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Abstract Numerous language workbenches have been proposed over the
past decade to ease the definition of Domain-Specific Languages (DSLs).
Language workbenches enable DSL designers to specify DSLs using high-
level metalanguages, and to automatically generate their implementation
(e.g., parsers, interpreters) and tool support (e.g., editors, debuggers).
However, little attention has been given to the performance of the resulting
interpreters. In many domains where performance is key (e.g., scientific
and high-performance computing), this forces DSL designers to handcraft
ad-hoc optimizations in interpreter implementations, or lose compatibility
with tool support.

In this paper, we propose to systematically exploit domain-specific in-
formation of DSL specifications to derive optimized Truffle-based language
interpreters executed over the GraalVM. Those optimizations are provided
at no extra cost for the DSL designer. They are of course not as efficient
as handcrafted optimizations, but do not require extra time or knowledge
from the DSL designer (which industrial DSL designers often lack). We
implement our approach on top of the Eclipse Modeling Framework (EMF)
by complementing its existing compilation chain with Truffle-specific in-
formation, which drives GraalVM to benefit from optimized just-in-time
compilation. A key benefit of our approach is that it leverages existing
DSL specifications and does not require additional information from DSL
designers who remain oblivious of Truffle’s low-level intricacies and JIT
optimizations in general while staying compatible with tool support.

We evaluate our approach using a representative set of four DSLs
and eight conforming programs. Compared to the standard interpreters
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generated by EMF running on GraalVM, we observe an average speed-up
of x1.14, ranging from x1.07 to x1.26. Although the benefits vary slightly
from one DSL or program to another, we conclude that our approach
yields substantial performance gains while remaining non-intrusive of EMF
abstractions.

Keywords domain-specific languages; meta-languages; interpreters; just-
in-time optimization

1 Introduction

Numerous language workbenches [EVDSV+15] have been proposed over the past
decade to ease the development of Domain-Specific Languages (DSLs). The main
objective is to support domain experts by reifying concepts dedicated to a given
application domain to ease the development of future complex systems in this particular
domain. Language workbenches provide dedicated metalanguages to specify the various
concerns of a DSL (e.g., abstract syntax, concrete syntax, and semantics), together
with generative or generic approaches that automate the production of language
tooling, including editors, compilers, interpreters, and analysis tools. Among others,
we can cite industrial language workbenches such as MetaEdit+ [TR03], MPS [Voe11],
EMF [SBMP08], or academic projects such as Rascal [BvdBH+15], Spoofax [KV10],
Neverlang [VC15] or the GEMOC Studio [BDV+16].

By their very nature, generative and generic approaches hamper the incorporation
of language-specific optimizations, making the resulting language runtimes much
less efficient than the optimized runtimes of general-purpose languages (e.g., just-in-
time (JIT) compilation in the current JDK or V8 JS engine). Indeed, DSL runtime
generators apply the same generic patterns for the generated code of every DSL.
Different generators may apply different patterns, but a given generator always applies
the same patterns, which do not take into account specific optimizations tailored to the
specificities of a particular application domain or execution environment. For instance,
from any given metamodel, EMF always derives the same kind of interpreters based
on the same Visitor-like pattern, which is sub-optimal from an execution time point of
view.

Recently, various execution frameworks have been proposed to support the definition
of languages over the JVM and assist in the generation and optimization of interpreters
based on JIT compilation—a process that transforms frequently used interpreted
code pieces to machine code during execution. Truffle [WW12] relies on the Partial
Evaluation capabilities provided by GraalVM [Ora19] to realize such optimizations.
Truffle offers facilities to complement an initial DSL interpreter implementation with
patterns and annotations to benefit from specific run-time optimizations. Performance
gains reported in the literature are significant [WWH+17]. However, efficiently using
these frameworks requires strong expertise in language development and the intricacies
of the framework itself, which industrial DSL designers often lack.

In this paper, we aim at leveraging high-level abstractions, provided by meta-
languages and language workbenches, to abstract away from low-level intricacies of
interpreter optimization. In addition, we do so without breaking compatibility with
other tools provided by DSLs workbenches (e.g., editors, debuggers). We introduce
a systematic approach to automatically generate optimized Truffle-based language
interpreters from model-based DSLs specifications, inducing a complementary speedup
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on top of language interpreters based on the Interpreter pattern. Our systematic
approach exploits high-level information contained in language specifications to drive
the application of Truffle-based optimizations. We also propose an implementation of
our approach integrated with the compilation chain of EMF, enabling its application
to many already existing and future DSLs.

This non-intrusive approach to the optimization of model-based interpreter perfor-
mances is evaluated on a representative set of four languages and eight conforming
programs (from programming languages to “end-user” languages through modeling
languages, from arithmetic-intensive to structure-intensive, from recursive style to
iterative style). Our experiments demonstrate the benefits of our approach in all cases.
The average speedup is of x1.14, ranging from x1.07 to x1.26.

To summarize, the approach proposed in this paper enables language designers to
automatically obtain efficient language interpreters while remaining oblivious of the
technical details of the interpreter optimizations.

