
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Towards Conversational Syntax for
Domain-Specific Languages using

Chatbots
Sara Pérez-Solera Mario González-Jiméneza Esther Guerraa

Juan de Laraa

a. Modelling and Software Engineering Group
Computer Science Department
Universidad Autónoma de Madrid (Spain)

Abstract Traditionally, users have interacted with computers through
graphical or command line interfaces. However, these may still be too
technical for certain users, or cumbersome to use in some scenarios (e.g.,
in mobility). To tackle this issue, recent advances in natural language (NL)
processing have boosted the proliferation of chatbots: programs whose user
interface is NL and are frequently integrated within social networks.

In this paper, we explore the usage of NL as concrete syntax for domain-
specific modelling languages, and propose an approach to automate the
creation of modelling chatbots that converse with users to assist them
in building domain-specific models. As chatbots are deployed on social
networks, modelling becomes collaborative. We provide an implementation
of our approach on top of Google’s DialogFlow, and illustrate its usefulness
on the basis of a case study to build and deploy streaming data applications
using a conversational interface.

Keywords Model-Driven Engineering; Domain-Specific Languages; Chat-
bots; Natural Language Processing; DialogFlow.

1 Introduction
Traditionally, humans have interacted with computers through graphical or command
line user interfaces [Jac12]. While these interaction mechanisms are well-known and
widely accepted, some users may lack the technical skills required to use them, or may
be inappropriate in certain scenarios, e.g., involving mobility.

Recent advances in natural language (NL) processing have boosted the proliferation
of so-called chatbots. These are programs whose user interface is based on NL conver-
sation, and are integrated within social networks like Telegram1, Facebook messenger2

1https://telegram.org/
2https://www.messenger.com/

Sara Pérez-Soler, Mario González-Jiménez, Esther Guerra, Juan de Lara. Towards Conversational Syntax
for Domain-Specific Languages using Chatbots. Licensed under
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). In Journal of Object
Technology, vol. 18, no. 2, 2019, pages 5:1–21. doi:10.5381/jot.2019.18.2.a5

http://www.jot.fm/
https://telegram.org/
https://www.messenger.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a5
http://dx.doi.org/10.5381/jot.2019.18.2.a5
http://dx.doi.org/10.5381/jot.2019.18.2.a5

2 · S. Pérez, M. González, E. Guerra, and J. de Lara

or Slack3. This approach to interact with software services has the advantage of
avoiding the need to install new apps or swapping between the social network and an
app to access the service. Moreover, chatbots are accessible by potentially large user
communities, and in collaboration. According to a recent Gartner report [Moo18],
25% of worldwide customer service operations are expected to use chatbots by 2020.

Model-driven engineering (MDE) [Sch06] uses models to automate all phases in
software development. Models in MDE are built using modelling languages, frequently
domain-specific ones. Domain-specific languages (DSLs) [KT08] are languages tai-
lored to a specific area, like logistics, urban planning or game development. Their
concrete syntax is normally textual (similar to a programming language) or graphical
(typically graph-like). Modelling using DSLs is an activity not only performed by
developers, but there are proposals targeted to end-users, e.g., to define touristic
routes [VPGdL17], build mobile apps [DP14], control molding machines [PP09], or
create IoT applications [MNPP17].

Following that philosophy, this paper explores the usage of NL as concrete syntax
for modelling languages. Hence, we propose an approach where models are built
by dialoguing with a supporting chatbot in NL. As chatbots are deployed on social
networks, modelling becomes collaborative and more amenable to be used in mobility
than desktop applications. This approach would be particularly useful for DSLs
oriented to end-user collaborative tasks, like organizing meetings or planning trips.
These activities would be performed within the social network in NL and mediated by
a bot, which reflects the user conversations in a domain-specific model. Then, this
model could be executed, e.g., calling external APIs to book the meeting rooms or the
trip hotels.

The increasing popularity of chatbots has raised numerous frameworks for their
creation, like DialogFlow [Goo19], the IBM Watson Assistant [IBM19], the Microsoft
Bot Framework [Mic19], or FlowXO [Flo19]. These frameworks offer cloud-based
environments to describe the different aspects of the chatbot. However, creating
a chatbot to instantiate a meta-model is time-consuming, repetitive and requires
programming modelling services to take care of creating the models. Hence, we
propose a novel approach to automate the generation of modelling chatbots for DSLs,
show an implementation atop Google’s DialogFlow, and illustrate its usefulness on a
case study to create, deploy and execute streaming data applications using a modelling
chatbot.

The objective of our work is threefold. First, to complement traditional modelling
tools based on graphical or textual editors (e.g., within Eclipse) with another interaction
paradigm. The use of NL requires less expertise from users than typical desktop-
based modelling tools, while collaboration facilities and use in mobility are additional
benefits. Second, we pursue the more ambitious goal of making available complete
MDE solutions to end-users via conversation within social networks, realizing the
vision of “conversation as a platform” (CaaP)4. Finally, we can use our approach to
automate the generation of chatbot interfaces for existing information systems.

This paper follows our previous work [PGdLJ17, PGdL18], where we proposed a
chatbot called Socio to assist in the creation of meta-models (i.e., class diagrams) via
conversation. In this paper, we propose a methodology and prototype tool support
to create NL concrete syntaxes for arbitrary meta-models (i.e., not limited to class
diagrams), and demonstrate its practical value with a non-trivial case study.

3https://slack.com/
4A term coined by Satya Nadella, CEO of Microsoft.

Journal of Object Technology, vol. 18, no. 2, 2019

https://slack.com/
http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 3

The rest of this paper is organized as follows. Section 2 motivates our proposal using
a running example. Section 3 overviews the basic concepts behind chatbots, focusing
on DialogFlow. Section 4 presents our approach to create NL concrete syntaxes, and
Section 5 tool support. Section 6 reports on a case study where we create a chatbot
to build streaming data applications over a tool called Datalyzer [GdL18a]. Section 7
compares our approach with related research, and Section 8 concludes.

2 Motivation and Running Example
As a running example, we build a chatbot to define project plans conformant to the
meta-model shown in Figure 1. Projects have a name and optionally a goal. They
comprise a number of TaskUnits that can be organised in sequences through reference
next, and have an id. There are three kinds of task units: Tasks, which may have
a start date and end after a number of days; Milestones, which may have a start
date but no duration, and are related to exactly one task; and CompositeTasks to
group one or more task units. Tasks may have assigned Resources, both Human and
Technical. The information of the former kind of resources is retrieved on-demand
from an external database, i.e., class Human is a proxy to access the real data.

Project

tasks

name: String[1]
goal: String[0..1]

TaskUnit

id: String[1]
description: String[1]

Resource

* resources *

next
*

Task

date: Date[0..1]
days: Int[0..1]

resources

*

Milestone

date: Date[0..1]

from

1
CompositeTask

subtasks

1..*

Human

name: String[1]
surname: String[1]
available: Boolean[1] = true
expertise: String[0..1]

Technical

description: String[1]
units: Int[1] = 0

Figure 1 – Running example: A domain meta-model to describe project plans.

