
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

SimSG: Rule-based Simulation using
Stochastic Graph Transformation

Sebastian Ehmesa Lars Fritschea Andy Schürra

a. Real-Time Systems Lab, Technische Universität Darmstadt

Abstract Stochastic models can be found in various domains. For example,
biochemical processes such as molecular interactions or the dynamics of
wireless network topologies, where changes occur with certain probabil-
ities. Having the ability to simulate scenarios in these domains can be
crucial when real-life observations of certain processes are infeasible, e.g.,
protein-protein interactions in biochemistry, or expensive, e.g., building
large wireless networks for research purposes. Stochastic graph transfor-
mation systems provide the means to describe the structure and simulate
the behavior of such probability-driven environments in an adequate way,
by modelling the state transitions using graph transformation rules, whose
application depends on the current state and their application probabili-
ties. To the best of our knowledge, there is currently no general-purpose
simulation tool available anymore that performs rule-based simulations
using stochastic graph transformation. Therefore, we developed SimSG a
modular stochastic simulation tool that addresses the needs of a wide range
of application domains - in contrast to most specialized simulation tools
that are limited to one domain only. To facilitate the versatility of the
tool, SimSG can be configured to employ different general-purpose tools
for incremental graph pattern matching (currently, Democles and Viatra).
We evaluate SimSG based on two use cases: First, using an example of
the biochemistry domain, we conduct a comparative evaluation against
the domain-specific tool KaSim. Second, we underpin the general-purpose
applicability of SimSG by analyzing the simulation of a wireless sensor
network scenario.

Keywords Stochastic Graph Transformation, Model-driven Development,
Rule-based Simulation

1 Introduction

When we want to model processes, such as molecular reactions in biochemistry or
the topology dynamics of a wireless sensor network, we are often confronted with
complex and dynamic structures as well as structural changes that are stochastic in

Sebastian Ehmes, Lars Fritsche, Andy Schürr. SimSG: Rule-based Simulation using Stochastic Graph
Transformation. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object
Technology, vol. 18, no. 3, 2019, pages 1:1–17. doi:10.5381/jot.2019.18.3.a1

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a1
http://dx.doi.org/10.5381/jot.2019.18.3.a1
http://dx.doi.org/10.5381/jot.2019.18.3.a1

2 · Sebastian Ehmes et al.

nature. Graphs are a powerful formalism to describe such structures, while graph
transformations are a natural means to describe modifications of these structures
according to a set of rules. For example, in biochemistry nodes represent molecules
and edges describe bonds between molecules. In this case, graph transformation
rules describe molecular binding or decay processes. Another scenario that can be
modeled with graphs is that of wireless computer networks, where communication
link reconfigurations or failures can be described by graph transformations as well.
Both scenarios have in common that they are driven by stochastic model changes,
which occur with certain probabilities. For example, bonds between two molecules
or wireless connections between two devices can break with certain probabilities.
Such a behavior can be described by stochastic graph transformations [HLM04].
Stochastic graph transformation approaches annotate graph transformation rules with
certain probabilities that determine whether a rule is applied or not. By extending
graph transformations, it is possible to model structures of the previously mentioned
scenarios and to capture their stochastic properties as well. Since stochastic graph
transformations are able to model stochastic environments, this approach naturally
lends itself to be used as an approach for the model-driven development of rule-based
stochastic simulations. An advantage of this approach to simulations is the fact that
it is possible to model processes as a set of rules, abstracting from the complexities of
a specific problem domain (e.g. differential equations in biochemistry).
There are many domain specific tools that implement simulations based on stochastic
graph transformations (e.g. KaSim [BFKF19] and RuleMonkey [CMG+10]) but, to
the best of our knowledge, there is currently no general-purpose tool available (GraSS
[THR10] was discontinued). To fill this gap we developed a new tool called SimSG,
which performs rule-based simulations using stochastic graph transformations in order
to describe stochastic processes. The tool offers well-defined interfaces to a number
of exchangeable core components such as incremental graph pattern matchers like
Viatra [VBH+16] and Democles [VD13]. The industrial-strength tool Viatra offers,
e.g., better scalability for large graph data simulations, whereas the research prototype
Democles is more appropriate for experiments due to its light weight implementation.
SimSG is designed to be a general-purpose tool and, therefore, allows for the simulation
of scenarios from very different problem domains. Our simulation tool can be applied
to all scenarios where structures can be described by graphs and changes in those
structures can be expressed by means of stochastic graph transformations.
This concept of (stochastic) graph transformations is explained in Section 2. In
Section 3 we present our tool and explain the modular architecture as well as the
implementation of a rule-based stochastic simulation. We evaluate the tool in Section 4
by using examples from biochemistry and the network domain. In Section 5 we discuss
related work. Finally, in Section 6 we sketch further prospective application domains
and suggest possible future extensions of the tool.

2 Background

2.1 Graph Transformation

Graph transformations (GT) [EEPT06] provide the means to express model transfor-
mation in a declarative and rule-based manner. Models and metamodels are, therefore,
considered as graphs G = (V,E) with V being the set of vertices representing model
entities and E being the set of directed edges representing relations between entities.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 3

r1: Binding

A s

u

Bt A s

u

Bt

(a)

r2: Modification

A s
u

Bt A s
p

Bt

(b)

r3: Unbinding

A s
p

BtA s
p

Bt

(c)

Figure 1 – Running Example - Phosphorylation

A graph transformation system GTS = (G,R) consists of a graph G and a set of
graph transformation rules R.

r ∈ R : G
r@m−−−→ G′ (1)

A rule r as shown in Eq. (1) describes a transformation from a graph G to a graph
G′. Additionally, a rule contains a left-hand side (LHS) and a right-hand side (RHS).
The LHS defines a precondition, which has to be present in G before the rule can
be applied, while the RHS defines the postcondition that has to hold in G′ after the
precondition was met. A subgraph in G that matches the LHS of the rule is called
a match, with m(G, r) representing the set of all matches to the rule r. The r@m
notation in Eq. (1) indicates that r is applied to a match of this set. The process of
finding a match is referred to as pattern matching.

