
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Developing Comprehensive
Postconditions Through

a Model Transformation Chain
Nisha Desaia Martin Gogollaa

a. University of Bremen, Department of Mathematics and Computer Sci-
ence, D-28334 Bremen, Germany

Abstract
One important approach for describing behavior in UML and OCL

models is the use of OCL pre- and postconditions. This contribution
proposes a new method for developing comprehensive OCL postconditions
for operations in UML and OCL models, including so-called frame condi-
tions. The method is realized by a transformation chain from an initial
user-developed model into a semi-automatically derived test case model for
checking the model quality. On the technical side, the method consists of
a new formal distinction between deleted, sustained and added objects for
operation behavior. On the methodological side, the development process
is accompanied by a systematic case distinction, effective defaults and
iterative improvement steps through test cases.

Keywords UML and OCL model; OCL pre- and postcondition; OCL
contract; Frame condition; Transformation chain.

1 Introduction

In model-driven engineering (MDE), models are used as an abstraction of a system to
deal with the growing complexity of large software systems. Modeling languages such
as the UML (Unified Modeling Language) together with formal specification languages
such as the OCL (Object Constraint Language) are used to describe structural and
behavioral aspects of the system [WK99]. Structural properties can be described in
terms of OCL invariants and behavioral properties in terms of operation pre- and
postconditions in a UML and OCL model.

Pre- and postconditions describe the functionality of an operation in a declarative
way. They limit system states in which an operation may be performed and describe
properties that the resulting system state must meet. However, sometimes they maybe
not comprehensive enough to describe what may or may not be changed in a transition
between two system states and could lead to unexpected behavior of an operation. As

Nisha Desai, Martin Gogolla. Developing Comprehensive Postconditions Through a Model
Transformation Chain. Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International (CC
BY-NC-ND 4.0). In Journal of Object Technology, vol. 18, no. 3, 2019, pages 5:1–18.
doi:10.5381/jot.2019.18.3.a5

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a5
http://dx.doi.org/10.5381/jot.2019.18.3.a5

2 · Nisha Desai and Martin Gogolla

the solution of this problem, so-called frame conditions [BKW09, Kos13] have been
proposed in addition to pre- and postconditions. However, frame conditions are usually
written manually and could be cumbersome to write, as the model may contain a large
number of elements which all have to be considered. This can lead to inconsistent and
flawed constraints.

As a solution, we propose concepts for a so-called post-/frame condition determining
language (PCDL) in order to systematically generate combined post- and frame
conditions (comprehensive postconditions) and which is grounded on a table format.
In the presented approach, PCDL elements are introduced which are based on a new
formal distinction for operation behavior between deleted, sustained and added objects,
and simplify the postcondition specification in the PCDL table for a developer. Here, a
developer only needs to define the model elements which are affected by the execution
of an operation in the context of PCDL elements and the other elements by default are
considered as unaffected. We also propose a method to automatically transform these
PCDL elements into OCL postconditions. The aim of this work is to give developers
the ultimate chance to reduce the burden of formulating post- and frame conditions
by offering an option to express the behavior of an operation systematically through
the PCDL elements using effort reducing, supportive defaults.

To realize this method, and to generate comprehensive postconditions effectively
and precisely, we propose a transformation chain which starts with an application model
without postconditions (user-developed model) and yields an automatically generated
model with postconditions (test case model), using the PCDL concepts. For checking
the model properties, the tool USE (UML-Based Specification Environment) [GH16]
is employed to transform the test case model into an equivalent (so-called) filmstrip
model [GHH+14]. The filmstripping approach captures several application model
states in one object diagram. In Fig. 1, two different exemplary states (snapshots) on
January 3rd (JAN3) and on January 4th (JAN4) are shown and between them the
operation hire is executed, which creates the Job link between the company Sun and
the employee Ada. Both states are described in a single figure. Basically, the resulting
object diagrams of this structure involve a sequence of snapshots with operation calls
linking them, like a filmstrip consists of many consecutive pictures that change from
frame to frame.

Figure 1 – Basic idea of the filmstripping approach

In USE, a model validator [KG12] is available that can automatically generate
test cases in the form of filmstrip object diagrams based on a given configuration. By
analyzing the object diagrams, a developer can check behavioral model properties

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 3

and accordingly, if required, can modify the model or the PCDL elements. Thus, the
transformation chain offers iterative improvement steps with the help of test cases to
develop a comprehensive behavioral model.

The rest of the paper is structured as follows. Section 2 discusses the motivation
and basic idea of our approach and provides a brief background on our model behavior
validation technique. Section 3 describes the proposed PCDL concepts and the trans-
formation chain with a demonstration for developing comprehensive postconditions.
Section 4 explains the transformation of the PCDL concepts into OCL postconditions.
Section 5 presents related work, and the paper is closed with conclusions and future
work in Sect. 6.

