JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets
http://wuw.jot.fm/

Efficient ATL Incremental
Transformations

Théo Le Calvar® Frédéric Jouault® Fabien Chhel?
Mickael Clavreul®

a. LERIA, University of Angers, France
b. ERIS Team, Groupe ESEQO, France

Abstract Incrementally executing model transformations offers several
benefits such as updating target models in-place (instead of creating a
new copy), as well as generally propagating changes faster (compared
with complete re-execution). Active operations have been shown to of-
fer performant OCL-based model transformation incrementality with use-
ful properties like fine-grained change propagation, and the preservation
of collection ordering. However, active operations have so far only been
available as a Java library. This compels users to program at a relatively
low level of abstraction, where most technical details are still present.
Writing transformations at this level of abstraction is a tedious and error
prone work. Using languages like Xtend alleviates some but not all issues.

In order to provide active operation users with a more user-friendly
front-end, we have worked on compiling ATL code to Java code using the
active operations library. Our compiler can handle a significant subset of
ATL, and we show that the code it generates provides similar performance
to hand-written Java or Xtend code. Furthermore, this compiler also
enables new possibilities like defining derived properties by leveraging the
ATL refining mode.

Keywords Incremental model transformation Active operations
ATL.

1 Introduction

Incremental model transformation execution offers many advantages over batch (i.e.,
non-incremental) execution, such as faster change propagation. However, there are
only few incremental model transformation approaches that really scale to complex
transformations on large models, Viatra [VBH'16] probably being the most well-
known. The approach used in Viatra is based on graph patterns and is quite different
from approaches like ATL or QVT, which rely on OCL [Obj14] as navigation language.
Each approach has its benefits, and it would be useful to have efficient incremental
engines for all of them. Previous work [JB16] showed that active operations, which

Théo Le Calvar, Frédéric Jouault, Fabien Chhel, Mickael Clavreul. Efficient ATL Incremental
Transformations. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object
Technology, vol. 18, no. 3, 2019, pages 2:1-17. doi:10.5381/jot.2019.18.3.a2

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.5381/jot.2019.18.3.a2

2 . T.Le Calvar et al.

are an OCL-based approach to achieve fine-grained incremental execution, can be
used to achieve performance similar to what is achievable with Viatra. However,
active operations were used as a Java API from Xtend code. Consequently, low-level
details were visible, and hindered the development and readability. In this paper, we
present an approach that translates declarative ATL transformations into Java code
that uses active operations in order to achieve efficient incremental execution of ATL
transformations. We evaluate this approach on two public benchmarks, and show how
incremental ATL can be used to support the definition of derived properties, which
were not previously supported by any ATL implementation.

Section 2 presents the motivation for the incremental execution of ATL. The prin-
ciples of how active operations achieve incrementality are presented in Section 3.
Section 4 discusses the main issues related to the translation of ATL code into active
operations, while Section 5 describes our compiler. Our approach is evaluated in Sec-
tion 6. Some related works are discussed in Section 7. Finally, Section 8 gives some
concluding remarks.

2 Motivation

This section briefly presents three applications of incremental execution: incremental
queries, incremental transformations, and derived properties.

Incremental Queries. A model query (or simply query in the remainder of this
paper) is typically used to compute a single value from a model. Such a query cannot
make changes to a model, such as creating new model elements. With ATL, queries
are expressed in OCL, and can compute values as simple as a single integer, but also
any kind of OCL value such as a collection of elements. Computing complex queries
can be expensive (in time, and memory usage), and can benefit from being performed
incrementally. Indeed, the live contest of TTC 2018 (Transformation Tool Contest)
consisted in implementing two such queries on specific social media models [Hin18].
Change propagation performance was then evaluated by executing these queries on
models that were then changed multiple times to simulate user activity (e.g., adding
comments to posts). In order to evaluate scalability, this was repeated on models of
increasing size.

Incremental Transformations. A model transformation is typically used to cre-
ate a set of new target models from a set of existing source models. There is no
constraint on what these models may represent, only that they are defined using a
modeling framework compatible with the transformation language used. In some sit-
uations, source models may change, triggering the need to compute updated target
models. Sometimes it is enough to execute the transformation again, thus producing
a new set of target models consistent with the changed source models. But there are
cases in which it is necessary to update the target models produced by the trans-
formation’s first execution. This is for instance the case when a target model is
actually a view displayed in a modeling tool. Computing a new model would not
update what users see, whereas updating the existing view in place would. The in-
cremental execution of the transformation can achieve this. Moreover, like queries,
complex transformations can be expensive to execute. Executing them incrementally
often provides a huge speed up over executing them fully after each source model
change. The Viatra CPS (Cyber Physical System) to Deployment benchmark [Inc]

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

Efficient ATL Incremental Transformations - 3

specifies a small but non-trivial transformation along with tools to generate source
models, source model changes, as well as reports, based on the MONDO-SAM frame-
work [ISRV14] These tools can be used to compare the performance of transformation
languages given implementations of the CPS to Deployment transformation in these
languages.

