
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Trading Accuracy for Performance in
Data Processing Applications

Gala Barqueroa Javier Troyab Antonio Vallecilloa

a. Universidad de Málaga, Spain. {gala,av}@lcc.uma.es

b. Universidad de Sevilla, Spain. jtroya@us.es

Abstract Applications that need to process large volumes of data to make
informed decisions, such as stream processing systems or those dealing
with social networks, usually impose strong requirements on resources like
memory, processing time, disk or network latency. One approach to address
this problem is to reduce the amount of data to be processed, at the cost
of decreasing the confidence on the results. Estimating the errors of such
approximate solutions becomes a critical issue. In this paper, we explore
different approximation possibilities depending on how the data is organized,
and what information needs to be obtained from them. We propose an
approach to estimate the accuracy of these approximate solutions in the
context of data processing systems, in terms of the precision and recall of
the results obtained. A case study is used to validate the proposal and to
evaluate the performance of different types of approximations.

Keywords Data Processing; Approximate Transformation; Accuracy.

1 Introduction

The drastic increase in the amount of information produced by existing data sources
requires the efficient processing of data flows in real time, both to make informed
decisions and to detect situations of interest that require instantaneous reactions.
An example of the importance of being able to efficiently process large amounts of
information flows is shown in the analysis carried out by the Spanish bank BBVA on
the economic impact of Barcelona’s 2012 Mobile World Congress [BBV13]. The study
required the online analysis of all credit card transactions during two weeks. Another
example is the need for real-time analysis of streams of information in social networks
or weblogs in order to detect possible terrorist attacks [PP11, YN07].

In this context, Complex Event Processing (CEP) is a useful technology for
processing of data flows that analyses streams of information represented as a se-
quence of simple events and obtains conclusions from them, represented as complex
events [CM12, EN10, Luc02, Luc12]. Several CEP engines and Event Processing
Languages (EPLs) exist, such as the Esper language [Esp19]. However, technologies

Gala Barquero, Javier Troya, Antonio Vallecillo. Trading Accuracy for Performance in Data Processing
Applications . Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International (CC
BY-NC-ND 4.0). In Journal of Object Technology, vol. 18, no. 2, 2019, pages 9:1–24.
doi:10.5381/jot.2019.18.2.a9

http://www.jot.fm/
mailto:{gala,av}@lcc.uma.es
mailto:jtroya@us.es
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a9
http://dx.doi.org/10.5381/jot.2019.18.2.a9

2 · Gala Barquero, Javier Troya and Antonio Vallecillo

like this only permit dealing with information sources in which events are not related
among themselves.

In reality, information is commonly generated as a sequence of structured and
interconnected data forming a graph, where we can distinguish between persistent and
transient information. The former refers to data stored in the system in a persistent
way (e.g., users, products or shops). Transient information refers to data that are
temporarily stored (e.g., tweets, orders, bank transactions) and are discarded after
some period of time—i.e., transient information expires. The interconnections between
these data need to be processed, too, which inevitably implies a decrease in systems
performance [SIRV18].

Our proposal for dealing with this increasing amount of information is based on
the claim that most of the data that needs to be processed for decision making is not
significantly relevant, particularly with large volumes of data. Therefore, the goal is
to be able to select the relevant data subset that would still yield valid results. For
this we need to answer two questions: (a) how to select the subset of data that is
relevant for a given query; and (b) how to estimate the error we are making when
discarding some of the input data (the one that we have considered as not relevant).
Here, the goal is to find the right balance between the performance of our queries and
the accuracy of their results.

This problem is of application in those systems that deal with large amounts
of data, do not need extremely accurate results, and require fast response times.
Recommendation systems on Facebook, Netflix or Amazon are examples of these
applications. This work derives from a previous paper [TWBV14], where the concept
of Approximate Model Transformations (AMT) was introduced to find a balance
between performance and accuracy of a model transformation. Sampling techniques
were used in a wireless sensor network example to show the effects of selecting certain
subsets of elements. However, the study was only able to manage information composed
of sequences of events, and not as graphs of highly interconnected pieces of information,
some of which can be persistent whilst other are transient. We continued that work to
deal with graphs in [BBTV18], defining an extension of CEP systems for managing
graph-structured data. However, in that work no indication was given on how the
windows (both spatial and temporal) that contained the relevant data were chosen;
and no methods for estimating the (loss of) accuracy of the results were provided.

In this paper, we consider large amounts of information in the form of graph-based
structures. We explore different approximation possibilities (random, temporal and
spatial approximations) depending on (i) how the data is organized and (ii) what
information we need to obtain from the data. Furthermore, we propose a method
that permits estimating the errors produced when applying approximations, with
the goal of finding the right balance between performance gain and accuracy loss
when approximating data. To illustrate our proposal, we use a simplified version of
the Amazon ordering service. We implement the solution using in-memory graph
databases, which consume less execution time than solutions based on disk, and we
choose Gremlin as a query language due to its intuitiveness and benefits over other
graph query languages [HP13].

The structure of this paper is as follows. Sect. 2 presents our running example.
Sect. 3 describes three different types of approximations, how to calculate the error
induced by them, and their implementation with Gremlin and TinkerGraph technolo-
gies. Sect. 4 evaluates the results of the experiments. Finally, Sect. 5 relates our work
to other similar proposals and Sect. 6 concludes and outlines future lines of work.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 3

2 Running Example

As running example let us use an Amazon ordering service. It is a simplification of
the real service that Amazon offers, but complex enough since it considers many of its
relevant features. The metamodel of this service is depicted in Figure 1. We can see
that we have Orders placed by Customers, who live in a Geographical Area. Orders
are composed by different Items, and each Item corresponds to a Product. In addition,
each Product belongs to a Department. Customers can be related with Products in
three ways: (i) they can write a Comment on a Product, (ii) wish a Product, (iii) and
Products can be recommended to Customers. Besides, Products can be included in an
AdCampaign, Orders are destined to a Geographical Area, and Geographical Areas are
connected to other areas.

Figure 1 – The Amazon Example Metamodel.

Considering this system, we are interested in defining some queries that represent
ways of processing data in this context. As a result, these queries can modify the
source model or provide some other data, such as returning a specific set of products.

Q1. CreateAdCampaign: if a product has been ordered more than 1000 times
during an advertising campaign period, and a relationship isPublicized between the
product and the campaign does not exist, then the query creates the relationship.

Q2. UnpopularStock: returns all products that have been ordered by less than
3 customers during last month.

Q3. RelatedProducts: This query creates a link isRelatedTo if two products
have been included in at least 100 common orders during the last month.

Q4. OlympicGamesTrending: considering we have a Rio de Janeiro Oympic
Games AdCampaign, the query obtains the products that were ordered at least
100 times in Rio de Janeiro since the beginning of August 2016 until the end of
the celebration of the Olympic Games. In this case, the query adds a relationship
isPublicized between the products and the Olympic Games campaign.

Q5. RecommendsPack: if a customer has ordered Product1 at least 5 times in

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

4 · Gala Barquero, Javier Troya and Antonio Vallecillo

different orders in the last month and this product is related to Product2 (through a
isRelated connection), then an offer for Product2 is created for the customer. Such an
offer has a priority of 1—highest priority. If Product1 is related to Product3 indirectly
through another product, then an offer for Product3 with priority 2 is created for the
customer. In this case, we say that Product1 is related with Product3 in two hops.
Similarly, if Product1 is related to ProductN in n hops, the query would create an
offer with priority n. In this query, we consider offers from priority 1 to 3.

We can observe that queries create objects of type Offer and relationships of type
isRelatedTo and isPublicized, which are not critical for the appropriate functioning
of the service, so they can be approximated if the performance improvement is
considerable. Also note that the queries are not static, i.e., their result will be different
depending on when queries are performed. Specifically, Q2, Q3 and Q5 consider data
of the last month. As for Q1, it is associated to a specific advertising campaign period.
Finally, Q4 depends on when the celebration of the Olympic Games ends.