2 Basic Idea and Background

2.1 Basic Idea

The behavioral aspects of the model are defined by operation pre- and postconditions
which provide declarative descriptions of the transition from one system state to
another through an operation call. Typically, the pre- and postconditions focus only
on the model elements which will be affected by the desired execution of an operation
and often avoid other elements of the model that may not be affected. For validation
and verification methods, however, it is also important which model elements may
be changed or may not be changed in addition to the elements which are covered
by pre- and postconditions. The determination of concrete behavior of an operation
from the given pre- and postconditions is referred to in the literature as a the frame
problem [BMR95] and can be addressed by additionally specifying so-called frame
conditions [BKW09, Kos13, NPWD18] that explicitly characterize unchanged elements.
The specification of frame conditions along with pre- and postconditions provides a
complete description of the functionality of a model operation.

However, the process of generating frame conditions for any UML and OCL model
is a complex and unwieldy task, as a significant amount of model elements, as well as
their relations, has to be considered [dDDBC14, HNGW14]. So far, the works related
to frame conditions (more detail in Sect. 5) mostly rely on manual generation, which
leads to a time-consuming task and often results in erroneous constraints and extra
overhead to a developer.

To address this problem, we propose a tabular, so-called post-/frame condition
determining language (PCDL) to generate post- and frame conditions together. Rather
than generating separate post- and frame conditions, we construct comprehensive
postconditions by systematically considering all model properties. The PCDL table is
initialized with meaningful settings that ease the developer burden for standard cases.
Typically only few default table entries need to be fixed. The approach is based on a
new formal distinction between deleted, sustained and added objects (this leads to
special PCDL elements) to cover all aspects of operation behavior. The method is
realized by a transformation chain depicted in Fig. 2 to develop a precise and adequate
behavioral model.

In Fig. 2, the gray-highlighted part shows newly introduced transformation steps
that are integrated into our existing filmstripping and validation process. In the textual
to tabular transformation step, a given UML and OCL application model without
postconditions (user-developed model) is transformed into a PCDL model which is
basically a tabular structure consisting of default (initial) PCDL elements and is

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

4 · Nisha Desai and Martin Gogolla

Figure 2 – Model transformation chain for developing comprehensive postconditions.

based on the desired operation execution. The developer modifies only necessary
elements. In the tabular to OCL transformation step, we introduce a method to
automatically transform those elements into OCL postconditions. With help of our
filmstripping approach for validating model behavior, the model with newly generated
postconditions (test case model) is transformed into the filmstrip model and along with
a configuration is given to the model validator. As an outcome, the model validator
automatically generates a valid object diagram, and by analyzing the state transitions
in the diagram, properties for model dynamics can be validated [GH16]. Overall, the
transformation chain starting from the user-developed model into a semi-automatically
derived test case model helps the developer to check the model quality.

2.2 Background

In our tool USE, for validation purposes, a so-called model validator is available, which
is specifically designed for structural analysis of models. Therefore, to validate the
behavioral aspects of the model, our filmstrip transformation approach is used. In this
transformation, a given UML and OCL model which is comprised of invariants and
pre- and postconditions is transformed into an equivalent model which possesses only
invariants. This transformed model is called a filmstrip model, involves only structural
elements and can thus be validated with the USE model validator [GHH+14].

To demonstrate the filmstripping approach, a simple CompEmp application model
in which a system can have many companies and employees, and a company can hire
and fire an employee, is chosen as an example and shown in Fig. 3. The original
application model is indicated in a gray-shaded style, namely the classes Sys, Emp,
and Comp with the associations SysEmp, SysComp and Job in the class diagram, and
the small sequence diagram represents part of the application model. The automatic
transformation of the application model into the filmstrip model (the non-gray shaded
classes and the object diagram in Fig. 3) is realized through a USE plugin. A sequence
diagram and intermediate object diagrams of the application model correspond to a
single object diagram in the filmstrip model. In the filmstrip object diagram (bottom
right in Fig. 3), snapshot objects explicitly allow to capture single system states from
the application model. OperationCall objects (Sufix OpC) describe operation calls
from the application model. Basically, each operation of the application model is
transformed into an OperationCall class with attributes for the operation parameters.
The scenario in the example is such that the company Sun hires the employee Ada on
January 3rd, and on January 4th, the employee Ada works for (Job link) the company
Sun. The six Sys, Comp and Emp objects represent different object states before and
after the operation call. One could say that the object sunJAN4 is a later incarnation

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 5

Figure 3 – Application model and filmstrip model.

of the object sunJAN3. Thus, for example, the call sunJAN3.hire(adaJAN3) from
the sequence diagram is represented by the object hire_companyopc1 in the filmstrip
object diagram.