Derived Properties. Some metaclass properties can be computed from other parts
of the model like other properties of their owning metaclass, or properties of other
metaclasses reachable from their owning metaclass. Such properties are called derived
properties. OCL can be used to specify the value of a derived property based on other
parts of its context model [Obj14, Section 7.3.7, page 9], for instance:

context Node::name : String derive: 'node_'.concat(self.id)

This line of OCL code means that the property named name belonging to the
metaclass named Node has type String, and must at all times be equal to the con-
catenation of the string ’node_’ with the value of property id. However, the OCL
specification does not state how and when derived properties should be computed.
The notion of incremental query as presented above may be applied to the derivation
expression, so that its value can then be automatically updated whenever the parts of
the model on which it depends are changed. However, the resulting value must also be
assigned to the derived property itself in such a way that the latter is updated along
with the former. We evaluated derived properties in a transformation not presented
in this paper but available on GitHub!.

3 Incrementality with Active Operations

In this section, we present how active operations make incremental transformations,
as discussed in the previous section, possible.

3.1 Overview

Active operations were introduced in [BBBJ10] as a way to specify incremental
queries. They operate on a concept of mutable value called box. A bor can be
observed, and every change is notified to each of its observers. There are several
kinds of boxes mostly mirrored after the different kinds of OCL collections: Bag (also
known as multiset), OrderedSet, Sequence, and Set. In addition to these collection
boxes, there are also two kinds of singleton boxes: One, which always has a value, and
Option, which may be empty, thus representing a kind of nullable value.

In order to perform computations on such boxes, one must use active operations.
Available active operations are inspired by OCL collection operations, for instance:
collect, select, first. Non OCL operations are also supported for convenience,
such as: zip, zipWith, groupBy. Each of these operations is equipped with change
propagation algorithms. Not only can they compute their target values given their
source values, but they can also update their target values when their source values
change. By composing active operations, more complex expressions can be formed
that are still able to update their target values upon source value changes. These
expressions, especially the lambda expressions given to active operations, must be
side effect free because propagation may basically trigger computations in arbitrary
order.

Thttps://github.com/TheoleCalvar/scheduling-example

Journal of Object Technology, vol. 18, no. 3, 2019

https://github.com/TheoLeCalvar/scheduling-example
http://dx.doi.org/10.5381/jot.2019.18.3.a2

4 . T.Le Calvar et al.

o o
A L 5p P2 ¢
|
| | |
[
ro ro
5, prop, > 55 prop, > 6.
|
Y
A 0Py >B- — _Op2 »C

Figure 1 — Active operation composition example

3.2 Example

Figure 1 gives an example of active operation composition. Operation op; produces
value B from value A, and operation op, further produces value C from value B.
Later, a change §4 occurs on value A, turning it into changed value A’. The propa-
gation algorithm prop, of operation op; produces update ég from change d4. Then,
propagation algorithm props of operation ops produces update d¢c from update dg.
Finally, update d¢ is applied to value C' in order to produce updated value C’. The
dashed lines represent redundant computations that do not need to be performed.
For instance, update dp could be applied to value B in order to obtain updated value
B’. Then, the value of B’ would be the same as if operation op; was applied to value
A’, and the value of C" would be the same as if operation opy was applied to value
B’. But, in general, intermediate values do not need to be stored and updated in
this way. There are therefore two ways to compute updated value C’ given value A
and update d4. The first way (re-execution) consists in applying update d4 to value
A, then successively applying op; and ops. If we represent each operation and each
update as a function, this may be written in the following way:

C" = opz(op1(54(4)))

The second way (incremental propagation) consists in first applying op; followed
by ops to value A, then applying update d¢o, which may be written as:

C" = dc(op2(op1(A)))

which becomes, if we represent the propagation algorithms as functions, and re-
place d¢ by its expression in terms of d 4, prop;, and props:

C" = propa(prop1(.4))(op2(op1(A)))

As these expressions show, propagation algorithms compose in the same way as
regular operations, but operate on updates instead of operating on values. Note that
some propagation algorithms require access to the source value in addition to the
update, which could be represented as dp = prop;(A,d4) instead of dp = propi(d.4).
This makes the situation slightly more complex, but does not change it significantly
from what is explained above.

We call propagation graph the graph formed by values as nodes, and operations
as edges. Because changes on source values can happen at any time, this propagation
graph must be kept as long as one needs to be able to propagate changes.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

Efficient ATL Incremental Transformations - 5

3.3 Lifting Operations

Singleton mutable values are wrapped in boxes so that they can notify observers of
changes to their internal values, even if these values are immutable (e.g., like instances
of java.lang.Integer in Java). Standard operations on such values (e.g., addition
of integers) must therefore be lifted into active operations: using collect for a single
mutable value, or using zipWith for multiple mutable values. For instance, x + 1
where x is mutable becomes:

x—>collect(e | e + 1).

With two mutable values x, and y, x + y becomes:

x—>zipWith(y)(a, b | a + b),

where zipWith takes both x and y as source boxes, as well as a lambda expression
to apply to their contents.

3.4 Current Implementation: AOF

The current active operation implementation is called AOF for Active Operations
Framework. It is an online, or in memory, implementation of active operations that
keeps the complete propagation graph in memory. This has the advantage of making
it possible to propagate changes with reduced latency, but requires the propagation
graph to fit in available memory.

AOF can operate on its own type of boxes, but it can also wrap mutable values
provided by other libraries. For instance, it provides means to view the properties of
EMF model elements as boxes on which active operations can be composed [JB16].
JavaFX? properties can also be viewed as boxes, which makes it possible to use AOF-
based incremental transformations to visualize models graphically.