3 Approach

Our approach is based on the fact that not all information contained in the model
is needed in order to reach conclusions or make decisions. The idea therefore is to
make approximations in the source model in order to improve the performance of the
queries. In this section, we describe the approximations in the source model that we
have explored, and describe the metrics that we propose for computing the errors of
the results, expressed as the differences between the expected and the resulting query
outputs. Finally, we describe the technologies we use in the implementation and show
the implementation of a couple of queries with different approximations.

3.1 Reducing source data

As mentioned in the introduction, we distinguish between persistent and transient
information. The former is stored persistently in the system, while the latter is
discarded after some time. In our proposal, all the information will be stored in
models, which at this level of abstraction are basically directed graphs with typed
nodes and arcs, and whose nodes may have typed attributes. Please note we use the
terminology used in models, so we use “objects” and “relationships” instead of “nodes”
and “arcs”, respectively.

Let us introduce the following terms for classifying the different kinds of models
that we will consider in our approach:

• Source Model. It is the complete data model that serves as input for the queries.
In practice it can be so large that it is impossible to be considered in full.

• Pattern Model. Queries made on this type of systems, such as the queries
presented in Section 2, typically focus on a part of the model. Specifically, they
(i) narrow down a time range and (ii) specify the elements1 that participate in
the query. For instance, most of the queries described above focus on the data
placed during last month. As for the elements that participate in the query, we
can see for instance that Q3 considers orders and products. The Pattern Model
is the subset of the Source Model that considers the elements that participate in
the query, filtering by time range and element type.

1Throughout this paper, by element we refer to both the objects and the relationships of a model.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 5

• Approximate Model. The Pattern Model can still be very large in these kinds of
systems. For this reason, we want to perform approximations, so that queries
can be executed faster. An Approximate Model is a subset of the Pattern Model.

• Optimal Model. Among all possible Approximate Models, by Optimal Models
we refer to those that meet the best trade-off between performance and accuracy.
Please note that several Approximate Models could be considered Optimal
Models, and this decision is ultimately made by the user.

We may recall that, in a specific scenario, there is only one Source Model and,
for each query, there is only one Pattern Model. For each Pattern Model there can
be many different Approximate Models, where more than one can be considered as
Optimal Models. In the following we explain the three approximation techniques that
we explore in this paper.

3.1.1 Temporal Approximations

Since incoming data typically count on a timestamp and data flows can be considered
infinite (think for instance of all the information stored in Facebook during its lifetime),
we can build temporal windows filtering by the data timestamp. A temporal window
will be typically determined by the query, since queries are normally focused on a
specific time range. The idea is to narrow down the Source Model by selecting the
subset of the model indicated by the temporal window.

3.1.2 Spatial Approximations

Information systems such as the one in our running example are typically composed
of data structured as a graph. This means that objects are linked among each other
through different types of relationships. In this way, we can navigate a model by
starting in one object and traversing through the existing relationships. We define the
concept of hop, which is the navigation from one object to another by the relationship
that links them. For instance, in our running example and starting from one order (cf.
Figure 1), we can determine in one hop the geographical area the order is destined to,
by navigating the isDestinedTo relationship. Also, objects can be connected to other
objects of the same type. For instance, from a geographical area we can reach, in one
hop, all its neighboring geographical areas, through the neighbors relationship. Also,
in two hops, we can reach all geographical areas that are neighbors of its neighbors,
and so on. In this way, we can obtain spatial windows starting from one object and
considering other objects reachable in n hops.

The concept of spatial window, which considers the idea of spatial vicinity, was
presented as an extension of CEP windows [BBTV18]. Indeed, there are different
strategies to define the vicinity graph of an element, depending on how we navigate
through the graph structure, and the goal we pursue. Representative examples of
algorithms for creating relevant vicinity graphs of nearby elements are used for finding
related pages in the WWW [DH99, Kle99]. These algorithms use different strategies,
e.g., going through the parents and children of a page, and then visiting the children
and parents of those—using a backward-forward and forward-backward strategy. We
could also traverse the graph moving only forward or backward, or using any other
traversal strategy: in-breadth, in-depth, topological, hybrid, etc. Traversal could be
done through any kind of link, or we could navigate the graph through some selected
kinds of relationships.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

6 · Gala Barquero, Javier Troya and Antonio Vallecillo

3.1.3 Random Approximations

Approximate Models can also be obtained by applying random sampling techniques.
This means that the decision on which elements of the Pattern Model will conform the
Approximate Model is randomly made. For instance, we can assign a probability to
each element of the Pattern Model to be included in the Approximate Model. Also, we
can do approximations by element type. For example, we could determine that only
30% of the orders should be included in the Approximate Model. Many other random
approximation techniques can be applied, as the authors proposed in [TWBV14]. This
is also a good approach when only transient data needs to be approximated. Of course,
random approximations can be combined with the other two.

3.2 Measures for accuracy

Since we are trading accuracy for performance, a very important aspect in our approach
is to be able to measure both. We consider performance in terms of execution time
of the queries. Regarding accuracy, we use the measures of precision, recall and
accuracy [MRS08]. These three measures are defined by formulas that include the
concepts of true positives, false positives, false negatives and true negatives. In our
context, we define and calculate them as follows:

• True Positives (TPs): number of elements created or returned as the result of a
query on both the Approximate Model and the Pattern Model.

• False Positives (FPs): number of elements created or returned as the result of a
query on the Approximate Model but not created or returned when running it
on the Pattern Model.

• False Negatives (FNs): number of elements created or returned as the result of
running a query on the Pattern Model but not created or returned when running
it on the Approximate Model.

• True Negatives (TNs): number of elements that are neither created nor returned
as the result of running a query on both the Approximate Model and the Pattern
Model. While the calculation of the other three values is straightforward, the
calculation of TNs is more complex. First, we need to consider the maximum
number of elements the query could create or return. For instance, in Q2, which
returns all products ordered by less than 3 customers, if we have a total of 500
products, the total amount of products that could be returned in principle is 500.
Let us name this amount as Pre (possibly returned elements). From this number,
we need to subtract the amount of elements that are created or returned when
the query is run on the Approximate Model, which is reflected in (TP + FP).
In summary, TNs are calculated as: TN = Pre − (TP + FP).

Then, the three accuracy measures can be calculated as follow [MRS08]:

• Accuracy: it is the most usual performance measure. In our context, it describes
the effect of FPs and FNs when running queries on the Approximate Model. It
is calculated as follows: Accuracy = (TP + TN)/(TP + TN + FN + FP).

• Precision: this measure is useful to determine how accurate the model is when
FPs are costly. For example, in email spam detection, a FP may cause loss
of important information when a non-spam email is identified as spam. It is
calculated as follows: Precision = TP/(TP + FP).

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 7

• Recall: this measure computes how accurate the model is when FNs are costly.
As an example, a FN on illness detection may cause catastrophic consequences
on the life of the patient. It is calculated as follows: Recall = TP/(TP + FN).

3.3 Implementation

In this section we provide some details of the technologies we have used in our
implementation and the reason for choosing them, and show the implementation of a
couple of queries using different approximation techniques.

3.3.1 Gremlin

Gremlin [Apa19] is a graph traversal machine and a graph traversal language dis-
tributed by Apache TinkerPop that permits expressing complex traversal queries
and manipulating graph databases. Graph databases are databases that use specific
structures to store data in terms of edges and nodes. As a traditional database, they
allow to access elements and apply queries on them. This feature is made possible by
using graph query languages, whose main advantage over traditional query languages
is that they allow access to graphs without using multiple join methods.