3 PCDL Concepts

The PCDL determines a specific tabular structure consisting of developer-defined
elements which are typically OCL expressions written in a particular format (PCDL
format). The tabular structure is transformed from a given application model (without
postconditions) and additionally consists of proposed elements (Sect. 3.1). We call
this complete schema a PCDL model which is then automatically transformed into
the application model with postconditions. In this section, details about the tabular
structure and elements of the PCDL including representation of postconditions in the
PCDL format are described.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

6 · Nisha Desai and Martin Gogolla

3.1 Distinction between Deleted, Sustained and Added Objects

Comprehensive postconditions for an operation should define which elements of a
model are changed and more importantly which are sustained during the execution of
an operation. Also, sometimes during the execution of an operation, new elements are
added or existing elements are deleted which should also be defined by postconditions.
So, to cover all aspects, we distinguish operations execution into three distinct parti-
tions, describing deleted (del), sustained (sus) and added (add) objects. In PCDL,
if the execution of an operation requires object deletion or object generation, then
the elements del or add of the object class should be specified, respectively. Also,
if the execution of an operation expects changes in object attribute values or links,
then the element sus of the object class should be specified. If the execution of the
operation does not require object deletion, object generation or changes in the object,
then initial default PCDL elements remain as they are.

Figure 4 explains the basic idea of deleted, sustained and added objects. In
OCL postconditions, one can refer with C.allInstances to the objects in class C
at postcondition time, and with C.allInstances@pre one can reach the objects at
precondition time. Having these two sets available, it is easy to formally define (a) the
deleted objects as those which are present at precondition but not at postcondition
time, (b) the sustained object as those present at precondition and postcondition time,
and (c) the added objects as those which are present at postcondition but not at
precondition time.

Figure 4 – Deleted, sustained and added objects.

This distinction of object elements allow developers to precisely formulate postcon-
ditions and frame conditions in a single unit of thought in an effective and systematic
way. The distinction between deleted, sustained and added objects has not been
studied in the literature before.

3.2 Representing Postconditions in Tabular Form

As previously stated, a tabular structure in the PCDL is generated from a given
user-developed model. The model operations are transformed into columns and classes
(further sub-categorized with the elements del, sus and add) are transformed into
rows of the table. In the table, a developer can specify the elements del, sus and add

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 7

for classes according to the expected execution of an operation. We take the small
abstract example from Fig. 5 to understand the tabular structure and the PCDL
format.

Figure 5 – Abstract example: Class diagram (Left) and tabular PCDL model (Right).

In this example, the model consists of two classes namely ClsA and ClsB with
one association between them. ClsA has attributes attr1 and attr2, and ClsB has
attribute attr3. The generic tabular form of PCDL for the abstract example model
is shown in the right of Fig. 5. In this table, the model operations (opX, opY, opZ)
are transformed into the columns and the classes (ClsA, ClsB) are transformed into
rows. Two letters U and C are used which refer to the set of unchanged and changed
objects, respectively. Initially, each operation with elements del and add is defined
with isEmpty() which means no objects are deleted or added, and elements sus are
specified as U=className_sus which means all elements (attribute values or links) of
the class are sustained without change. The gray-highlighted elements indicate changes
from the initial default and are defined by the developer to generate postconditions
according to the expected operation execution. The topmost row shows all classes
with their attributes and role names in order to have an option to completely catch
an object of the class. The developer follows this PCDL format to write the PCDL
elements for constructing postconditions. For example, in operation opX, the element
ClsA_add is defined by specifying ClsA{const1,const2,null} because we assume
execution of operation opX will add an object of ClsA. Here const1 refers to attr1,
const2 refers to attr2 and null refers to roleB of ClsA. This format of defining
elements is the same for the elements del and sus. However, in the element sus, a
developer can also define the set of changed (C) and unchanged (U) objects. So, for
each operation, the postconditions will be generated based on the defined elements
and the default (initial) elements of the PCDL table.

The number of postconditions for each operation depends on the number of classes
in the model. For example, in the abstract model, for 3 operations and 2 classes
(6 PCDL class elements), a total of 18 postconditions will be generated. With this
approach, we have a clear and systematic case distinction for describing postconditions:
the initial, default setting define all operations to do nothing (nothing deleted, nothing
changed, nothing added); the developer then has to explicitly specify all operations
that delete, change or add items with appropriate PCDL entries. Sections 3.3 to 3.7
demonstrate the model transformation chain for developing precise and comprehensive
postconditions.

3.3 Demonstration (A): Transformation to PCDL

In order to illustrate the complete transformation chain, we will make use of the running
CompEmp model as depicted in Fig. 3. Initially, the model without postconditions is

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

8 · Nisha Desai and Martin Gogolla

taken as the input model, and it is automatically transformed into the initial (default),
tabular PCDL model, which is shown in Table 1.

Sys::newEmp(aName:String) Sys::newComp(aName:String,anAdr:String)
Comp_del isEmpty() isEmpty()
Comp_sus U=Comp_sus . . .
Comp_add isEmpty()

Emp_del isEmpty()
Emp_sus U=Emp_sus Analogously to newEmp
Emp_add isEmpty()

Sys_del isEmpty()
Sys_sus U=Sys_sus . . .
Sys_add isEmpty() isEmpty()

Comp::hire(anEmp:Emp) Comp::fire(anEmp:Emp)
Comp_del isEmpty() isEmpty()
.
Sys_add isEmpty() isEmpty()

Table 1 – PCDL model in tabular form with initial elements.

