Classifying Terms” [HGBV18] to generate many example models according to some
criteria, e.g., achieving diverse object models that show considerable differences.

2.2 Architecture

The design of our framework intends to satisfy the requirements stated in the in-
troduction and to implement the features described in the previous section. Fig. 3

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 5

Figure 3 – Architecture of EFinder.

shows its architecture. The rationale of this architecture is to allow any EMF-based
implementation of OCL to profit from the framework easily and to allow its integration
in EMF-based tools. The framework is based on several components, annotated in the
figure: (A) an OCL intermediate representation (IR), (B) a meta-model slicer, (C)
a back-end. The back-end is intended to compile the OCL IR to some off-the-shelf
contraint solver or another model finder. In particular, we currently make use of
USE Model Validator (USE MV), which is a mature and robust OCL model finder.
However, USE MV does not interact well with other model development ecosystems.
EFinder’s backend applies a number of transformations and algorithms to make it
compatible with EMF.

We aim at facilitating tool developers in integrating a model finder into their
tooling, since model finders may make the developed tools much more powerful. Hence,
a key element in the framework design is the desire to provide support for several
OCL variants and query languages compatible with EMF. To achieve this we propose
to use an intermediate representation plus dedicated transformations which normalize
certain details of a given dialect so that it is possible to treat it generically.

Our OCL IR is based on a simple abstract syntax (AST) which is intended to cover
the constructs appearing in the existing OCL implementations in EMF. Given an OCL
implementation, a mapping between its AST and the IR’s AST must be developed
(label A). So far, we have implemented mappings for EMF/OCL, ATL and AQL, and
the implementations for other dialects is expected to be relatively simple since most
elements are common between OCL variants.

The OCL IR can be optionally type-checked (label C). This step is recommended
to gather additional information from the OCL text, which is later used to increase
the quality and performance of the translation to the backend. The existence of a
specific type checker for our OCL IR allows us to handle untyped variants like ATL,
SimpleOCL and EOL. In the current implementation the type checking is performed
using AnATLyzer’s facilities, but we want to built a specific type checker in the future.
In order to improve the quality of the type checking it is recommended to configure
the system with a standard library definition matching the one of the source OCL
variant. This is done with a dedicated fluent API. It is also possible to define analysis
extensions to override some default behaviour which maybe different in a given variant.
For instance, EMF/OCL has an operation to match regular expressions (matches). The
type checker is configured with a definition of the EMF/OCL standard library which

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

6 · Jesús Sánchez Cuadrado and Martin Gogolla

contains the definition (matches(String) : String).
The other key element of our approach are transformations applied to adapt the IR

to the backend features and to improve the performance (labels B, D and E). These
transformations are described in the next section.

Using this architecture we aim at enabling a number of advanced modelling
scenarios for EMF models. We foresee applications related to (meta)-model verification,
verification of model transformations, automatic generation of examples in different
scenarios (e.g., to support live modelling), model-based testing, etc. To demostrate the
feasibility of such scenarios we have build prototypes which are presented in Sect. 4.
Nevertheless, our aim is to encourage the community to use our tool to build other
types of applications.

3 Transforming OCL for model finding

Our approach is based on applying a series of transformations starting from a source
OCL dialect, which is mapped to a IR over which in-place transformations are applied
and finally a mapping to a backend. This section describes these transformations.

3.1 Meta-model slicing

Our architecture contains a dedicated phase for meta-model slicing. In this phase we
analyse which meta-model elements are used by the OCL text to slice the original
meta-model and reduce its size. To this end, the typed version of the OCL IR
is traversed, looking for ocurrences of meta-classes (e.g., as in Row.allInstances) and
accesses to structural features (e.g., self.attributes). Meta-model elements that are not
encountered are discarded when constructing the sliced meta-model. This is useful to
reduce the search space in those scenarios in which it is acceptable to discard parts
of the meta-model. In the example, to prove that the constraints are satisfiable the
model finder does not require class RelModel nor features like RelSchema.name. Please
note that if the aimed functionality is, for instance, ‘Partial Solution Completion’ we
may use the original meta-model.

3.2 Translation to the backend

In our current implementation we use USE Model Validator as a model finding backend.
Thus, the OCL IR is rewritten in order to match the USE Model Validator features
and structure. If it is not possible to perform a “good enough” translation to USE
(e.g., one that does make it fail internally), the process is aborted. This step allows us
to show to the user a precise description of why the constraint could not be evaluated
(e.g., due to unsupported features), instead of silently failing with an internal exception.
Finally, we generate code in the USE format for the meta-model and the constraints,
and feed dynamically the model finder.

For the example, an excerpt of the translation to USE is shown in the following
listing. First, classes required for the verification are translated to the USE format.
Then, operations and attributes defined at the meta-model level (e.g., key() and isKey)
are translated and merged. Please note that the system takes care of keyword clashes
(e.g., attributes is renamed to attributes_). Each invariant is then translated to USE
under the constraints section.

model relschema

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 7

class RelSchema
attributes
name : String

operations
key() : Set(Attribute) = self.attributes_−>select(a| a.isKey)

end

class Attribute
attributes
isKey : Boolean
name : String

end

composition RelSchema_attributes between
RelSchema[0..1] role RelSchema_attributes_source
Attribute[∗] role attributes_

end
...

constraints

context self : RelSchema inv RelSchema_2:
self.attributes_−>forAll(a1, a2| a1.name = a2.name) implies a1 = a2)

...

In addition, in this step we also adapt the Ecore meta-model to fit the USE class
model features. In particular, one limitation of USE is that it does not support
multiple class diagrams for the same OCL text. To support constraints which are
typed against more than one Ecore meta-model we merge all meta-models into one,
performing the required rewritings to avoid name clashes.