The remainder of this paper is organized as follows. Section 2 introduces useful
preliminary notions. Section 3 presents the language design and implementation
patterns studied in the remainder of this paper. Section 4 gives an overview of our
approach and presents the Truffle optimizations applicable in our context. Section 5
presents our implementation choices. Section 6 evaluates the resulting tools and
metalanguages on several languages and programs. Finally, Section 7 relates our
approach to existing work, and Section 8 concludes and discusses future work.

2 Background

In this section, we provide background information on: language specification using
the Eclipse Modeling Framework (EMF) and the Action Language for Ecore (ALE);
and language execution and implementation using GraalVM and Truffle.

2.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [SBMP08] is aligned with the Meta-Object
Facility (MOF) [OMG06], a standard for the definition of models and metamodels.
EMF integrates Ecore, an industrial-grade metamodeling language and de-facto stan-
dard, well known in the modeling community. Due to its popularity, many tools are
provided to manipulate Ecore metamodels (e.g., tree-based, textual,1 or graphical2
editors). This compatibility with a wide range of tools is a key aspect of EMF, and
we aim at preserving it while improving language performance. Ecore metamodels
are compiled to Java code that implements the Ecore concepts presented below. Our
contribution extends the compilation chain of EMF to provide additional performance
gains for EMF-based language interpreters without breaking their compatibility with
the existing EMF ecosystem.

MiniJava is a teaching-oriented subset of Java [Rob01]. We use MiniJava as an
illustration in this section, and later in our evaluation. Figure 1 presents an excerpt
of MiniJava’s metamodel. Following a popular language abstract syntax pattern,
the concept of Or inherits from Expression which itself inherit from Statement.
Inheritance relations are visually identifiable by unfilled arrows on the parent side
of the relation. The concept of Or contains two sub-expressions of type Expression,

1Xcore: https://wiki.eclipse.org/Xcore
2EcoreTools: https://www.eclipse.org/ecoretools/
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Figure 1 – An excerpt of the MiniJava metamodel defined using Ecore

1 use miniJava.LogService;
2
3 open class Statement {
4 def dispatch void evaluateStatement(State state) {}
5 }
6
7 open class Expression {
8 def void evaluateStatement(State state) {
9 self.evaluateExpression(state);

10 }
11 def Value evaluateExpression(State state) {}
12 }
13
14 open class Or {
15 def Value evaluateExpression(State state) {
16 BooleanValue left := self.left.evaluateExpression(state);
17 BooleanValue right := self.right.evaluateExpression(state);
18 BooleanValue res := miniJava::BooleanValue.create();
19 res.value := left.isValue() or right.isValue();
20 res.value.log("INFO");
21 result := res;
22 }
23 }

Listing 1 – An excerpt of the operational semantics of MiniJava in ALE.

respectively named left and right. Sub-expressions are defined using containment
relations—conceptually equivalent to UML’s composition relations [UML05]—and are
visually identifiable by black diamonds at the start of the relation.

Ecore provides the expressiveness needed to express abstract syntax in an object-
oriented way. However, Ecore does not provide useful abstractions for the definition
of language execution semantics. ALE, presented in the next section, enables0 the
modular definition of operational semantics on top of Ecore-based abstract syntaxes.

2.2 Action Language for Ecore

Action Language for Ecore (ALE) is a metalanguage dedicated to the definition of
language execution semantics. Inspired by Kermeta [JCB+15], ALE is statically typed
and supports type inference of its expressions. ALE is based on the “open-class”
principle [CLCM00], allowing the modular definition of semantics on top of existing
metamodels (i.e. abstract syntaxes) [LDC+17]. Listing 1 presents an excerpt of the
implementation of an execution semantics, in the form of an interpreter on top of
the metamodel of MiniJava presented in Figure 1. The Or class re-opens the concept
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of Or defined in Figure 1 to insert an evaluateExpression method. The result of
the method is obtained by evaluating the left and right sub-expressions (lines 16
and 17 of Listing 1) and applying the logical OR operation on the results (Line 19).
Finally, the result of the evaluation of the logical OR is wrapped in an instance of
BooleanValue and returned (Line 21). The := operator is used for variable assignment.
Inspired by the Eiffel language [Mey92], ALE does not have a return keyword, but
the content of the result variable is returned. Class instantiation is done using the
special create() method (Line 18). Extensions are possible thanks to the mechanism
of services inspired by the extension method mechanism [EEK+12]. Lines 1 and 20
are respectively the import of an ALE logging service and the call to the log method
provided by the service. An ALE service is a Java class with static methods, and
aims at providing methods to solve problems outside the scope of the domain of the
language (e.g., logging, user interfaces, database access).

EMF and ALE are seamlessly integrated into the Eclipse IDE and support language
engineers in the specification of DSLs, following a standard object-oriented approach.

2.3 GraalVM

GraalVM is a JVM resulting from an internal project of Oracle [WWW+13], and
has shown promising performance improvement results compared to the standard
HotSpot VM. GraalVM is a universal virtual machine targeting the execution of
arbitrary languages (e.g., JavaScript, Python, Ruby, R, or LLVM). It includes a new
high-performance Just-In-Time (JIT) compiler, called Graal, which produces native
code from Java bytecode. Graal is also used as an ahead-of-time compiler by the
Substrate VM,3 allowing the compilation of Java bytecode to native machine code
outside of a virtual machine.

