
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

From Imprecise N-Way Model
Matching to Precise N-Way Model

Merging

Dennis Reulinga Malte Lochaub Udo Keltera

a. Software Engineering Group, University of Siegen, Germany

b. Real-Time Systems Lab, TU Darmstadt, Germany

Abstract
N-way model merging is a key technique for managing software variabil-

ity, by integrating N concurrent model variants/versions into one. Most
merging techniques are based on three operators: (1) compare, (2) match
and (3) merge. As finding optimal solutions for (2) in terms of matching
precision is NP-hard, many proposals for scalable yet sufficiently precise
matching heuristics exist. However, most approaches are either generic
which obstructs precision if applied to realistic modeling languages, or they
require excessive computational upfront investment already in step (1) to
ensure sufficient precision. We propose an alternative approach for auto-
mated construction of precise model merges by focusing on step (3): given
an arbitrarily imprecise matching, we incrementally apply default model-
refactoring operators, as available for most mature modeling languages, to
identify and unify further similarities among initially unmatched model
elements. For those model-refactoring operators to produce correct results
if applied to merged models, we utilize variability encoding as known from
product-line engineering. Our tool implementation supports any EMF-
compliant modeling language and is instantiated for UML class diagrams
to demonstrate our methodology. Our evaluation results show that our
technique (a) preserves the precision of near optimal matchings and (b)
remarkably improves the precision of arbitrarily imprecise matchings while
requiring acceptable computational effort.

Keywords Model Merging, Model Transformation, Software Variability

1 Introduction

In many modern application domains, software exists in many variants and/or versions.
Model-based engineering offers elaborated techniques and tools to cope with the ever-
growing complexity of software due to this inherent variability. N-way model merging

Dennis Reuling, Malte Lochau, Udo Kelter. From Imprecise N-Way Model Matching to Precise N-Way
Model Merging. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In
Journal of Object Technology, vol. 18, no. 2, 2019, pages 8:1–20. doi:10.5381/jot.2019.18.2.a8

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a8
http://dx.doi.org/10.5381/jot.2019.18.2.a8

2 · D. Reuling et al.

has become a key technique for variability management, aiming at integrating N often
concurrently developed model variants/versions of the same software into one unified
representation [RC13a]. Classical merge-operators from repository systems like SVN
or GIT usually perform 3-way merging, by actually merging two concurrent variants,
whereas a third variant serves as base model for automating merge decisions in case
of local differences between variants [Men02]. If a merge decision cannot be made
automatically, a merge conflict occurs which requires manual resolution [WLS+12].
Obviously, those techniques are insufficient for automated N-way merging of complex
graph-based models with rich semantics (e.g., UML class diagrams). Most recent
approaches for N-way model merging use a combination of three steps/operators: (1)
compare, (2) match, and (3) merge [RC13a]. The computational problem underlying (2)
of finding optimal matchings covering a maximum number of similar elements between
N input models w.r.t. compare metrics of (1) is known to be NP-hard [RC13a]. Many
heuristics have been proposed for computing sufficiently precise N-way matchings
under reasonable effort [WWS+17, HWL+14, SRA+16, MZB+15]. Unfortunately,
these approaches are either generic which may, again, compromise the precision when
adapted to realistic modeling languages, or they require excessive computational
upfront investment already during step (1) to ensure sufficient precision in step (2).
Furthermore, after step (2), most approaches devise a basic unify-merge in step (3)
by simply integrating all matched model parts in a "copy-as-is" fashion into one
merged model. Unfortunately, this naive approach often fails to produce useful
representations as it potentially yields syntactically ill-formed and/or semantically
incorrect output models (e.g., in case of merge conflicts). In contrast, lifting off-
the-shelf tools for automated software analysis to product-line engineering [TAK+14]
usually requires merged models to be at least syntactically well-formed and semantically
sound [RKBL19].

In this paper, we propose a novel approach for the automated construction of
syntactically well-formed and semantically correct, yet precise N-way model merges
incorporating integrated handling of merge conflicts. To this end, we focus on step (3):
given an arbitrarily (im-)precise matching as well as syntactically valid input models,
our framework applies a catalog of model-transformation operators for fully-automated,
yet preferably precise merged representations of all N model variants/versions. For
this purpose, our methodology utilizes default model-refactoring operators, as available
for most mature modeling languages, e.g., UML [SPLTJ01, TS14], EMF [BEK+07],
BPMN [WR08] or FODA feature diagrams [SBRCT08a], for identifying and unifying
further similarities among initially unmatched model elements in a merged model.
For model-refactoring operators to produce correct results if applied to unify-merged
models, we utilize the concept of variability encoding from product-line engineer-
ing [PS08, vRTS+16] to embed variability-information, including conflicting parts,
into merged models. To summarize, we make the following contributions.

• We propose a methodology for automated N-way model merging which does
not depend on the precision of a given matching. Our framework combines
variability-encoding and model-refactoring operators to ensure correctness and
to improve precision of the merged model.

• We present a tool supporting any EMF-compliant modeling language and we
instantiate our methodology for UML class diagrams.

• We provide evaluation results showing that our approach (a) preserves precision
of near optimal matchings and (b) remarkably improves precision of imprecise

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 3

(C)(A) (B)

Bank

[0..*] accounts

[1..*]

Account

id : Int

withdraw
(amount Double)

credit : Double

Bank

[0..*] clients [0..*] accounts

[1..*]

accounts

Account

id : Int

withdraw
(amount Double)

credit : Double

Bank

[0..*] clients [0..*] accounts

Client

addAccount
(account Account)

[1..1]

accounts

Account

id : Int

withdrawMoney
(amount Double)

credit : Double
limit : Double

Person

taxNr : Int

Company

vatNr : Int

name : String

Client

addAccount
(account Account)

name : String
clNr : Int clNr : Int

[0..*] clients

addAccount
(account Account)

name : String

[1..1]
Client

{abstract}

accounts
[1..*] [1..*]

owner owner owner

Figure 1 – Class-Diagram Variants of a Banking System.

matchings, both under acceptable computational effort.

We provide our tool and all experiment data on a supplementary web page [acc19].

2 Background and Motivation

Consider the UML class diagrams, (A), (B) and (C) in Fig. 1, each constituting a
variant of a structural specification of a (simplified) banking system [RC13b, ABJ+10,
MZB+15, DRB+13, RCC15].
Class Diagram (A). This variant consists of the classes Bank, Client and Account.
Each Client has an attribute name and owns at least one Account, where each Account
is owned by exactly one Client. A Client is either a single Person or a Company both
identified by their attributes taxNr and vatNr. Each Account consists of a unique id
and a current credit value. Method addAccount of class Client adds further accounts
to a Client and a Client can withdraw money from his/her Accounts.
Class diagram (B). In this variant, the classes Person and Company with their
attributes taxNr and vatNr are replaced by the attribute clNr for identifying clients
and class Client is no longer abstract. In addition, this variant permits multiple Clients
to own the same Account.
Class diagram (C). Here, class Account owns a further attribute limit for overdraw-
ing and method withdraw has been renamed to withdrawMoney.

Semantically, class diagrams specify (potentially infinite) sets of valid instantia-
tions (object diagrams) satisfying all constraints (e.g., cardinality bounds). Due to
similarities among (A), (B) and (C), some instantiations are equally valid for more
than one variant, whereas others are only valid for one particular variant.
N-Way Model Merging. The goal of N-way model merging is to make explicit
common and variable parts in a given set of N model variants/versions m1,m2, . . .mN

by constructing one merged model m〈1..N〉 which contains all input models and (syn-
tactically) unifies similar parts among these models [RC13a]. Most (semi-)automated
model-merging approaches are decomposed into three consecutive steps and respective
operators called compare, match and merge [RC13a]. The compare-step consists of
metrics for measuring the similarity of (subsets of) model elements from different
input models using model-type-specific operators. By Ei, 1 ≤ i ≤ N , we denote the
sets of elements of the input models mi, 1 ≤ i ≤ N . A Matching M for a set of input
models m1,m2, . . .mN then consists of a set of N -tuples T ∈ M with 1 ≤ |T | ≤ N
grouping similar model elements such that (1) every element ei ∈ Ei of each input
model mi, 1 ≤ i ≤ N , is contained in exactly one tuple T ∈ M and (2) each tuple
T ∈M contains at most one element from each input model. Hence, M constitutes a
partitioning of the union of the sets of model elements of all N input models.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

4 · D. Reuling et al.

