
JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Domain-Specific Model Distance
Measures

Eugene Syriania Robert Billb Manuel Wimmerc

a. Université de Montréal, Canada

b. CDP, TU Wien, Austria

c. CDL-MINT, Johannes Kelper University Linz, Austria

Abstract Much research was invested in the last decade to develop differencing
methods to identify the changes performed between two model versions. Typically,
these changes are captured in an explicit difference model. However, quantifying
the distance between model versions received less attention. While different
versions of a model may have the same amount of changes, their distance to the
base model may be drastically different. Therefore, we present distance metrics
for models. We provide a method to generate tool support for computing domain-
specific distance measures automatically. We show the benefits of distance
measures over model differences in the use case of searching for the explanation
of model evolution in terms of domain-specific change operations. The results
of our experiments show that using distance metrics outperforms the usage of
common difference models.

Keywords Model comparison, Model diffing, Model distances, Model evolution

1 Introduction

The emergence of model-driven engineering (MDE) [Sch06, BCW17] has increased the need
for dedicated techniques for model management [KRM+13]. In particular, much research
was invested in the last decade to develop differencing methods to identify the changes
performed between two model versions. As surveyed in [SC13], most algorithms aim at
computing differences and representing them in the form of difference models which capture
the changes between model versions. Difference models are critical in MDE, being used
for various model management tasks, such as metamodel/model co-evolution, versioning or
synchronization [DRIP12, DRELHE16, TELW14].

While most work has been focusing on differences, quantifying the distance between
model versions received less attention. Distances are useful in addition to differences for
several reasons. First, while different versions of a model may have the same amount of
differences, their distance to the base model may be drastically different. Second, distances
can be an additional metric to reason about the evolution paths of models to reach a specific
setting. As an example, consider the movement of attributes between different classes in a

Eugene Syriani, Robert Bill, Manuel Wimmer. Domain-Specific Model Distance Measures. Licensed
under Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). In Journal of
Object Technology, vol. 18, no. 3, 2019, pages 3:1–19. doi:10.5381/jot.2019.18.3.a3

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a3
http://dx.doi.org/10.5381/jot.2019.18.3.a3
http://dx.doi.org/10.5381/jot.2019.18.3.a3

2 · Syriani et al.

class diagram. For example, suppose we have classes A,B,C, and D connected in sequence
with associations. If we move an attribute from A to any other class, we always get the same
difference: the attribute deleted from A and added to one of the other classes. However, a
distance metric could tell us “how far” we have moved the attribute away from A, leading to
different distance measures depending to which class it has moved.

In this work, we present the notion of distance metrics for models as an additional
measurement of the difference between models. Furthermore, we provide a method to derive
distance metrics tailored to the domain-specific language (DSL) at hand. We implemented a
software library to automatically generate domain-specific model distance calculators, given
the metamodel and the change operators of the DSL. We apply the distance metrics on the use
case of searching for the explanation of model evolution in terms of domain-specific change
operations. Our results show that using distance metrics outperforms the usage of common
difference models, although domain-specific distance measures have their own challenges.

In Section 2, we overview the background of our approach and motivate our work with a
running example for our use case. In Section 3 we present how to compute the model distance
metrics and how to derive them for a particular DSL. In Section 4, we briefly outline our
implementation and the use case for the following evaluation section. In Section 5, we evaluate
the application of these metrics on our use case. We discuss related work in Section 6 and
conclude in Section 7.

2 Background and Motivation

Like any software artifact, models evolve continuously. Knowing the operations applied
between two successive versions of a model is crucial for helping developers to efficiently
understand the evolution [KHL+10]. It is also a major prerequisite for model management
tasks [KDRPP09]. In general, we distinguish between two categories of model differencing
approaches to report model differences. One describes model differences as a set of generic
individual operations, while the other uses domain-specific operations that aggregate individual
ones to be applied as a single operation.

2.1 Model differences as atomic operations

Current model comparison tools often apply a two-phase process to compare a base model
and a revised model. First, model matching algorithms compute the correspondences between
elements of the two models to compare [KDRPP09]. Then the model differencing phase
computes the differences between two models from the established correspondences. For
instance, EMF Compare [BP08]—a prominent representative of model comparison tools in
the Eclipse ecosystem—can detect the following types of atomic operations:

• Add: A model element only exists in the revised version.

• Delete: A model element only exists in the base version.

• Update: A feature of a model element (attribute value or reference) has a different value
in the revised version than in the base version.

• Move: A model element has a different container in the revised version than in the
origin version.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 3

The advantage of differencing atomic operations is the generic tool support it provides to
work for any models of any DSL. Its limitation is when there is a large number of atomic differ-
ences, which may require a higher level of abstraction. Therefore, the following differencing
approaches have been developed over the last years.

2.2 Model differences as domain-specific operations

To raise the level of abstraction of model differences, we can aggregate the atomic operations
into domain-specific operation applications, making the intent of the change explicit [SPTJ01].
Existing solutions, e.g., see [LWB+13, KKT11, XS06, VWV11] to mention just a few, pro-
vide language-specific operation detection algorithms. Often, executable domain-specific
operations are specified as model transformations. Transformation rules define the precon-
ditions, postconditions, and actions of the operation. Especially, the approaches proposed
in [LWB+13, KKT11] build on model transformations to detect the operations performed to
obtain the revised model from the base model. The output of these approaches is a sequence
of transformation rule applications corresponding to the domain-specific operation.

In these approaches, the difference model can be compressed into showing fewer differ-
ences than with atomic differences [LWB+13]. However, finding the set of domain-specific
operations which best describes a model evolution is a challenging problem, since there are
many different evolution paths between two versions and there are dependencies between the
execution of the operations which may mask some of them in the revised version of a model.
Therefore, search-based approaches have been developed to evaluate different evolution paths
to find the revised model [bFKLW12, KMW+17] without having to search for operation
occurrences in atomic diff models. Nevertheless, these approaches rely on atomic differences
to compare the computed model versions with the given revised model in the fitness function
used by the search algorithms.