2.4 Truffle

Truffle [WW12] is a framework designed to ease the development of efficient inter-
preters on the JVM. Several works demonstrate the speedup offered by Truffle-based
handcrafted interpreters [SWHJ16, MDM16]. This makes it appealing to explore its
use in automatically optimized DSL interpreters. Truffle provides a set of classes,
annotations, and built-in operations in order to produce efficient Java implementations
of interpreters following the Interpreter pattern. Using Truffle requires to additionally
decorate classes with annotations that assist in the definition of efficient language
implementations.

At run time, Truffle relies on the use of Partial Evaluation [Lom67, Fut99], on the
combination of the program to be executed and the language interpreter, in order
to produce an optimized interpreter specialized for this given program. While the
optimizations are processed by Graal, Truffle provides the expressiveness to define
language-level information that assists Graal to apply language-specific optimizations.

In our context, Partial Evaluation works by combining a method of an interpreter
with data (i.e., parts of a program) to produce an optimized Graal Intermediate
Representation (IR). The Partial Evaluation process allows the application of various
optimizations such as constant folding, indirect to direct call substitution, or dead
code elimination.

3Substrate VM documentation: https://www.graalvm.org/docs/reference-manual/
aot-compilation/
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During Partial Evaluation, Truffle can make optimistic assumptions (e.g., a variable
is never null, a method always returns true), and propagate such decisions (e.g.,
removing an unreachable else branch) in the resulting optimized machine code. If
run-time data later contradict those assumptions (e.g., the variable eventually becomes
null), Truffle can deoptimize the code and switch back to the original interpreter.

Without external constraints, Truffle explores the execution graph eagerly during
Partial Evaluation. Consequently, this process might lead to code explosion [WWH+17],
failing due to the production of too large specialized interpreters (i.e., too large to
be compiled). This is why Truffle requires the definition of explicit boundaries in
order to prevent such undesirable behavior. Würthinger et al. [WWH+17] shared
their experience building interpreters with Truffle. They tried to define boundaries
automatically but did not find a suitable automated solution in the context of the
abstraction proposed by Java.

3 DSL Design and Implementation

The definition of a DSL encompasses the definition of its abstract syntax and semantics.
The abstract syntax specifies the domain concepts and their relations. In the modeling
world, it is typically defined by a metamodel. Object-Oriented formalisms such as
Ecore, presented in Section 2.1, represents language concepts as a set of metaclasses
and their relations. The semantics of a DSL assigns meaning to its constructs. In
order to support the operational execution of the conforming models, the semantics
is typically defined by an interpreter. It implements its operational semantics in the
form of a transition function over execution states. In the modeling world, it is defined
using an action language that extends the language concepts with operations. In this
paper, we use ALE, presented in Section 2.2, as action language.

The operational semantics defines the evolution of the state of the execution of a
program. This evolution implies the modification of the metamodel by the operational
semantics at run time. The set of concepts modified during the execution is called the
execution metamodel [BDV+16].

A DSL’s semantics can be implemented either as an interpreter (a piece of soft-
ware that directly interprets DSL code) or as a compiler (a piece of software that
transforms DSL code into another language code that is directly executable or for
which interpreters or compilers already exist) following well-defined implementation
patterns [OC12, VRCG+99, EG01, WWS+12, ACL+98]. In the case of interpreters,
the most common implementation patterns are the Interpreter pattern and the Visitor
pattern [GHJV95]. While functionally equivalent, both patterns offer different advan-
tages, notably regarding their modularity, but also regarding their performance. By
default, EMF generates interpreter code following a variation of the Visitor pattern
named the Switch pattern. In this paper, EMF generated interpreters based on the
Switch pattern are therefore used as a reference for performance evaluation of our
proposed approach, which itself builds upon interpreters based on the Interpreter
pattern.

Below, we describe and study an approach to improve the execution performance
of DSLs specified using the model-oriented approach presented above.
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Figure 2 – General overview of the proposed approach. Decimal numbers prefixed with an
x represent performance speedups. * Abstract Syntax. ** Semantics.

4 Approach Overview

This section presents a general overview of our approach and presents the optimiza-
tions that can be derived from the abstractions provided by EMF-based language
specifications defined as presented in the previous section.

Our approach and its context are illustrated in Figure 2. The first column presents
the state of practice of language interpreter implementation using the standard EMF
Switch pattern for the language interpreter generation and uses the default Java VM
(HotSpot VM) for the interpreter’s execution. Then, the second column presents a
solution that replaces the Switch pattern by the Interpreter pattern while generating
interpreter implementations, and uses GraalVM for the execution of the generated
interpreter (this is our first set of modifications to the EMF framework compilation
chain). This column exploits state of the practice solutions exclusively, but already
provides performance speedup and helps to position our approach. Finally, the third
column presents our contribution and introduces a new EMF to Java compiler, allowing
the automated introduction of Truffle optimizations while staying compatible with
existing EMF implementation patterns. This way, language engineers benefit from
performance optimization allowed by Truffle without having to be exposed to its
technical details.