All four operations of the CompEmp model are represented as columns and all three
classes with elements del, sus, add are represented as rows of Table 1. As explained
in Sect. 3.2, initially, the elements del and add are isEmpty(), and the elements sus
are unchanged (U). Then the developer defines the PCDL elements according to the
expected operations execution. In the example model, the intention of the execution
of the operations is as follows: newEmp and newComp should add a new Emp and Comp
objects. respectively, and link them with the Sys object; Similarly, the operations
hire and fire should add or delete a Job link between the Comp and Emp objects,
respectively.

3.4 Demonstration (B): Improving the PCDL Model

In Table 2, the elements edited by the developer are highlighted with a gray background.
The short form incl, excl and allIns are used for the OCL terms including,
excluding and allInstances, respectively. (a) For the operation newEmp(aName:Str-
ing) of the class Sys, the elements Emp_add and Sys_sus can be understood as
follows: (a1) Emp_add: one new Emp object is added which has aName as attribute
name, has empty employer set (Set{}) and is linked with the self (Sys) object;
(a2) Sys_sus: the emp set of the self (Sys) object includes the newly generated
Emp object. (b) For the operation hire(anEmp:Emp) of the class Comp, the elements
Comp_sys and Emp_sus can be understood as (b1) Comp_sus: the employee set of the
self (Comp) object includes the anEmp object; (b2) Emp_sys: the employer set of the
anEmp object includes the self (Comp) object. (c) The fire operation elements can be
understood analogously to the hire operation elements except that here the anEmp and
self (Comp) objects exclude each other. (d) Please note that the newComp operation
elements are intentionally not correctly defined in order to explain the functioning of
the transformation chain to generate precise postconditions.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 9

Comp{address:String,name:String,employee:Set{Emp},sys:Sys}
Emp{name:String,employer:Set{Comp},sys:Sys}
Sys{comp:Set{Comp},emp:Set{Emp}}

Sys::newEmp(aName:String) Sys::newComp(aName:String,anAdr:String)
Comp_del isEmpty() isEmpty()
Comp_sus U=Comp_sus U=Comp_sus
Comp_add isEmpty() isEmpty()

Emp_del isEmpty() isEmpty()
Emp_sus U=Emp_sus U=Emp_sus
Emp_add Emp{aName,Set{},self} isEmpty()

Sys_del isEmpty() isEmpty()

Sys_sus

C=Set{self}
self=Sys{U,emp->incl(
(Emp.allIns-Emp.allIns@pre)->any(true))}
U=Sys_sus-C

U=Sys_sus

Sys_add isEmpty() isEmpty()

Comp::hire(anEmp:Emp) Comp::fire(anEmp:Emp)
Comp_del isEmpty() isEmpty()

Comp_sus
C=Set{self}
self=Comp{U,U,employee->incl(anEmp),U}
U=Comp_sus-C

C=Set{self}
self=Comp{U,U,employee->excl(anEmp),U}
U=Comp_sus-C

Comp_add isEmpty() isEmpty()

Emp_del isEmpty() isEmpty()

Emp_sys
C=Set{anEmp}
anEmp=Emp{U,employer->incl(self),U}
U=Emp_sus-C

C=Set{anEmp}
anEmp=Emp{U,employer->excl(self),U}
U=Emp_sus-C

Emp_add isEmpty() isEmpty()

Sys_del isEmpty() isEmpty()
Sys_sus U=Sys_sus U=Sys_sus
Sys_add isEmpty() isEmpty()

Table 2 – PCDL model with gray-shaded developer-defined elements (A).

3.5 Demonstration (C): Transformation to Filmstripping

The tabular PCDL model (Table 2) is transformed into the model with postconditions
(transformation explained in Sect. 4). For the validation purpose, the newly generated
model with postconditions is transformed into the filmstrip model (Fig. 3). Based on the
stated configuration (Table 3) and the given filmstrip model, the USE model validator
constructs solutions in the form of filmstrip object diagrams. In the configuration,
5 Snapshot and 5 Sys objects are specified, and the specification of Emp and Comp
objects is in range 5..9. So, the initial system state (snapshot) has 1 Sys object with 1
Comp and 1 Emp object. Also, the operations specification is in range 1..1. Here, the
operations can be executed in any sequence, and based on the operations execution,
other objects and links will be populated.

3.6 Demonstration (D): Transformation to Object Diagram

From the various solutions (filmstrip object diagrams), one is shown in Fig. 6. The
sequence diagram from the application model corresponding to the generated filmstrip
object diagram is displayed in Fig. 7. In Fig. 6, the aggregation links show the
incarnations of the objects. For example, the objects sys2, sys3, sys1, and sys4 are
respectively the first, second, third and fourth incarnation of the object sys5. The

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

10 · Nisha Desai and Martin Gogolla

Figure 6 – Generated filmstrip object diagram using developer-defined elements (A).

Figure 7 – Example sequence diagram.

Classes and
Associations
[min..max]

Snapshot 5..5
Emp 5..9
Comp 5..9
Sys 5..5
newComp_SysOpC 1..1
newEmp_SysOpC 1..1
hire_CompOpC 1..1
fire_CompOpC 1..1
Job 0..*

Table 3 – Example configuration.

newEmp operation execution adds the new object emp8 which is linked with the object
sys2, the hire operation execution adds the Job link between the objects comp5 and

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 11

emp2, and the fire operation execution deletes the Job link between the objects comp2
and emp3, as expected.