In our running example, all classes and respective class members having equal
names in (A), (B) and (C) may be matched into the same tuples, whereas elements
with variant-specific elements (e.g., class Person and Company, attribute limit) are
matched as dissimilar into singleton tuples. To match corresponding elements even
after small changes (e.g., association owner or renamed method withdraw), most
practical approaches [MZB+15, WWS+17] (also) apply so-called identity-based match-
ing [KKPS12], where compare-metrics utilize (internal) identifiers of model elements
(e.g., as used by modeling tools). Besides name-based and identity-based matching of
major model elements like classes, compare-operators for dependent model elements
like associations further take context-specific information into account (e.g., similarity
of source- and target-classes).
Matching Precision vs. Merge Precision. An optimal (i.e., maximally precise)
matching M groups a maximum number of similar elements (w.r.t. the compare-
measures) shared between all input models. Computing such an optimal matching M
(semi-)automatically is known to be NP-hard [RC13a] in the number N of variants
under consideration and many heuristics have been developed for sufficiently precise,
yet effectively computable N-way matchings [WWS+17, HWL+14, SRA+16]. Unfor-
tunately, these approaches are either generic which may, again, compromise precision
when adapted to realistic modeling languages, or they require excessive computational
upfront investment already during the compare-step.

Concerning the merge-step, precision of the merged models is crucial in various con-
texts and use cases, e.g., for understanding common and variable parts [EMCLGP09]
or (automated) software analyses [TAKS14, BLL+13]. In this regard, different pre-
cision criteria may be considered for guiding the merging process. Typically, these
criteria use syntactic model metrics which quantify the succinctness of the merge
result [RC13b, RKBL19]. We assume, without loss of generality, that one key goal of
N -way model merging is to reduce duplications among the merged variants within
the merged model. To this end, unifying similar elements (w.r.t. compare-measures)
as much as possible potentially leads to a optimally precise merged model m〈1..N〉
(i.e., model elements grouped as similar in an (optimal) matching M are, as far as
possible, also integrated as one unified element into m〈1..N〉) [RC13b]. We may charac-
terize precision of a merged model m〈1..N〉 with respect to any given (i.e., arbitrarily
(im-)precise) matching M as

Prec(M,m〈1..N〉) =
|M |
|E〈1..N〉|

,

by relating the number of tuples in M to the resulting number of elements in the
merged model m〈1..N〉. Hence, in a precision-preserving merged model m〈1..N〉 for
a given matching M , every tuple T ∈ M is integrated into m〈1..N〉 by exactly one
element eT ∈ E〈1..N〉.

Concerning our example, if we count class members, i.e., attributes, associations
and methods (e.g., Account.id, Bank.clients and Client.addAccount) as model elements
then our variants (A), (B) and (C) consist of |EA| = 11, |EB| = 10 and |EC| = 11
elements, respectively. Figure 2 (on the top) depicts a maximally precise merged
model mpr〈A,B,C〉 including all elements of (A), (B) and (C) with |M | = 13 tuples,
where colors are used to relate elements to variants. Hence, Fig. 2 (on the top)
constitutes a precision-preserving merged model for an optimal matching M with

|M |
|Empr〈A,B,C〉|

= 13
13 = 1.0, resulting from simply unifying each matched element in M

into one element in mpr〈A,B,C〉. However, this model does not constitute a correct

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 5

Bank

[0..*] clients [0..*] accounts

[1..*] accounts

Client

addAccount
(account Account)

name : String

clNr : Int
Person

taxNr : Int

Company

vatNr : Int

Account

id : Int

(amount Double)

credit : Double
limit : Double
withdrawMoney

[1..1/*] owner{abstract}

Bank

[0..*] accounts

Account

[1..*] accounts

id : Int

(amount Double)

credit : Double
limit : Double

addAccount
(account Account)

name : String

Person

taxNr : Int

Company

vatNr : Int
withdraw

[0..*] clients

addAccount
(account Account)

name : String

Client

clNr : Int

[0..*] clients

[1..*] accounts
[1..1] owner

[1..*] owner

[1..1] owner

(amount Double)
withdrawMoney

Client
{abstract}

Figure 2 – Precise (top, mpr〈A,B,C〉) and Imprecise (bottom, mim〈A,B,C〉) N-way unify-
merged model of all three variants. Parts common to all three models are denoted in
black, grey parts are shared between two variants. Parts being unique for one variant
are either depicted in blue (A), in green (B), or red (C).

model due to syntactic as well as semantic merge conflicts.
Merge Conflicts. Unify-merging of models m1,m2, . . .mN using matching M yields
a model m〈1..N〉 which contains, for each tuple T in M , a model element eT unifying
all elements ei ∈ Ei grouped in T . Such a "copy-as-is" approach frequently fails to
produce useful representations as it potentially yields syntactically ill-formed and/or
semantically incorrect merged models. Hence, for a merged model to constitute a
useful representation, we further require correctness in terms of syntactic validity (i.e.,
conformance to a meta model) and to semantically reflect the input models (i.e., the
set of valid instantiations of the merged model is equivalent to the union of the sets
of valid instantiations of all N model variants). Reconsidering our example in Fig. 2,
we observe several syntactical conflicts as class diagrams do not allow classes to be
both concrete and abstract, references with multiple contradicting properties, and one
method declaration with multiple names. Furthermore adding the new attribute limit
from variant (C) into class Account of the merged model leads a semantic conflict as
new new instantiations can be derived from the merged model, not being valid for
any input model variant. Hence, for ensuring correctness, additional steps may be
required for resolving merge conflicts, by re-separating syntactically or semantically
incompatible elements in m〈1..N〉, although being grouped in a given matching M .
For instance, in the merged model mim〈A,B,C〉 in Fig. 2 on the bottom, conflicting
elements have been duplicated to obtain an—at least syntactically—correct merged
model. As a consequence, merge precision is decreased to |M |

|Emim
| =

13
20 = 0.65 as

similarity information of matching M is not entirely preserved in the merged model.
In addition, semantic conflicts often remain unresolved by most default strategies
using simple duplication: in mim〈A,B,C〉 the duplication of reference owner from class
Account within the (merged) class Client results in invalid instantiations of class
Account.

To summarize, not only scalability vs. precision, but also correctness vs. precision
are, in general, contradicting goals of N-way model-merging. To tackle these challenges,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

6 · D. Reuling et al.

typed over typed over

Metamodel

Related Models &
N-Way Matching

according to

Merged
Model

REFREFREF
VEOVEO

VEO

according to

VP VP
Variability

Normalization

(1)

Unify
Merge

(2)

Variability
Encoding

(3)

Model
Refactoring

(4)