Pattern matching approaches can be sorted roughly into two categories: batch
and incremental pattern matching approaches. Batch pattern matcher usually find
matches by solving a constraint satisfaction problem [LV02] or through local search
algorithms using search plans [Zün96]. When a graph transformation engine eventually
modifies the model graph according to a rule, all previously found matches are discarded
and the matching process is restarted from scratch. Incremental pattern matcher try
to avoid discarding and regathering matches in the event of a rule application. Instead,
changes to the model are registered and the set of matches is updated incrementally,
according to those changes. A well-known approach to incremental pattern matching
is the Rete algorithm developed by Forgy [LF82]. Prominent tools implementing Rete
are Viatra and Democles.

Phosphorylation serves as a running example from biochemistry to motivate the
use of graph transformations and later stochastic graph transformations. This process
is a recurring mechanism in biochemistry, especially in biochemical signaling pathways.
A molecule activated through phosphorylation can interact with other molecules
that require a phosphoryl group for binding. Such an activated molecule may also
spontaneously deactivate itself again, i.e., lose its phosphorylation. This mechanism
serves as a regulator for metabolic processes in most life forms, where phosphorylation
acts like a switch. The rule in Fig. 1(a) is an example of a graph transformation rule,
using a domain-specific notation. Rule r1 models the first part of the phosphorylation
reaction. The LHS contains a molecule A with a site s where other molecules can bind
to. Site s is in an unphosphorylated state u, which means that no phosphoryl group is
attached to it yet. Additionally, the LHS describes a second molecule B with its own
site t. Consequently, when r1 is applied, the activating molecule B attaches its own

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

4 · Sebastian Ehmes et al.

a1: Molecule_A b1: Molecule_B

LHS: RHS:

u1: State_U

s t

s

t

++

++

:Molecule

s_u s_u

:Molecule

a1: Molecule_A b1: Molecule_B

u1: State_U

Figure 2 – GT Example: Binding

site t to the unphosphorylated site s of the left molecule A, as described by the right
side of r1. The second rule r2 describes molecule B phosphorylating A by attaching
a phosphoryl group to site s (see Fig. 1(b)). Rule r3 describes molecule B detaching
again, i.e., the bond between site s and t breaks and leaves behind a phosphorylated
molecule, as shown in Fig. 1(c).

Graph transformation rules are applied as follows, elements that appear on both
LHS and RHS are considered context and are not to be changed. Elements that
appear only on the LHS are to be deleted, while elements only appearing on the RHS
are created [BCW17]. However, this notion does not allow to specify the explicit
absence of unwanted nodes. For this purpose, negative application conditions (NACs)
can be used to specify the elements that must be absent from a subgraph in order
to fulfill the precondition of a rule. In short, the LHS specifies elements that must
exist in a matching subgraph, while NACs describe what must not be attached to a
matching subgraph, such that a rule may be applied to it. Fig. 2 shows a graph-based
representation of rule r1 to illustrate the usage of NACs. The LHS of a rule is a
connected graph consisting of three vertices, two representing a molecule of type A
and type B, respectively. The third vertex describes an unphosphorylated state u. The
unphosphorylated state of site s is expressed via the labeled edge s_u pointing to state
u. Molecular sites are represented by labeled edges s and t, which in this case must
not yet exist, i.e., the molecules must not be connected to any other molecules. This
is depicted by the crossed-out reference arrows in Fig. 2 and is an example of a NAC.
Consequently, matches are discarded if labeled edges s and t exist and are already
connected to some other molecule. When a match to this LHS is found, the rule is
applied to the subgraph of the model, which is altered to comply with the RHS.

2.2 Stochastic Graph Transformation

The intention of our tool is to simulate stochastic processes such as binding reactions
in biochemistry or the dynamics of wireless sensor networks. Both scenarios have
in common that changes occur with a certain probability, which has to be modeled
appropriately. A system modeling the occurrence of such stochastic processes can be
described by continuous-time Markov Chains (CTMCs) [Nor97]. A CMTC = (S,Q)
consists of a countable set of states S and a transition matrix Q. Entries in the
Q-matrix describe whether a transition from a state to another state exists and with
which probability it might occur. Typically, the transition delay, i.e., the time to wait
for a certain state transition to happen, is distributed exponentially. The probability
is being determined by the corresponding entry in Q. However, it is also possible
to use other probability distributions besides the exponential distribution. This is
useful whenever a stochastic model is required to model waiting times, i.e., transitions
becoming more likely the longer they have to wait. When transition delays are