One would expect that the newComp operation execution generates a new Comp
object and link it with the object sys3. However, in Fig. 6, it is to be noted that there
are no changes in the system state (snapshot) after the execution of the operation.
Also, some random values for the attributes of the newComp operation call object are
generated. These oddities are highlighted with the gray background in Fig. 6, and
are generated due to the fact that in the PCDL model (Table 2), the elements for
the newComp operation are not correctly defined. To generate effective postconditions
for the newComp operation, the PCDL elements need to be defined according to the
expected operation execution. By analyzing filmstrip object diagrams, developers can
check operation behavior and according to that, if necessary, they can modify the
PCDL elements. As future work, we will realize an analysis option that automatically
identifies in filmstrip diagrams two successive ‘identical’ snapshots, as snapshot5 and
snapshot2 in the example.

3.7 Demonstration (E): Improving the PCDL Model
Comp{address:String,name:String,employee:Set{Emp},sys:Sys}
Emp{name:String,employer:Set{Comp},sys:Sys}
Sys{comp:Set{Comp},emp:Set{Emp}}

Sys::newEmp(aName:String) Sys::newComp(aName:String,anAdr:String)
Comp_del isEmpty() isEmpty()
Comp_sus U=Comp_sus U=Comp_sus
Comp_add isEmpty() Comp{anAdr,aName,Set{},self}

Emp_del isEmpty() isEmpty()
Emp_sus U=Emp_sus U=Emp_sus
Emp_add Emp{aName,Set{},self} isEmpty()

Sys_del isEmpty() isEmpty()

Sys_sus

C=Set{self}
self=Sys{U,emp->incl(
(Emp.allIns-Emp.allIns@pre)->any(true))}
U=Sys_sus-C

C=Set{self}
self=Sys{comp->incl(
(Comp.allIns-Comp.allIns@pre)->any(true)),U}
U=Sys_sus-C

Sys_add isEmpty() isEmpty()

Comp::hire(anEmp:Emp) Comp::fire(anEmp:Emp)
Comp_del isEmpty() isEmpty()

Comp_sus
C=Set{self}
self=Comp{U,U,employee->incl(anEmp),U}
U=Comp_sus-C

C=Set{self}
self=Comp{U,U,employee->excl(anEmp),U}
U=Comp_sus-C

Comp_add isEmpty() isEmpty()

Emp_del isEmpty() isEmpty()

Emp_sys
C=Set{anEmp}
anEmp=Emp{U,employer->incl(self),U}
U=Emp_sus-C

C=Set{anEmp}
anEmp=Emp{U,employer->excl(self),U}
U=Emp_sus-C

Emp_add isEmpty() isEmpty()

Sys_del isEmpty() isEmpty()
Sys_sus U=Sys_sus U=Sys_sus
Sys_add isEmpty() isEmpty()

Table 4 – PCDL model with gray-shaded developer-defined elements (B).

Table 4 includes the corrected PCDL elements for the newComp operation. Here the
elements Comp_add and Sys_sus are re-defined and can be understood as explained
above for the newEmp operation elements. Figure 8 shows the GUI of the implemented
PCDL in the tool USE. The transformations are performed again for the corrected

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

12 · Nisha Desai and Martin Gogolla

PCDL model (Table 4), and with the same configuration (Table 3), the model validator
generates the filmstrip object diagram in Fig. 9.

Figure 8 – Screenshot of PCDL implementation in USE for part of Table 4.

Figure 9 – Generated filmstrip object diagram using developer-defined elements (B).

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 13

The two oddities shown in Fig. 6 are fixed in Fig. 9. The newComp operation
adds the new comp4 object and links it with the object sys3. Also, the attributes of
the newComp operation call object are generated properly. These are shown with the
gray-highlighted part in Fig. 9.

This demonstration illustrates that the PCDL approach presented in this paper
assists developers to systematically define and construct post-/frame conditions. Also,
the shown transformation chain helps to ensure the correctness and adequateness of
postconditions for a UML and OCL model.

4 Transformation of PCDL into Postconditions

A PCDL table consists of operations (columns) and classes (rows) further sub-
categorized with elements del, sus and add. The postconditions for an operation
are developed for the developer-defined and default PCDL elements from the table. In
this section, we propose a method to automatically transform the PCDL elements into
postconditions. To better explain the transformation process, in Table 5, a generic
representation of postconditions transformed from the default settings together with
developer-defined elements of a class ClsA is presented.
ClsA{attr1,role1}

PCDL elements Generic OCL postconditions
isEmpty() ClsA_del->isEmpty()

ClsA_del ClsA{const1,expr1} ClsA_del->size()=1 and (let v=ClsA_del->any(true) in
v.attr1=const1 and v.role1=expr1)

U=ClsA_sus ClsA_sus->forAll(v|v.attr1=v.attr1@pre and v.role1=v.role1@pre)

ClsA_sus C=Set{self}
self=ClsA{U,expr2}
U=ClsA_sus-C

self.attr1=self.attr1@pre and self.role1=expr2 and
(ClsA_sus-Set{self})->forAll(v|v.attr1=v.attr1@pre and v.role1=v.role1@pre)

isEmpty() ClsA_add->isEmpty()
ClsA_add ClsA{const2,expr3} ClsA_add->size()=1 and (let v=ClsA_add->any(true) in

v.attr1=const2 and v.role1=expr3)

Table 5 – Generic transformation of PCDL elements into OCL postconditions.