Figure 3 – Conceptual Overview of our Methodology

we propose an alternative approach for incrementally constructing correct and precise
N-way merged models from any given—thus arbitrarily (im)precise— matching M in
a scalable and automated way.
Improving Merge Precision by Model Refactoring. In contrast to all recent
approaches, we focus on the merge-step by incrementally applying as a post-processing
step model-refactoring operators, as being available for most mature modeling lan-
guages, to identify and unify further similarities among (initially) unmatched model
elements. Many model-refactoring operators for UML class diagrams aim at factoring
out—and thereby reusing—similar elements among structurally related model parts by
employing built-in generalization constructs such as inheritance [SPLTJ01]. However,
for those operators to be able to automatically detect and apply refactorings within
merged models, those models must be (at least syntactically) correct. For instance, we
may apply the following refactoring operations to both Client classes in mim〈A,B,C〉
in Fig. 2 (on the bottom): extractSuperClass(Client,Client,NewSuperCl), pullUpAt-
tribute(name, Client, Client, NewSuperCl), pullUpMethod(addAccount, Client, Client,
NewSuperCl) and pullUpAssociation(accounts, Client, Client, NewSuperCl) to iden-
tify and factor out similar elements, thus leading to an improved merge precision
of |M |
|Emim

| =
13

20−3 = 0.76 as compared to 0.65. In contrast, associations clients and
owner cannot be merged in this way as those elements are duplicated within the
classes Account and Bank. Hence, for model-refactoring operators to be applicable to
a unify-merged model and to produce correct results even in the presence of merge
conflicts, we will utilize the concept of variability encoding as known from product-line
engineering (see Sect. 3). This enables us to also pull up both associations clients
and owner to respective common superclasses of Bank and Account, thus further
improving merge precision to |M |

|Emim
| =

13
17−2 = 0.87. In contrast, some syntactical

merge conflicts like contradicting multiplicities of reference owner and differing names
of method withdraw cannot be handled this way thus leading to a decreased merge
precision. Nevertheless, as our evaluation results will show (see Sect. 4), this is only
the case for (near) optimal matchings which are usually not available in practice.

3 Improving Precision of N-Way Model Merging

Figure 3 provides a conceptual overview of our methodology. The input consists of a
set of N related models m1,m2, . . .mN which are typed over a common meta model
MM and a matching M for these models. The preceding compare- and match-steps
are not shown in Fig. 3 as our methodology works with any given matching (including
the most imprecise one containing only singleton tuples). The merged output model
m〈1..N〉, also typed over MM, is constructed in two phases, where variability encoding

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 7

(steps (1), (2) and (3) in Fig. 3) is concerned with correctness and model refactoring
(step (4)) is concerned with precision of the merged model. The goals of the four steps
are as follows.

1. Variability Normalization. The Precision of matching M is reduced to a
normalized matching M ′ to be conforming with MM.

2. Unify Merge. A unify-merged model mu〈1..N〉 is derived from the normalized
matching M ′ as usual.

3. Variability Encoding. The unify-merged model mu〈1..N〉 is enriched by en-
coding variant/version information to obtain a semantically well-formed merged
model me〈1..N〉.

4. Model Refactoring. The variability-encoded merged model me〈1..N〉 is incre-
mentally refactored to improve precision while preserving correctness to finally
obtain the merged output model mr〈1..N〉.

The following sections describe each step in greater detail.

3.1 Variability Normalization

The goal of step (1) is to ensure that for a given N -way matching the resulting merged
model is syntactically well-formed with respect to MM after step (2). This step
consists of a catalog of model-transformation rules for normalizing matching M by
removing all tuples T from M which are not directly unifiable into a unify-merged
model in compliance with MM. All such tuples are replaced by |T | singleton tuples,
each containing one of the matched elements in e ∈ T .
Decomposition. We assume EMOF-based representations of models by means of
abstract syntax graphs constructed by atomic operations [KKT13]. We decompose
input models according to the (generic) element types defined by MM following the
concept of atomic model elements (AME) [MZB+15]. Each AME is either of type
Class (not to be confused with UML classes), Attribute or Reference. Hence, each
node of the abstract syntax graph is represented by a (meta-)class object, each edge
by a Reference object, each attribute by an Attribute object and each element (except
for the root element) references its container element.
Normalization Rules. We define three generic normalization rules, each rule splits
up tuples in the matching by replacing them with respective singleton tuples if
the grouped elements are not unifiable into a syntactically valid merged model. In
particular, tuple T is split up in matching M due to possible merge conflicts originating
from (another) tuple T ′, if

• the container-elements of all elements in T are not all matched in the same tuple
T ′ ∈M , or

• the attributes of all container-elements in T are not all matched in the same
tuple T ′ ∈M (due to different attribute values) or the number of different values
exceeds the upper-bound limit of the attribute type, or

• the references to all source-elements in T are not all matched in the same tuple
T ′ ∈M (due to different targets) or the number of different targets exceeds the
upper-bound limit of the reference type.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

8 · D. Reuling et al.

Bank
[0..*] accounts

[0..*] clients
[0..*] clients

[0..*] clients

[1..*] accounts

[1..1] owner
Company

vatNr : Int

Person

taxNr : Int

[1..*] accounts

Account

id : Int

(amount Double)

credit : Double
limit : Double

withdrawMoney

(amount Double)
withdraw

(amount Double)
withdraw

[1..*] accounts

Client

addAccount
(account Account)

name : String
clNr : Int [1..*] owner

[1..1] owner

Client

addAccount
(account Account)

name : String
clNr : Int

addAccount

(account Account)

name : String

Client
{abstract}

Figure 4 – Unified Model mu after Steps (1) and (2)

These rules are recursively applied as long as some rule remains applicable.
Given the matching M in Fig. 2 (upper), the following normalization-rule applica-

tions are executed, resulting in a normalized matching M ′. First, the tuple containing
association owner from class Account to class Client is split up due to conflicting
upper bounds (1 vs. *). Similarly, tuples containing classes Client are split up in case
of conflicting values for attribute abstract (true for variant (A) and false, otherwise).
Tuples containing elements related to class Client are thus also split up including each
contained element of Client (i.e., attributes clnr and name, operation addAccount as
well as association accounts to class Account). Further tuples containing references to
Client are then split up as well (i.e., association clients from Bank to Client). Finally,
the tuple containing the methods withdraw and withdrawMoney is split up due to
conflicting names.

3.2 Unify Merge

Each tuple T ∈ M ′ in a normalized matching M ′ is inserted as element eT into a
unify-merged model. In addition, as preparation for step (3), each element ei in
every tuple T ∈ M ′ is tagged with variability information, uniquely identifying the
model variant(s) mi the elements originate from. Technically, we may utilize meta-
information capabilities as provided by any mature EMOF-based modeling language
(e.g., instances of (meta-)class Comment in case of UML class diagrams). In the
unify-merged model of our example in Fig. 4, variability information is depicted with
the same colors as in Fig. 2. In product-line engineering, such variability information is
usually represented as presence condition (e.g., propositional formulae over variability
parameters, e.g., Boolean features [CA05]). Although the merged model resulting
from step (1) and (2) is syntactically valid, it may be still semantically incorrect, e.g.,
permitting model instantiations that are not valid for any model variant. For instance,
the merged model in Fig. 4 allows an instance of class Person, which is only valid
for variant (A), to reference an instance of Account incorporating the limit attribute
which is, however, only valid for variant (C). A solution to this problem is the goal of
step (3).

3.3 Variability Encoding

In this step, we employ principles from product-line engineering, called variability
encoding [PS08]. The idea of variability encoding is to integrate variability (meta-

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 9

Rule ClassPropertiesToSubClasses(cname, variants)

«preserve»
:Class

«set» isAbstract=true
name=cname

«preserve»
:Package

«preserve*»
:Property

«create»
:Class

name=cname + "_" + variants

«create»
:Generalization

«preserve*»
:Operation

«preserve*»
:Generalization

«preserve*»
:Comment

body=variants
generalization

«create*»

ownedOperation
«delete*»

packagedElement

«preserve»

packagedElement

«create»

annotatedElement
«preserve*»

generalization

«create»

annotatedElement
«preserve*»

general

«create»

ownedAttribute

«create*»

annotatedElement
«preserve*»

ownedOperation

«create*»

generalization
«delete*»

ownedAttribute

«delete*»

packagedElement

«preserve»

packagedElement

«create»
general

«create»

generalization

«create»

ownedAttribute

«create*»

generalization
«create*»

ownedOperation

«create*»

generalization
«delete*»

ownedAttribute

«delete*»

ownedOperation
«delete*»

annotatedElement
«preserve*»

annotatedElement
«preserve*»

annotatedElement
«preserve*»