2.3 Motivating and Running example

Score

value: int

Pacman GhostFood

1

* * *
on

point: int

GridNode
rightleft

up down

0..1

0..1

0..1
0..1

0..1

0..1 0..1

0..1
id: int

Figure 1 – The metamodel of the Pacman
game DSL

We rely on the running example of a simplified
Pacman game, a well-known game where Pac-
man navigates through grid nodes searching for
food to eat, while ghosts try to kill him. We im-
plemented a DSL to define game configurations,
based on [SV13]. Figure 1 shows the metamodel
and Figure 3 illustrates three Pacman game mod-
els in the concrete syntax of the DSL. Pacman,
food, and ghosts are placed on grid nodes with
an on reference. Grid nodes are connected by
left, right, up, and down references to de-
fine the permissible navigation of Pacman and
ghosts. The concrete syntax represents references by topological alignment rather than arrows.
In M1, Pacman is on grid node 21 which has an up reference to grid node 11 and a right
reference to grid node 22. A score object keeps track of the points of every food Pacman eats.
Red and green food score for 1 and 3 points respectively. We define the operational semantics
of the DSL in terms of an inplace model transformation, implemented with graph transforma-
tion rules as in [SV13]. One rule represents Pacman eating food on a grid node and updating
the score. Another represents the ghost killing Pacman when they are on the same grid node.
Four rules for Pacman and four others for the ghost represent moving in each direction to an

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

4 · Syriani et al.

Rule eat(var score_val : EInt , var p : EInt)

«preserve»
:Pacman

«delete»
:Food
point=p

«preserve»
:GridNode

«preserve»
:Scoreboard
score=score_val->score_val+p

Rule kill

«delete»
:Pacman

«preserve»
:GridNode

«preserve»
:Ghost

Rule pac_move_right

«preserve»
:Pacman

«preserve»
:GridNode

«preserve»
:GridNode

On

«preserve»

On«delete»On«preserve»

On

«delete»

Right

«preserve»

On
«delete»

On
«create»

On

«preserve»

On«delete»

On

«delete»
On«preserve»

Right

«preserve»

On
«delete»

On
«create»

Figure 2 – The kill, eat, and move right rules of the Pacman game

11 12 13

21 22 23

11 12 13

21 22 23

11 12 13

21 22 23

Score= 1

M1

Score= 6

M2

Score= 4

M3

Figure 3 – The initial model M1 and two possible models resulting from applying different rules of
the Pacman game

adjacent grid node. Figure 2 illustrates some of these rules in Henshin1. Although the rules
should obey certain scheduling, e.g., killing has priority over moving to end the game, in this
work, we assume that the transformation is a graph grammar, i.e., any rule may be applied at
any time its precondition is satisfied during the execution of the transformation.

For our use case, we are interested in finding the minimal sequence of rule applications
starting from the initial model leading to the target model. Search-based techniques are very
useful to solve this problem. They explore large parts of the search-space by generating
intermediate models as a result of applying the rules while optimizing the objective to get
closer to the target model. For example, a minimal rule sequence, of length 8, to go from M1
to M2 in Figure 3 is Pacman moves up once, then moves right twice, eating the food each
time, while the ghost also moves left twice. A minimal rule sequence, of length 7, from M1
to M3 is Pacman moves right, then up, then left, eating the food each time, while the ghost
moves up once.

Detecting the rule sequence requires to compare models at every step. To compute the
difference between M1 and M2, a generic model comparison tool, like EMF Compare, would
report that three food objects are deleted, two on references (Pacman and ghost) are changed,
and the attribute value of the score is modified. This tool would report the same aggregate
information when we compare M1 and M3. However, a domain expert would immediately
detect that there is a clear difference between the two situations: 8 rule applications are
needed to obtain M2 and 7 to obtain M3. Furthermore, the score value hints to which type of
food Pacman ate. Thus, the information output by common model differencing approaches
is not precise enough to identify the minimal sequence of rules (e.g., for the M2 case, if
Pacman moves right first, he will have to go through grid node 12 at least twice). The main
reason is that they rely solely on changes in the abstract syntax. However, the comparison
needs to be tailored to both the DSL and its semantics to find the best rule sequence. In this
example, relying on creation, deletion, and modification of elements of the metamodel is not

1 Henshin: http://www.eclipse.org/henshin

Journal of Object Technology, vol. 18, no. 3, 2019

http://www.eclipse.org/henshin
http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 5

sophisticated enough. The notion of Pacman and ghost movements as well as a quantification
of the score value must be encoded in the comparison. Inplace model transformation rules
typically encode change operations, such as operational semantics or refactoring [LAD+16].
Therefore, we propose a set of domain-specific distance metrics that take into consideration
abstract syntax changes as well as the semantics of the transformation to provide more precise
information when comparing models. It would allow optimizing the search space exploration
of identifying the minimal sequence of rule applications.

3 Domain-specific Model Distances

3.1 Model distance metrics

Typical model difference tools report metrics on elements added and deleted in terms of
instances of metamodel classes, on references changed in terms of instances of metamodel
associations, and on attribute value modifications. As motivated in Section 2.3, we need metrics
tailored to the DSL both in terms of the metamodel and the semantics of the transformation.
Therefore, we propose the following three model distance metrics.

The semantics of many modeling formalisms relies on movements of model elements.
Some of their elements are movable while others represent positions where an element can
move to. Pacman moving on the grid in our example, attributes moving to superclasses in
class diagrams, or tokens moving between places in a Petri net are some of many examples
where it happens. Furthermore, some elements are modifiable meaning that the transformation
changes some of their attribute values, like the score in the rule where Pacman eats food.

Formally, we represent a model as a labeled, attributed multi-graph G = 〈V,E, l, a〉.
We identify three subsets of nodes Mov, Pos,Mod ⊆ V corresponding to the movable,
position, and modifiable objects in the model. In our running example, grid nodes are the
position nodes while Pacman and ghosts are movable nodes. Note that, in general, Pos may
be different for each v ∈Mov. Additionally, all three subsets do not form a partitioning of E:
an object can move between positions, but it can also serve as a position for other movable
objects, and it can have attributes modified. Among the set of edges e : V → V ∈ E, we
identify two subsets N,P ⊆ E. Neighbor edges n : Pos→ Pos ∈ N only connect position
nodes, e.g., left, right, up, and down references between grid nodes. Position edges
p : Mov → Pos ∈ P , like the on references, connect a movable node to a position node.
The label function l : V → Σ∗ assigns a unique string label to each node, where Σ is a set of
alphanumeric characters. l is used to identify corresponding elements in two model versions.
The attribute function a : V × Σ∗ → V alue assigns values to each attribute name of a node,
such as the value of the score and the point of a food object. Listings 1 and 2 show how
M1 and M2 are encoded in the graph structures G1 and G2 respectively.
Listing 1 The formal graph structure G1 of model M1 in Figure 3