In the table, the gray-highlighted parts are the developer-defined elements and their
transformed postconditions, and others elements are default elements. In the generic
OCL postconditions, the ClsA_del, ClsA_sus and ClsA_add refer to OCL expres-
sions ClsA.allInstances@pre - ClsA.allInstances, ClsA.allInstances@pre->
intersection(ClsA.allInstances) and ClsA.allInstances - ClsA.allInstan-
ces@pre, respectively (explained in Fig. 4). Using these OCL expressions, and based
on default and developer-defined elements, postconditions are formed. For example, the
element ClsA_del is isEmpty(), so the postcondition generated for this element is let
ClsA_del = ClsA.allInstances@pre - ClsA.allInstances in ClsA_del->isEm-
pty(), and this assures that no ClsA object is deleted by the respective operation
execution. The transformation of any PCDL elements into OCL postconditions follows
the specific format described in Table 5. We continue with our running example and
show in Fig. 10 the generated postconditions for the newEmp operation from Table 4.

The postcondition is generated for each PCDL class element of the newEmp operation.
The postconditions Comp_del_COND and Comp_sus_COND are transformed from default
PCDL elements Comp_del and Comp_sus, and Emp_add_COND and Sys_sus_COND are
transformed from developer-defined elements Emp_add and Sys_sus, respectively,
from Table 4. During the execution of the newEmp operation, Comp_del_COND and
Comp_sus_COND make sure that a Comp object is not deleted and all Comp sustained
objects remain unchanged, respectively. Also, Emp_add_COND makes sure that a new

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

14 · Nisha Desai and Martin Gogolla

Figure 10 – Postconditions generated from PCDL elements for Sys::newEmp(...).

Emp object is added with developer-specified model elements, and Sys_sus_COND
assures that the new Emp object is linked with the Sys (self) object; other model
elements of all Sys sustained objects remain unchanged. The remaining postconditions
are handled analogously. This complete postcondition set assures correct behavior of
the newEmp operation.

With this method, PCDL elements can be automatically transformed into operation
postconditions, a complete behavioral UML and OCL model is generated, and the
workload of writing postconditions manually is reduced. We emphasize again that
typically most of the (automatically generated) default elements will survive in the
final PCDL table and that the developer has only to fix the spots in the table where
operations do interesting things: in the example in Table 4 only the 8 gray-shaded
elements out of 36 elements in total had to be fixed.

5 Related Work

A substantial body of research has focused on generating and specifying frame con-
ditions for validation and verification of software systems. The authors in [ABB+05,
BS03] have proposed a possible solution of the frame problem by specifying modi-
fier sets and implemented in the tool KeY. In [Lei08], the authors have shown the
generation of frame conditions within the verification tool Boogie. However, these
approaches are not directly applicable to UML and OCL. The approach in [Cab07]
allows to automatically derive frame conditions from postconditions using a paradigm
classifiable as nothing else changes. However, the resulting frame conditions are often
not what the developer intended and can be non-trivial if adjusted manually. The
author in [dDDBC14] uses a straightforward approach by explicitly specifying what is
not in the frame by extending the postconditions with further constraints. The major
drawback of this approach is that it is time-consuming, as the frame conditions have to

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 15

written manually and one has to maintain them later on in the case of design changes.
The idea of the approaches in [Kos13, BKW09] is to specify the set of model elements
that are allowed to be changed during an operation call together with the pre- and
postconditions using so-called invariability clause (modifies only statements). However,
the process of generating frame conditions for a model in terms of the invariability
clause requires complete consideration of all model elements and their relationships.
The graph transformation approach in [HP09] defines the transformation rules us-
ing deleted, sustained (preserved) and added elements, but does not use OCL or
a textual formula language, while our approach is completely based on OCL. Also,
the concept of a formal distinction between deleted, sustained and added objects for
OCL post-conditions has not been previously used. In [LOG+15, RKH13, AHK19],
operation pre- and postconditions are specified by visual contracts which is basically
a diagrammatic notation, however, in our approach, the operation pre- and post-
conditions are specified using OCL. In [RAB+18], the OCL invariants are translated
into graph constraints to be used in graph-based approaches, whereas our approach
is a logic-oriented approach which directly uses OCL. In comparison to the graph
transformation approaches, our approach considers invariants along with pre- and
postconditions for state transitions during the operation calls. In contrast to all
mentioned approaches, we realize comprehensive OCL postconditions (including frame
conditions) that are systematically developed with PCDL and the new distinction
between deleted, sustained and added objects. In addition, our method is accompanied
by a transformation chain for checking model quality.