Gremlin traversal machine permits to coordinate multi-machine executions and
allows the language to be used for Online Transactional Process (OLTP) and Online
Analytics Process (OLAP) graph databases.

An important benefit of using Gremlin is the expressive power and usability of its
syntax. It permits to express queries over graphs more elegantly than other languages
like Java. Thus, while Java needs a heavier logic to write a query for a graph, Gremlin
does it in a few lines. Gremlin can also be embedded within various programming
languages like Java, Python or Scala.

The Gremlin language outperforms other graph query languages such as Cypher
[Neo19], a declarative language to work with graphs developed by Neo4j. For example,
some studies [HP13] show that Gremlin outperforms Cypher on queries that imply
vicinity as Gremlin is designed to express complex traversal queries. These kinds of
queries are easier to write in Gremlin than in Cypher, even though Cypher is usually
easier to write. Besides, one of our highest priorities is to implement and to study
vicinity queries. Another reason to use Gremlin instead of Cypher is the way Gremlin
can be used with different graph databases, including in-memory graph databases.
Cypher is used with Neo4j which does not have an available in-memory version. For
all these reasons we chose Gremlin as graph query language in our research.

3.3.2 TinkerGraph

TinkerGraph is a light in-memory graph database developed by TinkerPop and designed
to run in a single machine. Although TinkerGraph is an in-memory implementation it
has the option to persist on disk. It is developed, like Gremlin, to enable OLTP and
OLAP functionality [Tin19]. Some examples of uses for TinkerGraph are analysis of
in-memory graphs or analysis of subgraphs for large graphs that can not be stored
in memory, writing unit tests, transformating graphs, creating nodes and edges and
adding properties for elements.

When storing graphs in databases, a major issue is the performance bottlenecks
when managing the data. This is why we have chosen TinkerGraph to store our graph
structures, since it is a lightweight database and fully compatible with Gremlin.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

8 · Gala Barquero, Javier Troya and Antonio Vallecillo

1 // Select Product elements
2 graph.traversal().V().hasLabel("Product").as("product1")
3 // Select Order elements that contains the products inside a temporal window
4 .in("contains").where(__.values("date").is(P.inside(initTime, endTime)))
5 // Filter orders by probability with coin step (Random approximation)
6 .coin(prob).as("order1")
7 // Select products in the same order
8 .out("contains").as("product2").where(P.neq("product1"))
9 //Check there is not a previous relationship "isRelatedTo" between products

10 .not(__.select("product1").outE("isRelatedTo").inV().where(P.eq("product2")))
11 //Count the number of matches between products and filter when they are at least 100
12 .select("product1","product2").groupCount().unfold().where(__.select(values).is(P.gte(100)))
13 // Add new elements to the graph
14 .select(keys).addE("isRelatedTo").from("product1").to("product2").iterate();

Listing 1 – Q3 for Random and Temporal approximation.

1 // Select Olympic Games campaign
2 graph.traversal().V().hasLabel("AdCampaign").has("name", P.eq("Olympic Games")).as("campaign")
3 // Take property "endDate"
4 .values("endDate").as("end")
5 // Select Geographical Area with postal code 24495L
6 .V().hasLabel("GeographicalArea").has("postcode", P.eq(24495L))
7 // Traverse the graph through relationship "neighbors" with vicinity
8 .repeat(__.out("neighbors")).times(hops).emit().as("area").dedup("area").select("area")
9 //Select orders destined to the area and ordered before "endDate" property

10 .in("isDestinedTo").filter(__.values("date").where(P.lte("end")))
11 // Select products contained by the orders
12 .out("contains").as("product")
13 //Check there is not a previous relationship "isPublicized" between products and campaign
14 .not(__.select("product").outE("isPublicized").inV().where(P.eq("campaign")))
15 //Count the number of matches between products and campaign and filter when they are at least 100
16 .select("campaign","product").groupCount().unfold().where(__.select(values).is(P.gte(100)))
17 // Add new elements to the graph
18 .select(keys).addE("isPublicized").from("product").to("campaign").dedup().iterate();

Listing 2 – Q4 with Spatial approximation.

3.3.3 Example queries

Our data models have been stored in different files to be loaded as an in-memory
TinkerGraph structure, and the queries have been implemented using the Gremlin
language. As explained above, the Pattern Model is obtained from the Source Model
by applying the query filters. Additionally, different approximation methods are used
for obtaining the Approximate Models from the Pattern Model, as shown next.

To illustrate how random and temporal approximations are integrated into Gremlin
queries, Listing 1 shows the code corresponding to Q3. A random approximation has
been implemented applying the coin step offered by Gremlin [Tin19]. This function
allows to run the query on the Approximate Model in which orders are considered
depending on a probability. We can see in line 6 how the coin step is applied so that
orders are processed depending on the probability value set with the parameter prob.

Line 4 shows a temporal window inside the where clause. In this case, the temporal
approximation is applied narrowing down the parameters initTime and endTime,
which correspond to the initial and ending time of the temporal window, respectively.

In order to illustrate how spatial approximations can be defined in Gremlin, Listing 2
shows the implementation of Q4. In this query, a spatial window for geographical areas
is shown from lines 6 to 8. The window starts from the area with postal code 24495,
which is located in the centre of Rio de Janeiro in our models, and the repeat-times

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 9

block indicates the number of hops to consider from this area in order to cover the
complete area of Rio de Janeiro. In this case, the spatial approximation is indicated
by the parameter hops in the times clause.

We have executed the queries several times with different approximations and
different Source Models, as explained next in Section 4. For implementing different
approximations, we have simply modified the aforementioned parameters. The imple-
mentation of the remaining queries and the results of all experiments can be accessed
on our Git repository [BTV19].

4 Evaluation

In this section we are interested in answering the following research questions (RQs):

• RQ1 - How is performance improved when considering Approximate
Models? Running queries on Approximate Models is faster than running them
on the Pattern Model. However, we want to check how much performance is
gained depending on the sizes of the Pattern and Approximate Models, the type
of approximation applied, and the distribution of the source data.

• RQ2 - Are the 3 accuracy measures enough for identifying the Opti-
mal Model? Since we want to improve the performance of queries without
compromising their accuracy, we want to discover whether the three measures
presented in Section 3.2 are appropriate for measuring such accuracy.

• RQ3 - Which approximation method provides the best trade-off be-
tween accuracy and performance? Since there are different ways of approx-
imating the Pattern Model, we want to find out which one is better, in terms of
trade-off between performance and accuracy, depending on the source data.

4.1 Experimental Setup

4.1.1 Source Models

In all the models that we handle, data can be distributed in many forms. Considering
the concept of time described in Section 3.1.1, in our running example the data can be
concentrated in certain periods of time. For example, people are more likely to order
products in their spare time, so evenings will normally concentrate more data than
mornings. In this case, we say that data is focused on evenings. As for the concept of
vicinity introduced in Section 3.1.2, more orders are likely to be made in Europe than
in Africa, so data will be more concentrated along geographical areas in Europe. In
this case, we say that data is focused in Europe. Now, if we consider only the data in
the evenings or the data in Europe, we may have a more uniform distribution.

For experimentation purposes, the source models we have created for our running
example contain information of the orders of Amazon Brazil in August 2016, and we
suppose we are executing the queries in September 2016—i.e., last month in the queries
(cf. Section 2) refers to August 2016. Furthermore, we have grouped source models in
two batches, as we can see in Table 1. In batch A, data is uniformly distributed along
the month, while in batch B data is mainly focused on the first week. In the table, the
name of the model is assigned according to the number of Customers (cf. Figure 1).
In this way, the smallest models contain 31K customers and around 255K objects

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

10 · Gala Barquero, Javier Troya and Antonio Vallecillo

Distribution Batch Name Nodes Edges

A

31K 286804 2399746
62K 424,368 4,113,948
125K 699,517 7,547,815
250K 1,251,025 14,431,225

B

31K 287,731 2,477,232
62K 425,836 4,201,686
125K 699,945 7,635,425
250K 1,252,316 14,543,380

Table 1 – Summary of the models used in the experiments.

linked among them by around 2.4M relationships. The largest models contain 250K
customers and around 1M objects linked among them by around 14.5M relationships.