We may decide designing a concrete syntax that is based on NL to instantiate
the meta-model, so that project managers can create their project plans using the
terminology they are used to. For instance, projects may be configured using sentences
like the following: “the project has two task units starting the 1st of April and the 1st
of May”, “task t1 follows task t2”, “Peter Parker will participate in the first task”, or
“the task t1 requires 2 personal computers”.

To help in the creation of project plans, there will be a dedicated chatbot that aids
managers in completing any missing data and refining the meaning of ambiguous user
sentences. For example, in the first sentence (“the project has two task units...”), the
chatbot would need to ask the user about the kind of task units to create. Since the
sentence includes dates, candidate classes are Milestone and Task as both define a
date, but not CompositeTask which has none. In addition, the chatbot would ask the
user the id of the created task units, as it is a mandatory feature in the meta-model.
This way, models of project plans would be iteratively built by means of a conversation
between the user and the chatbot.

Our aim is automating the creation of this kind of modelling chatbots. As we will
see in the following sections, this requires specifying and customizing several aspects of
the NL-based concrete syntax such as the identifier to be used to refer to objects (e.g.,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

4 · S. Pérez, M. González, E. Guerra, and J. de Lara

name and surname for human resources, or id for task units); the level of conformance
required from models, which in the stricter case would make the chatbot request the
user a value for any mandatory field of new objects; synonyms for the class and field
names (e.g., using the verb to follow as an alternative to reference next); or whether
the objects of a certain type should not be retrieved from the model being constructed
but from an external resource, like a data base or an external API. In our example,
available human resources are stored in a company database, and hence they need to
be retrieved and the model populated with them when the model is created.

In the next section, we describe the building blocks of chatbot specifications, to
which we will map the different elements of domain meta-models.

3 Developing Chatbots with Dialogflow
Chatbots are software programs with a NL user interface. They are typically accessible
through social networks (e.g., Slack, Telegram, Facebook messenger) and can be used in
mobility without the need to install new apps. Chatbots emulate the interaction with
a human assistant, and are becoming very popular for customer support, marketing,
or access to services like bookings, food delivery and gamification-based learning.

Many dedicated frameworks to create chatbots are emerging, like DialogFlow,
the IBM Watson Assistant, or the Microsoft Bot Framework. As a representative,
this section describes the main concepts of DialogFlow. This provides a cloud-based
development environment to describe chatbots with voice and text-based conversational
interfaces, and it offers support for NL processing in more than 20 languages. Our
choice is motivated by its automated support for deploying the bot in many different
social networks, its flexibility to link external services (which do not need to be
deployed on specific clouds, like Azure, hence avoiding vendor lock-in), and the
possibility to define the chatbot using a JSON specification (in addition to using the
cloud development environment) which facilitates chatbot synthesis.

User

NL input

Intent1

Intentn

Agent
match intent

…

Intenti
…

response Fulfillment
Service

1 2

34

Figure 2 – Agent working scheme.

Figure 2 shows the simplified working
scheme of DialogFlow’s chatbots. These are
called agents and define behaviour by means
of intents. Each intent represents some user’s
aim (e.g., booking a ticket). The agent waits
for user inputs in the form of NL sentences
(label 1 in the figure). Then, it tries to match
the user input with some available intent (la-
bel 2), optionally calling an external service
(also called fulfillment, label 3). Finally, the agent produces a response, typically a NL
sentence among a predefined set (label 4).

Figure 3 shows a meta-model we have created for DialogFlow. As it can be seen,
agents define intents, which are configured with a set of phrases that are used to train
a NL processor. An intent also declares a set of responses that the agent answers when
the user inputs a NL sentence that matches the intent. In addition, a fallback intent is
usually available for the case when no other intent is matched, with a predefined set
of responses which typically show the user the available alternatives.

Intents may have zero or more followup intents that can only be activated right
after the parent intent has been activated. Intents can also define contexts. These
represent the current state of a user’s request and allow the agent to carry information
from one intent to another (i.e., a followup intent). Input and output contexts, together

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 5

Agent

intents

name : String
timeZone : TimeZone

*

languages «enumeration»
Language

Spanish
English
…

*

Intent

name : String
isFallBack : boolean=false
isEnd : boolean=false
webhookCall : boolean=true

Phrase

text : String

trainingPhrases

*
Event

events

*

Context

outputContext * *

EntityType

name : String
allowExpansion : boolean

entities

*

entries
Entry

value : String
synonyms : String [*]

*

Fulfillment

fullfillment 1

name : String
lifespan : integer

IntentParameter

required : boolean
isList : boolean
prompts : String [*]

responses
* Action

name : String

actions

*

Parameter

name : String
value : String parameters

*

inputContext

*

*

1

parameters

entity

parameters

url: URL

followUps
*

Figure 3 – A meta-model for DialogFlow.

with the followup relations, are used to control the conversational path the user takes
through the dialogue with the agent.

Entities are the mechanism to identify and extract data from the users’ NL inputs.
For this purpose, an agent can define entity types (e.g., vegetables) which provide a list
of entries of admissible values (e.g., scallion) and their synonyms (e.g., green onion).

Intents save these data in parameters that refer to an entity type and can take one
of its entries as their value. The values are obtained from the user input according
to the NL patterns extracted during the training phase, and the agent can use these
values in its responses. If a parameter is required but the user input does not include
a value for it, then the agent prompts the user for a specific value. For instance, in the
running example, we may define an intent to create TaskUnits; however, if the user
does not state the specific type of TaskUnit (Milestone, Task or CompositeTask),
or does not specify a value for some of its mandatory attributes (e.g., id), the chatbot
will prompt the user, asking the required information.

Besides responding to users, agents can send the information gathered by an intent
to an external service by enabling a webhook. This allows the chatbot to do complex
tasks, like booking a ticket. The configuration of external services is defined by a
fulfillment. If an intent declares actions, these will be sent to the service declared in
the fulfillment. In our approach, we will use the chatbot as a conversational frontend
for the model concrete syntax, while the model abstract syntax will be created and
modified in an external service.

Finally, intents can also be triggered by events, which depend on the particular
deployment platform. For example, a chatbot in Telegram can display buttons, and so
it is possible to activate an intent upon clicking on these buttons.

4 Conversational Syntax for DSLs
To simplify the creation of modelling chatbots, we propose an automated process,
depicted in Figure 4.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

6 · S. Pérez, M. González, E. Guerra, and J. de Lara

domain
MM

1. generate
default NL

syntax

2. refine
default

NL syntax

default NL
configuration

NL syntax
configuration MM

NL
configuration

3. transform
to chatbot
framework

4. deploy
into

platform

chatbot
description

«annotates»

«conforms to»

«annotates»

Telegram Slack Twitter

…

«conforms to»

automated by our framework

automated by chatbot framework

manual LEGEND

Figure 4 – Steps for creating a modelling chatbot with our approach.