6 Conclusion

This contribution proposed a tabular PCDL approach to semi-automatically generate
comprehensive OCL postconditions for a UML and OCL model. The approach
introduces PCDL elements that are based on a new formal distinction between
deleted, sustained and added objects to cover all aspects of operation execution, and
that simplify the postcondition specification. We showed the method for automatic
transformation of the PCDL elements into OCL postconditions. This approach
relieves the burden of writing OCL post- and frame conditions manually from the
developer. Regarding the validation of comprehensive postconditions, we introduced a
transformation chain starting from a user-defined model yielding a test case model,
using our filmstripping approach and model validator. Filmstrip object diagrams are
generated and by analyzing them, model properties are checked. Improvement steps
in an iterative process are available that guide the developer in generating precise
postconditions.

In the transformation chain, the textual to tabular transformation is already
implemented (Fig. 8), and the implementation of the tabular to OCL transformation
using the proposed method must be optimized. The user interface could support
more analysis options and could ease the handling of unaffected classes for which an
operation does not make changes. To further enhance the model validation process,
distinguishing between filmstrip and application configurations and also interface
development to handle their dependencies automatically will be in our focus. Last but
not least, larger case studies with complex models and scenarios should give feedback
on the applicability of our proposal.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a5

16 · Nisha Desai and Martin Gogolla

References

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The key tool.
Software and System Modeling, 4(1):32–54, 2005. doi:10.1007/
s10270-004-0058-x.

[AHK19] Abdullah M. Alshanqiti, Reiko Heckel, and Timo Kehrer. Inferring
visual contracts from java programs. In Steffen Becker, Ivan Bogicevic,
Georg Herzwurm, and Stefan Wagner, editors, Software Engineering
and Software Management, SE/SWM 2019, Stuttgart, Germany, Febru-
ary 18-22, 2019, pages 53–54. GI, 2019. doi:10.18420/se2019-11.

[BKW09] Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff. Extending
OCL with null-references. In Sudipto Ghosh, editor, Models in Software
Engineering, Workshops and Symposia at MODELS, pages 261–275.
Springer, 2009. doi:10.1007/978-3-642-12261-3_25.

[BMR95] Alexander Borgida, John Mylopoulos, and Raymond Reiter. On the
frame problem in procedure specifications. IEEE Trans. Software Eng.,
21(10):785–798, 1995. doi:10.1109/32.469460.

[BS03] Bernhard Beckert and Peter H. Schmitt. Program verification using
change information. In 1st Int. Conf. on Software Engineering and
Formal Methods (SEFM 2003), page 91. IEEE Computer Society, 2003.
doi:10.1109/SEFM.2003.1236211.

[Cab07] Jordi Cabot. From declarative to imperative UML/OCL oper-
ation specifications. In Christine Parent, Klaus-Dieter Schewe,
Veda C. Storey, and Bernhard Thalheim, editors, Conceptual Mod-
eling - ER 2007, 26th Int. Conf., pages 198–213. Springer, 2007.
doi:10.1007/978-3-540-75563-0_15.

[dDDBC14] Miguel Angel García de Dios, Carolina Dania, David A. Basin, and
Manuel Clavel. Model-driven development of a secure ehealth ap-
plication. In Maritta Heisel, Wouter Joosen, Javier López, and
Fabio Martinelli, editors, Engineering Secure Future Internet Ser-
vices and Systems - Current Research, pages 97–118. Springer, 2014.
doi:10.1007/978-3-319-07452-8_4.

[GH16] Martin Gogolla and Frank Hilken. Model Validation and Verification
Options in a Contemporary UML and OCL Analysis Tool. In Andreas
Oberweis and Ralf Reussner, editors, Proc. Modellierung (MODEL-
LIERUNG’2016), pages 203–218. GI, LNI 254, 2016.

[GHH+14] Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and
Robert B. France. From Application Models to Filmstrip Models:
An Approach to Automatic Validation of Model Dynamics. In Hans-
Georg Fill, Dimitris Karagiannis, and Ulrich Reimer, editors, Proc.
Modellierung (MODELLIERUNG’2014), pages 273–288. GI, LNI 225,
2014.

[HNGW14] Frank Hilken, Philipp Niemann, Martin Gogolla, and Robert Wille.
Filmstripping and unrolling: A comparison of verification approaches
for UML and OCL behavioral models. In Martina Seidl and Nikolai

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1007/s10270-004-0058-x
http://dx.doi.org/10.1007/s10270-004-0058-x
http://dx.doi.org/10.18420/se2019-11
http://dx.doi.org/10.1007/978-3-642-12261-3_25
http://dx.doi.org/10.1109/32.469460
http://dx.doi.org/10.1109/SEFM.2003.1236211
http://dx.doi.org/10.1007/978-3-540-75563-0_15
http://dx.doi.org/10.1007/978-3-319-07452-8_4
http://dx.doi.org/10.5381/jot.2019.18.3.a5

Developing Comprehensive Postconditions Through a Model Transformation Chain · 17

Tillmann, editors, Tests and Proofs - 8th Int. Conf. TAP 2014, LNCS,
pages 99–116. Springer, 2014. doi:10.1007/978-3-319-09099-3_8.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level
transformation systems relative to nested conditions. Mathematical
Structures in Computer Science, 19(2):245–296, 2009. doi:10.1017/
S0960129508007202.