3.3 Integration of EMF and USE models

If the constraints are satisfiable, the result is an example model represented using
data structures from USE, which needs to be translated back to the EMF side. This
translation must take into account some of the transformations done in the previous
rewritings. Moreover, there is the possibility of giving an existing EMF model as input.
This model is translated at runtime into data structures from USE in order to realize
the ‘Partial Model Completion’ scenario. This is a translation of object models, which
is parameterized with the mapping performed by the previous translation in order to
keep both models consistent.

3.4 Improving OCL coverage

This section presents some of the advanced features provided by EFinder in order
to improve its coverage in terms of OCL features amenable to model finding and to
bridge semantic differences between Ecore meta-models and USE meta-models.
Only one root. In EMF there exists the convention that a model should have one
root element, which acts as a container (directly or indirectly) for the rest of the
elements. In the example, RelModel plays such a role. As part of our translation
there is an option to generate a constraint which enforces that all elements belong
to a single root container (e.g., to avoid having a model with a RelModel instance
and a RelSchema instance as roots). The following listing shows an excerpt of this
constraint.
1 context RelModel inv oneModel:
2 RelModel.allInstances()−>size() = 1 and
3 RelSchema.allInstances()−>forAll(r | not r.oclContainer().oclIsUndefined()) and
4 ... −− same pattern for Attribute, Row, DataType, AttrMap and Value
5

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

8 · Jesús Sánchez Cuadrado and Martin Gogolla

6 context RelSchema operation oclContainer() : OclAny =
7 RelModel.allInstances()−>select(r | r.schemas−>includes(self))−>any(true)

Three-valued logic. The OCL standard, and USE in particular, uses a three-valued
logic (e.g., there are three truth values: true, false and undefined). However, in
EMF primitive values cannot be identical to OclUndefined, therefore we establish a
constraint to make USE behave like a two-valued logic for primitive attributes. The
following listing shows an example of such a constraint.
1 −− Three−valued logic mapping
2 context Attribute inv tvl:
3 not self.isKey.isUndefined()

Ranges. In OCL it is possible to describe a collection of primitive values using a
range, for example, Set {1..5}. This is supported in EMF/OCL, but it is not supported
yet in the USE MV. In many cases it is possible to unfold the range into its components
to generate all collection elements explicitly (e.g., Set {1, 2, 3, 4, 5}).

Recursion. The USE MV does not support recursive operations. For instance, let
us suppose that our Relational meta-model additionally supports inheritance. The
following operation and the associated constraint cannot be verified.
1 context RelSchema
2 operation allAttributes() : Set(Attribute) =
3 if self.parent.oclIsUndefined() then Set { }
4 else self.attributes−>union(self.parent.allAttributes()) endif
5
6 context RelSchema inv uniqueAttributeNames_Inheritance:
7 self.allAttributes()−>forAll(a1, a2 | a1.name=a2.name implies a1=a2)

Our approach to deal with this issue is based on unfolding a recursive operation
up to a finite number of steps. We perform the unfolding by copying the original
operation n times, so that there are n+1 versions of the operation. Then, each version
of the operation is rewritten so that the recursive call site does not invoke the original
operation, but the next copy of the operation. The last operation in the sequence
just returns OclUndefined as a bottom value (i.e., to indicate an evaluation error).
Listing 2 shows a sketch of this procedure. It takes the desired number of unfoldings
(N) and the piece of abstract syntax corresponding to the recursive operation (OP).
There are two helper functions, callSites which returns the set of recursive call sites
(i.e., a set of abstract syntax elements representing operation calls that invoke Op) and
copy which returns a deep copy of the given abstract syntax element.
1 N = Number of unfoldings
2 OP = Original operation
3
4 OP0 = OP
5 for i = 1 to N
6 CSi−1 = callSites(OPi−1)
7 foreach cs in CSi−1

8 cs.operationName = OP.operationName + "_" + i
9 end

10
11 OPi = copy(OP)
12 OPi.operationName = OP.operationName + "_" + i
13 end
14
15 OPN .body = OclUndefined

Listing 2 – Sketch of the unfolding algorithm.

In this way, the allAttributes operation is unfolded for n = 2 as follows:

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 9

1 context RelSchema
2 operation allAttributes() : Set(Attribute) =
3 if self.parent.oclIsUndefined() then Set { }
4 else self.attributes−>union(self.parent.allAttributes_1()) endif
5
6 operation allAttributes_1() : Set(Attribute) =
7 if self.parent.oclIsUndefined() then Set { }
8 else self.attributes−>union(self.parent.allAttributes_2()) endif
9

10 operation allAttributes_2() : Set(Attribute) = OclUndefined

Iterate. The iterate operation is also not supported in the USE MV. We use a similar
approach as with recursive operations. For each occurrence of iterate we generate
a specific recursive operation which implements it, and then apply the unfolding
explained above.