Figure 5 – VEO for UML Class Properties

)information into variable parts of programs or models by using built-in constructs of
the programming- or modeling-language under consideration. One major advantage of
this approach is that existing state-of-the-art tools and techniques for the development
and analysis of programs/models are likewise applicable to variability-enriched model
variants/versions (e.g., facilitating family-based analysis of entire product families in a
single run [TAKS14]). A disadvantage arises from the additional overhead introduced
by the encoded variability information. For instance, compile-time variability by
means of ifdef macros for conditional compilation as provided by the C preprocessor
can be encoded by regular if statements over variability parameters, thus yielding
run-time variability [vRTS+16]. Similarly techniques exist for encoding variability into
others kinds of programs and models, by exploiting respective language constructs for
supporting structured encapsulation and reuse of common and variable parts [EW11].
In particular, UML offers a variety of modeling constructs for expressing common or
variable parts or behaviors (e.g., type hierarchies and inheritance in UML class diagrams
and guarded transitions as well as choice-connectors in UML state machines) [NSC+12,
RF11]. Based on those constructs, we consider language-specific variability-encoding
operators (VEOs) to encode variability meta-information of step (2) into the merged
model.
VEOs. Each VEO defines a pattern where the operator can be applied in a merged
model and transformations to encode variability information.

Specifying appropriate (i.e., correct and complete) catalogs of VEOs for a modeling
language is subject to work on product-line engineering and, therefore, not further
discussed in this paper [EW11]. Conversely, each kind of element for which no VEO
can be defined has to be handled by normalization already during step (1). Hence,
the more elements can be handled by encoding variability in the merged model, the
less similarity information from the matching is lost in the final merged model. For
instance, if no VEO is defined for similar, yet differently named methods of matched
classes, the tuple grouping the classes Account has to be split up in step (1) due to
conflicting method names withdraw and withDrawMoney thus causing further tuples to
be split up (e.g., reference accounts from Bank to Account). Hence, if no VEO are
given at all, all tuples are split up into singletons thus leading to the most imprecise
merged model. We, again, consider VEOs to be implemented as graph transformation
rules, allowing a fine-grained and declarative way of specifying change operations,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

10 · D. Reuling et al.

[0..*] accounts

name : String
{abstract}
Client_A

withdrawMoney
(amount Double)

limit : Double

Account_C

withdraw
(amount Double)

Account_B

[1..1] owner[1..1] owner

withdraw
(amount Double)

Account_A

{abstract}
Bank_A_B_C

id : Int
credit : Double

{abstract}
Account_A_B_C

Bank_CBank_A

[0..*] clients

Bank_B

taxNr : Int

vatNr : Int

Person_A

Company_A name : String
clNr : Int

Client_B Client_C

[0..*] clients [0..*] clients

name : String
clNr : Int

[1..*] owner

addAccount
(account Account_A_B_C)

addAccount
(account Account_A_B_C)

addAccount
(account Account_A_B_C)

[1..*] accounts

[1..*] accounts

[1..*] accounts

Figure 6 – Variability-Encoded Unify-Merged Model me after Step (3)

including (complex) application conditions and (optional) amalgamation concepts
[HHT96].
VEOs for UML Class Diagrams. We illustrate VEOs for UML class diagrams as
used in our tool and experiments (see Sect. 4). Our VEO catalog for class diagrams
employs inheritance for encoding variability among elements at class level. We present
two exemplary VEOs. The complete catalog as used for the subject systems in our
experiments is available on-line [acc19].

• PushPropertiesToSubClasses. This operator (cf. Fig. 5) encodes variable
properties of classes. The rule searches for all class members annotated with the
same variability information, i.e., which originate from the same sets of variants.
For encoding the variability information, a fresh class is created, whose name
contains the original class name combined with the respective names of the
variants. This new class becomes a direct sublcass of the original class which is
now declared abstract and all class properties shared among the involved variants
are pulled up into the new class.

• RenameNamedElement. This operator performs renaming of NamedElements
to encode variant information following an appropriate naming convention. This
is used, e.g., for Enumerations and Packages not being part of all variants to
ensure uniqueness of name-space declarations.

Rule applications of the complete catalog are orchestrated such that changes are only
performed if necessary (e.g., rule PushPropertiesToSubClasses only creates subclasses
if this has not been done by previous rule applications). Applying our VEOs to the
unify-merged model mu in Fig. 4 results in the variability-encoded unify-merged model
me in Fig. 6. Classes Bank, Client and Account are duplicated for each variant, where
the elements shared by all variants are factored out into a common super-class (e.g.,
reference accounts from Bank to Account as well as the attributes id and credit).
Although precision |M |

|eme |
= 13

26 = 0.5 of me remains similar to mu, it incorporates
additional overhead for the encoding (i.e., 14 classes instead of 7). Hence, step (1)
may decrease matching- (and therefore merge-) precision, whereas steps (2) and (3)
may increase sizes of merged models in (potentially) unnecessary ways. For instance,
for our example in Fig. 6 we have |M |

|eme |
= 13

26 = 0.5. The concluding step (4) is
concerned with improving precision and reducing overhead by further transforming
the variability-encoded unify-merged model in a correctness-preserving manner, i.e.,
by factorizing further similarities among variant-specific model parts.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 11

addAccount
{abstract}
Client_A

withDraw Money
(amount Double)

limit : Double

Account_CAccount_B

[1..*] owners[1..1] owner

Account_A

id : Int
credit : Double

{abstract}
Account_A_B_C

taxNr : Int

vatNr : Int

Person_A

Company_A

addAccount

Client_B Client_C

addAccount
(account Account_A) (account Account_B) (account Account_C)

{abstract}
Client_A_B_C

name : String
{abstract}
Client_B_C

clNr : Int

{abstract}
Account_A_B

withDraw
(amount Double)

[1..*] accounts [1..*] accounts
[1..1] owner

[1..*] accounts

Figure 7 – Merged Model mr after Refactoring (Excerpt)

3.4 Model Refactoring

The previous step allows us to employ default model-refactoring operators (REF), which
have been extensively studied for various domains and modeling languages [SPLTJ01,
MB05, SBRCT08a, ARK+16]. Model-refactoring operators perform semantic-preserving
model transformations, where the goal of most exiting operators is either (1) to im-
prove models w.r.t. structural quality criteria (e.g., coupling/cohesion) and/or (2) to
identify and eliminate duplicated model parts by employing language-specific reuse
constructs. We consider the latter category in step (4) for enhancing merge precision.
Similarity information among model variants as initially provided by groupings of
the matching, but potentially being lost in steps (1) to (3), may be, at least up to a
feasible degree, restored by those operators. In this regard, step (4) can be seen as
a-posteriori compare/match-step to not only preserve, but even improve precision of
initially imprecise or even non-available matchings. However, this novel approach is
only possible in combination with variability information added in steps (2) and (3).
REF for UML Class Diagrams. We utilize well-known refactoring operators [Fow99,
SPLTJ01] for class diagrams, again, defined as graph-transformation rules.

• ExtractSuperClass. If two classes share at least one equal property, then a
fresh common super-class is introduced.

• PullUpProperty. If all subclasses of a common super-class share equal prop-
erties, then these properties are moved into the super-class.

• RemoveEmptyClass. If a class has no properties and incoming relations, then
it is deleted from the model.

Similarly to VEOs, each kind of REF is defined for each type of UML model element
(e.g., attributes and methods, see [acc19]).

Again, orchestration of rule applications is required as refactorings may only become
applicable after other ones have been successfully applied (e.g., RemoveEmptyClass
usually requires multiple preceding applications of PullUpProperty). More specifically,
only those empty classes are removed which have been introduced by previous refac-
torings. For step (4) to yield (presumably) optimally precise results, refactoring rules
are recursively applied as long as at least one rule is applicable.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

12 · D. Reuling et al.