As usual in MDE, we rely on a domain meta-model to describe the abstract syntax
of the DSL. With regards to its concrete syntax, we rely on a meta-model to define
the conversational syntax, similarly to when it is graphical or textual. To facilitate
this definition, first, we automatically derive a default configuration of the NL syntax
from the domain meta-model. This configuration declares how to refer to objects and
features of the instantiable classes, and the level of tolerable inconsistency allowed
during the modelling process. The latter is useful to enable more flexible modelling
by relaxing the need for models to be fully compliant with their meta-model at all
times, as this may interfere with the modelling/conversation flow [RdLP17, GdL18b].
Next, in a second step, the language designer may refine the default NL concrete
syntax description, e.g., to include synonyms for the name of classes and features, or
to declare that some classes are non-instantiable.

Once the conversational syntax is ready, our framework synthesizes a chatbot
description from it, and subsequently, deploys the chatbot into a platform (e.g.,
Telegram, Slack or Twitter). Currently, the chatbot description follows the DialogFlow
structure presented in the previous section, and the deployment platforms are those
supported by DialogFlow. Our approach can be adapted to work with other chatbot
frameworks that provide similar concepts. As we will see in Section 5, the deployed
chatbot interacts with a modelling service we have created to handle the model
modifications at the abstract syntax level (e.g., object creation and deletion).

In the following, Section 4.1 presents our meta-model to describe the NL concrete
syntax, and Section 4.2 shows the mapping of NL syntax models into DialogFlow’s
chatbot descriptions.

4.1 Configuring the NL concrete syntax
Figure 5 shows our meta-model to configure the conversational NL syntax of DSLs.
Some of its classes contain references to the domain meta-model elements they define
the syntax for. Since we assume the Eclipse Modeling Framework (EMF) [SBPM09]
as meta-modelling technology, the classes in our NL syntax configuration meta-model
refer to the EPackages, EClasses, EAttributes and EReferences in the domain meta-
model. However, our approach is easily adaptable to other meta-modelling frameworks.

NLModel is the root class. It contains one NLClass for each domain meta-model

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 7

NLModel

name : String
model : EPackage

NLClass

class : EClass
root : boolean=false
instantiable : boolean=true
container : boolean=true
create : boolean=true

classes

*

NLElement

description : String
synonyms : String [*]

NLFeature

ask : boolean

Identifier
id

NLReference

reference : EReference
srcSynonyms : String [*]

NLAttribute

attribute : EAttribute

*

features

DefaultId

id : integer

UpdateInterface

WebService

protocol : String
method : String
domain : String
port : integer
paths : String [*]

0..1

modelUpdate

Moment
moments

Start Frequency

time : Time
action : Action

*

<<enumeration>>

Time

BEFORE
AFTER

<<enumeration>>

Action

CREATE
UPDATE
DELETE

*

elements

*

Figure 5 – The meta-model for configuring the NL syntax.

class, to configure its concrete syntax. The configuration includes a description of the
class, a list of synonyms (usually nouns) of the class name, flags to indicate whether the
class is root or instantiable, and one or more Identifiers that will be used to refer
to the objects of the class. An object identifier may consist of one or more attributes
of its class, or be a DefaultId which takes values from a counter. Two additional
flags provide flexibility in the way objects of a class are to be created: container
permits customising whether users should always indicate a container object for the
new instances of a class (otherwise, the objects would be added to a virtual temporary
container); and create, to indicate whether any object mentioned by the user should
be automatically created in case the object does not exist (otherwise, the chatbot
would just inform the user that the object does not exist).

NLClasses contain one NLFeature for each feature of the associated domain meta-
model class. NLFeatures have a flag ask to make the bot ask for the feature value when
a new instance of the class is created. By default, this attribute is true for mandatory
features, and false for optional ones, though this can be modified. NLFeatures have a
description and a list of synonyms, usually nouns for attributes and verbs for references.
In addition, references can define additional synonyms to refer to their source end,
which in the running example would permit using the sentences “task t1 is next to
task t2” and “task t2 is previous to task t1” interchangeably.

Finally, in addition to the creation of objects using NL sentences, we also support
the retrieval of external objects through WebServices. For this purpose, it is necessary
to specify the protocol, method, domain, port and paths of the web service; and to
configure the Moments in which these requests are made: either when the model is
created, or before/after the creation/update/deletion of certain model elements.

Given the domain meta-model of a DSL, we automatically produce a default
NL configuration model. This contains one NLClass for each domain class, and one
NLAttribute or NLReference for each attribute and reference of the classes. The
NLClass corresponding to the domain class that can reach more classes directly or
indirectly through containment relations, is marked as root. Abstract classes are
marked as non-instantiable, and concrete classes as instantiable. By default, the NL is
configured to require a container for each new object (NLClass.container = true),
alluding to non-existing objects implies their automated creation (NLClass.create =

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

8 · S. Pérez, M. González, E. Guerra, and J. de Lara

true), and the chatbot will ask a value for any feature with cardinality greater than
zero (NLFeature.ask = true). If a domain class has an attribute called “name”, “id”
or “identifier”, this is assigned as the class identifier; otherwise, the class is assigned a
default counter-based identifier.

Example. Figure 6 shows on the left an excerpt of the NL syntax model generated
by default for the running example. Its elements refer to elements of the domain
meta-model, which is shown on the right. The object model with type NLModel
represents the model, and points to the EPackage containing the domain meta-model.
The object project configures the syntax of class Project, which is the root class
as it contains all other domain classes. The two NLAttribute objects specify the
syntax of the attributes of Project. Attribute name is identified as the class id. The
bot will ask a value for name as it is a mandatory attribute, but not for goal as it is
non-mandatory.

Project

tasks

name: String[1]
goal: String[0..1]

TaskUnit

id: String[1]
description: String[1]

*

next

*

model :NLModel
name = “Planning”

Planning

…

project :NLClass

description= “Project information
for Planning models”
root = true

model

class

name :NLAttribute

description= “name of Project”
ask = true

:classes

:features
:id

goal :NLAttribute

description= “goal of Project”
ask = false

NL concrete syntax model for Planning,
generated by default

…

Domain meta-model for
Planning (abstract syntax)

:features

Figure 6 – Excerpt of default NL concrete syntax model for the running example.

The language engineer can refine the generated NL concrete syntax model, e.g.,
to change the default root class, to set a concrete class to non-instantiable (abstract
classes must remain non-instantiable), to change the default identifiers assigned to
classes, or to define a list of synonyms for class and feature names if so desired. We
assign a generic description to elements (like “Project information for Planning models”
in object project), which typically need to be refined as well. Finally, it is possible to
configure an update interface using a web service, together with its application policy
(i.e., when to obtain the information from the service).