Tuples. OCL supports anonymous tuples, which allows temporary objects to be
created. For illustration purposes, let us consider the following use of tuples to
describe elements of a relational model: we want to design two schemas (Person and
Pet) with key attributes, named id, and nickname, respectively.
1 context RelModel
2 def: example() : Set(Tuple (rel : String, keyName : String)) =
3 Set { Tuple { rel = ’Person’, keyName = ’id’ },
4 Tuple { rel = ’Pet’, keyName = ’nickname’ } }
5
6 context RelModel inv withExample:
7 self.example()−>forAll(e | self.schemas−>exists(s |
8 s.name = e.rel and s.key()−>one(a | a.name = e.keyName)))

We have implemented a dedicated rewriting, at the OCL IR level, to support
tuples in model finders like the USE MV which does not have support for them. The
underlying idea is to automatically extend the source meta-model with one class per
tuple type. In this case, we name this class RelKeyNameTuple. Then, we need to force
the model finder to create the corresponding objects using the strategy exemplified
in the following listing. First, we need to replace each tuple literal with some OCL
expression to retrieve an object whose features match the values originally assigned
to the tuple (lines 3–4). There is however a caveat. A valid result would be that any
does not find an object, returning OclUndefined. Hence, we need to add an additional
constraint to avoid this. Our current approach is to identify in which locations of the
OCL text a tuple is accessed (e.g., s.name, line 9), and find the “boolean location” in
which it is possible to insert the constraint that a tuple cannot be OclUndefined (line
8 in the example).
1 context RelModel
2 def: example() : Set(RelKeyNameTuple) =
3 Set{RelKeyNameTuple.allInstances()−>any(rel=’Person’,keyName=’id’),
4 RelKeyNameTuple.allInstances()−>any(rel=’Pet’,keyName=’nickname’) }
5
6 context RelModel inv withExample:
7 self.example()−>forAll(e | self.schemas−>exists(s |
8 not e.oclIsUndefined() and −− Constrain the tuple
9 s.name = e.rel and s.key()−>one(a | a.name = e.keyName)))

The transformations described in this section provides the means to satisfy the
requirements stated in the introductory section. The translation to and from USE
models and class diagrams is completely transparent to the user, so that both the
input and the output of the model finding process use EMF resources, which can be
seamlessly manipulated in memory or stored on disk. The coverage of OCL features
depends on the support of the USE MV, but our approach based on OCL IR rewritings
allows us to circumvent some of its limitations and to increase the coverage (see Sect. 6).

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

10 · Jesús Sánchez Cuadrado and Martin Gogolla

In addition, the OCL IR allows OCL variants to be easily plugged-in and to profit
from the rest of the infrastructure (e.g., meta-model slices, IR rewritings, conversions
to USE). We currently support three OCL variants, but the implementation of new
variants in the future is expected to be relatively straightforward. Finally, we also take
advantage of our OCL IR transformations to analyse the input OCL text to detect
which features are not supported and to report failures properly.

4 Applications

This section describes three scenarios in which model finding can be used to prove
properties and to generate example models, and in which the EFinder architecture
provides integration with different EMF technologies.

4.1 Model analysis and exploration

Models and meta-models are key elements in Model-Driven Engineering. Meta-models
need to be well engineered in order to allow modellers construct useful and correct
models. In this setting OCL constraints play the important role of adding additional
semantics to a meta-model. This scenario illustrates the use of EFinder as a tool
to analyze and explore models, meta-models and OCL constraints. This brings to
EMF modellers part of the functionality already available in USE [GHD18] which was
briefly introduced in Sect. 2.
Model Consistency. This functionality is realized by letting EFinder generate an
example model which satisfies the given constraints. If such a model exists within the
given bounds (i.e., within the configuration given to EFinder), then the meta-model
and the constraints are consistent. This has already been illustrated in Fig. 2. We
currently support two approaches for handling the bounds: a) the user may provide
an external file or direct annotations in the OCL text to give explicit values to the
minimum and maximum number of objects, and also for integer ranges and for explicit
string values, or b) the system automatically tries to determine the proper bounds
automatically by searching for a solution starting with some small bounds, e.g., (1..3),
up to a maximum, with a configurable maximum bound e.g., (1..8).
Partial Solution Completion. Given an EMF Resource, which already contains a
set of model elements, this functionality allows the developer to derive a new version of
the model in which all the constraints are satisfied. Figure 4 shows (a) a model (left)
that violates the hasAttrMapForAllAttr constraint, and (b) the new version of the model
(right) in which the constraint is now satisfied by introducing an AttrMap object.
Scrolling. In the previous two scenarios EFinder outputs one example model if the
constraints are satisfiable. However, there might be other example models available.
We have integrated the scrolling functionality of the USE MV to allow the user to
return the rest of the solutions iteratively.

4.2 Sirius previewer

Sirius is a tool to implement graphical editors for EMF models in a declarative way by
creating an odesign model, which defines (among other elements) a mapping between
the language abstract syntax (its Ecore meta-model) and a concrete syntax defined by
the Sirius graphical meta-model. For instance, Fig. 5 (label A) shows the definition
of a graphical editor for a simple Statecharts meta-model which contains States and

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 11

Figure 4 – Input model for model completion (left) and completed model (right).

Transitions. For each notation element that we want to show in the editor, we need to
create a mapping to its corresponding meta-model element. For instance, to represent
initial states (using a black circle) a mapping to the State meta-class is defined, taking
into account the precondition that this mapping only holds when isInitial = true. In
the case of edges, like Transition, we also need to specify the possible source and
target notation elements (depicted with a normal line end and a line with an arrow,
respectively).

Developing an editor in Sirius typically implies the following cycle of development
steps: define a mapping for a meta-model element, add some graphical properties
(color, shape, etc.), create a new model or modify an existing one to instantiate
some objects (i.e., create a new XMI file using the regular tree editor), update some
properties of interest, and then open a new editor to visualize the example model. If
the graphical rendering is not as expected, the editor implementation must be changed.
This process is time consuming and could be improved.