An excerpt of the resulting (refactored) merged model mr, consisting of all
changed classes, is depicted in Fig 7. First, attribute name of all class variants
of Client can be pulled up into a (new) common superclass Client_A_B_C and
the same for method addAccount(). Additionally, association clients from all class
variants of Bank to respective variants of Client are extracted to now connect
Bank_A_B_C and Client_A_B_C and, similarly for associations account now
connecting Client_A_B_C and Account_A_B_C. Finally, association owner, at-
tribute clnr and method withdraw() can been extracted into new superclasses. As
a result, precision of the refactored model mr is enhanced from |M |

|pme |
= 0.65 to

|M |
|pmr |

= 13
26−11 = 0.87.

4 Experimental Evaluation

For evaluating our methodology, we investigate the following aspects.
Effectiveness. The main goal of N-way model merging is to match and merge as
many similar elements among the given input models as possible. Hence, we measure
the effectiveness of our approach in terms of the ability to preserve (or even improve)
precision of a matching in the resulting merged model.
Efficiency. To evaluate efficiency, we measure the computational effort as well as
potential overhead introduced by variability encoding and model refactoring.

4.1 Oracles

Although the compare-operator effectively relies on similarity metrics, there exist
no precise and generally accepted operational definition of an optimal matching in
the recent literature. Instead, in the context of (automated) matching approaches
and algorithms, oracles are frequently utilized for evaluating quality of matching
using information retrieval measures [MKB09, KRG+13]. To this end, we may define
matching precision as usual by

Prec(M) =
TP

TP + FP

where TP denotes the number of true positives (matched elements deemed as similar)
and FP denotes the number of false positives (matched elements deemed as dissimilar).

For each of our subject systems, we differentiate whether the used oracle is con-
sidered optimal due to identity-based matchings in case of generated/extracted arte-
facts [LBL+14, VHLFF14, MAZ17] or approximate due to being manually created by
the developers [CCGI11] (see Table 1). This allows us to reason about the impact of
the precision quality of given matching on the merge precision.

4.2 Subject Systems

We consider three subject systems, each comprising variants of class-diagrams of
real-world systems from academia and industry (see Table 1). We selected the systems
due to their significantly differing modeling practices and creation processes.
Pick-and-Place Unit (PPU). The PPU represents the domain of industrial pro-
duction and automation software systems [VHLFF14, LBL+14]. The PPU handles

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 13

work pieces consisting of different materials. Due to variable requirements, the PPU
incorporates 13 variants and consists of 418 classes and 969 class members overall.
Barbados Car Crash Crisis Management System (bCMS). The bCMS de-
scribes operations of a police and fire department in crisis situations [CCGI11], where
we consider class diagrams denoting the domain and architecture. Due to variable
combinations of several crisis situations and parties involved, the bCMS consists of 15
variants with respective elements. In contrast to the PPU system, methods constitute
the most relevant element type (see last column).
ArgoUML. ArgoUML is an UML modeling tool including all standard UML 1.4
diagrams. We use the reverse-engineered UML class-diagram representation of the
Java implementation [MAZ17]. Here, 7 variants have been extracted by removing
specific features for supporting different UML diagrams (i.e., activity or sequence
diagrams). Due to the enormous size of its Java implementation, the variants contain
more than 10000 classes and 100000 elements.

4.3 Research Questions and Methodology

#Elements
System Oracle #Models Class Attr Assoc Method
PPU Optimal 13 418 309 428 232
BCMS Approx. 15 948 635 184 1675
ArgoUML Optimal 7 12270 22172 4851 89566

Table 1 – Study Subjects Properties.

We consider the
following research
questions in our
experiments.
RQ1 (Precision).
How precise is the
merged model re-
sulting from our methodology, as compared to arbitrarily (im-)precise matchings?
RQ2 (Computational Effort). Does our approach scale to large input models for
arbitrarily (im-)precise matchings?
RQ3 (Matching Impact). How does varying precision of the matching impact
computational effort and precision of the merged model?
Methodology. For each type of element (e.g., class members) occurring in our subject
systems, we implemented respective VEO as well as REF as Henshin [ABJ+10] graph-
transformation rules (see Sect. 3). To obtain meaningful results, we applied the REF
catalog to each input model prior to merging. The matching precision is measured using
respective oracles for each subject system as described earlier. We measure precision of
a merged model with respect to a given matching as described in Sect. 2, by comparing
the number of tuples in the matching with the resulting number of (unified) elements in
the merged model. To this end, we focus on class members (e.g., attributes, associations
and methods) as depicted in Tab. 1. Furthermore, we consider the number of classes
of our merged models to measure the potential overhead [EMCLGP09] introduced
by variability encoding and refactoring, as compared to the unify-merged model.
Regarding computational effort, we consider the overall CPU time as well as CPU time
for each step in Fig. 3. For RQ1, we use three different matching approaches: identity-
based (ID), EMFCompare (EMFC) 1 and similarity-based matching (SIM) [KKPS12]).
For RQ2, we investigate scalability to real-world sized models by considering PPU
and bCMS. Furthermore, due to its reverse-engineered nature and enormous size,
we use ArgoUML to investigate limitations of our approach. Regarding RQ3, we
(randomly) split up tuples in our matchings into singletons to artificially decrease
matching precision, where we either preserve up to 50% of tuples as compared to the

1https://www.eclipse.org/emf/compare/

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

14 · D. Reuling et al.

Matching # Class Members Merging Precision
System Approach Precision MAT UNI REF UNI REF

PPU

ID 1.00 69 125 79 0.55 0.87
SIM 0.67 93 323 79 0.21 0.87

EMFC 0.15 451 451 79 0.15 0.87

OR50 0.48 171 171 91 0.40 0.76
Empty 0.00 686 686 662 0.10 0.11

bCMS

ID 1.00 604 2018 339 0.30 1.78
SIM 0.51 1023 1245 332 0.48 1.81

EMFC 0.29 428 2058 341 0.29 1.77

OR50 0.39 2019 2019 339 0.29 1.78
Empty 0.00 2310 2310 2310 0.26 0.26

ArgoUML ID 1.00 16917 16952 16301 0.98 0.99

Table 2 – Effectiveness Results (RQ1 / RQ3).

oracle (OR50) or split up all tuples (Empty). We do not split up tuples which are
needed, e.g. the container package(s) as well as data types, and subsequently split up
tuples during normalization as described in Sect. 3, which may result in a matching
precision less than 50 percent. All experiments have been executed on a Linux 4.18
machine with Intel Core i7-6700K and 16GB of RAM.

4.4 Results and Discussion

The results are summarized in Table 2 and Table 3. The first three columns denote
input parameters as well as matching precision, the following columns depict the
number of elements (e.g., class members or classes) of matchings (MAT) and merged
models (UNIfied, ENCoded, REFactored). The remaining columns denote merging
precision or CPU time of each step in Fig. 3 as well as overall time.
RQ1. Our evaluation results show that the normalization step for resolving syntactic
merge conflicts reduces the precision of matchings, thus resulting in more class members
as compared to the matching (see column UNI in Table 2). However, the subsequent
refactoring increases the precision, again, to a similar or even better precision in the
merged model in all cases (see bold numbers in column REF). Moreover, even in
case of matchings with low precision (e.g., EMFC in case of PPU), the refactored
merged model contains the same or a similar number of class members (79 for PPU,
339/332/341 for bCMS) compared to the best available matching (oracle), thus leading
to a remarkable precision improvement (up to a factor of 1.81 in case of bCMS). To
summarize, the precision of matchings is either preserved in case of (usually unavailable)
optimal matchings or improved by our methodology in case of realistic matchings
(bold numbers in Table 2).
RQ2. We observe overall CPU times ranging from 11 seconds to 17 minutes (for
PPU). In particular, most of the CPU time is consumed by encoding and refactoring
(more than 90 percent on average), whereas the effort for normalization and unify-
merge is not relevant in most cases. More specifically, although steps (1) to (3)
are finished in reasonable time for ArgoUML, refactoring took more than 3 hours
even for optimally precise identity-based matchings, due to many possible refactoring
applications regarding methods. CPU time naturally increases in case of matchings
with (artificially) decreased precision as they impose additional effort throughout all
steps. To sum up, our approach scales to input models of realistic sizes, although to a
lesser extent in case of imprecise matchings or enormous class diagrams.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 15