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 5

not described by the memoryless exponential distribution, we speak of semi-Markov
processes [KL07].
When we think about graph transformations in the context of CTMCs, we can describe
a state by a graph G and the set of states by a set of graphs G. Hence, the transition
from a state G to G′ corresponds to the application of rule r : G

r@m−−−→ G′ with
G,G′ ∈ G. Yet, a GTS still does not incorporate the stochastic property of state
transitions in CTMCs, which leads to the idea of stochastic graph transformation
systems (SGTS), introduced by Heckel et al. [HLM04]. A SGTS = (GTS, ρ) consists
of a graph transformation system, where the graph transformation rules are associated
with an application rate ρ(r) ≥ 0 with r ∈ R. These rates model P (r,G), the
probability with which a rule r is applied to a graph G, when a single match of its
LHS occurs. Furthermore, P (r,G) determines the transition delay, i.e., the time to
wait until a transition that is described by a rule occurs. Given that a transition from
G to G′ corresponds to a rule application, rates ρ(r) correspond to entries in Q, which
again model state transition probabilities. In [HLM04], Heckel et al. show that such a
stochastic graph transformation system can be translated into a CTMC.
To build a rule-based simulation of stochastic processes using SGTSs, two practical
questions have to be answered. First, how do we pick a rule with a certain application
rate, given a state represented by a graph G and second, how do we calculate the
transition delay?
There are different methods to solve these problems. A well-known approach from
biochemistry that is used in various simulation tools is Gillespie’s algorithm [TG77].
Another approach that was used for the simulation of peer-to-peer networks is the
generalised semi-Markov scheme [KL07]. Both works describe how to determine the
next state transition as well as the transition delay in their respective domains.

Gillespie’s Algorithm implements the idea of a CTMC using exponentially dis-
tributed transition delays, which can be seen in Eq. (2). Given a system state modeled
by a graph G, P (τ, r) describes the joint probability for the next occurring state tran-
sition described by rule r : G→ G′, happening in the time interval [t, t+ τ]. Gillespie
shows that P (τ, r) = P (τ)P (r), with P (τ) = a0e

−a0τ representing the probability for
any rule application occurring within a time step τ and P (r) = ar / a0 describing
the probability that the next rule is r. The parameter ar is the rule activity and
corresponds to the probability of a rule r being applied, given a certain graph G.
Parameter a0 is the system activity, it represents the current state of the system and
corresponds to the overall probability of a rule application within the next time step
τ .

P (τ, r) =

{
are

(−a0τ) if : 0 ≤ τ <∞ and r ∈ R
0 otherwise

(2)

Consequently, each step of a simulation implementing Gillespie’s algorithm determines
the next rule and the corresponding time interval τ by generating the random pair
(τ, r), w.r.t. Eq. (2).
To determine τ and r, each simulation step begins by calculating the rule activity ar
for each rule r ∈ R according to Eq. (3), given the current graph G.

ar = |m(g, r)| ρ(r) , r ∈ R (3)

Therefore, the activity of a certain rule r is the product of the number of matches to
the LHS of r and the annotated rate ρ(r), mentioned in Section 2.2. Graph G1 in
Fig. 3 represents a system state that contains six molecules. G1 contains two matches

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

6 · Sebastian Ehmes et al.

Figure 3 – Example Graph

to the LHS of rule r2, one for rule r3 and none for r1. Assuming each rule is annotated
with a probability of 0, 2, the activities would amount to a2 = 0, 4, a3 = 0, 2 and
a1 = 0.
The next step is to determine the system activity a0 according to Eq. (4), representing
the sum of all rule activities. In the example the system activity amounts to a0 = 0, 6.

a0 =
∑
R

ar =
∑
R

|m(g, r)| ρ(r) (4)

Given a0 and a random number x1 ∈ [0, 1] drawn from the uniform distribution U(0, 1),
the next time step τ with the corresponding probability P (τ) results from Eq. (5).
Consequently, the time interval τ decreases if the system activity a0 increases.

τ =

(
1

a0

)
ln

(
1

x1

)
(5)

Usually more than one rule may be applicable to a certain graph G. Therefore, a
specific rule r ∈ R with the probability P (r) has to be selected from a set of competing
rules. Given a0 and a random number x2 ∈ [0, 1] drawn from the uniform distribution
U(0, 1), the rule r is picked, which satisfies Eq. (6).

r−1∑
i=1

ai < a0 x2 ≤
r∑
i=1

ai (6)

In essence, the rule with the highest activity has the highest probability to be picked
from the set of competing rules. Regarding the example, rule r2 has the probability
P (r2) =

2
3 , r3 has P (r3) = 1

3 and r1 has 0 probability of being picked. This makes r2
the most probable candidate to be picked as the next rule.
In this section we presented a compact explanation of Gillespie’s algorithm. Please
refer to Gillespies original work [TG77] for the full derivations of Eq. (5) and Eq. (6).

Generalised semi-Markov scheme (GSMS) devised by Kosiuczenko et al. [KL07]
represents a different approach for determining transitions and the corresponding
delay compared to Gillespie’s algorithm. A GSMS = (G, E) has a set of graphs
G ∈ G representing states and a set of events e ∈ E. An event e(m, r) contains a
rule-match pair, with m ∈ m(G, r) and r ∈ R. A GSMS tracks individual matches
to preconditions of rules as distinct events, where each event is annotated with its
own continuous distribution function. In each subsequent graph G, newly discovered
matches create new events, while matches that became invalid due to a rule application
lead to the deletion of the corresponding event. Each event has its own execution time,

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 7

where the contained rule r is applied to its assigned match m ∈ m(G, r), leading to
a transition described by r : G

r@m−−−→ G′. The execution time is determined by the
current state described by a graph G and the annotated continuous distribution. When
the exponential distribution is used, the execution time can be determined similar to τ
in Eq. (5). A rule is chosen by picking the event that has the smallest time to execute
left. The advantage of the GSMS approach is the fact that it enables the usage of
other probability distribution functions and by tracking individual events allows for
distributions to have a memory. In contrast to Gillespie’s algorithm, where the next
rule and the transition delay is determined by solely relying on match counts and the
exponential distribution. On the downside, the GSMS approach requires tracking each
match to every rule’s LHS, which can be more costly when compared to just counting
match occurrences.