In Section 4.1, we present some preliminary results that help understand the scope
of our approach, corresponding to the transition from the first to the second column.
Then, Section 4.2 discusses how to automatically generate Truffle-compliant object
structures from EMF metamodels, and Section 4.3 presents the automatic introduction
of Truffle boundaries. Finally, Section 4.4 details the aspects of Truffle that are not
included in our approach.

4.1 Preliminary Results

HotSpot VM and the Switch implementation pattern are the default settings of EMF.
As we target GraalVM and the Interpreter implementation pattern, we first investigate
the impact of the transition to those two options. While this is not strictly a new
contribution, it helps us to estimate the expected speedup of such design decisions.

Table 1 summarizes the impact of the transitions from HotSpot VM to GraalVM
alone (providing a speedup of x1.56), from the Switch to Interpreter implementation
pattern alone (providing a speedup of x1.23), and from both combined which provides
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Table 1 – Average speedups resulting from the transition from HotSpot VM to GraalVM
and from the Switch implementation pattern to the Interpreter implementation pattern
(see Section 6).

HotSpot VM GraalVM
Switch pattern x1.00 x1.65
Interpreter pattern x1.23 x1.75

an overall speedup of x1.75. We can observe that each transition, independently, is
very beneficial, and even more when combined. This is likely due to: the improved
efficiency of GraalVM’s JIT compiler optimizations compared to those of the HotSpot’s
JIT compiler (at the loss of expressivity, such as introspection); the reduced level of
indirections in the Interpreter pattern compared to the Switch pattern (at the price
of some modularity). It is also worth noting that using GraalVM is not as efficient
at improving execution time of interpreters based on the Interpreter pattern (x1.42
speedup) as it is for interpreters based on the Switch pattern (x1.65 speedup). We refer
the reader to Section 6 for an in-depth explanation of our benchmark methodology to
better understand how these numbers are computed.

4.2 Truffle-Compliant Object Model Implementation

Starting from an interpreter implementation based on the Interpreter pattern and
running on GraalVM, the next challenge to unleash Truffle’s power is to translate
Ecore metamodels to object models, in the form of a set of Java classes that can be
efficiently optimized by Truffle. Truffle expects Java classes to form an immutable
tree-shaped set of classes, whereas EMF by default defines graph-based and mutable
set of classes. Consequently, the translation from Ecore is not straightforward, and
multiple steps are needed to produce efficient Truffle compliant code.

The first step is to discriminate between the immutable metaclasses that define the
abstract syntax and should be part of Truffle object models, and mutable metaclasses
that define the execution metamodel (see Section 3) that cannot. Immutable meta-
classes instantiated in a tree-shaped containment relation can be compiled into Truffle
nodes, whereas the others are compiled to standard Java classes. We discriminate those
metaclasses using a conservative static analysis of the ALE specifications. Metaclasses
instantiated using the create() operation (i.e., possibly created at run time) are part
of the execution metamodel, whereas the other metaclasses are part of the abstract
syntax. Only metaclasses of the later are compiled as Truffle nodes. Truffle nodes
are identified by their inheritance to the Truffle Node class. We duplicated the usual
EMF class hierarchy in order to create a Truffle specific hierarchy by introducing the
Node class at the top of the hierarchy. Classes of the execution metamodel inherit
from the standard EMF hierarchy, whereas classes of the abstract syntax inherit from
the Truffle-specific hierarchy, therefore inheriting form the Node class (for Truffle
compatibility) and from the EObject class (for EMF compatibility).

The second step is to identify metaclass references that can be translated into Truffle
parent-child relations, which define the tree-shaped hierarchy in the object model. We
identified the following constraints i) those references must be containment references;
ii) those references must take place between metaclasses that can be translated into
Truffle nodes; iii) those references cannot be mutated at run time. References that
conform to these three constraints are promoted as parent-child relations.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a1


Automatic generation of Truffle-based interpreters for Domain-Specific Languages · 9

1 @NodeInfo(description="Block")
2 class Block extends Node {
3 private List<Statement> statements;
4 @Children private Statement[] statementsArr;
5
6 public List<Statement> getStatements() {
7 if(statements == null) statements = new ArrayList<>();
8 return statements;
9 }

10
11 public void execute() {
12 if(this.statementsArr == null) {
13 CompilerDirectives.transferToInterpreterAndInvalidate();
14 if(statements != null) statementsArr = statements.toArray(Statement[0]);
15 else statementsArr = new Statement[] {};
16 }
17 // statementsArr is used instead of statements.
18 }
19 }

Listing 2 – Integration of the @Children annotation on a Block statement.