Example. In our running example, the language designer would set class Human as
non-instantiable, as human resources are to be gathered from a resource database (an
external service). The model will be populated with Human objects upon creating the
model (Start). The designer also needs to refine the identifiers of classes (e.g., the
identifier of Humans is made of both attributes name and surname), and set synonyms
to refer to some classes (e.g., Activity and Job for Task), references (e.g., follow and
subsequent for next) and source end of references (e.g., precede for next).

4.2 Mapping NL syntax models into a chatbot framework
Starting from the refined NL syntax configuration model, we generate a chatbot
description model conformant to the DialogFlow meta-model in Figure 3.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 9

Figure 7 shows a high-level scheme of the generated chatbots, omitting the def-
inition of parameters for simplicity. The chatbots rely on an external service (the
modellingBot Fulfillment) to perform the model modifications at the abstract
syntax level.

planningBot: Agent

name = “modelName bot”
timeZone = CET
languages = [English]

modellingBot: Fulfillment
:fulfillment

1
url=“https://dimo1.ii...”

welcome: Intent

name = “welcome”
webhookCall = false

modelName: Intent

name = “modelName”

:intents

:followUps

rootClass: Intent

name = “rootClass”

:followUps

classiAdd: Intent

name = “<classi> add”

classiRemove: Intent

name= “<classi> remove”

:intents :intents

modName:
Context

name = “modelName” :o
u

tp
u

tC
o

n
te

xt

:inputContext
:inputContext

[for each instantiable class]

attributeiUpdate: Intent

name= “<attributei> update”

[for each attribute]

referenceiUpdate: Intent

name= “<referencei> update”

[for each reference]

:inputContext

:inputContext

:intents

:intents

classiAdd: Intent

name = “<classi> add”
webhookCall = false

classiRemove: Intent

name= “<classi> remove” :intents :intents

[for each non-instantiable class]

:inputContext :inputContext

Figure 7 – Scheme of the generated DialogFlow chatbots.

Welcome intent. Each chatbot contains a welcome intent that is trained with
typical greeting phrases (e.g., “hello”, “hi”, “hey”, “hi there”...). Welcome events
of certain social networks (e.g., the /start command in Telegram) can trigger the
welcome intent as well. The chatbot responds to this intent by introducing itself and
the actions it can do. This information is extracted from the element descriptions in
the NL syntax model. Then, the chatbot asks for the name of the model the users are
going to work with. The answer is collected by a followup intent called modelName.
This intent has a parameter with entity type any, meaning that it can receive anything,
and it has the webhook enabled to invoke the REST web service indicated in the
fulfillment URL in order to check if the model exists. If it does, it is not necessary
to configure anything else; otherwise, a new model is created, and the chatbot uses
the followup intent rootClass to ask the value of all the NLFeatures with attribute
ask=true of the root class.

Object creation intents. The chatbot has several intents to recognise model editing
actions, which become available only after the welcome and modelName intents have
been triggered. The model update intents have the output context of the modelName
intent as their input context, as Figure 7 shows.

Specifically, we create two intents for each instantiable class, one to create instances
of the class and the other to remove them. The training phrases for the intents are
automatically generated according to regular expression templates that combine the
element names and synonyms specified in the NL syntax model.

Listing 1 shows the template used to synthesize training phrases for creating objects
of a class and initializing their features. In the template, 〈create〉 represents the set
of words or expressions that indicate the intention to create something. These include
“there is/are”, “I want to create”, “add”, “create”, “the model has”, etc. Using one of
these creation expressions is optional. 〈natural-number〉 can be optionally used to

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

10 · S. Pérez, M. González, E. Guerra, and J. de Lara

indicate the number of objects to create. 〈class-name〉 stands for the class name and
its synonyms specified in the NLClass. Next, the user can optionally assign values to
the object’s features. This way, 〈feature-name〉 corresponds to the feature name and
synonyms specified in the NLFeatures of the NLClass, including the ids of the class;
and 〈feature-value〉 defines samples of possible feature values (nouns for attributes
with type String, integer numbers for attributes with type Integer, and so on). We
do not take into account the meta-model integrity constraints for generating these
sample values, as it is not required to train the NL processor. Instead, correctness of
values is checked at runtime at the abstract syntax level by the modelling service.

1 <create>? <natural-number>? <class-name>
2 (with <feature-name> <feature-value>+ ((, | and) <feature-name> <feature-value>+)∗)?

Listing 1 – Template to synthesize training NL phrases for creating objects.

Example. Some training phrases of the creation intent derived from the NLClass
Task are: “I want to create one task”, and “add two tasks with id t1 and id t2”.

Object creation intents have one parameter for each NLFeature in the NLClass,
and one additional parameter accounts for the object container. The parameter names
are equal to the feature names, and the chatbot will ask for the feature value if the
NL syntax model defines so. In the case of NLAttributes, the type of the parameter
depends on the attribute’s type, while in the case of NLReferences, it is the identifier
of the reference target class. Table 1 shows the mapping between attribute primitive

Primitive type Entity type
String sys.any
Integer/Long sys.number-integer
Double/Float sys.number
Date sys.date-time
Boolean boolean

Table 1 – Mapping primitive types into
DialogFlow entity types.

types and DialogFlow entity types. In addi-
tion, we create a custom-made EntityType
to represent booleans. This defines two
Entries: true and false. The former entry
has affirmations as synonyms (“yes”, “that’s
right”, “okay”, “sure”...), and the latter nega-
tions (“not”, “nah”, “don’t”, “not really”...).
We do so because, when asking a value for
boolean parameters, the answers typically have this form.

The object creation intents have the webhook enabled. Hence, when all data is
collected, the information is sent to the external modelling service to create the object.

Object deletion intents. We use the template in Listing 2 to synthesize training
phrases for the intents that take care of deleting objects of the instantiable classes.
〈remove〉 represents the set of words or expressions indicating the intention to delete
something (e.g., “delete”, “remove, “erase...); 〈class-name〉 is the name of its class
or a synonym; and 〈id-value〉 represents the value of the object’s identifier. These
intents define one required parameter for the value of the object identifier, and its type
is given by the mapping in Table 1. They also have the webhook enabled to trigger
the object deletion by means of the modelling service.

1 <remove> (<class-name> (with (id | <id-name>))?)? <id-value>

Listing 2 – Template to synthesize training NL phrases for removing objects.