Classes Time Consumption for each Step (s)
System Approach UNI ENC REF (1) (2) (3) (4) Sum

PPU

ID 70 194 263 2.9 0.3 4.2 3.5 11
SIM 55 219 476 4.3 0.3 12.9 62.4 80

EMFC 37 205 579 4.3 0.3 29.9 158.0 192

OR50 70 202 305 0.4 0.4 6.4 7.8 15
Empty 418 418 439 2.9 0.4 257.9 795.8 1057

bCMS

ID 620 1085 2902 12.6 0.6 472.2 11.0 496
SIM 436 916 1946 9.8 0.4 223.2 7.1 241

EMFC 633 1083 2940 13.8 0.6 461.6 10.7 487

OR50 685 1085 2902 2.5 0.6 470.8 11.0 485
Empty 948 1109 1089 5.2 0.6 718.0 19.0 743

ArgoUML ID 1782 1836 2732 123.8 23.5 2221.5 11916.1 14285

Table 3 – Efficiency Results (RQ2 / RQ3).

RQ3. The output merged models are affected by matchings in two ways. First,
merging precision is obstructed by significantly (i.e., artificially) imprecise matchings
(see Table 2 Empty), as compared to realistic matchings (see ID, SIM and EMFC).
Second, the additional overhead due to variability encoding and refactoring strongly
correlates with precision of the matching (see Table 3), especially in case of realistic
matchings (e.g., EMFC or SIM). For example, although the refactored merged model
of PPU incorporates the same number of class members for all three realistic matchings
(see Table 2), the number of classes (see column REF in Table 3) differs significantly.
Computational effort also highly depends on the precision of the matching which
especially includes the number of the usually very costly model-transformation rule
applications performed in steps (3) and (4). In addition, in case of empty matchings,
step (4) has the obligation to actually mimic the missing a-priori N -way matching
procedure in an a-posteriori manner, thus naturally causing high computational effort.
To conclude, our evaluation results show that for realistic matchings (e.g., provided
by EMFC) and for reasonable artificially created imprecise matchings (OR50), our
methodology a) produces equally precise merged models at the expense of additional
overhead and b) scales to families of real-world input models. However, we may
conclude that our tool is aiming at batch scenarios rather than online usage.

4.5 Threats to Validity and Limitations

Our selection of subject systems may threaten validity and generalizability of our results.
Although we limit ourselves to three application domains and creation processes, we
expect similar results for other domains and modeling languages as all steps of our
approach are generic and/or easily adaptable. To this end, we plan to investigate the
adaptions required for applying our approach to other modeling languages and domains
(e.g., FODA feature diagrams [SBRCT08b] or BPMN [WR08]). Furthermore, our
catalog of VEO and REF operators also constitutes a possible threat to validity, as the
catalog may (1) be over-fitted to our subject systems and/or (2) contain error-prone
operators. Concerning (1), further rules can be easily integrated into our approach on
demand. Concerning (2), syntactical correctness has been intensively validated during
the implementation of graph transformation rules in the Henshin [ABJ+10] framework,
whereas for semantical correctness, we have to rely on the respective domain experts to
specify correct VEOs. In contrast, we can rely on existing and well-elaborated REFs.
Although the design and application of refactorings may not be straightforward in all
environments and domains [KS08], further pre- and postconditions as well as different

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

16 · D. Reuling et al.

possible refactoring solutions are beyond the scope of this paper. So far, we solely
investigated class members as well as the number of classes in our resulting merged
model for reasoning about the precision and overhead introduced by our approach.
As a future work, we plan to additionally consider a) structural quality metrics
(e.g., coupling and cohesion) [GPC05] as well as b) (human) comprehensibility of the
resulting merged models [EMCLGP09]. In addition, we are interested in comparing
the potential overhead caused by our approach for improving imprecise matches to the
effort required for the a-priori computation of optimally precise matches [RKBL19].
Although our approach can handle arbitrarily (imprecise) matchings, we have to
assume input models to be at least syntactically and semantically correct. Finally,
our catalog of normalization- and encoding-rules can be adapted for supporting OCL
constraints which are currently not yet supported.

5 Related Work

Model Merging in Version Management. In version management and collabora-
tive software development, 3-way merging is an established standard [Men02]. However,
the application scenarios of 3-way merging are usually different from ours as it mostly
deals with inconsistent models and/or models without well-defined semantics, thus
usually working on purely syntactical level. Merge conflicts are generally interpreted
as the result of flawed work-flows (e.g. unsynchronized concurrent changes), which are
therefore resolved interactively [WLS+12] or automatically [DRV+16]. The merging
of models imposes further challenges w.r.t. syntactic correctness and for displaying
conflicts using concrete syntax [ASW09, Wes14]. Thus 3-way merging is not suitable
for our use case of model integration. In contrast to our approach, imprecise matchings
generally lead to equally imprecise and/or conflicting merges which have to be resolved
manually.
N-way Model Merging. Several approaches have been proposed in recent past for
constructing merged models from N existing variants. A generic problem statement is
presented in [RC13a] and instantiated for UML class diagrams and state machines.
Similarly, Martinez et al. present a generic framework for constructing (or extracting)
merged models from a set of model variants [MZB+15]. The authors introduce several
operators which can be implemented in a domain-specific may, similar to compare,
match and merge operators [RC13a]. Both approaches construct merged models
from which all variants are derivable again by removing or adding those parts which
are (not) present in the respective variant. However, these approaches do not focus
on constructing syntactically well-formed and semantically correct merged models
as done by using variability encoding in our approach. Holthusen et al. [HWL+14]
reverse-engineer variability in families of block diagrams based on syntactical data-flow
structures, whereas Wille et al. [WTS+16] consider a model-based representation of
object-oriented source code. In [SRA+16], similarity among structural sub-patterns
in families of graph-transformation rules are exploited and matched/merged for rule
variants [SRCT15]. In addition, variability information is preserved similar to our
unified model after step (2), but the nature of the models considered is different to
our generic approach as this work is focussed on graph-transformation rules. Ryssel et
al. [RPK12] extract commonalities in MATLAB libraries and reuse them by integrating
the libraries into the original variants. Finally, in [NSC+12], state-charts are merged
using UML variability constructs, e.g. guarded transitions, which is similar to our

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 17

variability encoding step. In contrast, their merge step does not compensate for
imprecise matchings, thus potentially resulting in imprecise merged models.

To summarize, all existing approaches are not directly adaptable to precise N -way
Model merging, regardless of the precision of the matching as in our approach.

6 Conclusion

We proposed a novel N -way model-merging methodology for EMF-compliant models
by combining variability encoding and model refactoring. Our approach receives as a
set of model variants to be integrated into one merged output model together with a
matching. We preserve or even improve precision of arbitrary (im)precise matchings,
and, at the same time, ensure syntactic well-formedness as well as semantic correctness
of the merged model. As a future work, we plan to investigate potentials for generalizing
our approach by developing additional catalogs of VEO and REF operators for other
modeling languages and domains (e.g. UML state machines and FODA feature models).
Regarding improvements of the variability-normalization step, we plan to further split
up tuples with respect to the properties of their shared elements, instead of simply
proceeding with (potentially unnecessarily imprecise) singleton tuples as done in our
current work. Furthermore, we are interested in reducing the computational effort
by explicitly controlling applications of REF operations. To this end, we plan to
further exploit the (encoded) variability information (e.g., for prioritizing refactoring of
properties shared by many variants). Finally, we further plan to investigate the impact
of our approach to structural model-quality metrics as well as on the comprehensibility
of the resulting merged model.

Acknowledgments This work was supported by the DFG (German Research Foun-
dation) within the CoMoVa project (grant nr 330452222). This work was partially
supported by the DFG (German Research Foundation) under the Priority Programme
SPP 1593: Design For Future – Managed Software Evolution. This work was funded
by the Hessian LOEWE initiative within the Software Factory 4.0 project.