The identification of containment references is realized by a straightforward analysis
of the metamodel which explicitly contains this information. We presented above how
Truffle nodes are identified. Finally, the mutability analysis is realized by analyzing
the occurrences of field modification operations (e.g., call to setters or modification of
collections). If a relation between two metaclasses conforms to the three constraints
above, the compiler introduces a parent-child relation. If the reference has an upper
multiplicity of one, parent-child relations are realized by annotating the corresponding
field with the @Child annotation. If its upper multiplicity is greater than one, the
@Children annotation is added to the field, but this introduces an additional constraint
on the generated code. Indeed, Truffle constrains the fields annotated with @Children
to be a Java array, instead of the usual EMF EList. Additionally, in order to preserve
the compatibility with EMF model loading (i.e., one of EMF’s tool support), all the
fields derived from references with an upper multiplicity greater than one must be of
type EList. We satisfy those contradictory constraints by introducing a new array
field, named after the original immutable field and suffixed with Arr, which “clones”
the original EList field.

Listing 2 shows an example of the resulting compilation for a Block class with a
statements field containing Statement objects. This array is initialized the first time
one of the methods declared in ALE is called (Line 12), by copying the element from
the list to the array (lines 14 and 15). CompilerDirectives.transferToInterpreterAnd-
Invalidate() (Line 13) warns Truffle to return to the Java bytecode interpreter because
a JIT-compiled machine code would be deprecated (i.e., deoptimized), in case of early
Truffle Partial Evaluation.

4.3 Truffle Boundaries

We explained in Section 2.4 the challenge of Truffle boundaries identification. Placing
relevant Truffle boundaries is crucial to obtain interesting performance speedups. We
can take advantage of our approach based on metalanguages with domain-specific
expressiveness and a generic compilation scheme, allowing the safe reification of
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1 class LogService {
2 @TruffleBoundary
3 static void log(Object self, String level) {
4 if (level.equals("INFO")) { Logger.info(self); }
5 // ...
6 }
7 }

Listing 3 – Extract of an ALE service. Methods are annotated with @TruffleBoundary in
order to anticipate Partial Evaluation issues at run time.

boundaries in the compiler.
Consequently, we can identify exhaustively the places where boundaries are relevant

without the need for advanced heuristics or static analysis, thus allowing the safe
generation of interpreters without risks of Partial Evaluation failures during program
interpretation. For instance, the Java code produced by EMF involves proxy mecha-
nisms to guarantee models consistency (e.g., bidirectional reference, where referential
integrity is required), which leads to code explosion when partially evaluated. Hence,
they are placed behind Truffle boundaries.

Truffle boundaries are defined by annotating generated methods with the @Truffle-
Boundary annotation. Boundaries are placed on every method that is not directly
derived from ALE specifications. In other words, we isolate the code directly derived
from ALE specification, from the code that implicitly supports it. For instance, calls to
classes of the library supporting EMF, or code indirectly called from it (e.g., operations
of the reflective API of the classes) are placed behind boundaries.

In practice, code directly derived from ALE specifications is compiled to simple
operations that are not subject to code explosion (e.g., accessors, variable affectation,
Java operators) and isolated from code subject to code explosion.

4.4 Discussion of Additional Truffle Optimizations

Our approach to automatic DSL interpreter optimization, presented in this paper, aims
at being non-intrusive of language specifications and preserving compatibility with
EMF tool support. This section discusses possible performance improvements that we
considered, but for which we were unable to come up with solutions respecting those
constraints and therefore were not included for the evaluation of Section 6. We first
discuss the Polymorphic Inline Cache optimization (Section 4.4.1), before discussing
other optimizations (Section 4.4.2).

4.4.1 Polymorphic Inline Cache

Using Truffle allows the definition of Polymorphic Inline Cache (PIC) [HCU91]. PIC is
a language optimization historically implemented in the Smalltalk language [DS84] that
aims at optimizing dynamically the performance of the call sites frequently dispatched
to different methods. Würthinger et al. [WWS+12] present the use of PICs for the
optimization of Truffle-based language interpreter implementations.

The introduction of the PIC optimization raises the challenge of automatically
identifying which call sites would benefit from such optimization. Indeed, badly placed,
PICs can be detrimental to the performance of programs.

In practice, the identification of the methods that benefit from the introduction of
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PIC optimizations in language implementations is challenging and can even lead to
slowdown or run-time errors if done wrong. We tried to identify the relevant uses of
PICs in the implementation of languages by benchmarking a large sampling of usage.
To do so, we introduced a dispatch keyword in ALE, that can be used as a method
declaration prefix by language engineers to define the introduction of PICs explicitly.

We proceeded by automatic mutation of the MiniJava object-oriented language
presented in Section 6.1 to introduce the dispatch keyword on random method declara-
tions. The results of our experiment are available on the paper’s companion webpage.4
The conclusions of our experiments clearly show that the use of PICs has a strong
influence on the performance of the language but did not permit us to infer actionable
rules to automate the placement of the PICs. As a result, we decide not to include
PIC optimizations in our approach as they clash with our requirements.

4.4.2 Other Optimizations

Truffle offers a profiling library, allowing the fine-tuning of the interpreter implemen-
tation by the introduction of runtime state monitoring at relevant places (e.g., by
monitoring the condition of an if statement). Placing those profiling probes is highly
context-sensitive and requires knowledge that goes beyond the abstractions available
in operational semantics specifications. Consequently, using the profiling capabilities
of Truffle is outside the scope of our approach.