Being these models of different and considerable sizes and counting on different
data distributions, we want to evaluate how approximating such models improves
performance, and how much this compromises confidence in terms of precision, recall
and accuracy values when executing the different queries.

4.1.2 Queries and approximations

In the following we will consider the five queries presented in Section 2, and the three
types of approximations defined in Section 3.1: time, spatial and random.

4.1.3 Experiments and data collected

Figures 2 to 6 show the execution times and accuracy obtained for each query, using
different model sizes. The information displayed in each chart is the following:

• Data approximation. The type of approximation that is used in each experiment
is displayed in the X axis. For instance, in the charts of Figure 2 a random
approximation is applied. Thus, the X axis shows how much of the Pattern
Model is being considered (i.e., it indicates the probability of each element of
the Pattern Model to be included in the Approximate Model). The chart in
Figure 3c shows a temporal approximation, so the X axis indicates the elements
of the Pattern Model that are considered for the Approximate Model according
to elements timestamps (cf. Section 3.1.1). Finally, the chart in Figure 5c
displays a spatial approximation, where the X axis indicates the number of hops
(cf. Section 3.1.2) taken from an initial object.

• Execution time. Whenever the execution time of the query is displayed in a
chart, its values are shown on the left-hand-side Y axis, such as in the chart of
Figure 2a. The performance evolution depending on the Approximate Model
used is displayed with a continuous blue line.

• Number of elements returned by the query. Depending on the query, they can
create relationships (such as Q1, Q3 and Q4), objects and relationships (Q5) or
return objects (Q2). The quantity of elements (objects and relationships) that
are either returned or created by the queries is shown on the right-hand-side Y
axis of the charts. The evolution of this quantity of elements depending on the
Approximate Model used is displayed with a dashed orange line, such as in the
chart of Figure 2a.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 11

y	=	8482.9x	+	10148

0
200
400
600
800
1,000
1,200
1,400
1,600
1,800

0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000
200,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned Lineal		 (Execution	time)

(a) Performance Evolution for Q1.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	recall	250	K	- Batch	B

Recall Accuracy

(b) Accuracy and Recall for Q1.

0

5,000

10,000

15,000

20,000

25,000

0

5,000

10,000

15,000

20,000

25,000

30,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned

(c) Performance Evolution for Q2.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Pr
ec
isi
on

Accuracy	&	Precision	250	K	- Batch	B

Precision Accuracy

(d) Accuracy and Precision for Q2.

Figure 2 – Accuracy, Precision and Recall with Random Approximations.

• Precision and Recall. When they appear in a chart, their values are shown in
the left-hand-side Y axis (chart in figures 2b and 2d for instance). Precision and
recall evolutions are shown with a continuous blue line.

• Accuracy. When it appears in a chart, its values are shown on the right-hand-side
Y axis (such as in the chart in Figure 2b). Its evolution is displayed with a
dashed gray line in the chart.

4.1.4 Pattern Model vs Approximate Model vs Optimal Model

In the charts, as we move along the X axis, we see the results for different Approximate
Models. For instance, let us focus in the chart of Figure 2a. When we see 0.45 in the
X axis, it means that we are running Q1 with an Approximate Model that includes
45% of the elements in the Pattern Model. Therefore, the right-most value in the
X axis (1.0 in this chart) shows the result of the query when considering the whole
Pattern Model. Regarding the Optimal Models, they are the Approximate Models
such that, when running the query on them, obtain the best result. This means the
best balance between performance and accuracy. Please note that the focus of our
approach is not to automatically identify the Optimal Models, but to provide enough
data (i.e., elements generated or retrieved by the query, and performance and accuracy
values) for deciding what the Optimal Models should be depending on the user’s needs
and for knowing when they have been obtained. Automatically obtaining the Optimal
Models is therefore out of the scope of this paper and is part of our future work.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

12 · Gala Barquero, Javier Troya and Antonio Vallecillo

4.1.5 Execution environment

All experiments have been run on a MacBook running operating system macOS Sierra
version 10.13.2 64-bit, with 16GB of RAM memory, and an Intel Core i7-6700HQ
processor with 8 cores of 2.6 GHz. We used TinkerGraph-Gremlin version 3.3.4 [Tin19]
in our implementation, Java version 1.8.0_144 and Gremlin-java version 2.6.0.

4.2 Results

Figures 2 to 6 display the results of the experiments we have carried out. First of all, let
us focus on the performance figures, shown in the charts of Figures 2a, 2c, 3a, 3c, 4a, 4c, 5a
and 5c. In all of them, the smaller the Approximate Model considered, the faster the
execution time. This means that the time taken by the Gremlin engine to filter the
data that compose our conceptual Approximate Models pays off, since the engine runs
the queries faster with smaller models.

Now, let us take the type of approximation into consideration. In random approxi-
mations, displayed in Figures 2a, 2c, 3a, 4a and 5a, the execution time increases linearly
as the size of the Approximate Model grows. This happens in all cases, no matter how
data is distributed in the source models. For instance, Figures 3a and 4a show the
performance evolution for Q3 applying a random approximation on the source model
62K. Figure 3a shows the result with model 62K−BatchA and Figure 4a with model
62K −BatchB. We can see that there is not much difference in the execution times.

Regarding temporal approximations, shown in Figures 3c and 4c, we can see that
execution times do not present much variation depending on how source data is dis-
tributed either, and that execution time also grows linearly. In a spatial approximation,
such as the one shown in Figure 6a for Q5, we can see that execution time grows
faster than linearly. This is reasonable, since a linear increase in the number of hops
does not mean a linear increase of the data considered for the Approximate Model, but
an exponential one. For instance, in Q5, hops are taken according to the isRelatedTo
relationship among products. Since one product can be linked through this relationship
with many others, doing one hop may imply considering many more elements; and
even more if we take 2 hops, since the growth is exponential.

With all this data, we can answer RQ1:

RQ1: Performance improvement is noticeable when the amount of data con-
sidered for the Approximate Model is smaller than the amount of data in the
Pattern Model. In fact, the execution time is directly proportional to the
approximate model size considered. This means that the time taken by the
engine to filter data for obtaining the Approximate Model is not significant
and it pays off.

Let us now consider Q1 and Q2. Q1 creates an isPublicized relationship when a
product appears at least 1000 times during an advertising campaign period. For this
query, as the volume of data in Approximate Models decreases, some elements that
should be returned are not, which means we get some FNs and no FP. Therefore, the
precision value is 1 and the deviation from the query result with the Pattern Model
can only be represented by the recall value. In Figure 2a we present the performance
evolution for this query when run on model 250K − BatchB applying a random
approximation. In this figure, probabilities go from 0.1 to 1 with increments of 0.1.
As previously mentioned, execution time has a lineal increase. Regarding the elements

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 13

0

1,000

2,000

3,000

4,000

5,000

6,000

0

5,000

10,000

15,000

20,000

25,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 62K	- Batch	A

Execution	time Elements	 returned

(a) Performance Evolution for Q3 with Ran-
dom Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	Recall	62K	- Batch	A

Recall Accuracy

(b) Accuracy and Recall for Q3 with Ran-
dom Approximation.

0

1,000

2,000

3,000

4,000

5,000

6,000

0

5,000

10,000

15,000

20,000

25,000

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

days

Performance	Evolution	 62	K	- Batch	A

Execution	time Elements	 returned

(c) Performance Evolution for Q3 with Tem-
poral Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 6 9 12 15 18 21 24 27

Ac
cu
ra
cy

Re
ca
ll

days

Accuracy	&	Recall	62K	- Batch	A

Recall Accuracy

(d) Accuracy and Recall for Q3 with Tempo-
ral Approximation.