3 Implementation

This paper presents a new tool for rule-based simulations of stochastic processes, such
as biochemical reactions or wireless sensor network topology reconfigurations. SimSG1

is composed of several modular components. As depicted in Fig. 4, the architecture
of the tool can be divided into three major aspects: Models, Configuration, and
Simulation.

Simulation Definition

Simulation Model

Configurator

Persistence

Simulation PMC

Graph Transformation

Pattern Matcher

Models Configuration Simulation

Set Pattern Matcher

Type

Update

Matches
Set Patterns

Translate Patterns

Set Rules

Configure

Simulation

Control rule

application

Request

Matches

Set Persistence

Type
Request Model

Instances

Rules, Entities,

Initial Conditions

Generate simulation model

SimSGLIBeX-GT DSL

EMFNeoEMF

VIATRA Democles

GT

IBeX-GT

Figure 4 – SimSG Modules

The Models section encompasses the simulation definition and the simulation model.
The simulation definition describes all occurring simulation entities and their initial
number according to a set of initial conditions. Additionally, it contains a set of
rules modeling the desired behaviour of the simulation and its contained entities.
Currently, a simulation definition can be created with the domain-specific language
(DSL) SimSGL, which was specifically created for this tool in order to describe the
simulation definition in a textual fashion.

rule r1 A(s{u}[free]), B(t[free]) −> A(s{u}[1]), B(t[1])

Listing 1 – Phosphorylation binding rule r1 Fig. 1(a) in SimSGL syntax

For example, the first step of the phosphorylation process described by rule r1 in
Fig. 1(a) can be expressed in SimSGL syntax as shown in Listing 1. On the left-hand
side of the arrow, r1 requires a pair of molecules, where one is of type A, one is of type
B and both are not connected (free) at sites s and t. Additionally, site s must be in

1SimSG eclipse plugin and example project: https://github.com/eMoflon/SimSG-Example

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

8 · Sebastian Ehmes et al.

an unphosphorylated state u. The outcome of a rule application is described on the
right-hand side of the arrow. Consequently, when r1 is applied both molecules will be
connected at sites s and t, since both share the common index 1. In the future we
plan to support other DSLs that describe graph transformations besides SimSGL.
A simulation model contains all simulation entities that have been created according
to initial conditions. These entities are contained within a model graph, on which
stochastic graph transformations are performed according to the rules specified in the
simulation definition. Currently, the EMF2 framework is used to implement these
graph structures. Since, EMF tends to work less well with increasing numbers of
entities in the model graph, the architecture was designed to be able to use other EMF
conform graph frameworks. For example, NeoEMF3, which is an EMF wrapper for
graph databases.

An important characteristic of our tool is to provide different configurations and
thus modularity. Parts of the Configuration aspect are: model persistence, i.e., saving
and loading of simulation models as well as simulation definitions and the ability
for the user to activate, deactivate or change modules of the simulation tool. The
configurator-module allows the user to set the implementation type of the model
graph, e.g. EMF and advises the persistence module to create or load a simulation
model according to a given simulation definition. Consequently, it provides the graph
transformation module with graph transformation rules and the pattern matcher
module with the corresponding patterns. Furthermore, the configurator enables the
user to choose between different pattern matching tools and in the future between
different graph transformation tools. Currently, the tool supports Viatra4 [VBH+16]
and Democles5 [VD13], which represent general purpose incremental pattern matcher.

Simulation as the third aspect of the tool’s architecture covers all modules and
functionality that form the functional core of the rule-based simulation. This includes:
pattern matching, stochastic model graph transformation through rule application,
checking for termination conditions and recording simulation statistics. The simulation
module is designed in such a way that it is agnostic to the used pattern matcher. The
pattern matching controller (PMC) serves as a layer of abstraction between SimSG
and graph pattern matching tools. The PMC translates patterns that were defined
in the simulation definition to the adequate representation of the configured pattern
matcher. This module is interchangeable as well, which makes it possible to customize
and adapt the pattern matching process to better suit the specific needs of a domain.

3.1 Simulation Approach

The focus was to provide a simple and modular architecture to support different
approaches, such as Gillespie’s algorithm and GSMS, or other algorithms that use
stochastic graph transformations. Fig. 5 shows the tool’s implementation of a rule-
based simulation driven by stochastic graph transformations.

A simulation begins with step 1 where the state of the model is updated. This
means that the pattern matching engine is ordered to update its internally stored

2EMF project page: https://www.eclipse.org/modeling/emf/
3NeoEMF project page: https://www.neoemf.com
4Viatra project page: https://www.eclipse.org/viatra/
5Democles Git repository and documentation: https://github.com/eMoflon/emoflon-ibex-democles

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 9

Update

Matches
~ terminate

Fetch Next

Event

Advance

Simulation Time

Check External

Constraints

Execute Event
<Algorithm Specific>

Update Events
<Algorithm Specific>

Update

Statistics

Check

Termination

Conditions
terminate

1 2 3 4

6

5

78

valid~ valid

Figure 5 – Simulation Loop

matches to patterns that are specified by the rules in the simulation definition model.
EMF conform frameworks ensure that a notification is automatically sent to the pat-
tern matcher, each time the model is changed by the application of a rule. Following
that, all registered changes that were applied to the model in the last iteration are
taken into account and all matches are incrementally updated.

In step 2, the updated matches are used to update a sorted queue of events. These
events contain a rule-match pair (see Section 2.2) and the time at which they will be
executed. The top of this queue is always the event that has the smallest amount of
time left to execute. Gillespie’s algorithm is the tool’s standard implementation for
this step. Since its transition delay time is calculated by a memoryless exponential
distribution function, it will always put exactly one event into the queue. In contrast,
an approach using GSMS (see Section 2.2) will create a new event for each new match
that was found, remove invalid matches from the queue and sort the queue by time to
execute.