4 Translation from ATL to Active Operations

The previous section has presented how active operations can be used to specify
incremental expressions. This section gives an overview of how ATL transformations
can be expressed in terms of active operations.

4.1 OCL Expressions

The two main issues with the translation of OCL expressions into code using active
operations are:

e Accessing model element properties. Each access to a property must
be translated into the creation of a box from which active operations can be
composed to form an expression. In this way, when the property value changes,
the value of the whole expression will be updated.

e Dealing with mutable values. Some OCL expressions are immutable, like
primitive type literals (e.g., Integers, Strings), and variables referring to con-
textual elements. But other values are mutable, like property accesses, and
variables initialized using mutable expressions. Expressions that build on other
expressions (e.g., operation or operator calls), must therefore be able to deal
with both mutable and immutable values.

2JavaFX (https://openjfx.io/) is a Java framework that is used to create graphical views.

Journal of Object Technology, vol. 18, no. 3, 2019

https://openjfx.io/
http://dx.doi.org/10.5381/jot.2019.18.3.a2

6 - T.Le Calvaret al.

Dealing with both immutable and mutable values requires being able to rewrite
all expressions building on other expressions depending on their mutability. This
includes operation lifting discussed in Section 3.3, but also specific kinds of expressions
like if—then—else—endif. In order to appropriately rewrite these expressions, knowing
whether they are mutable or not is crucial. This can be achieved by analyzing the
mutability status of every expression. Leaf expressions are known to be either mutable
or immutable, and compound expressions are mutable as soon as one of their nested
expressions is mutable.

4.2 Refining Mode

Refining mode ATL transformations are used to perform relatively small changes on
models. However, this objective had to be reconciled with the basic semantics of
ATL, which only considers read-only source models, and write-only target models.
The original refining mode execution strategy consisted in automatically copying all
parts of a model that were not explicitly matched by transformation rules. This way,
the write-only target model is a slightly modified copy of the read-only source model.
This copy strategy is trivially compatible with incremental execution because it is
basically equivalent to explicitly writing a copy rule for every element that does not
need to be transformed. For the same reason, its usefulness is limited to reducing size
of the transformation code, which can actually be achieved via another technique:
module superimposition [WVDSD10]. Moreover, copying whole models can be quite
costly when performed on large ones.

This is why a new in place execution strategy was designed [TMJC11], and im-
plemented in the current version of ATL. It consists of two phases: 1) first computing
all changes that must be performed on the model without actually touching it, and
2) applying these changes. Every OCL expression is thus evaluated on the original
unchanged source model, which remains compatible with the ATL semantics. We
therefore decided to look into the problem of marrying incrementality with an in
place refining strategy. The core issue is that incremental in place updates can result
in propagation cycles, for instance if two properties are computed from each other.
Repeated in place updates are naturally supported by other approaches like graph
transformation [Hec06] but not by active operations. We could define some kind of
fixpoint semantics, but this would basically turn ATL into a search tool, which is
beyond the scope of the present paper. Instead, we elected to only consider refining
transformations that do not involve cycles.

5 Proof of Concept Compiler: ATOL

The previous section has presented how ATL transformations can be translated into
code that uses active operations. In order to evaluate this approach, we created
ATOL: a proof of concept compiler from ATL to Java code that uses AOF.

5.1 Objectives and Trade-offs

The main reason that motivated the development of ATOL was to make it possible
to evaluate the performance and expressiveness of our approach. We chose to compile
ATL code into Java code instead of writing an ATL interpreter in Java in order to get
better performance. However, developing a full-fledged ATL compiler is not trivial,

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

Efficient ATL Incremental Transformations - 7

and would require more resources than were available to us. We therefore had to
accept some trade-offs between full ATL support and development cost. We decided
to develop a proof of concept implementation focused on the subset of ATL necessary
to achieve good performance. For instance, in order to achieve acceptable perfor-
mance, standard rule selection requires more advanced static analysis than we have
implemented so far. Therefore, ATOL only supports unique lazy rules. Moreover,
in order to further simplify static analysis of ATL code, metamodel properties with
colliding names must be used with a numeric disambiguation suffix when performing
an implicit collect. These and other trade-offs prevent many existing ATL transfor-
mation from compiling unmodified with ATOL, but do not impact the validity of the
evaluation performed in this paper.

5.2 Metamodel Representation

A model transformation must have means to access its source and target models and
metamodels. There are three main aspects to consider:

e Type introspection is required to test whether a given model element has
a given metaclass for type. This is not only used in OCL to support the
0clIsKindOf, and oclIsTypeOf operations, but also in ATL to check which
rule matches a given element.

e Element creation is necessary so that transformation rules can create their
target elements.

e Property access is used both to navigate source models, but also to initialize
target element properties. In order to use active operations, a mechanism to
obtain boxes associated to properties of elements is required.