Figure 3 – Comparison between Temporal and Random Approximations with uniformly
distributed data.

created by the query, their number grows as the probability value of the horizontal
axis increases, until the line eventually stabilizes and, at this point, we could consider
we have reached the amount of data considered for an Optimal Model. In order to
double-check this, results for accuracy and recall values are shown in Figure 2b. The
value of accuracy is not significant, since it is always 1. As for recall, it reaches 1
precisely when the number of elements returned gets stable.

Consider now query Q2, in which a product is returned if it has been ordered less
than three times in a month. In this case, as the volume of data in the Approximate
Model increases, the number of elements returned decreases. This means that we will
have no FNs and therefore a recall value of 1, and therefore the precision value is
the most significant for calculating accuracy. Performance evolution when running
the query on model 250K −BatchB is depicted in Figure 2c, while Figure 2d shows
the accuracy and precision values for this query. For this experiment we have used
a random approximation. If we expect a precision of 1 for considering an amount
of data that conforms the Optimal Model, then we can see that we get it when we
approximate half of the data of the Pattern Model.

Note that in most cases accuracy values are very close to 1. This is due to the
influence of TNs in the accuracy equation. Consequently, the accuracy value is not
descriptive enough to represent the deviation of running the query on Approximate
Model versus running it on the Pattern Model. Therefore, we can come to a response
for RQ2:

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

14 · Gala Barquero, Javier Troya and Antonio Vallecillo

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

0

5,000

10,000

15,000

20,000

25,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 62K	- Batch	B

Execution	time Elements	 returned

(a) Performance Evolution for Q3 with Ran-
dom Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	Recall	62K	- Batch	B

Recall Accuracy

(b) Accuracy and Recall for Q3 with Ran-
dom Approximation.

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

0

5,000

10,000

15,000

20,000

25,000

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

days

Performance	Evolution	 62K	- Batch	B

Execution	time Elements	 returned

(c) Performance Evolution for Q3 with Tem-
poral Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 6 9 12 15 18 21 24 27

Ac
cu
ra
cy

Re
ca
ll

days

Accuracy	vs	Recall	62K	- Batch	B	

Recall Accuracy

(d) Accuracy and Recall for Q3 with Tempo-
ral Approximation.

Figure 4 – Comparison between Temporal and Random Approximation with temporal
focus on the data.

RQ2: Accuracy is not well suited as a measure for determining the amount of
data to be considered in the Optimal Model. In contrast, precision and recall
are valid measures when we get FPs and FNs, respectively.

Since we have different approximation possibilities for obtaining the data of Ap-
proximate Models, we want to find out which one is more convenient depending on
the situation. First of all, temporal and spatial approximations only make sense when
the query filters according to time, or to some spatial concept, respectively. Let us
focus first on Q3. We have used random and temporal approximations for running
it and have used the two types of source models presented in Section 4.1.1, this is,
those where data is uniformly distributed along the month (Batch A) and those where
there is a temporal focus on the first week (Batch B). In the random approximation,
Approximate Models start considering 10% of the model, with increments of 5%,
until we consider the Pattern Model (same as in the charts discussed before). In the
temporal approximation, the first Approximate Model considers the first 3 days in the
month, the second one considers 6 days, the third one 9 days, and so on.

Figures 3 and 4 display execution results for models 62K − BatchA and 62K −
BatchB, respectively. Let us focus first on Figure 3. Figures 3b and 3d display the
recall (and accuracy, but, as we said before, we do not take this one into account) with
random and temporal approximations, respectively. We can see that recall reaches
the value 1 first in the random approximation, specifically, when 65% of the Pattern
Model is considered in the approximation. In the temporal approximation, recall does

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 15

0
50
100
150
200
250
300
350
400
450

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 125	K	- Batch	B

Execution	time Elements	 returned

(a) Performance Evolution for Q4 with Ran-
dom Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	vs	Recall	125K	- Batch	B

Recall Accuracy

(b) Accuracy and Recall for Q4 with Ran-
dom Approximation.

0
50
100
150
200
250
300
350
400
450

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000

100 200 300 400 500 600 700 800 900

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

hops

Performance	Evolution	 125K	- Batch	B

Execution	time Elements	 returned

(c) Performance Evolution for Q4 with Spa-
tial Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

100 200 300 400 500 600 700 800 900

Ac
cu
ra
cy

Re
ca
ll

hops

Accuracy	vs	Recall	125K	- Batch	B

Recall Accuracy

(d) Accuracy and Recall for Q4 with Spatial
Approximation.

Figure 5 – Comparison between Spatial and Random Approximations.

not reach the value 1 until the approximation contains 80% of elements of the Pattern
Model. Furthermore, in Figures 3a and 3c, we see that the execution time is lower
in the random approximation when the number of elements returned stabilizes with
respect to when the number of elements stabilizes in the temporal approximation.

Let us now consider Figure 4, which displays the results with model 62K−BatchB.
Recall that data in this model has a temporal focus in the first week. Figures 4c
and 4d reflect this. Indeed, we can see that recall reaches 1 when the approximation
considers the first 7 days of the month, and we also see that the number of elements
returned by the query stabilizes in this time. In the random approximation (Figures 4a
and 4b), however, it occurs like in the example before: query result and recall stabilize
when the approximation considers 65% of the model. In fact, we see that random
approximations always behave the same, no matter how data is distributed in the
source models. In temporal approximations, the accuracy of the query result depends
on the temporal distribution of the data in the model.

For comparing random and spatial approximations, we use Q4 (Figure 5). Spatial
approximation is made by considering geographical areas. In particular, we start from
postal code 24495 (cf. Listing 2), which is located in the centre of Rio de Janeiro.
In every increment in the approximation, we consider those areas within the next
100 hops (cf. Section 3.1.2). Figure 5 shows the results with both approximations
for model 125K − BatchB. Note that when running experiments applying spatial
approximation, results do not stabilize. In fact, we discovered that Gremlin can only
process a limited number of hops. In our case, we could not perform more than 900
hops, so the Approximate Model does not cover the complete area of Rio de Janeiro.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

16 · Gala Barquero, Javier Troya and Antonio Vallecillo

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1	hop 2	hops 3	hops

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 31	K	- Batch	A

Execution	time Elements	 returned

(a) Performance Evolution for Q5 with Spa-
tial Approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1	hop 2	hops

Ac
cu
ra
cy

Re
ca
ll

Recall	vs	Accuracy	31	K	- Batch	A

Recall Accuracy

(b) Accuracy and Recall for Q5 with Spatial
Approximation

Figure 6 – Spatial Approximations with several sources

Apart from this limitation, we can see in Figures 5a and 5c that the execution time
when considering spatial approximation is higher. This is because it is more expensive
to traverse the model by applying hops (the model is traversed through objects and
relationships among them) instead of filtering by attributes. We see that, in this case,
random approximation is more efficient and accurate. However, there might be cases
where it is not possible to filter by property, such as in some social networks analysis,
where some conclusions can only be taken by traversing the model, so the use of a
spatial window is essential.

Let us now consider Q5 for further studying the performance evolution of spatial
approximations. As we see in Figure 6a, execution time seems to increase exponentially
as the number of hops grows. Indeed, as we see in Figure 6b, recall grows slowly in
comparison with the execution time.

RQ3: There is no approximation method that always provides the best trade-
off between performance and accuracy. While random approximations typically
behave the same no matter how data is distributed in source models, temporal
approximations behave differently depending on how source data is temporally
distributed. As for spatial approximation, approximating using hops is expen-
sive in terms of runtime, but there might be systems or situations where it is
the only possible approximation.