Pos1 = {gridij}i,j=1..3,Mov1 = {pacman, ghost},Mod1 = {score}
V1 = Pos1 ∪Mov1 ∪Mod1 ∪ {fi}i=1..4

(grid11, grid12), (grid12, grid11), (grid12, grid13), (grid12, grid11), (grid11, grid21), . . . ∈ N1

(pacman, grid21), (ghost, grid23), (f1, grid22), (f2, grid11), (f3, grid12), (f4, grid13) ∈ P1

E1 = N1 ∪ P1

a(score, ‘value’) = 1, a(f4, ‘point’) = 3, a(fi, ‘point’) = 1, i = 1..3,∀v ∈ V1 : l(v) = ‘v’

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

6 · Syriani et al.

Listing 2 The formal graph structure G2 of model M2 in Figure 3

Pos2 = Pos1,Mov2 = Mov1,Mod2 = Mod1, V2 = Pos2 ∪Mov2 ∪Mod2 ∪ {f1}
(pacman, grid13), (ghost, grid21), (f1, grid22) ∈ P2, N2 = N1, E2 = N2 ∪ P2

a(score, ‘value’) = 6, a(f1, ‘point’) = 1,∀v ∈ V2 : l(v) = ‘v’

3.1.1 Move distance

The move distance of a movable object is the length of the shortest path from its position
in model M1 to its position in model M2. To compute the move distance between M1 and
M2, we identify the common connected subgraph G12 of their respective graphs G1 and G2.
We define δM (m1, p2) as the length of the shortest sequence of neighbor edges connecting
p(m1), the position of the movable node m1 ∈ Mov1 to the position node p2 ∈ Pos2,
where Movi, Posi correspond to subsets of nodes in a graph Gi. In the M2 case in Figure 3,
δM (pacman, grid13) = 3 and δM (ghost, grid21) = 2, which is equivalent to the Manhattan
distance in this grid layout. We define the move distance between two models as:

∆M (G1, G2) =
∑

m1∈Mov1,m2∈Mov2

δM (m1, p(m2)), where l(m1) = l(m2)

Here, p(m2) is the position of the movable object corresponding to m1 in G2. The move
distance assumes that p(m1) and p(m2) are connected by a path of neighbor edges. If such
a path does not exist, then δM (m1, p(m2)) = ∞. In our example, ∆M (M1,M2) = 5 and
∆M (M1,M3) = 2. We rely on the popular Floyd-Warshall algorithm [Flo62, War62] to
compute the shortest path between two nodes in a connected graph. The dynamic programming
implementation takes O(|Pos|3) to compute all distances between any two nodes and O(|N |)
to output the path.

3.1.2 Element distance

This metric is concerned with the presence and absence of metamodel class instances between
M1 and M2. It is similar to what a model difference algorithm outputs. We define the element
distance as:

∆E(G1, G2) =
|{v1 ∈ V1|@v2 ∈ V2, l(v2) = l(v1)}|+ |{v2 ∈ V2|@v1 ∈ V1, l(v1) = l(v2)}|

|V1|+ |V2|

The numerator counts the number of nodes exclusively in each graph. To normalize the distance
as a ratio between 0 and 1, we divide by the total number of nodes in both graphs. In our
example, M1 is composed of a Pacman, a ghost, four food objects, six grid nodes and a score,
thus its graph has 13 nodes (see Listing 1). Therefore, ∆E(M1,M2) = ∆E(M1,M3) =
3+0

13+10 = 0.13. We can interpret this distance as the ratio of objects added or removed between
the two models. Note that the element distance is not concerned with edges since they are
already considered by the move distance.

3.1.3 Value distance

The third metric is concerned with the difference in attribute values between objects in M1 and
M2. We define the value distance of attribute x of node v between G1 and G2 as δV (v, x) by
comparing a(v, x) and a(v1, x), where v1 ∈Mod1, v ∈Mod2 and l(v) = l(v1). δV returns
a positive real number and is left to the user to define a custom distance function for specific

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 7

attributes of the metamodel. By default, if the attribute value can be encoded as a unique
number, we define the value distance as the margin of error needed to obtain the value of x in
v from its value in v1.

δV (v, x) =

{
|a(v1, x)| if a(v, x) = 0
|a(v, x)− a(v1, x)|/a(v, x) otherwise

Here, we only consider attributes of objects present in both M1 and M2 because the
element distance already takes care of the absence and presence of elements. Note that if
a(v, x) = 0 we replace the denominator by 1. We define the value distance ∆V (G1, G2)
between two models as the average of δV for all attributes of all nodes in G12. It calculates
the average margin of error between all attribute values of the two models. In our example,
∆V (M1,M2) = δV (score, value) = |4−1|

4 = 0.75 and ∆V (M1,M3) = 0.86.
Typically, if a model difference tool reports the same changes in M2 and M3, the element

distance will be the same for both cases as well. However, the move and value distance will
typically discriminate the two as we have seen in the Pacman example. Furthermore, distance
metrics provide a quantitative approximation of the difference in terms of “how far” (thus,
comparison distance) M1 is from M2.

3.2 Adapting distance metrics to the DSL

The distance metrics presented in Section 3.1 are generic model distances to compare two
models. We now describe how to adapt these metrics for a particular DSL and its semantics.
We aim to produce a distance calculator given the metamodel of the DSL and a set of inplace
model transformation rules encoding its semantics. Typically, these rules have a precondition
and a postcondition pattern.

We need to identify the metamodel classes corresponding to the sets of nodes Pos and
Mov, and the associations corresponding to the sets of edges N and P . The potential
candidates for Mov are classes that have an association to another class in the metamodel
with cardinality at most 1. We denote A the potentially movable class and r its association to
the other class B. Instances of A, r, and B must be in the precondition of a rule and r must be
modified in the postcondition to reference another class instance. Then, potentially A is a class
of movable nodes, r is a position edge type, and B is a class of position nodes. In our example,
these are, among others, the Pacman class, the on association, and the GridNode class,
respectively. It is also possible that r is an association from B to A. Furthermore, it may be
that the second instance A refers to is of another type than B, say C. If there is a reference s
between B and C, then s is likely to be a neighbor edge. Note that this is a necessary condition
but not sufficient. For example, it may be the case where the movable and position classes are
connected directly but through an intermediate class.