Moreover, in order to support different kinds of models, the compiler must not have
dependencies to a specific modeling framework like EMF. The metamodel representa-
tion used by ATOL takes all these requirements into account. Listing 1 gives a Java
code excerpt of the class representing the simple metamodel from Figure 2. Each
metaclass has a corresponding field with the same name (e.g., see line 2), and type
IMetaClass, which is an interface offering type introspection using an isInstance
method, and element creation with a newInstance method. This interface takes a
type parameter for the same reason that java.lang.Class does: so that the Java
compiler can perform some type checking, for instance on the return value of the
newInstance method. Furthermore, each metaclass property is captured by two
methods: a field access method, and a navigation method. The field access method
of property id is shown at line 3. It takes an instance of the metaclass as parameter,
and returns an AOF boxed value. The name of this field access method is formed by
prefixing an underscore to the name of the field. This is of no consequence for ATOL,
but is useful when writing Xtend helpers: these methods can be used as extension
methods?, but their names would collide with the actual EMF accessor methods with-
out the prefix. The navigation method (e.g., see line 6) takes a box of instances of
the metaclass or one of its children, and returns a box. These navigation methods
may be used to support the implicit collect navigation offered by OCL, but may

3An extension method is a syntactic sugar allowing methods to be added to an object outside
after it has been defined. Which can later be used in the same way as any other method defined by
the object.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

© 00O U W -

N =

8 . T.Le Calvaret al.

A\

CA
id : String

Figure 2 — Class diagram representing metamodel A

also simply be used to access properties of mutable singleton values. Such metamodel
representation classes can be written manually, which makes it possible to use any
kind of model. For EMF support, we have implemented an Xtend active annotation?:
AOFAccessors. It takes as argument the class generated by EMF from the metamodel
package, and automatically generates the Java code of the metamodel representation
class. Thus, a user only has to write the code of Listing 2 to automatically obtain
the code of Listing 1.

class A {

static IMetaClass<CA> CA =// [...]

IBox<String> _id(CA a) {
/7 L...]

IBox<String> id(IBox<? extends CA> a) {
/7 L.
}
}

Listing 1 — Java class representing metamodel A generated from the metamodel of Figure 2
and the Xtend Class of Listing 2

@AOFAccessors(APackage)
class A {

}

Listing 2 — Source Xtend class representing metamodel A of Figure 2 for ATOL

5.3 Compilation Process

There are multiple possible ways to generate Java code from ATL code. Developing
a standalone compiler would reduce the number of required dependencies. However,
it would be necessary to write plugins for such a compiler in order to integrate it into
development environments, and build systems. Therefore, we elected to follow the
same approach used to generate the metamodel representation class presented above:
an Xtend active annotation, which we called @ATOLGen. Figure 3 shows the overall
ATOL compilation process in three steps denoted by circled numbers:

e First, given an Xtend file A2B.xtend like the one of Listing 3 with the @ATOLGen
annotation, the Xtend compiler calls the corresponding annotation processor
called ATOLGenProcessor.

e Second, this annotation processor reads the annotation arguments, which in-

4https://www.eclipse.org/xtend/documentation/204_activeannotations.html

Journal of Object Technology, vol. 18, no. 3, 2019

https://www.eclipse.org/xtend/documentation/204_activeannotations.html
http://dx.doi.org/10.5381/jot.2019.18.3.a2

1
2
3
4
5
6
7
8
9

Efficient ATL Incremental Transformations - 9

memmremmsssensennen AzBaﬂ (_ - _\‘ @ATOLGen
@AOFAcCessors .= references-{ A2B.xtend
A.xtend (""E @
E Y
@AOFAccessors ']
' Xtend Compiler AOF
J—— B.xtend - - A
/Q uses
P read by -------» ATOLGenProcessor - » A2B.java
generate

Figure 3 — Overview of the ATOL compilation process

clude the path to an ATL transformation file A2B.at1 like the one of Listing 4,
and a list of the metamodels used in the transformation.

e Third, it then proceeds to parse this ATL file, and generate the Java code
corresponding to the translation of the ATL rules, and helpers, resulting in a
file A2B. java like the one of Listing 5.

The second argument to the @ATOLGen annotation is the list of metamodels (see
lines 2-3 of Listing 3). Each metamodel argument has a name, which must be the
same as in the ATL file, and an implementation (impl) of a metamodel representation
class, which must follow the scheme presented in Section 5.2. The ATOL compiler
generates immutable tuple classes for the source and target patterns of each rule (lines
2-9 of Listing 5). These tuple classes are used to package source and target elements
so that they can be stored in a hash map implementing the transformation trace.
Each unique lazy rule is also translated into a method (see lines 10-11 of Listing 5)
that can be called from external Java code. ATL helpers like the one at lines 9-10
of Listing 4 are transformed into a method computing the helper (see lines 13-15
of Listing 5), as well as a navigation method (see lines 16-18 of Listing 5). This
is similar to how properties are represented in the metamodel representation class.
Finally, users can also write helpers in Xtend (e.g., see lines 6-8 of Listing 3), which
the Xtend compiler translates into Java code (e.g., see lines 19-21 of Listing 5). This
makes it possible to call any Java code from the ATL transformation.

@ATOLGen(transformation="A2B.at1" , metamodels=#]
@Metamodel(name="A", impl=A),
@Metamodel(name="B", impl=B)

)

class A2B {

String _h2(CA self) {
// L]
}
¥

Listing 3 — Example ATOL declaration in Xtend for the transformation from Listing 4

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

QOO0 U WN -

J—

© 00N U kR WN -

10 - T. Le Calvar et al.

module A2B;
create OUT : B from IN : A;

unique lazy rule CA2CB {
from s : AICA
tot: BICB

}

helper context A!CA def: hl : Real =
- [...]