To automate the process of discovering bugs in the developed notation, our tool
EFinder can be applied to automatically generate relevant examples and to show the
Sirius rendering without manual intervention. The underlying idea is that the developer
could discover bugs in the editor implementation by observing the models that are
rendered automatically and looking for unintended visualizations. The process for
generating the constraints for feeding the model finder and for automatically computing
the required bounds (i.e., the MV configuration) works by traversing the odesign model
and by identifying the features that must be present in a model element in order to be
shown. For instance, for each Edge mapping we need to generate a constraint for each
possible pair of source and target types and their associated preconditions. In the
example, a Transition could have an initial state or a regular state as source elements
and a final state or a regular state as target elements. Thus, we generate the four
constraints shown in Fig. 5 (label B).

It is also possible to automatically apply some heuristics to determine proper object
bounds. In this case, we know that there must be at least four different instances
of Transition, and there might be up to eight constellations of State. Therefore, we
automatically advise EFinder with such bounds.

It is worth noting that in this scenario the constraint generation process is driven
by the notation to generate OCL IR, which is combined with the AQL to OCL IR
translator to process AQL preconditions.

The result, shown in Fig. 5 (label C), is a model which exercises all the elements

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

12 · Jesús Sánchez Cuadrado and Martin Gogolla

of the notation. In this example, the generated diagram allows us to discover a bug in
the editor specification (or a lack of a meta-model constraint) since it is possible to
connect an initial state to a final state directly. The main drawback of the current
approach is that, for editors with many notation elements, the generated model may
lead to cluttered diagrams. As future work we want to generate classifying terms
automatically in order to obtain very small and notation-wise relevant examples.

isInitial = true

isFinal = true

not isFinal and not isInitial

inv InitialState_to_State:
Transition.allInstances()->exists(o | o.source.isInitial
and not o.target.isInitial and not o.target.isFinal)

inv State_to_Final:
Transition.allInstances()->exists(o |
not o.source.isInitial and not o.source.isFinal and
o.target.isFinal)

inv Initial_to_Final:
Transition.allInstances()->exists(o |
o.source.isInitial and o.target.isFinal)

inv State_to_State:
Transition.allInstances()->exists(o |
not o.source.isInitial and not o.source.isFinal and
not o.target.isInitial and not o.target.isFinal)

Constraint
generation

Model finding +
Sirius visualisation

Automatic bounds

Transition = (4..4)
State = (1..8)

A

B

C

(to OCL IR)

Figure 5 – Generation of example models from Sirius diagram specifications.

4.3 Cross-artifact analysis

As discussed in previous sections, our architecture is intended to provide model finding
support for several OCL variants. However, a useful application of the common OCL
IR (intermediate representation) is to carry out an analysis that requires combining
different sources, i.e., to enable cross-compatibility between OCL variants. In particular,
we have extended the tool AnATLyzer [CGdL17a] to be able to include meta-model
invariants as part of its analysis. Let us give an example where both EMF/OCL
and ATL OCL are applied: The following listing shows an ATL transformation in
which source meta-model invariants are considered via the @constraints annotation.
The target meta-model invariant hasKey, written in ATL, can only be verified when
combined with the source meta-model invariants, written in EMF/OCL. Technically,
the system translates the hasKey invariant defined over the SQL meta-model into a
precondition defined over the RelSchema meta-model (using the technique described
in [CGdL+17b]). This constraint is fed into the model finder along with the other
RelSchema constraints, notably relSchemaKeyNotEmpty, and the result is that the
transformation always satisfies the hasKey invariant. To summmarize, we state that
our approach is able to combine OCL constraints coming from different OCL sources
into a common representation which is evaluated by the USE MV. Hence, all OCL
variants which can be mapped to our IR are automatically compatible with each other.
This is, to best of our knowlegde, a unique feature enabled by our framework.
1 −− @path REL=/example.efinder.relschema/models/RelSchema.ecore
2 −− @path SQL=/example.efinder.relschema/models/SQL.ecore
3 −− @constraints REL=/example.efinder.relschema/models/RelSchema.ocl
4 module relschema2sql;
5 create OUT : SQL from IN : REL;
6
7 −− @target_invariant
8 helper def : hasKey() : Boolean =
9 SQL!CreateTable.allInstances()→forAll(ct | ct.pkeys→size() > 0);

10

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 13

11 rule RelSchema2Statement {
12 from r : REL!RelSchema
13 to s : SQL!CreateTable (
14 tableName <− ’’,
15 columns <− r.attributes,
16 pkeys <− r.attributes→select(att | att.isKey)
17)
18 }
19
20 rule Attribute2ColumnDefinition {
21 from a : REL!Attribute
22 to c : SQL!ColumnDefinition (
23 name <− a.name,
24 dt <− a.datetype.name
25)
26 }

Another appealing application of this technique is analyzing model transformation
chains written in different languages. For instance, the Eclipse/EMF implementation
of QVT Operational makes use of the EMF/OCL variant, ATL implements its own
OCL variant, SimpleGT uses SimpleOCL. It would, therefore, be possible to perform
an analysis about the composition of a chain of transformations written in different
languages by developing an appropriate mapping to our framework. Such a mapping
would reuse most of the transformations that we have already developed for existing
OCL variants. This is part of our future work.

5 Tool

We have developed an Eclipse plug-in named EFinder which implement the architecture
and transformations described in the previous sections. The tool and its source code
are available at http://github.com/jesusc/efinder.

At the level of the user interface there is a dedicated OCL View that allows the
selection of the available funtionalities: model consistency (plain constraint verification
or example generation), partial model completion and scrolling. As a response, one or
more EMF models will be generated and stored as XMI files. This is shown in Fig. 6,
in which the selected constraints are checked for consistency. The obtained example
model demonstrates that there exists at least one model satisfying the constraints. It
is shown to the right.

Moreover, EFinder provides an easy to use programmatic interface to allow the
developer its integration in external tools using the regular EMF infrastructure. There
are three main components involved, whose main APIs are illustrated in the following
listing.