Similarly, we analyze the classes of the metamodel such that the postcondition of a rule
modifies one of its attributes value. Such classes define the type of the nodes in Mod.

The value distance metric is entirely configurable to fit the domain, especially if we know
a priori the distribution of the values of an attribute, or if the distance of pairwise non-numeric
values can be partially ordered (such as an enumeration of colors).

The three distance metrics rely on the label function l to correspond similar nodes between
the two models. For example in Figure 3, the grid nodes are identified by their identifier
(e.g., 11, 12, . . .). However, not all classes in the metamodel of the DSL have an identifying
attribute. Since the label function must uniquely identify each node, we must compute a label
for each object that does not have one. We can compute the label structurally using different
strategies [KKPS12]. For example, we can ascertain that there is at most one food on a grid

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

8 · Syriani et al.

node. Then the label of a food object can rely on the label of the grid node it is on. Another
case is if we can ascertain that a class is a singleton, then we assign the same label to its
instance.

The method we describe to characterize the sets and functions required for the distance
metrics must be adapted to each DSL. Therefore, this method serves as recommending
suggestions to the developer who needs to manually refine the characterization to be specific
to the DSL at hand.

4 Use Case: Finding a Sequence of Rule Applications

As motivated in Section 2.3, we apply domain-specific distance metrics to the problem of
finding the minimal sequence of rule application from an initial model M1 to a target model
M2. We follow previous work [bFKLW12, KMW+17] and consider this problem as an
optimization problem and use search-based techniques to solve it.

Having the evolution recovery problem at hand, we apply our search-based framework
MOMoT [FTW16] to find the Pareto-optimal model evolutions. MOMoT2 is a task- and
algorithm-agnostic approach that combines SBSE and MDE. It has been developed in previous
work [FTW16] and builds upon Henshin [SBG+17] to define model transformations and the
MOEA framework3 to provide optimization techniques. In MOMoT, DSLs (i.e., metamodels)
are used to model the problem domain and create problem instances (i.e., models), while model
transformations are used to manipulate those instances. The orchestration of those model
transformations, i.e., the order in which the transformation rules are applied and how those
rules need to be configured, is derived by using different heuristic search algorithms which are
guided by the effect the transformations have on the given objectives. For instance, MOEA
provides an implementation of NSGA II [DAPM02], a multi-objective genetic programming
framework. In order to apply MOMoT for the given problem, we need to specify the necessary
input: two model versions, change operators defined as Henshin rules, and the objectives for
the search.

We use four objectives for the search for operation sequences encoded in the fitness function
of the search-based algorithm. First, we want to minimize the length of the sequence of rules
applied. Then, we minimize the three distance metrics move, element, and value tailored to
the DSL. These substitute the common difference metrics used in [bFKLW12, KMW+17].

From Section 3.2, we understand that automatically adapting the distance metrics to
the DSL is very challenging. Therefore, we implemented the distance metrics as a Java
library4 EModelDistance that computes the metrics on any Ecore model in the Eclipse
Modeling Framework. The library encapsulates all dependencies on the metamodel of the
DSL within one abstract class DistanceUtility. The developer must override the five
sets Pos,Mov,Mod,N, and P for her DSL. She must also define the getId() function for
each class of the metamodel, if it does not already have an identity attribute. The computation
of the metrics is generated into Java classes that rely on the customized DistanceUtility
class provided for that DSL.

In our current implementation of the distance metrics, we do not explicitly merge the two
models. Instead, we assign a distance of∞ when there is no neighboring edge between a
position node in G1 and G2 if G12 required it.

Next, we evaluate potential performance differences of using common difference metrics,
e.g., provided by EMF Compare, and the distance metrics introduced in this paper.

2 MOMoT: http://martin-fleck.github.io/momot
3 MOEA Framework: http://www.moeaframework.org
4 https://github.com/geodes-sms/EModelDistance

Journal of Object Technology, vol. 18, no. 3, 2019

http://martin-fleck.github.io/momot
http://www.moeaframework.org
https://github.com/geodes-sms/EModelDistance
http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 9

5 Evaluation and Discussion

We evaluate our approach by comparing how domain-specific distance metrics perform
compared to difference models for model management tasks. In particular, we focus on the
use case presented in Section 4, namely finding a sequence of change operation applications
between two versions of a model. When searching for change operations, we apply changes to
a base model and measure how close it is to the given revised model. Thus, the fitness function
has to foresee a component for this decision. We perform different experiments to see if the
usage of model distances is in favor of using difference models in the fitness function.

5.1 Objectives

The comparison, distance or difference, is encoded in the fitness function of the search for
operation-based changes. Thus, the objective of this evaluation is to assess the impact of
the fitness functions on the search process. In particular, we are interested in the following
research questions:

• RQ1—Search-space exploration: Does a fitness function using distance metrics find
better solutions than one using model differencing?

• RQ2—Search time: Do distance metrics help in finding the best solutions in fewer
iterations than model differencing?

For RQ1, we analyze the final solutions output by the search-based algorithm for each
model comparison approach. For RQ2, we analyze the intermediate results at each iteration of
the search.

5.2 Experiment setup

To ensure a fair comparison of the experiments, we use the same base/revised models, trans-
formations, solution length, and optimization algorithms for all experiments. They only
differ in the fitness function used. We performed our experiments on three commonly used
case studies. In each one, we generated the domain-specific metric computation from the
EModelDistance from the library we implemented. We opted for EMF Compare to calcu-
late the difference model. On top of that, we built a basic distance function calculating the
similarity based on the fraction of matched elements and attributes divided by the number
of all elements and attributes. We define the metamodels in Ecore and the semantic change
operations as model transformation rules in Henshin. For each case, we randomly generated
multiple instances of the metamodel, corresponding to the base and revised models. Models,
rules, and metamodels are all input in MoMOT, as described in Section 4, to find the minimal
sequence of operations that led to the revised model version.

5.2.1 Cases.

The following are the three cases we considered for our experiments.