Listing 4 — Example ATOL transformation

class A2B {

static class SourceTupleCA2CB {
final CA s;
/7 [...]

static class TargetTupleCA2CB {
final CB t;
/7 [...]

}

TargetTupleCA2CB CA2CB(CA s) {
// [...]

}

/7 [...]

Double _h1(CA self) {
// [...] with caching

%Box<Double> h1(IBox<CA> self) {
// [...]1 with caching

}

String _h2(CA self) {
/7 [...]

}

}

Listing 5 — Example Java code generated from the transformation in Listing 4, and corre-
sponding declaration in Listing 3

6 Evaluation on Case Studies

The ATOL compiler presented in the previous section makes it possible to evaluate
our approach on the case studies mentioned in Section 2. Section 6.1 and Section 6.2
respectively present the results of the TTC 2018 live contest benchmark, and the
Viatra CPS to Deployment benchmark. Section 6.3 gives an example of using ATL
to define derived properties.

6.1 TTC2018 Social Network Queries

The case study, presented in [Hinl8], defines a social network metamodel along with
two queries Q1 and Q2. The corresponding benchmark code is available on GitHub®.
We focus here on the first query: Q1. Listing 6 gives the code of our ATL implemen-
tation of this query. Note that during the TTC 2018 live contest we submitted an
Xtend implementation using AOF [BJLCT18], with O(n) propagation time complex-
ity, which we later optimized to O(log(n)). The incremental ATL solution presented
here was created later from that optimized solution, once the ATOL compiler sup-

Shttps://github.com/TransformationToolContest/ttc2018liveContest

Journal of Object Technology, vol. 18, no. 3, 2019

https://github.com/TransformationToolContest/ttc2018liveContest
http://dx.doi.org/10.5381/jot.2019.18.3.a2

Q0O Uk WN -

Efficient ATL Incremental Transformations - 11

ported the necessary features. The performance results were presented in [BJLCT18],
and they show that the incremental ATL solution is as efficient as the Xtend-based
one. This is not surprising considering that both use the same AOF back-end, but it
still shows that the compilation from ATL code does not impact performance signifi-
cantly. More recent results can be obtained from a specific GitHub repository®.

-- @path SN=/socialmedia/social_network.ecore
library QI;
helper context SN!SocialNetworkRoot def: topPosts : Collection(String) =
self.posts—>sortedBy (e |
e.timestamp
)—>sortedBy(e |
e.score
)—>subSequence(1, 3)—>collect(e | e.id);

helper context SN!Post def : score : Integer =
let allComments:Collection(SN!Comment)=self.allContents(SN!Comment) in
10*allComments—>size() +
allComments— >collect(e|e.liked By —>size()) —>sum();

Listing 6 — ATL implementation of query Q1 from the TTC2018 live contest [Hin18§]

There are two main differences between the code of Listing 6, and the original
ATL implementation we submitted during the live contest (see [BJLCT18, Listing
1]). First, ATOL does not support the rarely used ATL query syntax yet, only
modules and libraries. We therefore used a library, and simply call the compiled
topPosts helper from Java code. Second, the set of all comments was computed with
a recursive helper in our original ATL solution, which was inefficient. We changed
it into a call to allContents, an operation that retrieves all elements of a given
type contained in a given element. This is basically equivalent to calling EMF’s
eAllContents operation followed by a select filtering by type, but incremental, and
optimized for performance.

6.2 Viatra CPS to Deployment Transformation

This case study has already been used to evaluate AOF [JB16], showing that it ba-
sically scaled as well as Viatra. However, the transformation was written by hand
in Xtend. We have now implemented this case study in ATL, and used the ATOL
compiler to execute it with AOF as backend. The source code of this implementa-
tion is available on GitHub” with full benchmark execution results also available on
GitHub®. Note that apart from the reference batch Viatra implementation, we only
executed the incremental solutions integrated in the benchmark. Figure 4a shows
execution time of the initial transformation of the publish-subscribe scenario”. None
of the evaluated solution is parallelized, but all can benefit from the parallel garbage
collector provided by the Java virtual machine. The Java heap size was forced for
all executions to be 130 GB. Manually written AOF transformation used from Xtend
(INCR_AOF), and AOF transformation generated from ATL code (INCR_ATL) have a
slight advantage over incremental Viatra implementations (i.e., the other implemen-
tations starting with INCR.), but basically scale similarly. The incremental Viatra

Shttps://github.com/TheoLeCalvar/ttc2018liveContest/

"https://github.com/TheoLeCalvar/viatra-cps-benchmark

8https://theolecalvar.github.io/viatra-benchmark-results/

9Executed on a machine with two Intel® Xeon® X5670 - 2.93GHz 6-core 12MB CPUs, and
twelve 16 GB PC3-8500 (DDR3-1066Mhz) Registered CAS-7 of RAM using OpenJDK 64-bit version
1.8.0-181.