Example. Some training phrases for the deletion of instances of the NLClass Task
are: “delete t1”, “remove task t1”, and “erase the task with id t2”.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 11

Feature modification intents. Starting from each NLFeature, we create an intent
to modify its value. We handle attributes and references in a different way. Listing 3
shows three of the templates we use to generate training phrases for attribute modifica-
tion intents. In these templates, 〈att-name〉 corresponds to the name and synonyms
of the attribute to be updated; 〈att-value〉 is its new value; 〈update〉 represents
the words to express the intent to modify something (e.g., “update”, “modify, “set”,
“change”...); 〈id-name〉 is the name and synonyms used to refer to the identifier of
a class; and the rest of the elements have the same meaning as before. The intent
has three parameters: the new attribute value (〈att-value〉), the identifier of the
attribute’s owner object (〈id-value〉), and the class of the attribute’s owner object
(〈class-name〉 with entity type sys.any). The first two parameters are mandatory,
while the third one is required only if there is more than one attribute with that name
in the model. These intents have the webhook enabled and trigger the update of the
attribute value.

1 <att-name> of <class-name>? <id-value> (is | are) <att-value>
2 <id-value>(’s)? <att-name> is <att-value>
3 <update> <att-name> of (<class-name> (with <id-name>)?)? <id-value> to <att-value>

Listing 3 – Templates to synthesize training NL phrases for updating attribute values.

Example. Some phrases that fit in the attribute modification intent are: “the units
of technical pcs are 4”, “Peter’s surname is Parker”, and “set date of t2 to May 24th”.

Regarding references, if their name is a noun, then we generate the training phrases
using the templates for attribute modification in Listing 3. However, when their name
is a verb, we use the two templates in Listing 4. In these templates, 〈ref-name〉 is
the name and synonyms of the reference to be updated; 〈class-name〉 is the owner
class of the reference; 〈ref-value〉 is the id of the object to be set in the reference;
〈ref-class-name〉 is the target class of the reference; and 〈ref-src〉 is the set of names
used to refer to the source end of the reference. These intents have four parameters:
the names of the reference source and target classes (with entity type sys.any, not
needed if the reference name is unique in the model), and the identifiers of the source
and target objects (mandatory). The webhook of the intents is enabled.

1 <class-name>? <id-value> <ref-name> <natural-number>? <ref-class-name>? <ref-value>
2 <ref-class-name>? <ref-value> <ref-src> <class-name>? <id-value>

Listing 4 – Templates to synthesize training NL phrases for updating reference values.

Example. Some examples for this intent are: “Peter participates in task t2”, and
“task t2 follows task t1”.

Non-instantiable classes. Finally, we create two intents for each non-instantiable
class with instantiable children, one for object creation and another for object deletion.
The former is trained with sentences obtained from the object creation template
in Listing 1, but in this case, the intent has no parameters, and the webhook is
disabled. Instead, the chatbot asks the user to select one instantiable children of the
non-instantiable class, and redirects the flow to the intent to create the selected class.
The intents for deleting objects of non-instantiable classes work the same as the ones
for instantiable ones, though in case there are several children with the same identifier,
then the chatbot asks to select one of them to disambiguate.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

12 · S. Pérez, M. González, E. Guerra, and J. de Lara

Domain
Meta-model

Domain
Model

Telegram

«conforms»

modelling service

Fulfillment API

intent
info

model
image

language
users

d
e

p
lo

y
d

e
p

lo
y

chatbot description

(a) Run-time architecture (b) Interaction in Telegram

Figure 8 – Modelling chatbots.

Example. Our method generates 35 intents, 108 parameters and 2600 training
phrases for the running example (in average, 74 training phrases and 3 parameters per
intent). Without our method, this information would need to be created manually.

5 Tool Support
We have developed prototype tool support for automating the creation of modelling
chatbots. Our solution includes an EMF implementation of the meta-model in Figure 5
for configuring the NL syntax, an Eclipse plugin that instantiates this meta-model for
a given domain meta-model, and a transformer into DialogFlow.

Figure 8(a) shows the runtime architecture of our generated chatbots. They can
be deployed on social networks, like Telegram in the figure. This enables collaborative
modelling as discussions among the language users and model update indications
integrate seamlessly, because both happen within the chat. Moreover, since social
networks typically provide different clients (e.g., for mobile devices, desktop computers
or web browsers) we obtain multi-platform modelling for free.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 13

When the chatbot matches an intent with the webhook enabled, it sends a request
to a modelling service that we have developed. The request contains a JSON with
the user text message, the social network, and the content of the intent (name,
context, parameters, etc.). The service processes the request and makes the necessary
modifications in the abstract syntax of the model. Next, the service sends back to
the social network an image of the updated model created with PlantUML [Pla19].
The image highlights the elements that have been modified in green. The validate
command shows possible inconsistencies in the model, which then can be corrected by
the users.

Example. Figure 8(b) illustrates the interaction with the chatbot for creating project
plans. The user first inputs the sentence “Peter Parker works in t1”. Since we have
configured the NL syntax to accept work to refer to the source end of reference
resources, the chatbot creates a link with this type between the Human object with
identifier Peter Parker (name and surname) and the Task object with identifier t1 (id).
Then, the user inputs the sentence “t1 follows t2”, which triggers the creation of a
link with type next as follows is a synonym for the source reference end. Moreover,
the chatbot creates a new task with identifier t2 as the source of the link because
it does not exist in the model. A video illustrating these interactions is available at
https://saraperezsoler.github.io/ModellingBot/.

6 Case Study
In this section, we use our approach to develop a conversational front-end for Dat-
alyzer [GdL18a]. Datalyzer is a cloud system, based on a graphical DSL, to develop
streaming data applications and execute them on the cloud. The goal of this case
study is to answer the following research questions:

RQ1 Is it feasible to create a NL front-end for an existing DSL-based information
system?

RQ1.1 What are the steps that require manual programming?

RQ2 What is the added value – in terms of functionality – that a modelling chatbot
brings?

In the following, Section 6.1 introduces Datalyzer; then, Section 6.2 describes its
abstract syntax, and Section 6.3 its new conversational syntax; Section 6.4 details the
integration of Datalyzer and the chatbot; and Section 6.5 discusses the benefits of the
approach.

6.1 Datalyzer
Datalyzer [GdL18a] is an open web platform that generates and executes data streaming
applications in a simple and intuitive way using MDE techniques. The data applications
can be connected to several heterogeneous data sources. They generate a data output
stream which can be connected with external services and be visualized on a dashboard
as charts, tables or other interactive elements in real time.

Datalyzer can be used in two ways: to build services that transform data on the
cloud, or to build complete data monitoring applications using the dashboard. The

Journal of Object Technology, vol. 18, no. 2, 2019

https://saraperezsoler.github.io/ModellingBot/
http://dx.doi.org/10.5381/jot.2019.18.2.a5

14 · S. Pérez, M. González, E. Guerra, and J. de Lara

applications are modelled using a graphical DSL developed in Javascript. The left of
Figure 9 shows the DSL editor of Datalyzer with a simple application model that we
will use as an example. The model collects streaming data from Twitter, filters the
tweets by a set of keywords (“London” in the figure), puts the data into a pipeline,
and displays the tweets in a table on the dashboard. The right of Figure 9 shows the
generated dashboard for the example.

Figure 9 – Example designed using Datalyzer’s DSL (left). Generated dashboard (right).