Pacman. We presented the Pacman case in Section 2.3. The test models we considered
consist of 8× 8 grid nodes with one Pacman, three ghosts, and 15 food objects all randomly
distributed on the grid.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

10 · Syriani et al.

Table 1 – Characterization of the three cases

Pacman Petrinet Refactoring

Rule count High Low Medium
Rule complexity Low Low High
Solution length High High Low
Position changes None N/A High

Petri nets. A Petri net model consists of places connected to other places via transitions.
Places can hold tokens that can be transferred to other places by firing transitions. A place can
have multiple transitions. Each transition can have multiple outgoing places, contributing to
non-deterministic transition firing. We model places and transitions as objects and tokens as
integer attributes of places.

Here, we only use one transformation rule that allows moving a single token from a place
to another place. Although this is an oversimplification of the Petri nets formalism, this rule
will be applied many times, especially when there are tokens in multiple places. The test
models we considered consist of 12 places and, on average, two transitions per place, and one
to two outgoing places per transition. The net is initialized with one to two tokens per place
distributed randomly across places.

Object-oriented refactoring. For this case, we have reused a variant of the solution5 to the
2013 edition of the Transformation Tool Contest (TTC). Here, the metamodel defines classes
which can have named, typed attributes and generalizations. The type of an attribute can be
primitive or an existing class. This example has been modified to make stronger use of the
domain-specific distance metrics presented in this paper. For the experiments, we focus on a
subset of the refactoring rules. Pull up attribute moves an attribute from all subclasses into
their superclass. Extract superclass creates a new intermediate superclass if an attribute exists
in some, but not all, subclasses of a particular superclass. Create root class is similar to the
latter if the classes do not already have a superclass.

Please note that the terminology used in the TTC 2013 edition is deviating from the
common object-oriented refactoring terminology which uses the term “extract superclass” for
the refactoring behaviour provided by the “create root class” refactoring of the TTC 2013
edition. In order to be able to reuse the refactoring rules as they are, we further use the
terminology as introduced by the TTC 2013 edition in the remainder of this paper.

We added a new rule Move attribute that moves an attribute from one class to another
class it is associated with. The test models we considered consist of nine classes, one to three
attributes per class. Each attribute has a name chosen from a set of seven possibilities and a
type from three possibilities. Each class has a 50% chance to be generalized with a superclass.

We selected these three case studies because they differ in terms of the number of rules,
the complexity of each rule, and the expected solution length (see Table 1). The Petri net case
contains only a single rule which can match in many different ways and its application does
not prevent its re-execution. Thus, the rule count is low, but the expected solution length is
high. In contrast, the rules for the refactoring case typically can be applied in a more limited
way, yielding a lower expected solution length. Nevertheless, this case heavily changes the
structure of the model by adding classes and generalizations, as well as removing attributes.
The Pacman case is in between: although it has more rules, they semantically move around
Pacman and ghosts, but differ in what happens on specific grid nodes.

The Petri net case does not create or remove any objects at all. The Pacman case removes

5 Refactoring: http://martin-fleck.github.io/momot/casestudy/class_
restructuring/

Journal of Object Technology, vol. 18, no. 3, 2019

http://martin-fleck.github.io/momot/casestudy/class_restructuring/
http://martin-fleck.github.io/momot/casestudy/class_restructuring/
http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 11

objects like food or Pacman itself. However, it does not change the connections of the position
and neighbor edges. The refactoring case creates classes which are position objects for
attributes; thus it modifies the structure on which the attributes move. The last row of Table 1
reflects this difference.

5.2.2 Methodology

When experimenting with search-based algorithms, we typically execute the same algorithm
on the same model many times and compare averages. However, in our experiments, we
only want to compare the values of the fitness functions. Therefore, we opted to count the
number of transformation rules applied when the revised model is found; otherwise we set
it to infinity. Thus we cannot compare averages, but pair-wise fitness function values for the
domain-specific distance and the difference model approach. Nevertheless, we use 100 base
and expected revised model pairs for each approach on each case study.

We generated the base models randomly within the parameters described in each case. To
generate the revised model, we applied the transformation rules randomly, making sure they
are meaningful and usable (e.g., Pacman is not killed right away).

Two runs of two identical randomized algorithms might produce results of the same or
different quality. If the results are not equal, the probability that either the first or the second
run is better is 50%. Thus, the probability that k first runs were better than n − k second
runs can be calculated using the binomial distribution as

(
n
k

)
0.5k0.5n−k = 0.5n

(
n
k

)
. The

probability that k or fewer runs were better can be calculated using the binomial distribution
function with p = 0.5, or rather F (k‖p, n) =

∑k
i=0

(
n
i

)
0.5i0.5n−i = 0.5n

∑k
i=0

(
n
i

)
.

Our null hypothesis is that the fitness function using difference models finds a better
sequence of operations leading to the revised model than if it were using domain-specific
distance metrics. The binomial distribution gives us the probability that the former would only
be better in k or fewer cases by chance. We can reject this null hypothesis if we get better
results in at most 5% of all cases.

5.3 Results

In the following, we describe the results of the experiments conducted in terms of the research
questions.

5.3.1 RQ1—Search-space exploration

Table 2 compares the quality of the results obtained by each approach out of the 100 runs. The
first three columns denote the number of times the domain-specific distance metrics yielded a
better result, a result taking the same amount of transformations, or a worse result than the
generic difference model, based on the values of the fitness functions. The fourth column
denotes how many times both fitness functions failed to find the revised model. All p-values
are under 0.05; therefore we can reject the null hypothesis.

The search had a hard time finding the best solution for the Pacman case for both ap-
proaches, which explains the high number of “no exact solution”. However, out of the
remaining 28 runs, the distance fitness function was able to find better solutions almost all
the time. We observed a similar situation for the refactoring case. After manual inspection,
we found only 15 cases where both algorithms found a valid solution of the same quality.
Still, the domain-specific distance was better in 80% of all cases. For the Petri net case, the
domain-specific distance approach found a good result most of the time. The difference model
approach could not find any result in 57% of the runs, whereas the distance approach failed
only 26% of the runs.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

12 · Syriani et al.

Table 2 – The results of the experiments for RQ1

Better As good Worse No exact solution p-value

Pacman 27 0 1 72 1.1 · 10−6

Petrinet 62 2 12 24 1.4 · 10−9

Refactoring 32 15 8 45 9.1 · 10−5

We can therefore positively answer RQ1: domain-specific distance metrics yield better
results. Yet, it is not so clear when the models change their position and neighbor edges.
Nevertheless, it performs best when movable objects change or attribute values change.