Journal of Object Technology, vol. 18, no. 3, 2019

https://github.com/TheoLeCalvar/ttc2018liveContest/
https://github.com/TheoLeCalvar/viatra-cps-benchmark
https://theolecalvar.github.io/viatra-benchmark-results/
http://dx.doi.org/10.5381/jot.2019.18.3.a2

==

HO OO U kR WN -

12 . T. Le Calvar et al.

implementations timed out before producing solutions at scale 16384, which may be
due to their slightly higher memory demand triggering too many garbage collections.
Figure 4b shows propagation time for the same scenario. Performance of the AOF-
based implementations fall between the incremental Viatra implementations, and do
not achieve the same performance as the best ones. However, the trends seem similar.
The ATL implementation is slower than the AOF/Xtend one, which is probably due
to an overhead introduced by compilation that we have not been able to track yet.
As discussed in [JB16], specific non-OCL operations were required for optimization
purpose like an incremental implementation of groupBy.

6.3 Derived Properties

In ATL, values are assigned to properties via bindings, which are written using a
right to left arrow with a property name on the left, and an OCL expression on
the right. In the standard execution mode of ATL, the property must belong to a
target model element, whereas the expression must be computed from source model
elements only. However, with ATL’s refining execution mode, the target and source
models may conceptually be the same model, and actually are with the in place
execution strategy, as discussed in Section 4.2. It is therefore possible to use the
refining mode in order to compute a property from other parts of the model, as long
as there are no cyclic dependencies. Listing 7 gives an example transformation that
refines a model conforming to metamodel MM (line 2) by specifying how property
derivedProperty of metaclass Metaclass is computed using someExpression. This
is more verbose than using OCL for this purpose, but has the advantage of having the
precise semantics given by active operations, whereas OCL does not state how and
when derived properti should be computed. If using EMF, the derived property must
not be declared as derived so that the refining transformation can bind an incremental
value to it. In addition to being automatically updated, the derived property will also
generate notifications when it is modified, which is especially useful if it is used in a
downstream transformation, or in a user interface.

module DerivedProperties;
create OUT : MM refining IN : MM;

rule Task {
from
s : MM!Metaclass
to
t : MM!Metaclass (
derivedProperty <— someExpression
)

}

Listing 7 — ATL implementation of a derived property

7 Related Work

The work presented in this paper builds upon the results presented in [JB16], which al-
ready compared the active operations approach to other approaches. Viatra [VBH'16]
achieves performance similar to our approach, while having a more robust imple-
mentation. However, although a subset of OCL can be translated into graph pat-
terns [Berl4], Viatra does not support the kind of OCL-based transformations that
can be written in ATL. Moreover, active operations can preserve the order of elements

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

Time [ms]

Time [ms]

Efficient ATL Incremental Transformations

13

Init M2M
1339520.11 \L
317221.12
75123.35 =
17790.49
4213.09
997.73
236.28
55.96 T
1 2 4 16 32 64 128 256 512 1024 2048 4096 8192 16384
Size
<~ BATCH_VIATRA_QUERY_RETE-TEMPLATE < INCR_VIATRA_EXPLICIT_TRACEABILITY-TEMPLATE
Tool #£: INCR_AOF-TEMPLATE 7 INCR_VIATRA_QUERY_RESULT_TRACEABILITY-TEMPLATE
-+ INCR_ATL-TEMPLATE £4 INCR_VIATRA_TRANSFORMATION-TEMPLATE
¢ INCR_VIATRA_AGGREGATED-TEMPLATE
(a) Transformation execution time
Modify M2M
406289.83
94342.3
21906.7 /
5086.83 -
1181.19 4 =
274.28 -/‘§-§| /7/ /Egj
63.69 —
1479 -
T I \ \ \ \ \
1 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Size
BATCH_VIATRA_QUERY_RETE-TEMPLATE <> INCR_VIATRA_EXPLICIT_TRACEABILITY-TEMPLATE
INCR_AOF-TEMPLATE “# INCR_VIATRA_QUERY_RESULT_TRACEABILITY-TEMPLATE

Tool INCR_ATL-TEMPLATE #4 INCR_VIATRA_TRANSFORMATION-TEMPLATE

INCR_VIATRA_AGGREGATED-TEMPLATE

X+

(b) Change propagation time

Figure 4 — Viatra CPS to Deployment benchmark results

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

14 . T.Le Calvar et al.

in collections, whereas Viatra cannot. The micromapping approach to QVT execu-
tion has made some progress [Will7], but has only been shown to work on simpler
benchmarks.

YAMTL [Borl8a] is a recently developed transformation language defined as an
Xtend internal DSL. This is similar to the approach we used in our previous work [JB16]
to write incremental transformations using AOF, while benefiting from a user friendly
syntax that Xtend makes possible (notably via extension methods, and operator over-
loading). A batch YAMTL implementation of the CPS to Deployment transformation
was integrated into the Viatra benchmark, but the incremental version has not been
integrated yet as of writing this paper, which is why it does not appear in Figures 4a
and 4b. The results obtained by YAMTL on the TTC 2018 live contest [Bor18b| are
similar to the one we obtained [BJLCT18].

Our approach to make ATL incremental is not the first, and there are several other
proposed ATL runtimes that support incremental transformations. [JT10, MTD17]
present incremental ATL engines. Both keep track of which properties of source
models are used in bindings in order to be able to recompute them whenever an
update occurs on the source. Both support only a limited subset of ATL, namely the
declarative part of ATL. The exact subset of ATL that is supported by each approach
is not exactly the same. For instance, [MTD17] supports lazy evaluation of non-
lazy rules, whereas both [JT10] and our approach do not support it. Unlike [MTD17,
JT10], our approach supports incremental refining in-place transformation, which can
be used to compute derived properties.