Step 3 pops the next event from the queue, followed by step 4, which advances
the simulation time according to the execution time, stored within the current event.

In step 5 possible user defined external rule application constraints are checked
before the rule of rule-match pair, contained within the current event, is applied to its
corresponding match. The idea behind this intermediate step, is to give the user the
ability to define complex rule application conditions that go beyond the expressiveness
of graph patterns. For example, a user might want to simulate molecular binding
processes but prevent impossible bindings, which can be analyzed through geometric
constraints. Therefore, such a geometric constraint would check whether parts of
molecules that should be connected, according to some rule, will actually collide. In
this case the constraint would prevent the application of the rule and the simulation
would continue at step 7. If no external constraint is violated, the simulations continues
with the next step.

In step 6, the rule of the rule-match pair is applied to the match. Consequently,
a graph transformation according to the rule is performed, which leads to further
changes in the model graph.

Following that, in step 7, the simulation’s state is used to record simulation statistics.
For example, a pre-implemented statistic module tracks match counts to user defined

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

10 · Sebastian Ehmes et al.

patterns that are of particular interest to the user. These statistics are stored in
addition to the current simulation time and can be displayed as an xy-plot, once
the simulation has finished. Additionally, the user may implement any other custom
statistic modules, in order to track simulation data of interest.

In the final step of the loop, it is checked if one of the termination conditions defined in
the simulation definition model is satisfied. For this purpose, the simulation’s state is
checked whether a possible time or iteration limit has been reached. When this is not
the case, it is checked whether limits for match counts to certain patterns have been
defined and if the corresponding match counts surpass these limits. In addition to
these pre-implemented criteria, the user may implement additional custom termination
conditions. When one of the defined termination criteria is fulfilled, the main loop of
the simulation is exited. Otherwise, the simulation is resumed at the first step.

4 Evaluation

We use SimSG to simulate a model of the biochemistry domain as well as a wireless
sensor network model and present the obtained results. The aim is to evaluate if the
implementation of the rule-based simulation approach delivers plausible results. Using
the biochemistry example we will evaluate if our simulation results are consistent with
results of the domain specific tool KaSim [BFKF19]. Furthermore, the simulation of a
wireless sensor network scenario serves as a demonstrator for the general applicability
of SimSG to different domains.

4.1 Simulation of the EGF Signal Pathway

The epidermal growth factor (EGF) signaling pathway [CC79] is a regulatory mecha-
nism for the growth of skin cells and serves as an example of a biochemical process
that can be simulated with the tool presented in this paper. The process begins
with EGF molecules bonding to EGF-receptors (EGFR) on the outside of the cell,
whereby the EGFRs activate adjacent EGFRs as a result. Consequently, EGFRs
release phosphorylated molecules, also called activated molecules (Section 2.1), into
the cell. These molecules, for example, Grb2 activate other molecules, which in turn
activate more molecules. This cascade of activation processes continues until ERK
molecules reach the nucleus and initiate growth processes, as illustrated by Fig. 6.
Note that through EGFRs activating their neighboring EGFRs, a single EGF may
cause multiple reaction cascades at once.

Cell Membrane

Grb2

<Binds>

SoS

<Binds> <Binds>

Raf

<Binds>

MEK

<Binds>

ERK<Binds>

Nucleus

<Enter & Activate>

Figure 6 – The EGF Signal Pathway

This process was simulated once with SimSG (Fig. 7(a)) and once with KaSim
(Fig. 7(b)), each using a model of the EGF signal pathway created by Danos et al.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 11

[DFF+07]. Consequently, each simulation was initialized with the same number of
objects according these specifications.
Despite both results in Fig. 7 not being exactly equal, which makes sense since this is
a stochastic simulation, they do display a rather similar behavior. Both simulations
show the expected cascade of activated molecules in the same order, beginning with
the rise of activated RasGTP molecules (Ras_gtp plot) that cause a subsequent rise
in activated molecules of the pathway. Towards the end of the simulation initially
activated molecules begin to fade out causing a collapse of activated ERK molecules
(ERK_pp plot).

0

20

40

60

80

100

120

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

C
o
u
n
t

Seconds

ERK_pp MEK_pp Raf_p Ras_gtp

(a) SimSG

0

20

40

60

80

100

120

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

C
o
u
n
t

Seconds

EKR_pp MEK_pp Raf_p Ras_gtp

(b) KaSim

Figure 7 – Simulation Results - EGF

To examine the scalability of the tool a series of simulations of the EGF signal
pathway were performed, while measuring the runtime until completion. Each set
of simulations used different simulation model sizes, meaning that the number of
molecules generated according to initial conditions were scaled. The scaling begins
with 25% of the original model size, then continues to 50%, to 75%, to 100%, and
finally, up to 125%. At 100% size the model graph contains 1235 nodes (modeling
molecules) and 1810 edges (modeling states and molecular bonds). The y-axis in
Fig. 8 indicates the runtime in seconds, while the x-axis displays the relative model
size. Each data point in both series represents the average runtime of five simulations,
while Viatra was used as the incremental graph pattern matching tool.

0

500

1000

1500

25% 50% 75% 100% 125%

S
E

C
O

N
D

S

RELATIVE MODEL SIZE

Standard Optimized

Figure 8 – Simulation Runtime Measurements

The first plot (Standard) shows simulation runtime results using the standard tool
configuration. These results indicate that runtimes are growing in an almost expo-
nential fashion. This exponential growth can be explained by the typical patterns
that are often found in the biochemistry domain. When we look at the first rule of
the running example (Section 2.1), we can see that the LHS requires two unbound
molecules, which is an example for a disjoint pattern. Unfortunately, the number of
match occurrences to these types of patterns grows very fast, finding all instances of
them in a model graph leads to an exponential increase in runtime.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

12 · Sebastian Ehmes et al.

