
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Executing Multilevel Domain-Specific
Models in Maude

Alejandro Rodrígueza Francisco Duránb Adrian Rutlea

Lars Michael Kristensena

a. Western Norway University of Applied Sciences, Bergen, Norway
b. Universidad de Málaga, Málaga, Spain

Abstract Multilevel modelling (MLM) tackles the limitation in the number
of abstraction levels present in traditional modelling approaches within the
model-driven software engineering (MDSE) field. One way to specify the
behaviour description of MLMs is by means of multilevel model transfor-
mations. In this paper, we propose an approach to achieve reusability and
flexibility in specifying and executing multilevel model transformations.
For this purpose, we rely on code-generation and the efficient rewriting
logic mechanisms that Maude provides. As a proof of concept, we have
developed an infrastructure which combines our MLM tool MultEcore, that
facilitates definition of MLM hierarchies and transformations, with Maude,
which performs the execution of the transformations on these hierarchies.

Keywords Multilevel modelling; Model transformations; Rewriting logic

1 Introduction
MDSE tackles the increasing complexity of software by utilizing abstractions and
modelling techniques, and treats models as first-class entities in all phases of software
development. MDSE has proven to be a successful approach in terms of gaining
quality and efficiency [WHR14, MGS+13]. Most traditional MDSE approaches are
based on the Object Management Group (OMG) 4-layer architecture, such as the
Eclipse Modelling Framework (EMF) [SBMP08] and the Unified Modelling Language
(UML) [UML]. These approaches follow a two-level hierarchy in which only two levels of
abstraction are available for the modeller; i.e., models and their instances. Compelling
to use these two-level (meta)modelling approaches may introduce several challenges,
for instance, convolution and an increase in the complexity of models [LGC14, LG18].
It also has a direct impact in the specification of Domain-Specific Modelling Languages
(DSML), since the domain expert might be forced to fit several abstraction layers
into the only two levels which are supported by the traditional approaches [AK08].
Furthermore, capturing all the concepts in the same level makes it more difficult to
define the metamodel and to fix the potential inconsistencies created in the artefacts
conforming to (or depending on) this metamodel.

Alejandro Rodríguez, Francisco Durán, Adrian Rutle, Lars Michael Kristensen. Executing Multilevel
Domain-Specific Models in Maude. Licensed under Attribution 4.0 International (CC BY 4.0). In
Journal of Object Technology, vol. 18, no. 2, 2019, pages 4:1–21. doi:10.5381/jot.2019.18.2.a4

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a4
http://dx.doi.org/10.5381/jot.2019.18.2.a4


2 · Rodriguez et al.

MLM has proven to be a successful approach in areas such as software architec-
ture and enterprise/process modelling domains [LGC14, AK17, AKdL18]. Having a
hierarchical organization of the metamodels defined to precisely capture the desired
environment facilitates the possible extensions and modifications that might come in
the future, not only in the existing levels, but also for adding/removing levels. MLM
provides separation of concerns and therefore prevent the pollution of models where
specialization of concepts would be done in the same level. This also leads to a better
modularization and facilitates extendibility. Being able to add new metalevels makes
extensions/modifications independent on other models. Further benefits of MLM and
a detailed comparison between MLM and two-level traditional approaches can be
found in [LG18].

Understanding the behaviour of a model is key to comprehend the behaviour of
the underlying system that is being abstracted. In MDSE, model transformations are
one of the possible means to specify behaviour. Although there are several approaches
proposed for the definition and simulation of behavioural models based on reusable
model transformations (e.g., [dLV02, Ren03, RDV09]), these rely on traditional two-
level modelling hierarchies. Furthermore, modelling the behaviour through multilevel
model transformations [AGM15] and performing execution in MLM has not been
widely explored yet. Multilevel Coupled Model Transformations (MCMTs) have
already been proposed [MRS+18b, MWR+19] to achieve reusable multilevel model
transformations for the definition of behaviour. In this paper, we have improved the
MCMTs by making them more reusable and flexible, extended them with the notion
of cardinality, and implemented a first prototype for the execution of the rules.

In this paper, we propose an infrastructure for the execution of MLM hierarchies.
This infrastructure is built on top of previous work for specification of structure
and behaviour of MLM hierarchies in MultEcore [MRS16, MWR+19, MRS+18b].
MultEcore is a set of Eclipse plugins aimed to combine the best from traditional two-
level modelling – the mature tool ecosystem (integration with EMF) and familiarity
– with the flexibility of MLM. It supports the main features that characterize MLM
such as potency, multiple typing and unlimited level of abstractions.