1. A translation from the choosen OCL variant to EFinder’s OCL IR. We currently
provide translations for EMF/OCL, ATL and AQL (lines 1–3).

2. A backend model finder, which is the USE Model Validator in our case. As
discussed above, we support partial model completion. Thus it is possible to
load a regular EMF Resource and use it as input for the model finder. There
are also other options, configuring the scrolling model and whether we want to
use a slicing strategy to reduce the search space (lines 5 – 12).

3. The configuration of the model finding process can be configured with transfor-
mations to be applied to the IR program and it also support options like setting
a time out or the slicing strategy to be applied (lines 13–19).

Journal of Object Technology, vol. 19, no. 2, 2020

http://github.com/jesusc/efinder
http://dx.doi.org/10.5381/jot.2020.19.2.a10

14 · Jesús Sánchez Cuadrado and Martin Gogolla

Figure 6 – User interface of EFinder

4. Finally, there are several operations to retrieve the result (21–25). First, we can
check whether the constraints are satisfiable or not, or whether there is an error
and the translation is not possible (line 23). If the result is SAT, the example
model can be retrieved as a regular EMF resource (line 24). Moreover, if the
scrolling option is active, it is possible to access an iterator to retrieve the next
results (line 25).

1 // 1. Loads an EMF/OCL document and translates it to EFinder’s IR
2 ASResource oclSpec = loadOCL("relational.ocl")
3 EFinderModel ir = EMFOCLTranslator.toIR(oclSpec);
4
5 // Load an example model to be used it as partial model
6 Resource res = rs.getResource(URI.createFileURI("example.xmi"), true);
7 EMFModel partialModel = new EMFModel(res);
8
9 // 2. Creates an instance of USE as a model finder backend

10 IModelFinder finder = new UseMvFinder().
11 withPartialModel(partialModel).
12 withScrolling(ScrollingMode.SCROLL);
13
14 // 3. Configure the model finding process
15 EFinderRunner finder = EFinderRunner.withOCL(ir).
16 withSliceStrategy(SliceMode.NO_SLICE). //Alternative: SLICE_PATH
17 withTransform(new TupleToClassTransform()).
18 withTimeOut(10_000). // 10 seconds
19 withFinder(finder);
20
21 // 4. Get the results
22 Result result = finder.finder();
23 result.getStatus(); // => returns an enumeration SAT/NO−SAT/ERROR
24 result.getWitnessModel(); // => returns EMF Resource with example model
25 result.getScrollingIterator(); // => returns an iterator over EMF Resources

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 15

6 Evaluation

In this section, we report on the results of the evaluation of this work. In particular,
we have focused on measuring to what extent our tool can validate successfully
OCL expressions written by third parties. To this end, we have used the data
set presented in [NMS17], which is available at https://github.com/tue-mdse/
ocl-dataset. This dataset contains 509 unique files with constraints. They are Ecore
meta-models (.ecore files) or OCL specifications written in EMF/OCL (.ocl files). A
total of 301 files are clean files (with no errors), and this valid set contains 2244 OCL
constraints. Thus, in average, each OCL model involves around 7 OCL constraints.

The steps followed to process the dataset were as follows. First we read the
available metadata descriptors and load the corresponding file. For .ecore files we load
the meta-model and extract the embedded OCL expressions using the EMF/OCL
API to generate a PivotOCL resource. For .ocl files we load the OCL text using
EMF/OCL’s CompleteOCL processor and generate a PivotOCL resource as well. In
case of load errors or if the OCL text contains syntax errors (e.g., typing errors) we
discard the file and count it as “invalid”. We also check if the file is duplicated. To
do this we compute the MD5 hash of each file and discard duplicates automatically.
The remaining files are considered valid from the EMF/OCL point of view, and we
continue to process them. The upper part of Table 1 shows the number of valid and
invalid files.

Table 1 – Evaluation results

#Files % #Constraints %
Invalid 208 40.86 0 0,00
Valid 301 59.14 2244 100.00
Total 509 100.00 2244 100.00
Not supported 84 27.91 382 17.02
Internal error 22 7.31 149 6.64
Verified 195 64.78 1713 76.34

Using EFinder we processed each valid file in two ways. First, we tried to verify
the consistency of the complete specification (i.e., is it possible to instantiate the
meta-model and to satisfy the constraints). We achieved a 64.78% success rate, that
is, our tool is able to process a significant part of dataset completely. About 28% of
the files contain constructs that are not supported by EFinder and are reported as
such. Unfortunately, 22 files resulted in internal errors for which we cannot properly
report the cause to the user. Some of these causes require special identification and
treatment. For example, we found that USE MV has a stricter type system than
EMF/OCL (e.g., USE MV aborts if an oclIsType operation checks an invalid type).
Our aim is to avoid these types of issues completely in the future.

Secondly, we processed each constraint individually to avoid the effect that only
one instance of an unsupported construct hinders the possibility of evaluating the
complete file. In this case the support grows to more than 75%.

To understand better which features are more widely used in the dataset we have
automatically processed the valid OCL texts obtaining a summary of used features
shown in Table 2. This provides some insights about which characteristics are more
important for a model finder to be practical. We have also annotated each feature with
its level of support (YES if supported, NO if unsupported and P if partially supported
by considering specific cases) in EFinder and EMF2CSP, which is a state-of-the-art
tool for the verification of EMF models. This qualitative data comes from a custom test
suite in which each construct or operation is exercised with a single, simple expression

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/tue-mdse/ocl-dataset
https://github.com/tue-mdse/ocl-dataset
http://dx.doi.org/10.5381/jot.2020.19.2.a10

16 · Jesús Sánchez Cuadrado and Martin Gogolla

that test this feature (e.g., to test first test case would include an expression similar to
Sequence {1, 2, 3}->first() = 1) For each tool we tested whether it was able to produce
a result or if it failed.