The second plot (Optimized) shows runtime results created with a different tool config-
uration that uses an optimized pattern matching technique by utilizing domain specific
knowledge to mitigate the negative effects of disjoint patterns. The optimization is
based on the fact that we only need the match counts to calculate probabilities in
each simulation step. That means we don’t actually need to find all the matches.
Instead of finding and counting all possible match combinations of disjoint patterns,
we can calculate the number of matches based on the match count of their non-disjoint
sub-patterns. Consequently, by only using the sub-patterns we prevent the pattern
matcher from finding all possible matches of the original disjoint pattern. When a
rule application requires an actual match we construct a corresponding match on
demand from the matches of the non-disjoint sub-patterns. As a result, the growth in
runtime becomes almost linear, demonstrating the advantage of a modular architecture.
However, the domain specific tool KaSim is still much faster, because it is highly
optimized for the simulation of protein-protein interactions instead of pursuing a
general-purpose approach.

4.2 Simulation of Topology Control in Wireless Sensor Networks

Topology control (TC) algorithms [San05] operate on the underlay topology of a
physical network, such as wireless connections between adjacent devices. The aim of
such algorithms is to maintain a stable connected network in a dynamic environment,
while reducing the energy consumption by deactivating unnecessary connections.

n2

n1 n3

e
12

w
12

= 1

e
23

w
23

= 2

e
13

w
13

= 4 n1 n3

e
12

w
12

= 1

e
23

w
23

= 2

e
13

w
13

= 4

inactive

n2

(a) Inactivation

n2

n1 n3 n1 n3

inactive

n2

(b) Reactivation

Figure 9 – kTC Algorithm

The kTC algorithm [SWB+12] is an example of a TC algorithm that assumes a local
view of the network with a limited knowledge of the neighboring network nodes. For
example, in Fig. 9(a) node n1 only knows its two neighbors n2 and n3. Edges between
nodes model communication links that are annotated with weights that represent
the cost of using the link. The algorithm inactivates links that satisfy the following
criteria: First, if a link e13 is part of a triangle (here, with links e12 and e23) in which
w13 > w12 and w13 > w23 is satisfied, it is the weight-maximal link. Second, a link
shall be inactive if it is weight-maximal and its weight is at least k times larger than
the minimal weight, i.e., w13 > k ·min(w12, w23). In Fig. 9 edge e13 has a larger weight
than edges e12 and e23. Assuming k = 2, w13 is at least two times larger than w12,
leading the kTC algorithm to deactivate e13. The value of k can be tuned to adapt the
kTC algorithm to different scenarios. Consequently, the k-value decides whether the
algorithm has to be less or more aggressive when deciding which communication link
to inactivate. Besides deactivating links, kTC can also reactivate links when crucial
connections break (Fig. 9(b)) or their weights change due to changes in the environment.

For a simulation of the kTC we use a network model that contains seven nodes
and 13 links between nodes. The simulation tool is used to simulate a dynamic envi-
ronment in which wireless sensor nodes form a network, while the kTC algorithm runs

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 13

on top and manages the network topology. Changes in the environment, also called
context events, represent obstacles appearing between adjacent devices or varying
distances between moving devices. Such context events are modeled by rules that
delete links or modify the cost of a link. In the simulation, context events occur
at random according to certain probabilities in order to represent the probabilistic
properties of real world scenarios. Therefore, context event rules are annotated with
certain rates (Section 2.2) modeling the occurrence of obstacles or changes in distance
between devices as stochastic events.

1,0

1,2

1,4

1,6

1,8

2,0

2,2

0,5 0,8 1,0 1,3 1,5

k

(a) Robustness (tc / td)

0,10

0,15

0,20

0,25

0,30

0,35

0,5 0,8 1,0 1,3 1,5

N

k

(b) Inactive links (ni / N)

Figure 10 – Analysis of kTC using SimSG

We performed a series of simulations were we varied the value of k and evaluated the
robustness (Fig. 10(a)) of the network as well as the ratio of inactive links (Fig. 10(b)).
Each data point in both figures represents the average result of five simulations. The
plot in the left figure shows the ratio of the total time during which the network was
connected tc to the total time where the network was disconnected td. We can see
that a larger k-value leads to a network that remains in a connected state for longer
periods of time, making the algorithm less aggressive and the network more robust.
The plot in the right figure, displays the average ratio of inactive edges ni to the sum
of active and inactive edges N = na + ni, giving a rough indicator of potentially saved
energy. As the plot shows, a lower k-value leads to a higher amount of inactive edges,
making the algorithm more aggressive and potentially saving more energy.
In summary, the observations made in our simulations fall in line with findings pre-
sented in [SWB+12] and show that SimSG produces plausible results in different
problem domains.

5 Related Work

The presented tool performs rule-based simulations of stochastic processes using
stochastic graph transformation. This is an approach that has over the years gained
more traction in the biochemistry domain. Consequently, several domain-specific
rule-based simulation tools have been developed to simulate biochemical processes
such as protein-protein interactions. These processes are usually modeled with the
help of domain-specific languages such as Kappa [DL04] or the BioNetGen-Language
[LBFGH04]. For example, Kappa does not require the user to write down differential
equations to model biochemical processes. Instead, the Kappa language uses rules to
define interactions among molecules. The modeling language SimSGL developed for
our tool is inspired by Kappa but adds the possibility to define additional application
constraints to rules, such as attribute constraints. This enables the user to define
simulation models (e.g., wireless sensor networks) that go beyond the capabilities of
biochemistry domain-specific languages.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

14 · Sebastian Ehmes et al.