5.3.2 RQ2—Search time

To answer RQ2, we only consider runs that find the expected revised model correctly. Fig. 4
shows the evolution of the fitness functions in terms of the iterations of the search algorithm for
each case. The x-axis represents the search progress in terms of the percentage of completed
iterations, i.e., the current iteration count divided by the total number of iterations needed to
find the best solution for each of the 100 runs. The y-axis shows the percentage of runs for
each fitness function which have already found the best model for the run, independent of the
fitness function. Each data point represents the average result from all 100 runs. If one fitness
function outperforms the other, i.e., yields a better or equal value for each run, it would show
100% on the y-axis at the right side of the graph. If the other fitness function also manages to
be better in some scenarios, it will be lower than that.

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

distance

difference

Evaluation completion

B
es

t r
es

ul
ts

 fo
un

d

(a) Pacman

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Evaluation completion

B
es

t r
es

ul
ts

 fo
un

d distance

difference

(b) Petri net

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Evaluation completion

B
es

t r
es

ul
ts

 fo
un

d

distance

difference

(c) Refactoring

Figure 4 – Stepwise comparison of the different experiments

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 13

The results of the Pacman case show a clear advantage for the domain-specific distance
metrics. On the one hand, they help Pacman to eat the correct amount of food. On the other
hand, they allow both Pacman and the ghosts to have a clear direction in reaching their target
position. Thus, this result concurs with the result for RQ1. For the Petri net case, the results
are continually improving by finding better solutions each time. The graph appears to hint
that the search process only finds the right model at the end. However, a manual inspection
reveals that the search finds the right model early, but it finds better sequences of rules just
before the search ends. In the Refactoring case, we can see that it takes half the amount of
iterations to start finding models it cannot improve later on for both approaches. The reason is
that the position objects (classes) must first be created and deleted, where the distance metrics
are the same for the EMF compare and the domain specific distance function, before attributes
can start moving correctly, where the domain specific distance function actually helps. As
the first step already takes about half the iterations, there is little difference between both
fitness functions in that time. Afterwards, the domain-specific distance metrics continuously
outperforms the difference model. In total, the former finds 85% of the best results while the
latter only finds 50% of them.

We can therefore positively answer RQ2: domain-specific distance metrics improve the
speed of the search process. The difference is more apparent for examples which can make
better use of the move and value distances. That is because the element distance is very similar
to the metrics based on EMF Compare. In particular, the Pacman case performs best as all of
its rules directly correspond to changes in the domain-specific distance. The other cases show
only weaker use of the domain-specific distance and thus less clear result. The Petri net case
uses attribute values, but as these values are seldom large, there is less difference between a
coarse-grained generic attribute change and a more fine-grained value change distance metric.
The Refactoring case uses transformations that do not necessarily improve the domain-specific
distance.

While we did not measure the exact execution times, our approach was always faster than
EMF Compare. While EMF Compare was configured to match on identifiers, the generic
comparison function still had to evaluate the complete model instead of focusing on the
dynamic parts. While the graph-based distance function evaluation could take longer for larger
models, it could be precomputed for static structures, which are the kinds of models for which
the domain-specific distance function works best.

5.4 Threats to validity

As we use randomized algorithms which may produce different results on each run, we use 100
runs for each model. The structure of our test models allows us to use a simple statistical test
without any requirements for metrics like the variance of the fitness values. While we achieved
statistical significance with a one-sided test allowing 5% error, which may be considered as
one of the weakest acceptable values, the p-values report the same significance trend with a
two-sided test with 1% error.

Differences in the search process which are not due to the difference in the distance metrics
used could cause a problem for the internal validity of our experiments. However, we have
ensured that as many parameters of our search are constant by using the same algorithm, the
same input models, the same search framework and the same search parameters. While the
number of objectives is different, we chose NSGA II as our search algorithm as it works both
for two and four objectives.

Currently, the approach seems to work best when the transformation mainly changes
either attribute values or moves objects around. Several preliminary tests with the original
refactoring case have suggested that there might be little or no advantage when the operations

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

14 · Syriani et al.

mainly modify position nodes and neighbor edges. This is probably due to both distance and
difference approaches individual elements similarly. Therefore, we needed to modify the case
(as explained in Section 5.2) to allow both fitness functions to find better solutions.

Another threat is that we only compare one representative of the domain-specific distance
approach (EModelDistance) to only one representative of the difference model approach (EMF
Compare). Nevertheless, since EMF Compare is commonly used and our implementation is the
only one currently available, we can state that the results we obtain from each implementation
are representative of each approach.

5.5 Discussion

We can conclude that the domain-specific distance can help the search process in various cases.
It is especially useful if the transformations exclusively move objects, but can also provide
benefits if some transformations perform other changes.

The current implementation assumes that the base and revised models have the same
position objects (none are deleted or created). However, as seen with the Refactoring case,
this is too restrictive. The models should be preprocessed by merging their position elements
and then use the move distance. One possibility is to use EMF Compare to merge them based
on the position elements.

While we can recover a plausible sequence of change operations for arbitrary base and
revised models, this trace is not necessarily the one originally used to produce the revised
model. For example, if Pacman and the ghosts are on opposite sides of the board and move
together so that Pacman is killed, they can meet at any position in between and have the same
result model and the same length of the sequence of rule applications as we don’t require that
the game stops when Pacman is killed.

6 Related Work

We first discuss related work on model differencing and then on approaches that cluster model
based on distance metrics when analyzing model repositories.

6.1 Model Differencing

Kolovos et al. [KDRPP09] survey different model matching approaches. Model matching
is often the first phase of model differencing processes. Model matching can be: static
identity-based, which assume a unique identifier for objects; signature-based, which compare
objects based on a dynamic signature calculated from the objects’ properties; similarity-based,
which match objects based on the aggregated weighted similarity of their properties, but
obviates the model semantics; and language-specific, developed for a modeling language
and its semantics. For example, using signifiers [LWG+12] (i.e., combinations of features
of a metamodel class) as comparison criteria falls under the signature-based category. EMF
Compare is similarity-based but permits defining custom matching algorithms. In our work,
we did not tackle model matching and reused existing techniques for this purpose. However,
as an extension, one could use model distances for the matching process too.