We rely on Maude for the execution/simulation of MLM hierarchies [CDE+07].
Maude is a high-level language and a high-performance interpreter and compiler
in the OBJ algebraic specification family [GM13]. It supports rewriting logic and
programming of systems. Among the functionalities that Maude provides, we exploit
the ability to specify object-based systems which allows us to transform both the
multilevel hierarchy and the MCMTs from MultEcore to Maude. This transformation
provides the complete Maude specification (a rewrite logic theory) that can be directly
executed by the rewriting logic engine. Execution in Maude means to apply the rewrite
rules that gives the next states of our model. Ultimately, we can conduct reachability
analysis (by means of strategies [EMOMV07]) and model checking. Maude supports
model checking on the generated state space as it implements a Linear Temporal Logic
(LTL) [BK08] model checker.

Paper outline: We present the prototype infrastructure in Sect. 2. Section 3
introduces the MLM background and the running example which we use for the rest of
the paper. In Sect. 4 we describe how MCMTs work and display the rules we define for
the MLM hierarchy example presented in Sect. 3. Section 5 discusses how Maude can
be used to execute the MLM hierarchy and how the translation between MultEcore
and Maude has been achieved. In Section 6 we discuss related work. Finally, Section 7
concludes the paper and outlines directions for future work.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 3

2 The infrastructure
In this section, we present the overall architecture (see Fig. 1) of the infrastructure
which we have developed for the execution of MLM hierarchies. The left-hand side
of Fig. 1 shows the MultEcore part, where we can specify the MCMT rules (top), the
multilevel hierarchy (middle) and the possible specification of behavioural properties
that we want to check or enforce during the execution. In [MRS+18b] the so-called
supplementary hierarchies are used to define property specification languages like
Linear Temporal Logic (LTL) and to specify behavioural properties. We can directly
translate these properties to Maude since it implements an LTL model checker. The
Transformer: MultEcore ↔ Maude takes care of the automatic transformation. This
can be viewed as a bidirectional transformation [Ste07, CFH+09] between the model
spaces in MultEcore and Maude:

MultEcore → Maude: once the modeller decides which specific language is going
to be simulated, the transformer takes both the models that define the language
(the concrete hierarchy branch) and the multilevel model transformation rules,
and creates the Maude specification. Such a specification corresponds to a
functional Maude file that can be executed directly.

Maude → MultEcore: the states that Maude provides (new versions of the model)
are given by means of an XML file. This file is interpreted by the transformer
which can directly propagate the new state(s) to the multilevel hierarchy in
MultEcore.

The right-hand side of Fig. 1 shows the Maude perspective. Once we have generated
the specification with the Transformer, we are able to execute the model using Maude’s

MultEcore

Multilevel
hierarchy MCMTs

Maude rewriting engine

State0

M
ul

til
ev

el
 h

ie
ra

rc
hy

Configuration
Interface 

 
 Interative

execution 

Model
checking Behavioural

properties/
constraints 

...State1 Staten

 
 

Batch
execution 

 
 

 
 

M
C

M
Ts

 ru
le

s

CreatePart
Maude

TransferPart

SendPartOut

Assemble

Transformer 
MultEcore

 
Maude

Figure 1 – Infrastructure for the execution of multilevel models

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


4 · Rodriguez et al.

rewriting engine. As Maude allows several kinds of rewriting procedures depending
on the strategy chosen, we might want to perform either an interactive execution (i.e.,
step-by-step, where the modeller can take control of the next states that can be given),
or batch execution to directly get a final state.

In our prototype, we fully implement the capability to specify multilevel hierarchies
and MCMTs, the bidirectional transformer, and the execution of the specified config-
urations (see [Dep] to access the infrastructure). This encompasses all the features
shown in the figure except for the Configuration Interface which is aimed to offer the
modeller a user-friendly interface for controlling aspects related to execution and
verification.

3 DSML Structure - Multilevel Modelling
In this section, we discuss how we achieve the definition of the structural dimension
of DSMLs by means of MLM. MLM is based on the idea of deep instantiation and
eliminating the restriction in the number of times a model element can be instantiated.
In this context, MLM techniques match well with the creation of DSMLs, especially
when we focus on behavioural languages since behaviour is usually defined at the
metamodel level while it is executed at least two levels below; i.e., at the instance
level [dLG10, MWR+19].