KaSim [BFKF19] and RuleMonkey [CMG+10] are two well known examples of biochem-
istry simulation tools. Like most rule-based methods, KaSim is based on Gillespies’s
algorithm, while RuleMonkey uses a method closely related to that. Both tools perform
stochastic simulations of biochemical processes in a similar fashion compared to SimSG
but they are highly specialized to protein-protein interactions and, therefore, tend
to deliver a better performance in such scenarios. At the same time the high degree
of specialization present in KaSim and RuleMonkey limits their scope of application
domains. The tool presented in this paper is not limited to a specific problem domain
nor is it limited to Gillespie’s approach. The use of general-purpose pattern matching
tools enables the user to define rules suitable for a wide variety of problem domains,
while the modular architecture allows for domain specific optimizations and the use of
other simulation algorithms such as GSMS.

To our best knowledge, GraSS developed by Torrini et al. [THR10] is the only other
rule-based general-purpose simulation tool. GraSS performed graph-based stochastic
simulations by using stochastic graph transformations as well. Unfortunately, this
tool is not available anymore. In contrast to RuleMonkey and KaSim, GraSS did not
implement some variant of Gillespie’s algorithm. Instead, Torrini et al. employed
the concept of generalised semi-Markov schemes (Section 2.2). Therefore, GraSS
supported the definition of other probability distributions when calculating the delay
between state transitions during the simulation. They presented the simulation of
P2P network reconfigurations as an application example. For this scenario, a variety
of different probability distributions were required to adequately model processes in
the network, therefore, highlighting the strenghts of the GSMS approach.

6 Conclusions and Future Work

With SimSG we created a new general-purpose tool for performing rule-based simula-
tions of stochastic processes using stochastic graph transformations. The model-driven
approach and the integration of general-purpose pattern matching tools enables the
simulation of scenarios of different problem domains. Our evaluation demonstrated
that SimSG is indeed able to cope with scenarios from different domains, such as bio-
chemistry and wireless sensor networks. Additionally, the modular nature of the tool’s
architecture allows for domain specific optimizations, which was shown in Section 4.1.
There are several aspects of our tool that we wish to extend and improve in future
works. First, the replacement of the proprietary graph transformation module with
the graph transformation engine of the meta-case tool eMoflon [LAS14]. This includes
the integration of the IBeX-GT6 DSL used to describe graph transformation rules
in a textual fashion to increase the accessibility of SimSG. Furthermore, we plan the
implementation of external constraints such as geometric constraints for scenarios that
require spatial and geometric context information to prevent impossible configurations.
Another promising extension is the use of complex event processing (CEP), which
specializes on the analysis of large event streams. Understanding the rule occurrences
as events, a CEP engine could be used to infer deeper knowledge from our simulations
by providing information on causal or temporal dependencies.

6eMoflon-IBeX project page: https://github.com/eMoflon/emoflon-ibex

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation usingStochastic Graph Transformation · 15

References

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice: Second Edition. Morgan & Claypool
Publishers, 2nd edition, 2017.

[BFKF19] Pierre Boutillier, Jérôme Feret, Jean Krivine, and Walter Fontana. The
kappa language and kappa tools. https://kappalanguage.org/sites/
kappalanguage.org/files/inline-files/Kappa_Manual.pdf, 2019
(accessed June 6, 2019).

[CC79] Graham Carpenter and Stanley Cohen. Epidermal growth fac-
tor. Annual Review of Biochemistry, 48(1):193–216, 1979. doi:
10.1146/annurev.bi.48.070179.001205.

[CMG+10] Joshua Colvin, Michael I. Monine, Ryan N. Gutenkunst, William S.
Hlavacek, Daniel D. Von Hoff, and Richard G. Posner. Rulemonkey:
software for stochastic simulation of rule-based models. BMC Bioin-
formatics, 11(1):404, Jul 2010. URL: https://doi.org/10.1186/
1471-2105-11-404, doi:10.1186/1471-2105-11-404.

[DFF+07] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and
Jean Krivine. Rule-based modelling of cellular signalling. In Luís Caires
and Vasco T. Vasconcelos, editors, CONCUR 2007 – Concurrency The-
ory, pages 17–41, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[DL04] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoreti-
cal Computer Science, 325(1):69 – 110, 2004. Computational Systems Bi-
ology. URL: http://www.sciencedirect.com/science/article/pii/
S0304397504002336, doi:https://doi.org/10.1016/j.tcs.2004.03.
065.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer Berlin
Heidelberg, 2006. doi:10.1007/3-540-31188-2.

[HLM04] Reiko Heckel, Georgios Lajios, and Sebastian Menge. Stochastic graph
transformation systems. In Hartmut Ehrig, Gregor Engels, Francesco
Parisi-Presicce, and Grzegorz Rozenberg, editors, Graph Transforma-
tions, pages 210–225, Berlin, Heidelberg, 2004. Springer Berlin Heidel-
berg.

[KL07] Piotr Kosiuczenko and Georgios Lajios. Simulation of generalised semi-
markov processes based on graph transformation systems. Electronic
Notes in Theoretical Computer Science, 175(4):73–86, 07 2007. doi:
10.1016/j.entcs.2007.04.018.

[LAS14] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. Developing
emoflon with emoflon. In Davide Di Ruscio and Dániel Varró, editors,
Theory and Practice of Model Transformations, pages 138–145, Cham,
2014. Springer International Publishing.

[LBFGH04] Michael L. Blinov, James Faeder, Byron Goldstein, and William
Hlavacek. Bionetgen: Software for rule-based modeling of signal
transduction based on the interactions of molecular domains. Bioin-
formatics (Oxford, England), 20:3289–91, 12 2004. doi:10.1093/
bioinformatics/bth378.