We would like to complement Datalyzer with a chatbot that enables the collabora-
tive construction of data application models using conversation on social networks.
This is a challenging, realistic case study for our approach for two reasons. First,
the chatbot would become a NL front-end for an existing information system, and
therefore, needs to integrate not only modelling with Datalyzer’s DSL, but also with
commands like saving a project or running the application. Second, data sources (e.g.,
Twitter, Bitcoin market values, or Madrid traffic data) in the application models are
non-instantiable but should be retrieved from a database.

6.2 Domain meta-model
Figure 10 shows the meta-model to describe Datalyzer applications by instantiating and
connecting different types of primitives. DataSourceInstance represents an instance
of a DataSourceType. Data source types are created and maintained in an external
database, and include descriptions of services like openWeather, the Twitter API, open
data APIs (e.g., the Madrid traffic data), or connections using sockets (e.g., to sensor
data streams). Data source instances may provide values to required configuration
parameters, as well as to a selection of the fields to be received (omitted in the figure
for simplicity). For example, a data source instance for Twitter requires specifying
filtering keywords (e.g., hashtags), an optional location and an authentication. For
reception, we may be interested in the user name and the tweet text.

Data source instances are connected to at least one DataPipeline. There are two
types of pipelines: a Basic one and a Join pipeline that merges data from multiple
sources. Pipelines can be connected to other pipelines or to DataProcessors. The lat-
ter define data processing operations like filters and transformers. IntermediateNodes

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 15

Datalyzer
Program

Primitive

DataSource
Instance

DataPipeline

TerminalNode

Table

*
primitives

BarChart LineChart

Storage
1..*

pipes
DataProcessor

Join Basic

StreamChart

«from Library»
DataSource

Type

type

id: String

Filter Transformer

to
*

IntermediateNode
next

*

Figure 10 – Datalyzer meta-model excerpt.

(i.e., pipelines and data processors) can be connected to TerminalNodes which imple-
ment features such as storing data or displaying data in charts.

As mentioned above, DataSourceTypes are not explicitly created by the user, but
read from an external database. Hence, we need to prepare a special NL syntax
configuration for the chatbot, as the next section explains.

6.3 Configuration of the NL concrete syntax
We used our approach to automatically generate a default NL concrete syntax
model from the Datalyzer meta-model. In this model, the NLClass pointing to
DatalyzerProgram was correctly identified as root, and all non-abstract domain
classes were set to instantiable.

Next, we manually refined the NL model to add synonyms. For instance, we
added the synonyms “basic pipeline” and “basic pipe” for class Basic, and “data
source” and “instance” for class DataSourceInstance. In addition, we modified the
NLClass pointing to DataSourceType to make it non-instantiable because its objects
are stored in an external library, and created a WebService that reads those objects
upon creating or loading a Datalyzer model (Start). The web service describes a
REST API with http method, the url as domain, and port 8080.

Starting from the modified concrete syntax model, we produced a DialogFlow
chatbot that is able to process sentences like “create data source Twitter with keyword
London”, or “connect the pipeline to table1”. Figure 11(a) shows the interaction with
the chatbot. The first two messages correspond to a discussion between two users
about the application they are modelling. Then, one user addresses the chatbot to
“create a table”, the chatbot asks for its identifier as it is mandatory, the user answers
“table1”, and a new table is created.

6.4 Integration of Datalyzer and the chatbot
Datalyzer can be used as a web service via a REST API. This way, external systems
can receive data from applications running on Datalyzer and perform some actions
such as executing or stopping a project. However, this API did not support creating
Datalyzer models, but this was only possible on a web browser. Hence, we created a
middleware providing model management support (e.g., uploading Datalyzer models)
and supporting all commands available in the browser. Figure 11(b) shows the resulting
architecture that connects Datalyzer and the chatbot. The middleware is connected
to the chatbot as a REST API, and implements the following functionalities:

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

16 · S. Pérez, M. González, E. Guerra, and J. de Lara

(a) Interaction in Telegram

Te
le

g
ra

m

M
o

d
el

lin
g

 s
er

vi
ce

Fulfill. API

EMF2JSON

D
a

ta
ly

ze
r Data sources

REST API

JSON2EMF

M
id

d
le

w
a

re

Dashboard

EMF EMF .xmi

EMF EMF .ecore

DSL

REST API

(b) Integration of Dat-
alyzer and chatbot

Figure 11 – Modelling chatbot for Datalyzer streaming data applications.

• Model transformation. Datalyzer is a cloud application. For this reason, it
does not use EMF models but non-standard JSON models that can be processed
in Javascript. To make JSON models compatible with the chatbot’s modelling
service, we have developed two transformers, from EMF to JSON and back.

• Model updates. The chatbot sends requests to the middleware to obtain the
data source types, as these are instances of a non-instantiable class. In its turn, the
middleware retrieves the data source types by sending a request to the Datalyzer
REST API, and invokes the transformer to convert the JSON data into EMF
models that the modelling service can process.

• Service encapsulation. The chatbot performs some actions implicitly. When
the middleware receives a petition requesting the data source types, it means
that a new model is being created in the chatbot. This triggers the creation of
a Datalyzer project associated to a generic and public user. A similar process
is done when the chatbot sends the application model to the middleware: the
model is saved in the database, the application is generated and executed, and the

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 17

middleware sends the link of the dashboard to the chatbot.

6.5 Discussion
Next, we answer the research questions, and discuss limitations.

RQ1: Feasibility. This question can be answered positively: using our approach,
we easily added a NL interface to an existing information system through Telegram.

RQ1.1: Automation. Configuring the NL syntax was easy as it is highly automated.
From the meta-model of Datalyzer, the approach automatically generated 40 intents
and 2500 training phrases that otherwise should have been defined manually. However,
we had to implement the middleware that connects Datalyzer and the chatbot to
bridge their different modelling technologies (JSON and EMF).

RQ2: Added value. Social networks are common in our lives, and we are familiar
with their interaction style. Hence, some users may find modelling using NL and a
conversational assistant easier or more appealing than learning to use a graphical or
textual DSL and its editing environment. Moreover, “chatbot-izing” Datalyzer has
expanded its capabilities as follows:

(i) As the chatbot is integrated into Telegram, it is possible to use the collaborative
capabilities of this social network, e.g., to build Datalyzer models collaboratively,
intertwine discussion messages and editing actions in real time and trace them back in
the chat history, organize private or public on-line meetings, invite collaborators to
existing projects, etc. These features were not initially available in Datalyzer.

(ii) Telegram can be installed on smartphones, tablets and computers, and there is a
web version as well. Hence, we can use the Datalyzer chatbot from any device regardless
of the OS, and from many devices at the same time as they remain synchronized by
a personal account. This makes Datalyzer portable and permits using it in mobility.
Although Datalyzer is a web platform, its interface is not as well adapted to phones
and tablets as Telegram.