[KG12] Mirco Kuhlmann and Martin Gogolla. From UML and OCL to Re-
lational Logic and Back. In Robert France, Juergen Kazmeier, Ruth
Breu, and Colin Atkinson, editors, Proc. 15th Int. Conf. Model Driven
Engineering Languages and Systems (MoDELS’2012), pages 415–431.
Springer, Berlin, LNCS 7590, 2012. doi:10.1007/978-3-642-33666-9\
_27.

[Kos13] Piotr Kosiuczenko. Specification of invariability in OCL - specifying
invariable system parts and views. Software and System Modeling,
12(2):415–434, 2013. doi:10.1007/s10270-011-0215-y.

[Lei08] K. Rustan M. Leino. This is boogie 2. Technical report. Microsoft
Research, 2008.

[LOG+15] Levi Lúcio, Bentley James Oakes, Cláudio Gomes, Gehan M. K. Selim,
Juergen Dingel, James R. Cordy, and Hans Vangheluwe. Syvolt: Full
model transformation verification using contracts. In Vinay Kulkarni
and Omar Badreddin, editors, Proceedings of the MoDELS 2015 Demo
and Poster Session co-located with ACM/IEEE 18th Int. Conf. on
Model Driven Engineering Languages and Systems (MoDELS 2015),
Ottawa, Canada, September 27, 2015., pages 24–27. CEUR-WS.org,
2015.

[NPWD18] Philipp Niemann, Nils Przigoda, Robert Wille, and Rolf Drech-
sler. Generation and validation of frame conditions in formal mod-
els. In Slimane Hammoudi, Luís Ferreira Pires, and Bran Selic,
editors, Model-Driven Engineering and Software Development, 6th
Int. Conf. MODELSWARD, pages 259–283. Springer, 2018. doi:
10.1007/978-3-030-11030-7_12.

[RAB+18] Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel,
and Gabriele Taentzer. Translating essential OCL invariants to nested
graph constraints for generating instances of meta-models. Sci. Comput.
Program., 152:38–62, 2018. doi:10.1016/j.scico.2017.08.006.

[RKH13] Olga Runge, Tamim Ahmed Khan, and Reiko Heckel. Test case gener-
ation using visual contracts. ECEASST, 58, 2013. doi:10.14279/tuj.
eceasst.58.847.

[WK99] Jos B Warmer and Anneke G Kleppe. The object constraint language :
precise modeling with UML. Reading, Mass. : Harlow : Addison-Wesley,
1999.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1007/978-3-319-09099-3_8
http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://dx.doi.org/10.1007/s10270-011-0215-y
http://dx.doi.org/10.1007/978-3-030-11030-7_12
http://dx.doi.org/10.1007/978-3-030-11030-7_12
http://dx.doi.org/10.1016/j.scico.2017.08.006
http://dx.doi.org/10.14279/tuj.eceasst.58.847
http://dx.doi.org/10.14279/tuj.eceasst.58.847
http://dx.doi.org/10.5381/jot.2019.18.3.a5

18 · Nisha Desai and Martin Gogolla

About the authors

Nisha Desai is a PhD student at University of Bremen in the
Department of Mathematics and Computer Science in Germany.
Besides interest in UML/OCL modeling, she is fond of software
design and development. She is currently working on improving
and optimizing quality assurance techniques for behavioral models.
Contact her at nisha@informatik.uni-bremen.de.

Martin Gogolla is professor for Computer Science at Univer-
sity of Bremen, Germany and is the head of the Research Group
Database Systems. In his group, foundational work on the se-
mantics of and the tooling for UML, OCL and general modeling
languages has been carried out. The group develops the OCL and
UML tool USE (UML-based Specification Environment). Contact
him at gogolla@uni-bremen.de.

Acknowledgments We would like to thank the anonymous reviewers and Edward
Willink for their careful reading of our paper and their many insightful comments and
suggestions.

Journal of Object Technology, vol. 18, no. 3, 2019

mailto:nisha@informatik.uni-bremen.de
mailto:gogolla@uni-bremen.de
http://dx.doi.org/10.5381/jot.2019.18.3.a5

	Introduction
	Basic Idea and Background
	Basic Idea
	Background

	PCDL Concepts
	Distinction between Deleted, Sustained and Added Objects
	Representing Postconditions in Tabular Form
	Demonstration (A): Transformation to PCDL
	Demonstration (B): Improving the PCDL Model
	Demonstration (C): Transformation to Filmstripping
	Demonstration (D): Transformation to Object Diagram
	Demonstration (E): Improving the PCDL Model

	Transformation of PCDL into Postconditions
	Related Work
	Conclusion
	Bibliography
	About the authors