4.3 Discussion

First of all, the concepts defined in Section 3.1 serve for explaining our approach from
a conceptual point of view. However, we do not try to obtain first a Pattern Model
and then Approximate Models. In our implementation, these tasks are implicitly done
by the query, as we have shown in Listings 1 and 2.

These Approximate Models offer the best balance between performance and accu-
racy. Since this balance can be subjective, this decision must be ultimately taken by
the user. Having said that, we would like to explore the use of search-based algorithms
for determining the Pareto front of Optimal Models, according to a set of optimization
criteria (such as decreasing execution time and improving precision and recall).

Although performance is usually defined in terms of execution time and memory
consumption, this paper is focused on the first feature, since we consider it is the main

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 17

0

2,000

4,000

6,000

8,000

10,000

12,000

2.0

2.2

2.4

2.6

2.8

3.0

3.2

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Memory	consumption	 31K	- Batch	B

Memory	consumption	(GB) Elements	 returned

(a) Memory consumption evolution for Q3
with Random Approximation

0

2,000

4,000

6,000

8,000

10,000

12,000

2.0

2.2

2.4

2.6

2.8

3.0

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

days

Memory	consumption	 31K	- Batch	B

Memory	consumption	(GB) Elements	 returned

(b) Memory consumption evolution for Q3
with Temporal Approximation.

0

10

20

30

40

50

2.0

2.2

2.4

2.6

2.8

3.0

3.2

100 200 300 400 500 600 700 800 900

El
em

en
ts
	re

tu
rn
ed

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

hops

Memory	consumption	 31K	- Batch	B

Memory	consumption	(GB) Elements	 returned

(c) Memory consumption evolution for Q4
with Spatial Approximation.

Figure 7 – Memory consumption for Q3 and Q4.

concern in data processing applications. However, in order to have a first estimation, we
have measured memory consumption in model 31K of batch B for Q3 with Temporal
and Random approximations, and Q4 with Spatial approximation. Results of the
experiments are shown in Figure 7. As we can observe in Figures 7a and 7b, memory
consumption grows as the Approximate Model increases its size for Temporal and
Random approximations. However, in Figure 7c, memory consumption decreases as
more hops are considered in the Spatial approximation. This may be due to the fact
that some parts of the model are discarded as we do more hops. More experiments
regarding memory consumption will be performed as part of our future work.

The conclusions presented in the previous section can be summarized as follows:

• Random approximations are the best option when a query does not
contain temporal or spatial filtering.

• Results of applying random approximations are similar no matter how
the source data is distributed.

• If a query contains a temporal filter and the data is distributed with a
temporal focus, then it is convenient to use a temporal approximation
centered on the focus.

• If a query contains a temporal filter but the source data is uniformly
distributed, then random approximations seem to perform best.

• Spatial approximations by means of hops are very expensive in terms of
runtime. They are only recommended when there is no other option.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

18 · Gala Barquero, Javier Troya and Antonio Vallecillo

4.4 Threats to Validity

In the following we describe the four types of threats that can affect the validity of
our study, according to Wohlin et al. [WRH+12].

4.4.1 Construct validity threats

They are concerned with the relationship between theory and what is observed.
Performance is typically measured in terms of memory consumption and execution
time. In this paper, we have only used execution time for performance comparison
between different types of approximation techniques, with different queries and data
distribution. Therefore, a possible construct validity threat is the use of only execution
time for performance measurement. However, since one of the critical points of many
data processing applications is to respond to the situations described by the queries
as quickly as possible, we believe that this measure is descriptive enough for this work,
although we plan to also consider memory consumption in future work.

4.4.2 Conclusion validity threats

Threats to the conclusion validity are concerned with the issues that affect the ability
to draw correct conclusions from the data obtained from the experiments. In our
experiments, the transitory load of the machine where the experiments were executed
can influence the execution time results. Besides, the elements returned for Random
approximation experiments may have small variations depending on the input data.
To mitigate both threats, we have run all experiments 6 times on the same machine
and taken the average execution time and elements returned by the 3 last runs.

4.4.3 Internal validity threats

These threats are related to those factors that might affect the results of our evaluation.
In our experiments, we have considered five queries. Although they present a certain
degree of variability, having considered more queries could have yielded different
results. Furthermore, for classifying such queries, we have considered the type of
window according to the definition of the query, and conclusions have been drawn
according to such type of window. However, other features could have been considered
in the classification, such as number and type of filters, action resulting from the
query (deletion, insertion, update...) or traversal path. These concepts might also
have an influence on the type of approximation recommended for each query in order
to obtain the best trade-off between accuracy and performance. Finally, the temporal
or spatial focuses present in the models influence the number of elements returned
by Temporal and Spatial approximations. We have considered models with different
types of focus. However, if we had consider a higher variability of these focuses, we
could have obtained different results.

We will aim for the mitigation of these threats by considering the different dimen-
sions mentioned for classifying the queries, as well as by considering more models with
higher variability.

4.4.4 External validity threats

These threats have to do with the extent to which it is possible to generalize the
findings of the experiments. The first threat is that the results of our experiments have
been obtained with one case study, which externally threatens the generalizability of
our results. To mitigate this threat, we have tried to select five queries that consider

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 19

different situations with different approximations. Furthermore, the case study has
been selected from a real situation. In any case, we plan to consider more case
studies for future experiments. Second, we have used Gremlin and TinkerGraph as the
technologies for implementing our approach, since they are state-of-the-art technologies
for database querying and in-memory data storage, respectively. In any case, we do
believe the same conclusions would have been drawn with similar technologies, such
as Cypher, but we plan to perform further experiments as future work. Finally, the
results of the experiments depend on the size and distribution of the data. To mitigate
this threat, all experiments have been run with different data sizes and distributions.

5 Related Work

Our approach derives from two previous works. First, [TWBV14] introduces the
concept of Approximate Model Transformation (AMT), and the error from applying
AMTs is calculated with statistical formulas. However, data are not related to each
other, but they are just a stream of simple events. Then, [BBTV18] provides a proto-
typical solution based on CEP to process graph-structured information. The system
was implemented with Spark and the GraphX tool for graph-parallel computation.
The concept of spatial window was introduced using vicinity graphs. This paper
complements these works by exploring different strategies for selecting the subset
of data to perform the approximations with graph-structured information, and by
providing mechanisms to estimate the accuracy of the different options.

Some studies have applied approximations similar to the ones we propose in
this paper. For instance, some works have used spatial windows when dealing with
streaming models [CdL13] and very large or even infinite models [CTB12], where a
sliding window limits the data to be processed at any given moment in time. Similarly,
the work [JVEV18] uses a grid to represent a forest-fire spreading example, where
the spreading is represented with vicinity links between the cells. Although our
approach is in the context of these works, we specially focus on providing the necessary
mechanisms for obtaining the accuracy of the results when applying different types of
approximations. Regarding random approximations, other authors use sampling-based
approaches to improve the execution time in large models [BHK18]. However, their
proposal is limited to models with up to 20,853 elements, clearly insufficient for the
kinds of models our proposal targets, with more than 2 millions of elements.

There are some works that apply crowd-sourcing techniques [TKFS13, TKFS16]
and develop statistical tools to find a trade-off between cost/time and completeness
of results. However, while the query result is constructed incrementally (the query is
performed on an initial small dataset and the result is refined as more source data
arrives to the system), in our proposal an initial large dataset is approximated at once.
There are more works that deal with incremental queries and transformations [SIR+,
UBH+15, BHR+10, JE04, JT10, RK12], where the input model changes with time.
However, they do not compute the error produced when not considering the complete
model for the transformation, what is of key importance in our approach. There are
some other works peripheral to ours. For instance, in [KS03] the authors select only a
subset of the information in order to manage information overload, so they mainly
aim for system survival, but sacrificing system reliability.