Limitations. While we produce fully-functional chatbots trained with sensible NL
phrases, evaluating the completeness of these phrases or the efficacy of the generated
conversational flow is something that we plan to assess in the near future. Also, the
chatbot uses a default concrete syntax (object diagrams) in the images, instead of the
concrete syntax for the DSL supported by Datalyzer. We plan to improve this support
in future work.

7 Related Work
In this section, we revise related works on chatbot creation frameworks, the usage of
bots or NL processing techniques within MDE, and collaborative modelling.

Chatbot frameworks. In this paper, we synthesize chatbots using the DialogFlow
chatbot creation framework. Our decision is motivated by its popularity, high degree
of customizability, support for NL processing, and the possibility to integrate the
chatbot with external services (a modelling service in our case) via a REST API. In
addition to a cloud-based chatbot editor, DialogFlow also supports uploading chatbot

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

18 · S. Pérez, M. González, E. Guerra, and J. de Lara

descriptions in JSON. However, we may have used other frameworks (see [LSZ18] for
a survey). In the following, we revise some of the most popular ones.

The IBM Watson Assistant [IBM19] allows building conversational interfaces. As
in DialogFlow, intents and entities can be used to train a machine learning model that
will understand similar NL requests from users. Hence, adapting our approach to this
framework would be easy. It provides an SDK to build applications around chatbots,
but integrating the chatbots into social networks is less direct than in DialogFlow.

The Microsoft Bot Framework [Mic19] permits building and deploying chatbots
in websites and social networks. Its main components are the channel connectors,
to connect chatbots to messaging channels, and the BotBuilder SDK, to implement
the business logic and integrate NL understanding services. It offers some advanced
cognitive services like image-processing algorithms and recommending services.

Amazon Lex [Ama19] is a service to create conversational interfaces, with support
for NL processing (i.e., it extracts a NL model from training sentences). FlowXo [Flo19]
permits creating conversational flows by connecting triggers to actions. The framework
provides over 100 integrations, most of which can trigger a flow or be the output action
of a flow. These include utility modules (e.g., webhooks or email) and integration with
third-party services (e.g., Github or Google Sheets). Unlike DialogFlow, it does not
provide support for NL processing.

Chatbots are created in Landbot.io [Lan19] by visually linking blocks and messages.
Extra functionality can be coded using a built-in development tool, or integrating
external services using a REST API (like in DialogFlow). It does not integrate artificial
intelligence intentionally, as it advocates simplicity as its main feature.

Bots and NL processing in MDE. Our work proposes using NL as a particular
kind of concrete syntax for DSLs. NL processing techniques have been used within Soft-
ware Engineering to derive UML diagrams/domain models from text [ASBZ16, LKT14].
In this context, our contribution is to use an interactive incremental approach to
building models, the use of social networks to embed assistance, and the generalization
from UML models to arbitrary DSLs.

The ModelByVoice [LCA18] modelling tool supports voice recognition and speech
synthesis for editing models. The tool assumes a diagrammatic concrete syntax for
models, and editing actions are generic commands. For instance, creating any kind
of object is done through the command “create node”, after which the tool prompts
the user about the node type and its attributes. The tool VoiceToModel [SAW15] is
similar but for goal-oriented models, object models and feature models. Compared to
ModelByVoice, it supports a smaller set of modelling languages, but their commands
are less generic (e.g., there is a create command for each object type) though still rigid.
In contrast, we generate a flexible NL syntax adapted to the DSL, support synonyms,
the conversation flow is configurable, and do not assume a diagrammatic model.

In [PNFL17], the authors define a feature model with the commonalities and
variations of chatbot features. Variability can come from the platform (e.g., Telegram
or Slack), the way to access external services (e.g., via REST web service calls), the
chatbot application core, the chatbot personality processing, and the dialog services.
This feature model can be used as a reference framework to guide chatbot creation.
While this work complements ours by focusing on the technical aspects of chatbot
implementations, we are more concerned with the usage of NL as frontend of domain
models, modelling services and information systems, and we provide tool support.

In the vision paper [CCBG18], the authors propose cognifying MDE to promote
its adoption. Cognification is the application of knowledge extracted from existing

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 19

information, to boost a given process. Among other applications, the paper mentions
the possibility of having modelling bots that suggest missing model properties based
on the analysis of previous models in the same domain. Such facilities might be added
to our bots as external services complementing our modelling service.

Collaborative modelling. Collaborative modelling has been used for model con-
struction [GBR12] and collaborative creation of DSLs [IC16]. However, these works
do not use social networks or NL processing, but they rely on collaborative graphical
model editors [GBR12] or ad-hoc tools [IC16] without assistant support.

More recently, in [PGdL18], we embedded meta-modelling chatbots within social
networks, to enable the collaborative creation of meta-models by domain and meta-
modelling experts. The present paper follows this line of research, extending the use
of chatbots for modelling using arbitrary DSLs, and not just for building meta-models.
Moreover, we automate the creation of such domain-specific modelling chatbots.

Altogether, from the analysis of the state of the art, we conclude that the usage of
NL as concrete syntax for domain-specific modelling languages, assisted by modelling
chatbots that help in constructing models using a configurable conversational style,
and being the frontend for modelling services, is highly novel.

8 Conclusions and Future Work
In this paper, we have proposed a novel approach to define a conversational syntax for
DSLs based on NL processing and chatbots. The approach is based on annotating
domain meta-models with configuration information for the NL syntax, and translating
these data into a chatbot creation framework (DialogFlow in our case). The chatbots
can be deployed on platforms like Telegram, and use a modelling service to create
the model abstract syntax at run-time. We have demonstrated the feasibility of our
solution by means of a case study where we have created a modelling chatbot atop
an existing cloud system to define and run streaming data applications. The case
study illustrates the functionality added by the chatbot, which includes support for
collaboration in NL, multi-platform, mobility, and traceability.

While our prototype tool demonstrates the feasibility of our proposal, evaluating the
quality and usability of our generated chatbots still remains future work. Hence, in the
near future, we plan to perform a usability study with users, as well as to apply existing
quality frameworks for chatbots like [PD18a, PD18b]. We are currently extending our
tooling with a full-fledged environment to edit the NL concrete syntax models. We
are also currently working on integrating further services into our modelling chatbots,
like code generators and model transformation engines deployed in the cloud, in order
to provide a complete MDE solution interfaced by NL.

References
[Ama19] Amazon. Amazon lex. https://aws.amazon.com/lex/, 2019.
[ASBZ16] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer. Extracting

domain models from natural-language requirements: approach and
industrial evaluation. In Proc. MoDELS, pages 250–260. ACM, 2016.

Journal of Object Technology, vol. 18, no. 2, 2019

https://aws.amazon.com/lex/
http://dx.doi.org/10.5381/jot.2019.18.2.a5

20 · S. Pérez, M. González, E. Guerra, and J. de Lara

[CCBG18] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard. Cognifying model-
driven software engineering. In Proc. STAF Collocated Workshops,
volume 10748 of LNCS, pages 154–160. Springer, 2018.