Journal of Object Technology, vol. 18, no. 3, 2019

https://kappalanguage.org/sites/kappalanguage.org/files/inline-files/Kappa_Manual.pdf
https://kappalanguage.org/sites/kappalanguage.org/files/inline-files/Kappa_Manual.pdf
http://dx.doi.org/10.1146/annurev.bi.48.070179.001205
http://dx.doi.org/10.1146/annurev.bi.48.070179.001205
https://doi.org/10.1186/1471-2105-11-404
https://doi.org/10.1186/1471-2105-11-404
http://dx.doi.org/10.1186/1471-2105-11-404
http://www.sciencedirect.com/science/article/pii/S0304397504002336
http://www.sciencedirect.com/science/article/pii/S0304397504002336
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.03.065
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.03.065
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1016/j.entcs.2007.04.018
http://dx.doi.org/10.1016/j.entcs.2007.04.018
http://dx.doi.org/10.1093/bioinformatics/bth378
http://dx.doi.org/10.1093/bioinformatics/bth378
http://dx.doi.org/10.5381/jot.2019.18.3.a1

16 · Sebastian Ehmes et al.

[LF82] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1):17–37, 09
1982. doi:10.1016/0004-3702(82)90020-0.

[LV02] Javier Larrosa and Gabriel Valiente. Constraint satisfaction algorithms
for graph pattern matching. Mathematical Structures in Computer
Science, 12(4):403–422, 08 2002. doi:10.1017/S0960129501003577.

[Nor97] J. R. Norris. Markov Chains. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1997. doi:
10.1017/CBO9780511810633.

[San05] Paolo Santi. Topology control in wireless ad hoc and sensor networks.
ACM Comput. Surv., 37(2):164–194, June 2005. URL: http://doi.acm.
org/10.1145/1089733.1089736, doi:10.1145/1089733.1089736.

[SWB+12] Immanuel Schweizer, Michael Wagner, Dirk Bradler, Max Mühlhäuser,
and Thorsten Strufe. ktc - robust and adaptive wireless ad-hoc topology
control. In IEEE International Conference on Computer Communication
Networks (ICCCN), pages 1–9, 07 2012. doi:10.1109/ICCCN.2012.
6289318.

[TG77] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical-
reactions. J. of Physical Chemistry, 81(25):2340–2361, 12 1977. doi:
10.1021/j100540a008.

[THR10] Paolo Torrini, Reiko Heckel, and István Ráth. Stochastic simulation of
graph transformation systems. In David S. Rosenblum and Gabriele
Taentzer, editors, Fundamental Approaches to Software Engineering,
pages 154–157, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[VBH+16] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
István Ráth, and Zoltán Ujhelyi. Road to a reactive and incre-
mental model transformation platform: three generations of the
viatra framework. Software & Systems Modeling, 15(3):609–629,
Jul 2016. URL: https://doi.org/10.1007/s10270-016-0530-4,
doi:10.1007/s10270-016-0530-4.

[VD13] Gergely Varró and Frederik Deckwerth. A rete network construction
algorithm for incremental pattern matching. In Keith Duddy and Gerti
Kappel, editors, Theory and Practice of Model Transformations, pages
125–140, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Zün96] Albert Zündorf. Graph pattern matching in progres. In Janice Cuny,
Hartmut Ehrig, Gregor Engels, and Grzegorz Rozenberg, editors,
Graph Grammars and Their Application to Computer Science, pages
454–468, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

About the authors

Sebastian Ehmes is a PhD Student at the Real-Time Systems Lab, contact him at
sebastian.ehmes@es.tu-darmstadt.de.

Lars Fritsche is a PhD Student at the Real-Time Systems Lab, contact him at
lars.fritsche@es.tu-darmstadt.de.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1017/S0960129501003577
http://dx.doi.org/10.1017/CBO9780511810633
http://dx.doi.org/10.1017/CBO9780511810633
http://doi.acm.org/10.1145/1089733.1089736
http://doi.acm.org/10.1145/1089733.1089736
http://dx.doi.org/10.1145/1089733.1089736
http://dx.doi.org/10.1109/ICCCN.2012.6289318
http://dx.doi.org/10.1109/ICCCN.2012.6289318
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
https://doi.org/10.1007/s10270-016-0530-4
http://dx.doi.org/10.1007/s10270-016-0530-4
mailto:sebastian.ehmes@es.tu-darmstadt.de
mailto:lars.fritsche@es.tu-darmstadt.de
http://dx.doi.org/10.5381/jot.2019.18.3.a1

SimSG: Rule-based Simulation using Stochastic Graph Transformation · 17

Andy Schürr is a professor at the Institute for Computer Engineering of the De-
partment for Electrical Engineering and Communication Technology at Darmstadt
University of Technology, where he is head of the the Real-Time Systems Lab. You
can contact him at andy.schuerr@es.tu-darmstadt.de.

Acknowledgments This work has been funded by the German Research Foundation
(DFG) as part of the A1 subproject within the Collaborative Research Center (CRC)
1053 – MAKI.

Journal of Object Technology, vol. 18, no. 3, 2019

mailto:andy.schuerr@es.tu-darmstadt.de
http://dx.doi.org/10.5381/jot.2019.18.3.a1

	Introduction
	Background
	Graph Transformation
	Stochastic Graph Transformation

	Implementation
	Simulation Approach

	Evaluation
	Simulation of the EGF Signal Pathway
	Simulation of Topology Control in Wireless Sensor Networks

	Related Work
	Conclusions and Future Work
	Bibliography
	About the authors