Some studies have proposed to apply precomputation in the context of Approximate
Query Processing (AQP) in database systems [CDK17, LL18]. This consists of
storing a summary of the source data with interesting information for the query

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

20 · Gala Barquero, Javier Troya and Antonio Vallecillo

(offline precomputation step) and then using this summary to approximate the source
information and performing the query. However, there are not many solutions that use
these techniques with complex data structures such as graph-based structures [CDK17,
LL18]. In our case, performing precomputation with large models would be too costly,
so we aim to perform the queries online, with no offline precomputation step.

Finally, technologies such as the distributed streaming platform of Apache Kafka
[Kaf19] or the streaming extension of Apache Spark [Spa19] are aimed for processing
information flows. They can generate streams of data as well as handle them. Our
work does not pretend to replace these technologies, but it can rather complement
them. In fact, our main goal is to obtain the best trade-off between execution time
and information loss when processing large amounts of graph-structured information.
An approach for reducing information to improve performance in complex stream
processing scenarios has already been developed for Streaming Transformations for
XML (STX) [CBN+19]. It consists of performing transformations to XML documents,
which are provided as sequences of XML events, accessing just a part of the entire
document in order to run the query. The part to be processed is selected with
precomputing tasks. This work differs from our approach in two aspects: it works with
XML-tree-like structures instead of graph structures and makes use of preprocessing
tasks to perform the approximation of the source data.

6 Conclusions and Future Work

In this paper we have explored different possibilities for approximating the queries
performed on models containing large amounts of data, and have proposed a method
for measuring the accuracy of the approximations, so that the user can find the right
balance between accuracy loss and performance gain. We have also analyzed how the
distribution of the input data affects these approximations.

Our experiments conclude that performance can indeed be improved. In fact, an
optimal accuracy value can be acquired when considering only part of the source
model. The results obtained do not pretend to be final nor conclusive. Indeed, we
plan to conduct further experiments. To begin with, we are interested in investigating
how the presence of more than one data focus in different time intervals can affect
the approximations. Similarly, we want to investigate spatial data focuses located in
different points of the model and their effects in the approximations.

Regarding the traversal algorithm for spatial approximations, Gremlin applies
a depth-first approach by default. It is interesting to study how applying other
algorithms affects accuracy of the approximations as well as execution time, so it is
something we plan to explore in future work. In this line, we also plan to consider
what benefits model indexing technologies can bring.

We also plan to study the evolution of performance in approximations that imply
both FPs and FNs in the same query, and how to obtain the amount of data for the
Optimal Models. In this case, both precision and recall will be evaluated. Of course,
more case studies are needed to better assess our proposal.

We also plan to address a new problem: how to automatically determine the Optimal
Models. We envision the application of search-based algorithms for determining the
Pareto front of Optimal Models, according to a set of optimization criteria, such as
decreasing execution time and memory consumption, and improving precision and
recall. Finally, we plan to do a more exhaustive evaluation of memory consumption
with many more experiments and study how the different approximation types can

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 21

affect this feature.

Verifiability

For the sake of verifiability, our implementation prototype as well as all artifacts of
the experiments and many more charts resulting from running all queries are available
on our project’s website, located on Github [BTV19].

References

[Apa19] Apache TinkerPop. The Gremlin Graph Traversal Machine and Lan-
guage, (accessed March 2019). https://tinkerpop.apache.org/
gremlin.html.

[BBTV18] Gala Barquero, Loli Burgueño, Javier Troya, and Antonio Vallecillo.
Extending complex event processing to graph-structured information.
In Proc. of MODELS’18, pages 166–175. ACM, 2018. doi:10.1145/
3239372.3239402.

[BBV13] The impact of the Mobile World Congress in a dynamic visual-
ization by BBVA and CartoDB, 2013. https://www.bbva.com/en/
impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/.
(accessed March 2019).

[BHK18] Julien Bernard, Pierre-Cyrille Héam, and Olga Kouchnarenko. An
approximation-based approach for the random exploration of large
models. In Proc. of TAP’18, pages 27–43, 2018. doi:10.1007/
978-3-319-92994-1_2.

[BHR+10] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András
Balogh, Zoltán Balogh, and András Ökrös. Incremental evaluation of
model queries over EMF models. In Proc. of MODELS’10, pages 76–90,
2010. doi:10.1007/978-3-642-16145-2_6.

[BTV19] Gala Barquero, Javier Troya, and Antonio Vallecillo. Approxi-
mate Transformation git repository, 2019. https://github.com/
atenearesearchgroup/approximateTransformation.git. (accessed
March 2019).

[CBN+19] Petr Cimprich, Oliver Becker, Christian Nentwich, Honza Jiroušek,
Manos Batsis, Paul Brown, and Michael Kay. Streaming Transformations
for XML (STX). Working Draft, (accessed May 2019). http://stx.
sourceforge.net/documents/.

[CDK17] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. Approximate
query processing: No silver bullet. In Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 511–519.
ACM, 2017. doi:10.1145/3035918.3056097.

[CdL13] Jesús Sánchez Cuadrado and Juan de Lara. Streaming Model Trans-
formations: Scenarios, Challenges and Initial Solutions. In Proc. of

Journal of Object Technology, vol. 18, no. 2, 2019

https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
http://dx.doi.org/10.1145/3239372.3239402
http://dx.doi.org/10.1145/3239372.3239402
https://www.bbva.com/en/impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/
https://www.bbva.com/en/impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/
http://dx.doi.org/10.1007/978-3-319-92994-1_2
http://dx.doi.org/10.1007/978-3-319-92994-1_2
http://dx.doi.org/10.1007/978-3-642-16145-2_6
https://github.com/atenearesearchgroup/approximateTransformation.git
https://github.com/atenearesearchgroup/approximateTransformation.git
http://stx.sourceforge.net/documents/
http://stx.sourceforge.net/documents/
http://dx.doi.org/10.1145/3035918.3056097
http://dx.doi.org/10.5381/jot.2019.18.2.a9

22 · Gala Barquero, Javier Troya and Antonio Vallecillo

ICMT’13, volume 7909 of LNCS, pages 1–16. Springer, 2013. doi:
10.1007/978-3-642-38883-5_1.

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-
mation: From data stream to complex event processing. ACM Comput.
Surv., 44(3):15:1–15:62, 2012. doi:10.1145/2187671.2187677.

[CTB12] Benoit Combemale, Xavier Thirioux, and Benoit Baudry. Formally
Defining and Iterating Infinite Models. In Proc. of MODELS’12, vol-
ume 7590 of LNCS, pages 119–133. Springer, 2012. doi:10.1007/
978-3-642-33666-9_9.

[DH99] Jeffrey Dean and Monika R. Henzinger. Finding related pages in the
world wide web. Comput. Netw., 31(11-16):1467–1479, May 1999. doi:
10.1016/S1389-1286(99)00022-5.

[EN10] O. Etzion and P. Niblett. Event Processing in Action. Manning Publica-
tions, 2010.

[Esp19] Esper. Esper Tech, (accessed March 2019). http://www.espertech.
com/esper/.

[HP13] Florian Holzschuher and Prof. Dr. René Peinl. Performance of graph
query languages: Comparison of cypher, gremlin and native access in
neo4j. In Joint EDBT/ICDT 2013 Workshop GraphQ (EDBT/ICDT
’13), pages 195–204, 2013. doi:10.1145/2457317.2457351.

[JE04] Sven Johann and Alexander Egyed. Instant and incremental trans-
formation of models. In Proc. of ASE’04, pages 362–365, 2004.
doi:10.1109/ASE.2004.10047.

[JT10] Frédéric Jouault and Massimo Tisi. Towards incremental execution
of ATL transformations. In Proc. of ICMT’10, pages 123–137, 2010.
doi:10.1007/978-3-642-13688-7_9.