Usually, when we are defining the structure of a domain-specific language, we
mentally “sketch” this as a hierarchical composition. It is therefore natural to have
a way to literally translate this mental representation into a model. An example
of a multilevel hierarchy (originally from [RDV09]) describing a DSML for Product
Line Systems (PLS) is shown in Fig. 2. This hierarchy (which is specified using
MultEcore) contains three levels of abstractions (four if we include the reserved level
0 that corresponds to Ecore in EMF, and five if we take into account the extension we
make in Sect. 4.2). Note that each model in the hierarchy is a directed multi-graph
and we establish typing relations in the vertical dimension which are formalised as
graph homomorphisms [EEPT06]. The complete formalization as well as other MLM
examples and an evaluation of MultEcore are depicted in [Mac19]. Further examples
of multilevel models with four or more levels can be checked out in [RDLGN15].

The example displays a hierarchical distribution with the generic_plant model at
the top (Fig. 2a). In this model, the abstract concepts related to the manufacturing of
objects are defined. Machine is aimed for any gear that can create, modify or combine
objects, which are represented by the concept Part. Both concepts are linked by the
creates relation. A Container can store parts, and this connection is captured by the
relation contains. All machines may have containers where they can take parts from or
where they can drop the manufactured ones. These two relations are identified with
the in and out edges, respectively. The annotations in the rectangles at the right top
corners of the nodes, and after the names in the arrows (separated by ‘@’) specify the
potencies. Potency is used on elements as a means of restricting the levels at which
this element may be used to type other elements. In the case of MultEcore, a potency
specification includes three values: the first two specify the first and the last levels
where one can directly instantiate an element (min and max), and the third value
specifies the number of times the element can be indirectly re-instantiated (depth).

The second level contains two models which are defined for two specific environ-
ments: one for creating hammers and one for manufacturing stools (hammer_plant
in Fig. 2b and stool_plant in Fig. 2c, respectively). One can see that both branches

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 5

share similarities. The languages (branches) must belong to the same family in order
to make (horizontal) reusability possible. The hammer_plant contains the concepts
related to the manufacturing of Hammers which are created by combining one Handle
and one Head. This can be seen from the multiplicities 1..1 in the relations hasHandle
and hasHead. These two relations have as type EReference (from Ecore [SBPM09])
since no relation is defined between parts in the top level model (generic_plant). This
is because the concept of assembling parts is too specific to be located in generic_plant.
At this level, we can also find the machines GenHandle and GenHead that create the
parts, the Assembler, and the containers Conveyor and Tray that move and store the
parts, respectively. It is due to the nature of PLSs that the stool_plant (Fig. 2c)
branch in the MLM hierarchy is structured similar to the one in hammer_plant. In this
case, we have machines GenLeg and GenSeat to generate Leg and Seat, respectively,
and a Gluer that puts together three legs and one seat to make a Stool.

The two models defined at the bottom of the hierarchy, in Fig. 2d and Fig. 2e,
represent specific configurations for hammers (hammer_config) and stools (stool_config)
productions, respectively. They contain specific instances of the concepts defined in
the levels above and they are used to specify concrete product lines configurations, in
which parts get transferred from generator machines to machines that combine them.