[DP14] J. Danado and F. Paternò. Puzzle: A mobile application development
environment using a jigsaw metaphor. J. Vis. Lang. Comput., 25(4):297–
315, 2014.

[Flo19] FlowXO. Flow xo for chatbots. https://flowxo.com/, 2019.
[GBR12] J. Gallardo, C. Bravo, and M. A. Redondo. A model-driven development

method for collaborative modeling tools. J. Network and Computer
Applications, 35(3):1086–1105, 2012.

[GdL18a] M. González-Jiménez and J. de Lara. Datalyzer: Streaming data applica-
tions made easy. In Proc. ICWE, volume 10845 of LNCS, pages 420–429.
Springer, 2018.

[GdL18b] E. Guerra and J. de Lara. On the quest for flexible modelling. In Proc.
MODELS, pages 23–33. ACM, 2018.

[Goo19] Google. DialogFlow. https://dialogflow.com/, 2019.
[IBM19] IBM Watson Assistant. https://www.ibm.com/cloud/

watson-assistant/, 2019.
[IC16] J. L. Cánovas Izquierdo and J. Cabot. Collaboro: a collaborative (meta)

modeling tool. PeerJ Computer Science, 2:e84, 2016.
[Jac12] J. A. Jacko. Human Computer Interaction Handbook: Fundamentals,

Evolving Technologies, and Emerging Applications. CRC Press, 3rd

edition, 2012.
[KT08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling - Enabling Full

Code Generation. Wiley, 2008.
[Lan19] Landbot.io. https://landbot.io, 2019.
[LCA18] J. Lopes, J. Cambeiro, and V. Amaral. ModelByVoice - towards a

general purpose model editor for blind people. In Proc. MODELS
Workshops, volume 2245 of CEUR Workshop Proceedings, pages 762–
769. CEUR-WS.org, 2018.

[LKT14] M. Landhäußer, S. J. Körner, and W. F. Tichy. From requirements to
UML models and back: How automatic processing of text can support
requirements engineering. Software Quality Journal, 22(1):121–149, 2014.

[LSZ18] C. Lebeuf, M.-A. D. Storey, and A. Zagalsky. Software bots. IEEE
Software, 35(1):18–23, 2018.

[Mic19] Microsoft Bot Framework. https://dev.botframework.com/, 2019.
[MNPP17] P. Markopoulos, J. Nichols, F. Paternò, and V. Pipek. Editorial: End-

user development for the internet of things. ACM Trans. Comput.-Hum.
Interact., 24(2):9:1–9:3, 2017.

[Moo18] S. Moore. Gartner press release on chatbots. http://tiny.cc/bkss7y,
2018.

[PD18a] J. Pereira and O. Díaz. Chatbot dimensions that matter: Lessons from
the trenches. In Proc. ICWE, volume 10845 of LNCS, pages 129–135.
Springer, 2018.

Journal of Object Technology, vol. 18, no. 2, 2019

https://flowxo.com/
https://dialogflow.com/
https://www.ibm.com/cloud/watson-assistant/
https://www.ibm.com/cloud/watson-assistant/
https://landbot.io
https://dev.botframework.com/
http://tiny.cc/bkss7y
http://dx.doi.org/10.5381/jot.2019.18.2.a5

Towards conversational syntax for DSLs using chatbots · 21

[PD18b] J. Pereira and O. Díaz. A quality analysis of facebook messenger’s most
popular chatbots. In Proc. SAC, pages 2144–2150. ACM, 2018.

[PGdL18] S. Pérez-Soler, E. Guerra, and J. de Lara. Collaborative modeling and
group decision making using chatbots in social networks. IEEE Software,
35(6):48–54, 2018.

[PGdLJ17] S. Pérez-Soler, E. Guerra, J. de Lara, and F. Jurado. The rise of the
(modelling) bots: towards assisted modelling via social networks. In
Proc. ASE, pages 723–728. IEEE Computer Society, 2017.

[Pla19] PlantUML. http://plantuml.com/, 2019.
[PNFL17] A. Di Prospero, N. Norouzi, M. Fokaefs, and M. Litoiu. Chatbots as

assistants: an architectural framework. In Proc. CASCON, pages 76–86.
IBM / ACM, 2017.

[PP09] M. Pfeiffer and J. Pichler. A DSM approach for end-user programming
in the automation domain. In Proc. INDIN, pages 142–148, 2009.

[RdLP17] D. Di Ruscio, J. de Lara, and A. Pierantonio. Special issue on flexible
model driven engineering. Computer Languages, Systems & Structures,
49:174–175, 2017.

[SAW15] F. Soares, J. Araújo, and F. Wanderley. VoiceToModel: an approach to
generate requirements models from speech recognition mechanisms. In
Proc. SAC, pages 1350–1357. ACM, 2015.

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2009.

[Sch06] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering.
Computer, 39(2):25–31, 2006.

[VPGdL17] D. Vaquero-Melchor, J. Palomares, E. Guerra, and J. de Lara. Active
domain-specific languages: Making every mobile user a modeller. In
Proc. MODELS, pages 75–82. IEEE Comp. Soc., 2017.

About the authors
Sara Pérez-Soler is PhD student in the miso group of the Universidad Autónoma
of Madrid. Contact her at sara.perezs@uam.es.

Mario González-Jiménez is MSc student in the miso group of the Universidad
Autónoma of Madrid. Contact him at mario.gonzalezj@uam.es.

Esther Guerra is a professor at the Universidad Autónoma of Madrid. She leads
the miso group together with Juan de Lara. Contact her at Esther.Guerra@uam.es.

Juan de Lara is a professor at Universidad Autónoma of Madrid. He leads the miso
group together with Esther Guerra. Contact him at Juan.deLara@uam.es.

Acknowledgments Work funded by the R&D programme of the Madrid Region
(S2018/TCS-4314) and the Spanish Ministry of Science (RTI2018-095255-B-I00). We
thank the anonymous referees for their useful and encouraging comments.

Journal of Object Technology, vol. 18, no. 2, 2019

http://plantuml.com/
mailto:sara.perezs@uam.es
mailto:mario.gonzalezj@uam.es
mailto:Esther.Guerra@uam.es
mailto:Juan.deLara@uam.es
http://dx.doi.org/10.5381/jot.2019.18.2.a5

	Introduction
	Motivation and Running Example
	Developing Chatbots with Dialogflow
	Conversational Syntax for DSLs
	Configuring the NL concrete syntax
	Mapping NL syntax models into a chatbot framework

	Tool Support
	Case Study
	Datalyzer
	Domain meta-model
	Configuration of the NL concrete syntax
	Integration of Datalyzer and the chatbot
	Discussion

	Related Work
	Conclusions and Future Work
	Bibliography
	About the authors