Truffle also provides loop unrolling capabilities, assisted by specific annotations
and classes. To properly exploit loop unrolling requires to be able to estimate the size
of the content of a loop. Since programs of DSLs are very diverse in shapes and sizes,
it leads to challenges similar to the one raised for the profiling library.

Truffle provides a Frame object, that assists in the definition of variables located in
the stack rather than in the heap. Frame objects are non-trivial to manipulate as they
are sensitive to escape analysis, and cannot, among others, be assigned to fields or be
type-casted. The choice of the runtime data that is beneficial to move into frames is
context-specific. Consequently, it falls into the same limitations as the optimizations
presented above.

Finally, Truffle allows for methods specialization. This technique is the foundation
of various Truffle implementation patterns (e.g., type boxing). But it requires to
define multiple methods (e.g., equal0(int,int), equal1(String,String)) for a single
operation (e.g., here, the equality of the values returned by two child nodes). The
relevant method is called by inspection of the type of the value returned by the child
nodes. This multiplication of methods breaks the public interface of the classes, hence
making it possibly incompatible with the surrounding tool support.

5 Implementation

On the left side of Figure 3, we present the existing Ecore to Java compiler provided
as part of the EMF framework, based on the Jet template engine [SBMP08]. This
compiler allows the generation of Java object models that conform to Ecore semantics
and comes with a mechanism to support the re-generation of Java source from an
updated Ecore metamodel while preserving code manually introduced previously in
the generated code. This is the base mechanism to follow the Interpreter pattern using
EMF.

4Companion webpage: https://manuelleduc.github.io/ecmfa-2020/
#automated-feature-selection
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Figure 3 – Presentation of EMF’s compiler and our compiler.

On the right side of the figure, we present our Ecore + ALE compiler that
conceptually extends EMF’s compiler by supporting the modular introduction of
operations on top of Ecore metamodels using ALE. Our initial prototype was developed
by extending the existing JET template, but our experience showed the limitation
of such a template system during the integration of the compilation of ALE. Indeed,
the compilation of the body of ALE methods and the introduction of more variation
points in the compilation process (e.g., exploration of different Truffle implementation
patterns during our experiments), lead to large and hardly maintainable templates.

Consequently, we chose to develop our compiler using Xtend and Javapoet. Xtend
is one of the technologies at the core of the Xtext framework [EB10] and proved itself
a relevant solution for the implementation of language interpreters and compilers.
Javapoet5 is a Java library dedicated to the generation of Java source code and comes
in the form of a fluent API.

At the bottom of Figure 3, we present the conformance relation between the Java
object model generated by EMF’s compiler and the Java object models with Truffle
concepts generated by our compiler. This conformance relation is twofold. First, the
two object models are statically indistinguishable, present the same Java signature,
making them fully substitutable. Second, the introduced Truffle concepts are built
to preserve the semantics. Consequently, the execution of two versions of the same
specification compiled with and without our approach produces the same results. It
follows that our compiler is a safe replacement of the EMF compiler, allowing a fully
automated gain of performance on top of interpreters running on GraalVM.

Our compiler is about 4000 lines of code. The Truffle-specific parts are composed of
7 lines of code in the method body compiler, 180 lines of code in the class structure com-
piler, mainly related to the introduction of @TruffleBoundary annotations, and 2 lines
of code in the EMF factory compiler, also for the introduction of @TruffleBoundary
annotations. The integration of our approach in an EMF compiler required 189 lines
of code in total. Porting back our approach to the official EMF implementation is
straightforward and is the matter of translating the 180 lines into the JET template
formalism.

5Javapoet: https://github.com/square/javapoet
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6 Evaluation

In this section, we present the evaluation of our approach. In Section 6.1, we present
the languages and programs used for the evaluation. Then, in Section 6.2, we present
the experimental setup. Finally, Section 6.3 presents and analyzes the results of our
experiments.

6.1 Benchmarked Languages and Programs

To evaluate our results, we implemented four languages: MiniJava [Rob01], a teaching-
oriented subset of Java, a functional language inspired by OCaml named Boa,6 a
Finite State Machine language,7 and the educational procedural language Logo.

MiniJava is used to implement: the Fibonacci algorithm (m_fibonacci), a bubble
sort algorithm [CLRS01] (m_sort), a binary tree manipulation algorithm8 (binarytree),
and an implementation of the fannkuch algorithm9 [AR94] (fannkuchredux). Boa
is used to implement a Fibonacci algorithm (b_fibonacci) and an insert sort algo-
rithm [Knu97] (b_sort). The Finite State Machine language is used to define a set
of four communicating state machines, sending messages to each other, presented in
more detail on the companion webpage10 (buffers). Finally, the Logo language is
used to define a program that draws a Koch snowflake fractal11 (fractal).

This selection represents a panel of languages. We made the choice to maximize the
representativeness of languages and conforming models. This includes one functional
language, one object-oriented language, a language dedicated to domain experts,
and an “end-user” language. For the languages with paradigms allowing various sort
of implementation, we propose programs covering different styles from arithmetic-
intensive programs to structure-intensive programs, and from recursive style to iterative
style.