(a) generic_plant

(d) hammer_config (e) stool_config

(b) hammer_plant (c) stool_plant

EClass 1-1-* EClass 1-1-* EClass 1-1-*out@1-2-*

EReference contains@1-2-*

EReference

creates@1-1-*

EReference

in@1-2-*

EReference

GenHead 1-1-*

Conveyor 1-1-*

Tray 1-1-* Tray 1-1-*

GenHandle 1-1-*

Conveyor 1-1-*

Assembler 1-1-* Conveyor 1-1-*

out@1-1-* out@2

out@1-1-* out@2

cout@1-1-*

cout

cout@1-1-*

cout in@1-1-* in@2

out@1-1-*

out@2

cout@1-1-* cout

GenLeg 1-1-*

GenSeat 1-1-*

Box 1-1-*

Box 1-1-*

Gluer 1-1-*

Box 1-1-*

out@1-1-* out@2

out@1-1-* out@2

out@1-1-* out@2

in2@1-1-*

in@2

in1@1-1-*

in@2

Machine 1-1-* Machine 1-1-* Machine 1-1-*

Part 1-1-* Part 1-1-* Container 1-1-*

Part 1-1-*

creates@1-1-* creates creates@1-1-* creates

hasLeg@1-1-* EReference hasSeat@1-1-* EReference

Machine 1-1-* Machine 1-1-* Container 1-1-*

Part 1-1-* Part 1-1-* Container 1-1-*

Part 1-1-* Machine 1-1-*

creates@1-1-* creates creates@1-1-* creates cout@1-1-* EReference

hasHandle@1-1-*

EReference

hasHead@1-1-* EReference

3..3 1..11..1 1..1

Figure 2 – Full hierarchy for the PLS case study

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


6 · Rodriguez et al.

One could argue that this hierarchy can be managed with traditional two-level ap-
proaches using specialization and generalization (i.e., using subclassing and inheritance
relations, respectively). The traditional 4-layer architecture of OMG would force us to
a design with several concepts in the same model, since this architecture leaves only
one level for user models. The top level M3 is reserved for MOF; M2 for metamodels,
e.g., UML class diagram or UML object diagram; M1 is designated for user-models;
M0 has a “representation” relation to M1, which associates elements of M1 to real
world objects, i.e., there is no “instance-of” relationship to the M1 level above. Hence,
we would fit the levels generic_plant, hammer_plant and hammer_config into one model
at M1 level. Furthermore, the typing relations between model elements in these
different levels would have to be maintained manually, i.e., we would need elements
like MachineInstance and MachineType, ContainerInstance and ContainerType, etc.

MLM provides the flexibility needed to avoid the use of anti-patterns (e.g., type-
object pattern is described in [LGC14, LG18]) when fitting several layers of abstractions
into one single level. This anti-pattern appears when both the concept and the
metaconcept are defined in the same level, leading to convolution. Since the focus and
the contribution of this paper is oriented to the flexible definition of the behaviour
and the execution/simulation of the models, we do not enter into details of all the
concepts related to the definition and construction of MLM hierarchies; we refer
to [dLGC15, AK18, Küh18a, Küh18b, MWR+19] for the details.

4 DSML behaviour - MCMTs
Transformation rules can be used to represent actions that may happen in the system.
Conventional in-place model transformations (MTs) are rule-based modifications of
a source model (specified in the left-hand side of the rule) resulting in a new state
of the model (determined by the right-hand side). While the left-hand side takes as
input (a part of) a model and it can be understood as the pattern we want to find in
our original model, the right-hand side describes the target state of the system we
want to acquire in our model. There is a match when what we specify in the left-hand
side is found in our source model. The behaviour is the implicit transition from the
left-hand side to the right-hand side.

MCMTs have been proposed as a mean to overcome the issues of both the traditional
two-level transformation rules and the multilevel model transformations [MWR+19].
While the former lacks the ability to capture generalities, the later is too loose to be
precise enough (case distinctions). In this section we show how the behaviour of a
multilevel DSML can be described by using MCMTs.

4.1 PLS behaviour definition
The actions illustrated in this section describe a possible behaviour in the PLS
environment. These actions detail how to create parts, move them through the
different machines and assemble them into new parts. A rule CreatePart can be
specified as shown in Fig. 3. It represents the process in which a machine creates a
part. The META block allows us to locate types in any level of the hierarchy that can
be used in FROM and TO blocks.

However, the actual power of the META comes from the fact that it facilitates
the definition of an entire multilevel pattern. The rule CreatePart is sufficient
to generate instances of Head and Handle for the hammer branch of Fig. 2 and

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 7

M1
Machine

P1
Partcr

creates

m1
M1

m1
M1

p1
P1c

cr

META . . .

FROM TO

Figure 3 – Rule CreatePart: The
execution gives a state where a
machine has created a part

instances of Seat and Leg for the stool branch
of Fig. 2. The variable P1 matches to any of
the aforementioned parts, both in hammer_plant
and stool_plant models, and the variable M1
matches any of the creator machines: GenHead,
GenHandle, GenSeat or GenLeg. However, the
key feature is that this rule can only match the
generators of parts, since we require M1 in the
META block to have a creates relation to P1.
Then a correct match of the rule comes when an
element, coupled together with its type, fits an
instance of M1 that has a relation of type creates to an instance of P1. For example,
GenHead in Fig. 2b, fits M1, since GenHead has a creates relation to Head. Hence, m1
can be matched to ghead (defined at the left in Fig. 2d) when applying the rule, in
order to create a new part (p1), which would be an instance of Head.