As can be observed, String operations are used in a significant number of files (e.g.,
size and matches). Another set of unsupported elements has sequence operations, like
at and first. They are generally not supported, neither in EFinder nor EMF2CSP.
However, EFinder provides more support for other important features, in particular
oclAsType, oclIsUndefined, selectByKind, collect, closure and tuples. This level of
support allows EFinder to handle a very relevant set of OCL specifications, as
demonstrated in this evaluation.

7 Related work

There are various approaches to validation and verification in the Eclipse and EMF
context. The work in [RED18] proposed to validate and verify BPMN processes
within Eclipse formally, but did not discuss constraints. [AGGO11] discussed an
Eclipse plugin for handling names in conceptual schemas of information systems
without treating general constraints. An Eclipse plugin for verifying executable models
formulated in ALF for UML was proposed in [PSCG12], however without considering
constraints. The approach in [SHU16] demonstrates that constraint solvers (that are
the basis for our model finder) can also be used effectively for program and model
repair. Graph transformations have been applied in the EMF context for defining,
validating and verifying model transformation [BET08, ABJ+10]. Typically these
works consider specialized constraint languages and not full standard OCL and its
derivations. EMFtoCSP [GBCC12] was the first approach that showed that validation
and verification of EMF models, including OCL constraints with solver techniques on
the basis of constraint logic programming, is feasible. That approach concentrated on
handling the standard OCL features, but put less emphasis on seamless integration into
the development process, e.g., for different OCL dialects. An approach to deal with
String operations is presented in [BC15]. This was implemented as a CSP problem, but
for evaluation purposes it was also tested against Alloy using sequences. The graph
solver from [SNV18] based on earlier work on Viatra [BHH+11] also constructs EMF
models on the basis of graph or OCL constraints. Complementary to our proposal,
the solver is able to generate large, diverse EMF models whereas our aim is to prove
model properties with smaller examples or counterexamples. The solver does not
support datatype operations (as arithmetic on Integer) and some collection operations
(as size). A quite new approach aimed at supporting model finding for practical data
generation has been put forward in [SSB19]. Our approach is more closely related to
verification, and it is currently limited to generate relatively small models.

There are number of various OCL variants in the EMF ecosystem, such as
EMF/OCL [EOT19], AQL [AT19] and ATL [JABK08], SimpleOCL [SOT19] and
EOL [KPP06]. All variants share common concepts, but they also have major dif-
ferences at different levels. EMF/OCL follows the OCL standard, whereas ATL,
AQL and SimpleOCL implement it partially or older versions of the OCL standard.
EMF/OCL implements a type checker, AQL implements some type checking rules but
does not make the typing information available, and ATL, SimpleOCL and EOL just
provide runtime interpreters. The type of iterators and operations also varies. ATL
does not support operations like selectByKind and closure, which are however available
in EMF/OCL for instance. The architecture of EFinder is intended to handle this

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 17

Table 2 – OCL features used in the OCL dataset. Features appearing in less than 2% of
the files are not shown.

#Occ. #Files %Files EFinder EMF2CSP
Operations

OclAny::oclAsSet 836 87 25,14 YES YES
OclAny::oclAsType 530 66 19,08 YES NO

OclAny::oclIsTypeOf 400 60 17,34 YES YES
OclAny::oclIsUndefined 244 59 17,05 YES NO

String::size 266 54 15,61 P YES
OclAny::oclIsKindOf 461 52 15,03 YES YES

String::matches 143 24 6,94 NO NO
String::substring 90 24 6,94 NO NO

String::toUpperCase 24 17 4,91 NO NO
String::concat 34 13 3,76 NO NO

OclAny::oclType 28 11 3,18 NO NO
Integer::toString 23 9 2,60 NO NO

String::at 15 8 2,31 NO NO
String::toLowerCase 10 8 2,31 NO NO

Collection ops.
size 732 149 43,06 YES YES

includes 363 89 25,72 YES YES
isEmpty 335 72 20,81 YES YES

notEmpty 229 68 19,65 YES YES
asSet 182 32 9,25 YES NO

excludes 66 31 8,96 YES YES
includesAll 87 30 8,67 YES NO

union 116 24 6,94 YES YES
sum 64 20 5,78 YES NO
first 72 18 5,20 NO NO
at 141 17 4,91 NO NO

excluding 35 15 4,34 YES P
prepend 15 15 4,34 NO NO

selectByKind 84 14 4,05 YES NO
including 53 13 3,76 YES YES
indexOf 35 12 3,47 NO NO

intersection 27 11 3,18 YES YES
asSequence 37 10 2,89 P YES
excludesAll 27 10 2,89 YES YES

flatten 49 10 2,89 YES YES
last 15 10 2,89 NO NO

selectByType 24 9 2,60 YES NO
asOrderedSet 35 8 2,31 NO YES

symmetricDifference 8 7 2,02 YES NO
Iterators

forAll 993 154 44,51 YES YES
select 1085 138 39,88 YES YES
collect 2210 106 30,64 YES NO
exists 793 73 21,10 YES YES

isUnique 180 62 17,92 P YES
one 580 27 7,80 YES YES

closure 99 25 7,23 YES NO
any 99 24 6,94 YES YES

reject 9 7 2,02 YES YES
Iterate 22 13 3,76 YES NO
Tuples 180 39 11,27 YES NO
Ranges 62 24 6,94 P NO

variability in order to widen the application scope of the tool.
In [AZKR17] an initial version of our infrastructure was used to build a symbolic

executor for ETL. This shows the usefulness of our framework for researchers to
build advanced tooling with a fraction of the effort required to build it from scratch.
In contrast to the mentioned works, our current proposal is the only approach for
EMF models that supports advanced model finding techniques with various analysis
scenarios and is open for different OCL versions.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a10