6.2 Time Measurement

The methodology presented below aims at producing repeatable performance measure-
ment of language interpreter performance [GBE07]. We qualify the performance by
using the steady-state performance, i.e., the performance of a program once it has
reached a stable execution state. Each program is executed fifty times in a row in a
JVM. We repeat each measurement three times.

All the benchmarks presented below are executed on Debian 9, with 15Go of RAM
and an Intel(R) Xeon(R) W-2104 CPU (Quad Core - 3.20GHz). We use HotSpotVM
version 1.8.0_222, GraalVM version 19.1.1 and Truffle version 19.1.1.

In addition, we use JMH v1.2112 to run our experiments. JMH is a Java frame-
work that mitigates the nondeterministic behavior inherent to the JVM internals.
Additionally, we execute our benchmarks using Krun [BBK+17]. Krun is a framework

6Programming languages Zoo: http://plzoo.andrej.com/language/boa.html
7Finite State Machine language: https://github.com/gemoc/MODELS2017Tutorial/
8Binarytree algorithm: https://benchmarksgame-team.pages.debian.net/benchmarksgame/

description/binarytrees.html#binarytrees
9Fannkuch algorithm: https://benchmarksgame-team.pages.debian.net/benchmarksgame/

description/fannkuchredux.html#fannkuchredux
10Companion webpage: https://manuelleduc.github.io/ecmfa-2020/

#system-of-finite-state-machines-example
11Koch snowflake: https://en.wikipedia.org/wiki/Koch_snowflake
12Java Microbenchmark Harness (JMH): https://openjdk.java.net/projects/code-tools/jmh/
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Table 2 – Benchmarks measurement summary. Mean = mean execution time in second;
SHS=Speedup relative to the HotSpot VM + Switch; SHI = Speedup relative to the
HotSpot VM + Interpreter; SGI = Speedup relative to GraalVM + Interpreter; ATG
= Automatic Truffle Generation

Minijava Boa FSM Logo
Geo.
Meanm_fibonacci m_sort binarytree fannkuchredux b_fibonacci b_sort buffers fractal

parameters: (30) (1000) (11) (8) (30) (500) (5 · 107) (17)
HotSpot VM + Switch

Mean (s) 11.80 16.39 7.06 6.67 2.04 1.94 7.84 12.44
HotSpot VM + Interpreter

Mean (s) 9.18 14.91 5.86 5.28 1.79 1.71 4.64 11.14
SHS x1.28 x1.10 x1.20 x1.26 x1.14 x1.13 x1.69 x1.12 x1.23

GraalVM + Interpreter
Mean (s) 5.29 9.89 3.32 3.17 1.49 1.57 4.04 7.87

SHI x1.74 x1.51 x1.77 x1.66 x1.22 x1.09 x1.15 x1.42 x1.42
SHS x2.23 x1.66 x2.13 x2.10 x1.40 x1.23 x1.94 x1.58 x1.75

ATG + Interpreter
Mean (s) 4.21 9.23 2.98 2.72 1.25 1.43 3.54 7.24

SGI x1.26 x1.07 x1.11 x1.17 x1.17 x1.10 x1.14 x1.09 x1.14
SHI x2.18 x1.61 x1.97 x1.94 x1.43 x1.19 x1.31 x1.547 x1.61
SHS x2.81 x1.78 x2.37 x2.45 x1.63 x1.35 x2.21 x1.72 x1.99

that assists in the definition of repeatable benchmarks. For instance, Krun restarts
the benchmarking computer between each new measurement, to avoid the influence
of pre-cached data on the program’s execution. Krun also checks and sets various
hardware settings known to influence the repeatability of measurements. For instance,
Krun fixes the CPU frequency and checks the CPU temperature at the beginning of
each measurement. With this setup, we mitigate the nondeterministic behavior at
the hardware, system, and virtual machine levels, improving the repeatability of our
benchmarks [KBT05].

We benchmark each combination of a virtual machine, an implementation pattern,
and a program by running three times 50 executions, obtaining 150 measurements for
each combination.

By manual inspection of the measured time, we observe that the ten first executions
are enough to warm up the virtual machine and to reach a steady-state. We calculate
the performance of the programs using the mean of the 120 remaining executions, once
the ten warmup iterations of each run have been excluded. Additionally, we evaluated
the confidence interval of the measurements for a confidence level of 99%. All the
confidence intervals are below 0.03 seconds, which allows a safe and unambiguous
analysis of our results.

6.3 Results

Table 2 summarizes the measured performance of the programs on our benchmark.
The HotSpot VM + Switch, HotSpot VM + Interpreter, and GraalVM + Interpreter
lines present the measurements of respectively: the Switch implementation on the
HotSpot VM; the Interpreter implementation on the HotSpot VM; and the Interpreter
implementation on GraalVM. The ATG + Interpreter line presents the measurements
of language compiled with our approach. Each Mean line presents the calculated
mean time of the measurements in seconds. Each SHS line presents the speedup of
the current implementation compared to the HotSpot VM + Switch version. Each
SHI line presents the speedup of the current implementation compared to the HotSpot
VM + Interpreter version. Finally, the SGI line presents the speedup of the current
implementation compared to the GraalVM + Interpreter version.