[JVEV18] Maris Jukss, Clark Verbrugge, Maged Elaasar, and Hans Vangheluwe.
Scope in model transformations. Software and System Modeling,
17(4):1227–1252, 2018. doi:10.1007/s10270-016-0555-8.

[Kaf19] Apache Kafka. Apache Kafka. A distributed streaming platform, (ac-
cessed May 2019). https://kafka.apache.org/intro.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, September 1999. doi:10.1145/324133.324140.

[KS03] John C. Knight and Elisabeth A. Strunk. Achieving critical system
survivability through software architectures. In Rogério de Lemos,
Cristina Gacek, and Alexander B. Romanovsky, editors, Architecting
Dependable Systems II - [the book is a result of the ICSE 2003 Work-
shop on Software Architectures for Dependable Systems], volume 3069
of Lecture Notes in Computer Science, pages 51–78. Springer, 2003.
doi:10.1007/978-3-540-25939-8_3.

[LL18] Kaiyu Li and Guoliang Li. Approximate query processing: What is
new and where to go? - A survey on approximate query processing.
Data Science and Engineering, 3(4):379–397, 2018. doi:10.1007/
s41019-018-0074-4.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1007/978-3-642-38883-5_1
http://dx.doi.org/10.1007/978-3-642-38883-5_1
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1007/978-3-642-33666-9_9
http://dx.doi.org/10.1007/978-3-642-33666-9_9
http://dx.doi.org/10.1016/S1389-1286(99)00022-5
http://dx.doi.org/10.1016/S1389-1286(99)00022-5
http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://dx.doi.org/10.1145/2457317.2457351
http://dx.doi.org/10.1109/ASE.2004.10047
http://dx.doi.org/10.1007/978-3-642-13688-7_9
http://dx.doi.org/10.1007/s10270-016-0555-8
https://kafka.apache.org/intro
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1007/978-3-540-25939-8_3
http://dx.doi.org/10.1007/s41019-018-0074-4
http://dx.doi.org/10.1007/s41019-018-0074-4
http://dx.doi.org/10.5381/jot.2019.18.2.a9

Trading Accuracy for Performance in Data Processing Applications · 23

[Luc02] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley,
2002.

[Luc12] David C. Luckham. Event Processing for Business: Organizing the
Real-Time Enterprise. Wiley, 2012.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008. doi:10.1007/s10791-009-9115-y.

[Neo19] Neo4j. Cypher Query Language, (accessed March 2019). https://neo4j.
com/developer/cypher-query-language/.

[PP11] Arie Perliger and Ami Pedahzur. Social network analysis in the study
of terrorism and political violence. PS: Political Science amp; Politics,
44(1):45–50, 2011. doi:10.1017/S1049096510001848.

[RK12] Ali Razavi and Kostas Kontogiannis. Partial evaluation of model
transformations. In Proc. of ICSE’12, pages 562–572, 2012. doi:
10.1109/ICSE.2012.6227160.

[SIR+] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor
Bergmann, and Dániel Varró. incquery-d.

[SIRV18] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. The train
benchmark: cross-technology performance evaluation of continuous
model queries. Software & Systems Modeling, 17(4):1365–1393, Oct 2018.
doi:10.1007/s10270-016-0571-8.

[Spa19] Apache Spark. Spark Streaming Programming, (accessed
May 2019). https://spark.apache.org/docs/latest/
streaming-programming-guide.html.

[Tin19] TinkerPop. Apache TinkerGraph, (accessed March 2019).
http://tinkerpop.apache.org/docs/current/reference/
#tinkergraph-gremlin.

[TKFS13] Beth Trushkowsky, Tim Kraska, Michael J. Franklin, and Purnamrita
Sarkar. Crowdsourced enumeration queries. In Proc. of ICDE’13, pages
673–684, 2013. doi:10.1109/ICDE.2013.6544865.

[TKFS16] Beth Trushkowsky, Tim Kraska, Michael J. Franklin, and Purnamrita
Sarkar. Answering enumeration queries with the crowd. Commun. ACM,
59(1):118–127, 2016. doi:10.1145/2845644.

[TWBV14] Javier Troya, Manuel Wimmer, Loli Burgueño, and Antonio Vallecillo.
Towards approximate model transformations. In Proc. of the Workshop
on Analysis of Model Transformations (AMT@MoDELS’14), pages 44–
53. CEUR-WS, 2014.

[UBH+15] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
Benedek Izsó, István Ráth, Zoltán Szatmári, and Dániel Varró. EMF-
IncQuery: An integrated development environment for live model
queries. Sci. Comput. Program., 98:80–99, 2015. doi:10.1016/j.scico.
2014.01.004.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and
Björn Regnell. Experimentation in Software Engineering. Springer, 2012.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1007/s10791-009-9115-y
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
http://dx.doi.org/10.1017/S1049096510001848
http://dx.doi.org/10.1109/ICSE.2012.6227160
http://dx.doi.org/10.1109/ICSE.2012.6227160
http://dx.doi.org/10.1007/s10270-016-0571-8
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
http://dx.doi.org/10.1109/ICDE.2013.6544865
http://dx.doi.org/10.1145/2845644
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.5381/jot.2019.18.2.a9

24 · Gala Barquero, Javier Troya and Antonio Vallecillo

[YN07] Christopher C. Yang and Tobun D. Ng. Terrorism and crime related
weblog social network: Link, content analysis and information visualiza-
tion. In 2007 IEEE Intelligence and Security Informatics, pages 55–58,
May 2007. doi:10.1109/ISI.2007.379533.

About the authors

Gala Barquero is PhD student at the University of Málaga,
Spain. She worked as Java developer at Viewnext company from
the IBM group before that time (2015-2017). She graduated
as Telecommunications Engineer at University of Jaén, Spain
(2015). Her current research interests include Model-based Software
Engineering, Real-time Analytics and Software Quality. Contact
her at gala@lcc.uma.es.

Javier Troya is Assistant Professor of Software Engineering at
the University of Seville, Spain. Before, we was a post-doctoral re-
searcher in the TU Wien, Austria (2013-2015), and obtained his In-
ternational PhD with honors from the University of Málaga, Spain
(2013). His current research interests include Model-based Software
Engineering, Software Testing and Software Quality. Contact him
at jtroya@us.es, or visit http://www.lsi.us.es/~jtroya/.

Antonio Vallecillo is Professor of Software Engineering at the
University of Málaga, Spain, where he leads the Atenea Research
Group. His current research interests include Model-based Software
Engineering, Open Distributed Processing, and Software Quality.
More information about his publications, research projects and
activities can be found at http://www.lcc.uma.es/~av. He can
be contacted at av@lcc.uma.es.

Acknowledgments This work has been partially supported by the European Com-
mission (FEDER) and Spanish Government under research projects TIN2014-52034-R,
TIN2015-70560-R, RTI2018-101204-B-C21, and PGC2018-094905-B-I00.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1109/ISI.2007.379533
mailto:gala@lcc.uma.es
mailto:jtroya@us.es
http://www.lsi.us.es/~jtroya/
http://www.lcc.uma.es/~av
mailto:av@lcc.uma.es
http://dx.doi.org/10.5381/jot.2019.18.2.a9

	Introduction
	Running Example
	Approach
	Reducing source data
	Temporal Approximations
	Spatial Approximations
	Random Approximations

	Measures for accuracy
	Implementation
	Gremlin
	TinkerGraph
	Example queries

	Evaluation
	Experimental Setup
	Source Models
	Queries and approximations
	Experiments and data collected
	Pattern Model vs Approximate Model vs Optimal Model
	Execution environment

	Results
	Discussion
	Threats to Validity
	Construct validity threats
	Conclusion validity threats
	Internal validity threats
	External validity threats

	Related Work
	Conclusions and Future Work
	Bibliography
	About the authors