Interested readers can refer to [KBCT18, KEK'13] for a more comprehensive
survey of existing incremental transformation techniques.

8 Conclusion

This paper has presented our approach to achieve efficient incremental ATL trans-
formation execution. We show that active operations, when used as a back-end for
ATL, make it possible to achieve performance similar to state of the art Viatra, but
with an OCL-based language. The ATOL compiler that we developed to evaluate
our approach needs more work in order to support a larger subset of ATL, but it can
already be useful. We deliberatly limited the support of ATL to what was necessary
to write the transformations showcased in the article and prove that active operations
could be used to execute ATL transformations.

Section 4.2 mentioned propagation cycles in incremental transformations. Active
operations cannot be used in such cyclic transformations. We partly overcame this
limitation in [LCCJS19], in which we presented an approach that leverages the exten-
sibility of the ATOL compiler so as to support mixing classic ATL with constraints
declarations. These constraints can be used instead of bindings when cyclic relations
are required. We plan to work on furthering the integration of active operations and
constraints, and to use ATOL for this purpose.

References

[BBBJ10] Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and Jean-Marc
Jézéquel. Active Operations on Collections. In Model Driven En-
gineering Languages and Systems - 13th International Conference,

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a2

[Ber14]

[BJLCT18]

[Bor18a]

[Bor18b]

[Hec06]

[Hin18]

[Inc]

[ISRV14]

[JB16]

[JT10]

Efficient ATL Incremental Transformations - 15

MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part
I, volume 6394 of Lecture Notes in Computer Science, pages 91-105.
Springer, 2010.

Gébor Bergmann. Translating OCL to Graph Patterns, pages 670-686.
Springer International Publishing, Cham, 2014.

Valentin Besnard, Frédéric Jouault, Théo Le Calvar, and Massimo
Tisi. The TTC 2018 Social Media Case, by ATL and AOF. In Pro-
ceedings of the 11th Transformation Tool Contest, a part of the Soft-
ware Technologies: Applications and Foundations (STAF 2018) fed-
eration of conferences, volume 2310 of CEUR Workshop Proceedings,
pages 79-83, Toulouse, France, June 2018. CEUR-WS.org.

Artur Boronat. Expressive and efficient model transformation with an
internal dsl of xtend. In Proceedings of the 21th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems, MODELS ’18, pages 78-88, New York, NY, USA, 2018. ACM.

Artur Boronat. YAMTL Solution to the TTC 2018 Social Media Case.
In Antonio Garcia-Dominguez, Georg Hinkel, and Filip Krikava, ed-
itors, Proceedings of the 11th Transformation Tool Contest, a part

of the Software Technologies: Applications and Foundations (STAF
2018) federation of conferences, volume 2310 of CEUR Workshop Pro-
ceedings, pages 65—78. CEUR-WS.org, June 2018.

Reiko Heckel. Graph transformation in a nutshell. FElectronic notes in
theoretical computer science, 148(1):187-198, 2006.

Georg Hinkel. The TTC 2018 Social Media Case. In Antonio Garcia-
Dominguez, Georg Hinkel, and Filip Krikava, editors, Proceedings of
the 11th Transformation Tool Contest, a part of the Software Tech-
nologies: Applications and Foundations (STAF 2018) federation of
conferences, volume 2310 of CEUR Workshop Proceedings, pages 39—
43. CEUR-~-WS.org, June 2018.

IncQuery Labs Ltd. Performance benchmark using the via-
tra cps demonstrator. URL: https://github.com/viatra/
viatra-cps-benchmark.

Benedek Izs6, Gabor Szarnyas, Istvan Rath, and Déniel Varré.
MONDO-SAM: A Framework to Systematically Assess MDE Scal-
ability. In BigMDE 2014 2nd Workshop on Scalable Model Driven
Engineering, page 40. ACM, ACM, 2014.

Frédéric Jouault and Olivier Beaudoux. Efficient OCL-based Incre-
mental Transformations. In Proceedings of the 16th International
Workshop in OCL and Textual Modeling, volume 1756 of CEUR
Workshop Proceedings, pages 121-136, Saint-Malo, France, October
2016.

Frédéric Jouault and Massimo Tisi. Towards incremental execution of
atl transformations. In Laurence Tratt and Martin Gogolla, editors,
Theory and Practice of Model Transformations, pages 123-137, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

Journal of Object Technology, vol. 18, no. 3, 2019

https://github.com/viatra/viatra-cps-benchmark
https://github.com/viatra/viatra-cps-benchmark
http://dx.doi.org/10.5381/jot.2019.18.3.a2

16 - T.Le Calvar et al.

[KBC18]

[KEK*13]

[LCCJIS1Y]

[MTD17]

[Obj14]

[TMJC11]

[VBH™16]

[Wil17]

[WVDSD10]

Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen
Dingel, and Daniel Varré. Survey and classification of model trans-
formation tools. Software € Systems Modeling, Mar 2018. URL:
https://doi.org/10.1007/s10270-018-0665-6, doi:10.1007/
s10270-018-0665-6.

Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kapsammer, Philip
Langer, Werner Retschitzegger, Johannes Schoenboeck, Wieland
Schwinger, and Manuel Wimmer. A survey on incremental model
transformation approaches. In ME 2013-Models and Evolution Work-
shop Proceedings, page 4, 2013.

Théo Le Calvar, Fabien Chhel, Frédéric Jouault, and Frédéric
Saubion. Toward a Declarative Language to Generate Explorable Sets
of Models. In 34th ACM/SIGAPP Symposium on Applied Computing
(SAC ’19), Limassol, Cyprus, April 2019.

Salvador Martinez, Massimo Tisi, and Rémi Douence. Reactive Model
Transformation with ATL. Science of Computer Programming, 136:1 —
16, March 2017. URL: https://hal.inria.fr/hal-01627991, doi:
10.1016/j.scico.2016.08.006.

Object Management Group (OMG). Object Constraint Language
(OCL), v2.4. http://www.omg.org/spec/0CL/2.4/, February 2014.

Massimo Tisi, Salvador Martinez, Frédéric Jouault, and Jordi Cabot.
Refining Models with Rule-based Model Transformations. Research
Report RR-7582, INRIA, March 2011.

Daéniel Varr6, Gébor Bergmann, Abel Hegediis, Akos Horvéth, Istvan
Réth, and Zoltan Ujhelyi. Road to a reactive and incremental model
transformation platform: three generations of the viatra framework.
Software & Systems Modeling, 15(3):609-629, 2016.

Edward D. Willink. The micromapping model of computation; the
foundation for optimized execution of eclipse qvtc/qvtr/umlx. In Es-
ther Guerra and Mark van den Brand, editors, Theory and Practice
of Model Transformation, pages 51-65, Cham, 2017. Springer Interna-
tional Publishing.

Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder.
Module superimposition: a composition technique for rule-based
model transformation languages. Software € Systems Modeling,
9(3):285-309, Jun 2010.

About the authors

Théo Le Calvar is a PhD student at ESEO and the University of Angers. His re-
search focuses on the interactions between Constraint Programming (CP) and Model
Driven Engineering (MDE). He received his Master’s degree in 2016 from the Univer-
sity of Angers. His studies focused on CP and optimization. To conclude his Master’s
Degree he spent 6 months as an intern at the National Institute of Informatics in
Tokyo. During this internship he studied multiobjective constraint optimization in
distributed environments. Contact him at theo.lecalvar@univ-angers.fr.

Journal of Object Technology, vol. 18, no. 3, 2019

https://doi.org/10.1007/s10270-018-0665-6
http://dx.doi.org/10.1007/s10270-018-0665-6
http://dx.doi.org/10.1007/s10270-018-0665-6
https://hal.inria.fr/hal-01627991
http://dx.doi.org/10.1016/j.scico.2016.08.006
http://dx.doi.org/10.1016/j.scico.2016.08.006
http://www.omg.org/spec/OCL/2.4/
mailto:theo.lecalvar@univ-angers.fr
http://dx.doi.org/10.5381/jot.2019.18.3.a2

Efficient ATL Incremental Transformations - 17

Frédéric Jouault is a research associate at ESEO, Angers, France. He received his
PhD from the University of Nantes before doing a postdoc at the University of Al-
abama at Birmingham. His research interests involve model engineering, transforma-
tion, synchronization, and execution, as well as their application to Domain-Specific
Languages (DSLs) and model-based reverse engineering. Frédéric created ATL, a DSL
for model-to-model transformation. He is now co-leading the development of ATL
(language and toolkit) on Eclipse.org. Contact him at frederic.jouault@eseo.fr.

Fabien Chhel is an associate professor at ESEQO. He received his PhD from the
University of Angers in 2014. His previous fields of research focused on combinatorial
optimisation and metaheuristic for analysing biological data. Currently, he works to
improve model transformation engines for the model-driven engineering community
with the help of the constraint satisfaction problem (CSP) framework. Contact him
at fabien.chhel@eseo.fr.

Mickael Clavreul is an associate professor at ESEO, Angers, France. He received
his PhD from the University of Rennes 1 in 2011. His research interests involve
model engineering, model transformation, model composition, model synchronization
and language engineering applied to Domain-Specific Languages (DSLs) and legacy
systems. Mickael invented the ModMap language and the associated tool support
to specify correspondences relations and alignment rules between both homogeneous
and heterogeneous languages. Contact him at mickael.clavreul@eseo.fr.

Journal of Object Technology, vol. 18, no. 3, 2019

mailto:frederic.jouault@eseo.fr
mailto:fabien.chhel@eseo.fr
mailto:mickael.clavreul@eseo.fr
http://dx.doi.org/10.5381/jot.2019.18.3.a2

	Introduction
	Motivation
	Incrementality with Active Operations
	Overview
	Example
	Lifting Operations
	Current Implementation: AOF

	Translation from ATL to Active Operations
	OCL Expressions
	Refining Mode

	Proof of Concept Compiler: ATOL
	Objectives and Trade-offs
	Metamodel Representation
	Compilation Process

	Evaluation on Case Studies
	TTC2018 Social Network Queries
	Viatra CPS to Deployment Transformation
	Derived Properties

	Related Work
	Conclusion
	References
	About the authors