References
[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and

Gabriele Taentzer. Henshin: advanced concepts and tools for in-place EMF
model transformations. In MODELS, pages 121–135. Springer, 2010. doi:
10.1007/978-3-642-16145-2_9.

[acc19] Accompanying materials for this paper. http://pi.informatik.uni-siegen.de/
projects/variance/ecmfa19, 2019.

[ARK+16] Bader Alkhazi, Terry Ruas, Marouane Kessentini, Manuel Wimmer, and William I.
Grosky. Automated Refactoring of ATL Model Transformations: A Search-based
Approach. MODELS ’16, pages 295–304. ACM, 2016. URL: http://doi.acm.org/10.
1145/2976767.2976782, doi:10.1145/2976767.2976782.

[ASW09] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model versioning ap-
proaches. International Journal of Web Information Systems, 5(3):271–304, 2009.

[BEK+07] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns, Gabriele
Taentzer, and Eduard Weiss. EMF model refactoring based on graph transformation
concepts. Electronic Communications of the EASST, 3, 2007.

[BLL+13] Johannes Bürdek, Sascha Lity, Malte Lochau, Markus Berens, Ursula Goltz, and
Andy Schürr. Staged configuration of dynamic software product lines with complex
binding time constraints. pages 1–8. ACM Press, 2013. URL: http://dl.acm.org/
citation.cfm?doid=2556624.2556627, doi:10.1145/2556624.2556627.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://pi.informatik.uni-siegen.de/projects/variance/ecmfa19
http://pi.informatik.uni-siegen.de/projects/variance/ecmfa19
http://doi.acm.org/10.1145/2976767.2976782
http://doi.acm.org/10.1145/2976767.2976782
http://dx.doi.org/10.1145/2976767.2976782
http://dl.acm.org/citation.cfm?doid=2556624.2556627
http://dl.acm.org/citation.cfm?doid=2556624.2556627
http://dx.doi.org/10.1145/2556624.2556627
http://dx.doi.org/10.5381/jot.2019.18.2.a8

18 · D. Reuling et al.

[CA05] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In GPCE’05, volume 3676 of Lecture Notes
in Computer Science, pages 422 – 437. Springer-Verlag, 2005.

[CCGI11] Alfredo Capozucca, Betty Cheng, Nicolas Guelfi, and Paul Istoan. OO-SPL mod-
elling of the focused case study. In CMA Workshop (CMA@MODELS), 2011. URL:
https://orbilu.uni.lu/bitstream/10993/12572/1/bCMS-SPL-complete-submit.
pdf.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. An exploratory study of cloning in industrial software
product lines. In CSMR’13, pages 25–34. IEEE, 2013. URL: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=6498452.

[DRV+16] C. Debreceni, I. Ráth, D. Varró, X. De Carlos, X. Mendialdua, and S. Trujillo.
Automated Model Merge by Design Space Exploration, pages 104–121. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[EMCLGP09] M. Esperanza Manso, José A. Cruz-Lemus, Marcela Genero, and Mario Piattini.
Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study.
In Michel R. V. Chaudron, editor, Models in Software Engineering, pages 303–313,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[EW11] Martin Erwig and Eric Walkingshaw. The Choice Calculus: A Representation for
Software Variation. ACM Trans. Softw. Eng. Methodol., 21(1):6:1–6:27, December
2011. URL: http://doi.acm.org/10.1145/2063239.2063245, doi:10.1145/2063239.
2063245.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

[GPC05] Marcela Genero, Mario Piattini, and Coral Calero. A survey of metrics for uml class
diagrams. Journal of Object Technology, 4:59–92, 2005.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with
Negative Application Conditions. Fundam. Inf., 26(3,4):287–313, December 1996.
URL: http://dl.acm.org/citation.cfm?id=2379538.2379542.

[HWL+14] Sönke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina Schaefer, and
Birgit Vogel-Heuser. Family Model Mining for Function Block Diagrams in Au-
tomation Software. SPLC ’14, pages 36–43, New York, NY, USA, 2014. ACM.
doi:10.1145/2647908.2655965.

[KKPS12] Timo Kehrer, Udo Kelter, Pit Pietsch, and Maik Schmidt. Adaptability of Model
Comparison Tools. ASE 2012, pages 306–309, New York, NY, USA, 2012. ACM.
doi:10.1145/2351676.2351731.

[KKT13] T. Kehrer, U. Kelter, and G. Täntzer. Consistency-preserving edit scripts in model
versioning. In 2013 IEEE/ACM 28th International Conference on Automated
Software Engineering (ASE), pages 191–201, November 2013.

[KRG+13] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Giuliano Antoniol, and Yann-
Gael Gueheneuc. Studying software evolution of large object-oriented software
systems using an ETGM algorithm. Journal of Software: Evolution and Process,
25(2):139–163, 2013. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
smr.519, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.519,
doi:10.1002/smr.519.

[KS08] Hannes Kegel and Friedrich Steimann. Systematically Refactoring Inheritance to
Delegation in Java. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 431–440, New York, NY, USA, 2008. ACM. URL:
http://doi.acm.org/10.1145/1368088.1368147, doi:10.1145/1368088.1368147.

[LBL+14] Malte Lochau, Johannes Bürdek, Sascha Lity, Matthias Hagner, Christoph Legat,
Ursula Goltz, and Andy Schürr. Applying Model-based Software Product Line
Testing Approaches to the Automation Engineering Domain. AT Journal, (to
appear), 2014.

[MAZ17] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. ESPLA: A Catalog of
Extractive SPL Adoption Case Studies. In SPLC 2017, pages 38–41, 2017. URL:
http://doi.acm.org/10.1145/3109729.3109748, doi:10.1145/3109729.3109748.

[MB05] Slaviša Marković and Thomas Baar. Refactoring OCL Annotated UML Class
Diagrams. MoDELS’05, pages 280–294, Berlin, Heidelberg, 2005. Springer-Verlag.
URL: http://dx.doi.org/10.1007/11557432_21, doi:10.1007/11557432_21.

Journal of Object Technology, vol. 18, no. 2, 2019

https://orbilu.uni.lu/bitstream/10993/12572/1/bCMS-SPL-complete-submit.pdf
https://orbilu.uni.lu/bitstream/10993/12572/1/bCMS-SPL-complete-submit.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498452
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498452
http://doi.acm.org/10.1145/2063239.2063245
http://dx.doi.org/10.1145/2063239.2063245
http://dx.doi.org/10.1145/2063239.2063245
http://dl.acm.org/citation.cfm?id=2379538.2379542
http://dx.doi.org/10.1145/2647908.2655965
http://dx.doi.org/10.1145/2351676.2351731
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.519
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.519
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.519
http://dx.doi.org/10.1002/smr.519
http://doi.acm.org/10.1145/1368088.1368147
http://dx.doi.org/10.1145/1368088.1368147
http://doi.acm.org/10.1145/3109729.3109748
http://dx.doi.org/10.1145/3109729.3109748
http://dx.doi.org/10.1007/11557432_21
http://dx.doi.org/10.1007/11557432_21
http://dx.doi.org/10.5381/jot.2019.18.2.a8

Precise N-Way Model Merging · 19

[Men02] T. Mens. A state-of-the-art survey on software merging. Software Engineering, IEEE
Transactions on, 28(5):449–462, 2002.

[MKB09] Thilo Mende, Rainer Koschke, and Felix Beckwermert. An evaluation of code
similarity identification for the grow-and-prune model. Journal of Software
Maintenance and Evolution: Research and Practice, 21(2):143–169, 2009. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.402, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/smr.402, doi:10.1002/smr.402.

[MZB+15] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. L. Traon. Automating the
Extraction of Model-Based Software Product Lines from Model Variants. In ASE 15,
pages 396–406, November 2015.