The speedups discussed below are produced using the geometric mean of the
speedups obtained for each program on a given configuration and are presented in the
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rightmost column. We use the term general speedup when talking about the speedup
calculated using the geometric mean.

First, as presented in Section 4.1, the straightforward transition from HotSpot VM
+ Switch to GraalVM + Interpreter already allows a general speedup of x1.75, ranging
from x1.23 to x2.23.

Our approach, built on top of the GraalVM + Interpreter version, yields an
additional general speedup of x1.14, ranging from x1.07 to x1.26. This adds up
to a general speedup of x1.99, ranging from x1.35 to x2.81, when compared to the
HotSpot VM + Switch version. While the effect of our contribution leads to smaller
speedups than the straightforward switch from HotSpot VM + Switch to GraalVM
+ Interpreter, is it important to consider the opportunity offered by our approach
to provide additional performance gains to language engineers at zero cost. Indeed,
the only manual operation to perform is the recompilation of languages using a new
compiler.

In conclusion, our results show the benefit of our approach in all cases, especially
when improving the performance of language interpreters to their maximum while
preserving the compatibility with existing EMF tool support.

7 Related Work

Many language workbenches aim at providing tools and methods for defining the
various concerns of languages. However, performance in language runtimes has mostly
been tackled in an ad-hoc way, through handcrafted optimizations motivated by
the number of language users and the targeted application domains. For instance,
in the realm of general-purpose languages, the Java virtual machines have evolved
through different generations of optimization until the current JIT compiler, mostly
handcrafted [CFM+97]. More recently, the V8 JavaScript engine13 has been finely
tuned by language experts to boost its performance and to make any application
executed within the browser extremely efficient [MDM16].

Little attention has been given to the performance of language interpreters for DSLs
engineered by language designers through systematic approaches offered by language
workbenches. Internal DSLs can exploit the underlying host language runtime, by
optimizing in the desugaring phase (e.g., LMS [RO12] or SugarJ [ERKO11]), for
acceptable performance. In the context of external DSLs, which cannot rely on the
infrastructure of a host language, compilers can be tailored using optimizing compiler
techniques [NCM03, EH07, JTH01]. These techniques, however, require advanced
language implementation skills, which hampers their use in language workbenches,
where language designers are encouraged to manipulate language specifications instead.

Interpreted external DSLs are usually the ones suffering the most from poor
performance. The common approach consists in defining an interpreter over the
abstract syntax. Using an object-oriented metalanguage, the design pattern Inter-
preter [GHJV95] offers an elegant and widely adopted architecture to structure its
definition through the traversal of the abstract syntax tree and context passing over the
traversal. Advanced object-oriented paradigms such as open-classes can be employed
to keep the separation of concerns at design time, and inline the interpreter within
the structure of the abstract syntax at compile time in order to minimize the runtime
overhead. The Switch mechanism offered by the Eclipse Modeling Framework for

13V8 Javascript engine: https://v8.dev/
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traversing Ecore-based metamodels [SBMP08] demonstrates the benefits with regards
to the common object-oriented design pattern or specific framework.

Vergu et al. [VTV19] propose their work on the performance of the metainterpreter
of DynSem, a metalanguage integrated into the Spoofax language workbench. While
our approach consists in automatically deriving Truffle-optimized language-specific
interpreters from language specifications, they propose to optimize the metainterpreter
of DynSem using Truffle, which can then be reused for any language specification
written with DynSem. A key difference is the specifications that are exploited to
derive the optimizations: metamodels and ALE specifications in our case, scope graphs
and frames in theirs.

A different approach following a similar objective of improving performance consists
in applying approximate computing techniques. Several authors have explored such an
approach in the context of specific application domains such as signal processing [HS99].
While this approach provides good results in such applications domains, it is bound to
possible areas of approximation. Instead, our approach keeps the nominal execution
flow described by the execution semantics, and as such, can be applied to any DSL
interpreter.

8 Conclusion and Future Work

In this paper, we propose an optimized alternative to the standard execution framework
for metamodel-based interpreted DSLs, while preserving the compatibility with existing
tool support. Following our approach, interpreters are optimized by introducing
Truffle specification concepts on the object model implementation and introducing
Truffle boundaries, allowing Truffle to optimize the interpreter at run time while
preventing undesirable code explosions. We automatically incorporate Truffle in
language interpreter implementations by leveraging the language-specific information
provided by metalanguages. This makes some performance optimizations allowed by
Truffle accessible to language engineers at zero cost.

We evaluate our approach on four heterogeneous languages and eight programs,
covering a broad spectrum of language paradigms. We show a performance speedup
of x1.14 on average, ranging from x1.07 to x1.26, while being non-intrusive of the
usual development process, and while preserving the compatibility of the language
interpreter implementations with their tool support.

Future work Our first exploratory results with the PIC optimizations highlight the
interest of the introduction of additional optimizations. It is interesting to explore
further the criteria that influence the relevance of Truffle optimization and to pursue
the identification of systematically applicable criteria for their application. Besides, in
this work, we leverage on the general-purpose optimizations provided by Truffle. A
promising step towards more efficient language interpreters is the automatic generation
of specialized Graal-based JIT optimizations, derived from the language specifications.
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