18 · Jesús Sánchez Cuadrado and Martin Gogolla

8 Conclusions

We have presented EFinder, a framework to provide model finding capabilities for the
EMF ecosystem. We have applied the USE MV as a model finder backend, enhancing
its capabilities through dedicated transformations. Our architecture, which is based
on an intermediate OCL representation, provides support for several OCL variants.
We have shown its usefulness in three non-trivial scenarios. Finally, the evaluation
results point out that EFinder is able to process about 65% of the OCL files present
in a third-party dataset, covering a wide range of OCL features used in practice. This
indicates that EFinder is already a practical tool.

As future work, we plan to enhance the integration of EFinder with the USE
MV. We want to support some scenarios supported by USE MV but not supported by
EFinder, notably Partitioning with Classifying Terms. At the USE MV side, we aim
at exploring to what extent it is possible to implement widely used OCL operations
(according to the results in Table 2) which are not supported yet, notably String
operations. Last but not least, larger practical case studies have to give feedback for
further improvement of our model finding option in the EMF context.

Acknowledgments Work partially funded by project RECOM (Spanish MINECO,
TIN2015-73968-JIN, AEI/FEDER/UE) and a Ramón y Cajal 2017 research grant.

References

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced concepts and tools
for in-place EMF model transformations. In Dorina C. Petriu,
Nicolas Rouquette, and Øystein Haugen, editors, Model Driven
Engineering Languages and Systems - 13th Int. Conf., Proceed-
ings, Part I, volume 6394 of LNCS, pages 121–135. Springer, 2010.
doi:10.1007/978-3-642-16145-2_9.

[AGGO11] David Aguilera, Raúl García-Ranea, Cristina Gómez, and Antoni
Olivé. An eclipse plugin for validating names in UML conceptual
schemas. In Olga De Troyer, Claudia Bauzer Medeiros, Roland Billen,
Pierre Hallot, Alkis Simitsis, and Hans Van Mingroot, editors, Ad-
vances in Conceptual Modeling. Recent Developments and New Direc-
tions - ER 2011 Workshops FP-UML, MoRE-BI, Onto-CoM, SeC-
oGIS, Variability@ER, WISM. Proceedings, volume 6999 of LNCS,
pages 323–327. Springer, 2011. doi:10.1007/978-3-642-24574-9\
_41.

[AT19] AQL-Team. AQL: Acceleo Query Language. https://www.eclipse.
org/acceleo/documentation/aql.html/, 2019. [Online; accessed
April-2019].

[AZKR17] Banafsheh Azizi, Bahman Zamani, and Shekoufeh Kolahdouz-Rahimi.
Contract verification of etl transformations. In 2017 7th International
Conference on Computer and Knowledge Engineering (ICCKE), pages
154–160. IEEE, 2017.

[BC15] Fabian Büttner and Jordi Cabot. Lightweight string reasoning in model
finding. Software & Systems Modeling, 14(1):413–427, 2015.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-24574-9_41
https://doi.org/10.1007/978-3-642-24574-9_41
https://www.eclipse.org/acceleo/documentation/aql.html/
https://www.eclipse.org/acceleo/documentation/aql.html/
http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 19

[BET08] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Pre-
cise semantics of EMF model transformations by graph transfor-
mation. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel,
Axel Uhl, and Markus Völter, editors, Model Driven Engineering
Languages and Systems, 11th Int. Conf., MoDELS 2008. Proceed-
ings, volume 5301 of LNCS, pages 53–67. Springer, 2008. doi:
10.1007/978-3-540-87875-9_4.

[BHH+11] Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán
Ujhelyi, and Dániel Varró. Implementing efficient model validation
in EMF tools. In Perry Alexander, Corina S. Pasareanu, and John G.
Hosking, editors, 26th IEEE/ACM Int. Conf. on Automated Software
Engineering (ASE 2011), pages 580–583. IEEE Computer Society,
2011. doi:10.1109/ASE.2011.6100130.

[CGdL17a] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. Static
analysis of model transformations. IEEE Transactions on Software
Engineering, 43(9):868–897, 2017.

[CGdL+17b] Jesús Sánchez Cuadrado, Esther Guerra, Juan de Lara, Robert Clar-
isó, and Jordi Cabot. Translating target to source constraints in model-
to-model transformations. In 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 12–22. IEEE, 2017.

[Ecl17] EclipseTeam. Eclipse Modeling Framework (EMF) Model Validation.
www.eclipse.org/emf-validation/, 2017.

[EOT19] EMF-OCL-Team. Eclipse OCL (Object Constraint Language). https:
//download.eclipse.org/ocl/doc/6.4.0/ocl.pdf, 2019. [Online;
accessed April-2019].

[GBCC12] Carlos A González, Fabian Büttner, Robert Clarisó, and Jordi Cabot.
Emftocsp: A tool for the lightweight verification of emf models. In
2012 First International Workshop on Formal Methods in Software
Engineering: Rigorous and Agile Approaches (FormSERA), pages
44–50. IEEE, 2012.

[GHD18] Martin Gogolla, Frank Hilken, and Khanh-Hoang Doan. Achieving
model quality through model validation, verification and exploration.
Computer Languages, Systems & Structures, 54:474–511, 2018.