[NSC+12] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave. Matching
and Merging of Variant Feature Specifications. IEEE Transactions on Software
Engineering, 38(6):1355–1375, 2012.

[PS08] H. Post and C. Sinz. Configuration Lifting: Verification Meets Software Configura-
tion. ASE ’08, pages 347–350. IEEE Computer Society, 2008.

[RC13a] J. Rubin and M. Chechik. N-way Model Merging. In Proceedings of the 2013 Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 301–311,
New York, NY, USA, 2013. ACM.

[RC13b] J. Rubin and M. Chechik. Quality of Merge-Refactorings for Product Lines. In
Fundamental Approaches to Software Engineering, number 7793 in Lecture Notes in
Computer Science, pages 83–98. Springer Berlin Heidelberg, January 2013.

[RCC15] J. Rubin, K. Czarnecki, and M. Chechik. Cloned product variants: from ad-hoc
to managed software product lines. International Journal on Software Tools for
Technology Transfer, 17(5):627–646, 2015.

[RF11] Bernhard Rumpe and Robert France. Variability in UML language and semantics.
Software & Systems Modeling, 10(4):439, Aug 2011. URL: https://doi.org/10.
1007/s10270-011-0210-3, doi:10.1007/s10270-011-0210-3.

[RKBL19] Dennis Reuling, Udo Kelter, Johannes Bürdek, and Malte Lochau. Automated N-way
Program Merging for Facilitating Family-based Analyses of Variant-rich Software
(accepted). ACM Trans. Softw. Eng. Methodol., 2019. doi:10.1145/3313789.

[RPK12] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic Library Migration for the
Generation of Hardware-in-the-loop Models. Sci. Comput. Program., 77(2):83–95,
February 2012.

[SBRCT08a] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad.
Automated Merging of Feature Models Using Graph Transformations, pages
489–505. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. URL: https:
//doi.org/10.1007/978-3-540-88643-3_15, doi:10.1007/978-3-540-88643-3_15.

[SBRCT08b] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad.
Automated Merging of Feature Models Using Graph Transformations, pages
489–505. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. URL: https:
//doi.org/10.1007/978-3-540-88643-3_15, doi:10.1007/978-3-540-88643-3_15.

[SPLTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring
UML models. In International Conference on the Unified Modeling Language, pages
134–148. Springer, 2001.

[SRA+16] D. Strüber, J. Rubin, T. Arendt, M. Chechik, F. Täntzer, and J. Plöger. RuleMerger:
Automatic Construction of Variability-Based Model Transformation Rules. In FASE,
2016.

[SRCT15] D. Strüber, J. Rubin, M. Chechik, and G. Täntzer. A Variability-Based Approach
to Reusable and Efficient Model Transformations. In FASE, volume 9033 of Lecture
Notes in Computer Science, pages 283–298. Springer Berlin Heidelberg, 2015.

[TAK+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A
Classification and Survey of Analysis Strategies for Software Product Lines. ACM
Comput. Surv., 47(1):6:1–6:45, June 2014. doi:10.1145/2580950.

[TAKS14] T. Thüm, S. Apel, C. Kästner, and G. Schaefer, I.and Saake. A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv.,
47(1):6:1–6:45, June 2014.

[TS14] C. M T and E. Sherly. Refactoring sequence diagrams for code generation
in UML models. In 2014 International Conference on Advances in Comput-
ing, Communications and Informatics (ICACCI), pages 208–212, Sep. 2014.
doi:10.1109/ICACCI.2014.6968414.

Journal of Object Technology, vol. 18, no. 2, 2019

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.402
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.402
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.402
http://dx.doi.org/10.1002/smr.402
https://doi.org/10.1007/s10270-011-0210-3
https://doi.org/10.1007/s10270-011-0210-3
http://dx.doi.org/10.1007/s10270-011-0210-3
http://dx.doi.org/10.1145/3313789
https://doi.org/10.1007/978-3-540-88643-3_15
https://doi.org/10.1007/978-3-540-88643-3_15
http://dx.doi.org/10.1007/978-3-540-88643-3_15
https://doi.org/10.1007/978-3-540-88643-3_15
https://doi.org/10.1007/978-3-540-88643-3_15
http://dx.doi.org/10.1007/978-3-540-88643-3_15
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1109/ICACCI.2014.6968414
http://dx.doi.org/10.5381/jot.2019.18.2.a8

20 · D. Reuling et al.

[VHLFF14] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann. Researching Evolution in
Industrial Plant Automation: Scenarios and Documentation of the Pick and Place
Unit. Technical Report TUM-AIS-TR-01-14-02, TU München, 2014.

[vRTS+16] Alexander von Rhein, Thomas Thuem, Ina Schaefer, Jörg Liebig, and Sven Apel.
Variability encoding: From compile-time to load-time variability. Journal of Logical
and Algebraic Methods in Programming, 85(1, Part 2):125 – 145, 2016. URL: http:
//www.sciencedirect.com/science/article/pii/S2352220815000577, doi:https:
//doi.org/10.1016/j.jlamp.2015.06.007.

[Wes14] B. Westfechtel. Merging of EMF models. Software & Systems Modeling, 13(2):757–
788, 2014.

[WLS+12] K. Wieland, P. Langer, M. Seidl, M. Wimmer, and G. Kappel. Turning Conflicts into
Collaboration. Computer Supported Cooperative Work (CSCW), 22(2-3):181–240,
September 2012.

[WR08] Barbara Weber and Manfred Reichert. Refactoring Process Models in Large Process
Repositories. In Zohra Bellahsène and Michel Léonard, editors, Advanced Informa-
tion Systems Engineering, pages 124–139, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[WTS+16] D. Wille, M. Tiede, S. Schulze, C. Seidl, and I. Schaefer. Identifying Variability in
Object-Oriented Code Using Model-Based Code Mining, pages 547–562. Springer
International Publishing, 2016.

[WWS+17] David Wille, Kenny Wehling, Christoph Seidl, Martin Pluchator, and Ina Schaefer.
Variability Mining of Technical Architectures. SPLC ’17, pages 39–48, New York,
NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3106195.3106202,
doi:10.1145/3106195.3106202.

About the authors

Dennis Reuling is a PhD student at the Software Engineering Group in
the University of Siegen. His main research interests are model merging
and variability management in model-based software variants and families.
He is the lead researcher in the DFG CoMoVa project. Contact him at
dreuling@informatik.uni-siegen.de

Malte Lochau is PD at the Real-Time Systems Laboratory of Prof Andy
Schürr at the TU Darmstadt. His research interests are software product line
engineering, software testing, and formal semantics. His research is part of
the DFG project IMoTEP, DFG SFB 1053 MAKI and LOEWE Project SF
4.0. Contact him at malte.lochau@es.tu-darmstadt.de

Udo Kelter holds the chair of Software Engineering and Database Systems
at the University of Siegen, Germany. His main fields of research are model-
based system development and version management. Contact him at kelter@
informatik.uni-siegen.de

Journal of Object Technology, vol. 18, no. 2, 2019

http://www.sciencedirect.com/science/article/pii/S2352220815000577
http://www.sciencedirect.com/science/article/pii/S2352220815000577
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2015.06.007
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2015.06.007
http://doi.acm.org/10.1145/3106195.3106202
http://dx.doi.org/10.1145/3106195.3106202
mailto:dreuling@informatik.uni-siegen.de
mailto:malte.lochau@es.tu-darmstadt.de
mailto:kelter@informatik.uni-siegen.de
mailto:kelter@informatik.uni-siegen.de
http://dx.doi.org/10.5381/jot.2019.18.2.a8

	Introduction
	Background and Motivation
	Improving Precision of N-Way Model Merging
	Variability Normalization
	Unify Merge
	Variability Encoding
	Model Refactoring

	Experimental Evaluation
	Oracles
	Subject Systems
	Research Questions and Methodology
	Results and Discussion
	Threats to Validity and Limitations

	Related Work
	Conclusion
	Bibliography
	About the authors