Compared to the original idea of MCMTs [MWR+19] (the levels specified in a
rule had to be consecutive by default) we have removed the strictness in the levels to
provide a more flexible definition. There might be several levels in between the blocks
FROM/TO and the upper level. This is represented by the three dots in Fig. 3.

Another rule called SendPartOut shown in Fig. 4 is the action defined for moving a
created part from its generator into the output container. It shows two levels specified
in the META block (separated by the upper double line). Similarly as in the CreatePart
rule, the three dots in between the specified meta levels enhance the flexibility of the
rule that can be applied in several cases without modifying it (this will be shown later
in this section). Also, it leads to a more natural way of defining that a type is defined
at some level above, without the need of saying explicitly in which level. At the top
level, we mirror part of generic_plant, defining elements like out and contains, that
are used directly as types in the FROM and TO blocks. These elements are defined
as constants, meaning that the name of the pattern element must match an element
with the same name in the typing chain. The use of constants allows us to be more
restrictive when matching, and significantly reduces the amount of matches that we
obtain. On the other hand, we allow the type on the variables to be transitive (i.e.,
indirect typing). For instance P1, which has the variable Part for the type, will match
any node which indirectly has Part as type, or ultimately will match to Part if no
indirect one is found. Fig. 5 displays TransferPart rule which moves a part from a
Conveyor to a Tray. It models the action where c1 (of type Conveyor), that holds a
part p1 and which is connected to t1 with Tray as type (described in the FROM block),
moves such a part to t1 (specified in the FROM block).

ContainerMachine Part
out contains

creates

M1
Machine

P1
Partcr

creates

. . .

c1
Container

m1
M1

p1
P1 c

cr
out

out
p1

P1

m1
M1

c1
Containerout

outco

contains

META

FROM TO

. . .

Figure 4 – Rule SendPartOut: A part is moved from the creator machine to a container

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


8 · Rodriguez et al.

Container Part
contains

Conveyor Tray
cout

. . .

t1
Tray

c1
Conveyor

p1
Part

co1

contains

c

cout
p1

Part

c1
Conveyor

t1
Tray

co2

contains

c

cout

META

FROM TO

. . .

Figure 5 – Rule TransferPart: The execution provides a model state where a part is trans-
ferred from a conveyor to a tray

The Assemble rule creates new products by combining the component parts. It
assembles two parts into a different part (see Fig 6). It requires, for the resulting part
p3, to consist of, or be built from parts p1 and p2. Having three variables for the
different parts, allows us to make an explicit distinction between them even though
all of them are instances of Part. Variables [M] and [N] in the intermediate level on
the h1 and h2 relations, represent the cardinality that have to be matched in order
to apply the rule. A part consisting of other parts might also need a specific number
of instances to be built from. In Fig. 2b we can see that a Hammer is composed of 1
Handle and 1 Head (this in fact can be understood as the default case). However, in
Fig. 2c, a Stool needs 3 Legs in order to be assembled. As the multiplicity has been
explicitly specified in the second META level of the rule, and we have established those
same variables for the multiplicities in the FROM block, then the rule will take that
into consideration during the matching process. When this process takes action, M
and N will be bound to 3 and 1 for stools, respectively. Then, these numbers will be
used to check whether that amount of parts exist in the FROM block. For the match
to succeed, three legs and one seat (and the respective relations with the container),
need to be found. Thus, this is syntactic sugar to represent that in the model it is
necessary to explicitly find this number of instances for the match to occur. The
way we define and use these multiplicities is inspired by the concept of cardinality
described in [SCGdL11]. Fig. 7 shows the unfolded version of the Assemble rule. As
M and N have been bound to 3 and 1, respectively, the pattern shown in the figure
needs to be found for a successful match.

Machine Container Part
in

out

contains

P3
Part

P1
Part

P2
Parth1[M]

EReference

h2[N]

EReference

. . .

m1
Machine

c1
Container

c2
Container

p1
P1

p2
P2

i
in

o
outco1 contains

co2 contains

[M]

[N]

c1
Container

m1
Machine

c2
Container

p3
P3

i
in

o
out

co3

contains

META . . .