Many approaches attempt to derive model differences formulated as atomic operations.
For example, [SC13] surveys several model comparison approaches and [TELW14] proposes
a formalization. In [CRP07], the authors derive a DSL from metamodels to capture differences
based on atomic changes. This is in line with our approach, but we provide dedicated support

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 15

to compute distance measures. To the best of our knowledge, the existing approaches that
compute atomic changes do not compute model distances.

There is also a dedicated line of research concerned with the detection of domain-specific
operations. For instance, Xing and Stroulia [XS06] present an approach to detect refactoring
operations in evolving software models. They integrated their work with UMLDiff. The
approach by Vermolen et al. [VWV11] copes with the detection of complex evolution steps
between different versions of a metamodel. They use a difference model comprising primitive
changes as input to calculate complex changes. They even detect changes that are hidden by
other changes such that their effect is partially or totally missing in the revised model. Gerth et
al. [GKLE13] calculate hierarchical change logs including compound changes in the absence
of recorded changelogs. They apply the concept of Single-Entry-Single-Exit fragments
to calculate the hierarchical changelogs after computing the correspondences between two
process models. As reported in [KKT11], graph transformations can be used to collect atomic
changes on models into more meaningful user-level changes. In [LWB+13], we presented a
domain-specific operation detection approach that transforms model transformation rules into
difference patterns. Patterns can then be matched on difference models. In follow-up work, we
presented the first search-based approach to detect operation sequences between two model
versions without requiring a difference model [bFKLW12, KMW+17]. In our approach, we
resorted on atomic difference models in the fitness function to compute how close a computed
model is to the given revised model. None of these approaches considered domain-specific
distance metrics as we present in this paper. An additional contribution of this paper is the
comparison of difference and distance approaches to detect a sequence of operations.

Maoz et al. [MRR11] argue that existing model differencing approaches are purely
syntactic and challenge the community to develop semantic difference operators. Two models
may be syntactically different but can be semantically equivalent. The authors in [LMK14]
presented a semantic differencing approach that reuses the operational semantics of modeling
languages. It would be possible to extend our approach to deal with semantic model distances
concerned with the instantiation or executability of models.

Finally, there is also related work on using numeric differences of design metrics of models
to characterize changes in the context of refactoring detection [DDN00]. For instance, one
may compare different versions of class diagrams based on the maximum inheritance depth or
number of classes.

6.2 Model Clustering

Some recent works discuss dedicated support to cluster models in model repositories for
different purposes, such as providing an overview or performing clone detection. While
classical two- or three-way model comparison is mostly studied in the area of model versioning
and evolution, model clustering is mostly studied for model repository analytics. This context
requires to compare multiple models simultaneously. Thus, the work in [BCVvdB16] proposes
a generic model clustering technique. They translate models into a vector space representation
to reuse existing generic clustering distance measures. In follow up work [BC17, BCvdB18],
the authors have proposed n-grams for clustering of models, again based on the usage of
generic distance metrics. In contrast, we propose the usage of domain-specific distance
metrics that are directly measured on the model structures. Nevertheless, we also build on
established distance measures. However, we configure them for the given modeling languages
to incorporate more domain-specific knowledge.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

16 · Syriani et al.

7 Conclusion

In this paper, we have introduced a novel notion of metrics for model comparison, so-called
domain-specific distance metrics. We have defined a method to derive tool support to compute
these measurements from the metamodel and the change operations of the DSL. We have
shown the usage of the domain-specific distance metrics in the recovery of operation-based
changes between model versions for different modeling languages.

One main result of our study is that heavily changing model structures seem to be a
particular challenge when it comes to the computation of distance metrics. Thus, the cases
used in our experiment have shown different performances of calculating and using model
distances. As future work, we plan to perform more experiments, with cases such as the
refactoring case, where elements are deleted, created, and potentially re-created. Although we
have presented three distance metrics, this is by no means complete: we plan to investigate
more metrics to characterize the difference between model versions further. Finally, we plan
to use model distances for other model management tasks, such as model synchronization and
model-metamodel co-evolution, where model differencing approaches are currently used.

About the authors

Eugene Syriani is an associate professor at the University of Montreal. Contact him at
syriani@iro.umontreal.ca, or visit http://www-ens.iro.umontreal.ca/
~syriani/.

Robert Bill is a PhD student at TU Wien currently working as researcher for the Austrian
Center of Digital Production. His research interest is in the broad field of model-driven
engineering with a special focus on language engineering, model integration, and (model)
optimization. Contact him at bill@big.tuwien.ac.at

Manuel Wimmer is a full professor leading the Institute of Business Informatics - Software
Engineering at the Johannes Kepler University Linz. His current research interests are focused
on the foundations and applications of model-driven engineering technologies. Contact him at
manuel.wimmer@jku.at, or visit https://www.se.jku.at/manuel-wimmer.

Acknowledgments This work has been partially supported and funded by the Austrian
Research Promotion Agency (FFG) via the Austrian Competence Center for Digital Production
(CDP) under the contract number 854187, by the Austrian Federal Ministry for Digital and
Economic Affairs, the National Foundation for Research, Technology and Development, and
by the FWF under the grant numbers P28519-N31 and P30525-N31.

References

[BC17] Önder Babur and Loek Cleophas. Using n-grams for the automated clustering
of structural models. In Current Trends in Theory and Practice of Computer
Science, volume 0139 of LNCS, pages 510–524. Springer, 2017.

[BCvdB18] Önder Babur, Loek Cleophas, and Mark van den Brand. Model analytics
for feature models: case studies for S.P.L.O.T. repository. In Proceedings of
MODELS 2018 Workshops, pages 787–792, 2018.

Journal of Object Technology, vol. 18, no. 3, 2019

mailto:syriani@iro.umontreal.ca
http://www-ens.iro.umontreal.ca/~syriani/
http://www-ens.iro.umontreal.ca/~syriani/
mailto:bill@big.tuwien.ac.at
mailto:manuel.wimmer@jku.at
https://www.se.jku.at/manuel-wimmer
http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 17

[BCVvdB16] Önder Babur, Loek Cleophas, Tom Verhoeff, and Mark van den Brand. To-
wards statistical comparison and analysis of models. In Model-Driven
Engineering and Software Development, pages 361–367. IEEE, 2016.