[HGBV18] Frank Hilken, Martin Gogolla, Loli Burgueño, and Antonio Vallecillo.
Testing models and model transformations using classifying terms.
Software & Systems Modeling, 17(3):885–912, 2018.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
Atl: A model transformation tool. Science of computer programming,
72(1-2):31–39, 2008.

[KG12] Mirco Kuhlmann and Martin Gogolla. From uml and ocl to relational
logic and back. In International Conference on Model Driven Engineer-
ing Languages and Systems, pages 415–431. Springer, 2012.

[KPP06] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The
Epsilon Object Language (EOL). In European Conference on Model
Driven Architecture-Foundations and Applications, pages 128–142.
Springer, 2006.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1007/978-3-540-87875-9_4
https://doi.org/10.1007/978-3-540-87875-9_4
https://doi.org/10.1109/ASE.2011.6100130
https://download.eclipse.org/ocl/doc/6.4.0/ocl.pdf
https://download.eclipse.org/ocl/doc/6.4.0/ocl.pdf
http://dx.doi.org/10.5381/jot.2020.19.2.a10

20 · Jesús Sánchez Cuadrado and Martin Gogolla

[NMS17] Jeroen Noten, Josh GM Mengerink, and Alexander Serebrenik. A data
set of ocl expressions on github. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pages 531–534.
IEEE, 2017.

[PSCG12] Elena Planas, David Sanchez-Mendoza, Jordi Cabot, and Cristina
Gómez. Alf-verifier: An eclipse plugin for verifying alf/uml executable
models. In Silvana Castano, Panos Vassiliadis, Laks V. S. Lakshmanan,
and Mong-Li Lee, editors, Advances in Conceptual Modeling - ER
2012 Workshops CMS, ECDM-NoCoDA, MoDIC, MORE-BI, RIGiM,
SeCoGIS, WISM. Proceedings, volume 7518 of LNCS, pages 378–382.
Springer, 2012. doi:10.1007/978-3-642-33999-8_44.

[RED18] Anass Rachdi, Abdeslam En-Nouaary, and Mohamed Dahchour. Short
paper: BPMN process analysis: A formal validation and verification
eclipse plugin for BPMN process models. In Andreas Podelski and
François Taïani, editors, Networked Systems - 6th Int. Conf., NETYS
2018, Revised Selected Papers, volume 11028 of LNCS, pages 100–104.
Springer, 2018. doi:10.1007/978-3-030-05529-5_7.

[SHU16] Friedrich Steimann, Jörg Hagemann, and Bastian Ulke. Comput-
ing repair alternatives for malformed programs using constraint at-
tribute grammars. In Eelco Visser and Yannis Smaragdakis, edi-
tors, Proceedings of the 2016 ACM SIGPLAN Int. Conf. on Object-
Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, pages 711–730. ACM, 2016.
doi:10.1145/2983990.2984007.

[SNV18] Oszkár Semeráth, András Szabolcs Nagy, and Dániel Varró. A graph
solver for the automated generation of consistent domain-specific mod-
els. In Proceedings of the 40th International Conference on Software
Engineering, pages 969–980. ACM, 2018.

[SOT19] Simple-OCL-Team. SimpleOCL. https://github.com/dwagelaar/
simpleocl, 2019. [Online; accessed April-2019].

[SSB19] Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C Briand. Prac-
tical model-driven data generation for system testing. arXiv preprint
arXiv:1902.00397, 2019.

About the authors

Jesús Sánchez Cuadrado is a Ramón y Cajal researcher at
Universidad de Murcia. Previously he was an associate professor
at Universidad Autónoma de Madrid. His research is focused on
Model Driven Engineering (MDE) topics, notably model transfor-
mation languages, meta-modelling and domain specific languages.
On these topics, he has published several articles in journals and
peer-reviewed conferences, and developed several tools. Contact
him at jesusc@um.es, or visit http://sanchezcuadrado.es.

Journal of Object Technology, vol. 19, no. 2, 2020

https://doi.org/10.1007/978-3-642-33999-8_44
https://doi.org/10.1007/978-3-030-05529-5_7
https://doi.org/10.1145/2983990.2984007
https://github.com/dwagelaar/simpleocl
https://github.com/dwagelaar/simpleocl
mailto:jesusc@um.es
http://sanchezcuadrado.es
http://dx.doi.org/10.5381/jot.2020.19.2.a10

Model Finding in the EMF Ecosystem · 21

Martin Gogolla is professor for Computer Science at Univer-
sity of Bremen, Germany and is the head of the Research Group
Database Systems. His research interests include software develop-
ment with object-oriented approaches, formal methods in system
design, semantics of languages, and formal specification. Martin
Gogolla is actively participating in the MODELS community and is
involved in the organisation of the OCL workshops. Martin Gogolla
is Associate Editor of the Springer journal on Software and Sys-
tems Modeling. In his group, foundational work on the semantics
of and the tooling for UML, OCL and general modeling languages
has been carried out. The group develops the OCL and UML tool
USE (UML-based Specification Environment) since about 15 years.
The tool is internationally and nationally widely accepted and
employed for research and teaching and in software production.
Contact him at gogolla@informatik.uni-bremen.de

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:gogolla@informatik.uni-bremen.de
http://dx.doi.org/10.5381/jot.2020.19.2.a10

	Introduction
	Overview
	Running example
	Architecture

	Transforming OCL for model finding
	Meta-model slicing
	Translation to the backend
	Integration of EMF and USE models
	Improving OCL coverage

	Applications
	Model analysis and exploration
	Sirius previewer
	Cross-artifact analysis

	Tool
	Evaluation
	Related work
	Conclusions
	Bibliography
	About the authors