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice, Second Edition. Morgan & Claypool Publishers,
2017.

[bFKLW12] Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and Manuel Wim-
mer. Search-based detection of high-level model changes. In International
Conference on Software Maintenance, pages 212–221. IEEE, 2012.

[BP08] Cédric Brun and Alfonso Pierantonio. Model Differences in the Eclipse
Modelling Framework. UPGRADE, The European Journal for the Informatics
Professional, 9(2):29–34, 2008.

[CRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A meta-
model independent approach to difference representation. Journal of Object
Technology, 6(9):165–185, 2007.

[DAPM02] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary
Computation, 6(2):182–197, 2002.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings
via change metrics. In Object-Oriented Programming Systems, Languages &
Applications, ACM SIGPLAN Notices, pages 166–177. ACM, 2000.

[DRELHE16] Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E. Lopez-Herrejon,
and Alexander Egyed. Co-evolution of metamodels and models through
consistent change propagation. Journal of Systems and Software, 111:281–
297, 2016.

[DRIP12] D. Di Ruscio, L. Iovino, and A. Pierantonio. Coupled evolution in model-
driven engineering. IEEE Software, 29(6):78–84, 2012.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

[FTW16] Martin Fleck, Javier Troya, and Manuel Wimmer. Search-based model trans-
formations with MOMoT. In Theory and Practice of Model Transformations,
volume 9765 of LNCS, pages 79–87. Springer, 2016.

[GKLE13] Christian Gerth, Jochen Malte Küster, Markus Luckey, and Gregor Engels.
Detection and resolution of conflicting change operations in version man-
agement of process models. Software and System Modeling, 12(3):517–535,
2013.

[KDRPP09] D. Kolovos, D. Di Ruscio, A. Pierantonio, and R. Paige. Different Models for
Model Matching: An analysis of approaches to support model differencing.
In Comparison and Versioning of Software Models, pages 1–6. IEEE, 2009.

[KHL+10] Maximilian Koegel, Markus Herrmannsdoerfer, Yang Li, Jonas Helming,
and Jörn David. Comparing state- and operation-based change tracking on
models. In Enterprise Distributed Object Computing, pages 163–172. IEEE,
2010.

[KKPS12] Timo Kehrer, Udo Kelter, Pit Pietsch, and Maik Schmidt. Adaptability of
model comparison tools. In Automated Software Engineering, pages 306–309.
IEEE, 2012.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

18 · Syriani et al.

[KKT11] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based approach to
the semantic lifting of model differences in the context of model versioning.
In Automated Software Engineering, pages 163–172. IEEE, 2011.

[KMW+17] Marouane Kessentini, Usman Mansoor, Manuel Wimmer, Ali Ouni, and
Kalyanmoy Deb. Search-based detection of model level changes. Empirical
Software Engineering, 22(2):670–715, 2017.

[KRM+13] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F. Paige,
Esther Guerra, Jesús Sánchez Cuadrado, Juan De Lara, István Ráth, Dániel
Varró, Massimo Tisi, and Jordi Cabot. A research roadmap towards achieving
scalability in model driven engineering. In Workshop on Scalability in Model
Driven Engineering, BigMDE’13, pages 2:1–2:10. ACM, 2013.

[LAD+16] Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay,
Gehan Selim, Eugene Syriani, and Manuel Wimmer. Model transformation
intents and their properties. Software & Systems Modeling, 15(3):647–684,
2016.

[LMK14] Philip Langer, Tanja Mayerhofer, and Gerti Kappel. Semantic model dif-
ferencing utilizing behavioral semantics specifications. In Model-Driven
Engineering Languages and Systems, volume 8767 of LNCS, pages 116–132.
Springer, 2014.

[LWB+13] Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmannsdörfer,
Martina Seidl, Konrad Wieland, and Gerti Kappel. A posteriori operation
detection in evolving software models. Journal of Systems and Software,
86(2):551–566, 2013.

[LWG+12] P. Langer, M. Wimmer, J. Gray, G. Kappel, and A. Vallecillo. Language-
specific model versioning based on signifiers. Journal of Object Technology,
11(3):4:1–34, 2012.

[MRR11] S. Maoz, J. O. Ringert, and B. Rumpe. A manifesto for semantic model
differencing. In Model-Driven Engineering Languages and Systems, volume
6627 of LNCS, pages 194–203. Springer, 2011.

[SBG+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo
Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A usability-focused
framework for EMF model transformation development. In Graph Transfor-
mation, volume 10373 of LNCS, pages 196–208. Springer, 2017.

[SC13] M. Stephan and J. R. Cordy. A survey of model comparison approaches
and applications. In Model-Driven Software Development, pages 265–277.
SciTePress, 2013.

[Sch06] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–
31, 2006.

[SPTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel.
Refactoring UML models. In The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, pages 134–148, 2001.

[SV13] E. Syriani and H. Vangheluwe. A modular timed graph transformation lan-
guage for simulation-based design. Software & Systems Modeling, 12(2):387–
414, 2013.

[TELW14] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer. A
fundamental approach to model versioning based on graph modifications:

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

Domain-Specific Model Distance Measures · 19

From theory to implementation. Software and System Modeling, 13(1):239–
272, 2014.

[VWV11] Sander Vermolen, Guido Wachsmuth, and Eelco Visser. Reconstructing
complex metamodel evolution. In Software Language Engineering, volume
6940 of LNCS, pages 201–221. Springer, 2011.

[War62] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM,
9:11–12, 1962.

[XS06] Zhenchang Xing and Eleni Stroulia. Refactoring detection based on UMLDiff
change-facts queries. In Working Conference on Reverse Engineering, pages
263–274. IEEE, 2006.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a3

	Introduction
	Background and Motivation
	Model differences as atomic operations
	Model differences as domain-specific operations
	Motivating and Running example

	Domain-specific Model Distances
	Model distance metrics
	Move distance
	Element distance
	Value distance

	Adapting distance metrics to the DSL

	Use Case: Finding a Sequence of Rule Applications
	Evaluation and Discussion
	Objectives
	Experiment setup
	Cases.
	Methodology

	Results
	RQ1—Search-space exploration
	RQ2—Search time

	Threats to validity
	Discussion

	Related Work
	Model Differencing
	Model Clustering

	Conclusion
	About the authors
	Bibliography