FROM TO

Figure 6 – Rule Assemble: The execution gives a state where a machine takes several parts
and assemble them in a new one

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 9

Machine Container Part
in

out

contains

P3
Part

P1
Part

P2
Parth1[M]

EReference

h2[N]

EReference

. . .

m1
Machine

c1
Container

c2
Container

p1 1
P1

p1 2
P1

p1 3
P1

p2 1
P2

i
in

o
out

co1 1

contains

co1 2

contains

co2 3

contains

co2 1

contains

c1
Container

m1
Machine

c2
Container

p3
P3

i
in

o
out

co3

contains

META . . .

FROM TO

Figure 7 – Unfolded version of Assemble rule. The match takes into account the multiplici-
ties specified, and searches for three p1 and one p2

4.2 Horizontal and vertical flexibility
In the previous section we have defined the model transformation rules that provide
the behaviour to the multilevel hierarchy. Horizontal flexibility is indirectly inferred
since these rules can be directly applied to both branches shown in Fig. 2. For example,
CreatePart rule can be applied to create either a Head or a Handle (for hammer branch)
or to create a Leg or a Seat (for stool branch).

In this section, we demonstrate how MCMT rules are still applicable when modifying
an existing multilevel hierarchy (vertical flexibility) and how we can make restrictions
in the rules to confine the typing flexibility.

GenHead 1-1-*

Head 1-1-*

creates@1-1-*creates

special_head_config

Figure 8 – New specified level
for creating green heads

Let us suppose that ACME factories have some
specific type of hammers that are created by a han-
dle and a green head. This can be introduced as
a new level in between Fig. 2b and Fig. 2d, that
captures the ability to create green heads, called spe-
cial_head_config. This new level is depicted in Fig. 8.
The two nodes, SpecialGenHead and GreenHead and
the edge creates are now instances of GenHead, Green-
Head and creates, respectively, which are defined in
the level hammer_plant (Fig. 2b).

We are now able both to define a generator for
regular heads and also a generator for green heads,
in the level shown in Fig. 2d. As this depends on
the concrete scenario, we might construct different
configurations which can include any combination of the two generator of heads
aforementioned, and the rules should be agnostic to those possibilities. Fig. 9 shows
the two possible matches depending on the machine we define at the instantiation
level (i.e., at the lowest level). At the left side of the dashed double vertical line we
can see the CreatePart rule, already shown in Fig. 3.

At the right side we show a hierarchy consisting of three levels (divided by hor-
izontal lines). These levels comprise those elements of the PLS hierarchy involved
in the generation of heads (i.e., a generator that creates a head). They represent

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


10 · Rodriguez et al.

Figure 9 – Vertical reusability of rule CreatePart

hammer_plant (Fig. 2b), special_head_config (Fig. 8) and hammer_config (Fig. 2d)
levels, respectively. Note that the lowest level shown in this hierarchy is divided
by a vertical black line, which represents the same logic as the FROM/TO pattern.
This level is composed by two instances, one represents the match for the creation
of a regular head (at the top) and the other corresponds to the match of a specified
generator of green heads (at the bottom).

The dashed blue lines represent the match of the rule in case we define our
configuration as using regular head generator (ghead), while the dashed red lines
represent the match of the rule for a scenario where we have a green head generator
(specialghead). Moreover, the right hand side of the hierarchy at the instantiation level
(bottom-right side of Fig. 9) shows the state where the CreatePart rule has been fired.
As one can observe, the rule has not been modified at all, but the flexibility provided
allows both matchings depending on the scenario specified.

The default flexibility opens for several possible matchings. For instance, a normal
head could be created by a special head generator. Another possibility is, in the As-
semble rule, that a hammer can be manufactured from a green head and a normal
handle. Since considering these matches as valid is up to the modeller, we provide
functionality for allowing/disallowing them. We can restrict the CreatePart rule using
a matching strategy where the nearest type is selected (specialization priority) and
still leave open the matches for Assemble.

One might consider the need of restricting the indirect typing which is allowed
by-default since this flexible assumption (the type can be found at any number of jumps
of any length) might not be desired in all situations. To disallow that, we can use t@n
(n | n ∈ N) over a type t. First, this disables the indirect typing (so we must find the
type in just one jump upwards) and second, it forces the type to be at n levels above
the one where the match for t has been found.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 11

5 Formal specification and execution with Maude
As explained in Section 1, the MultEcore tool allows us to define multilevel hierarchies
and MCMTs to describe their behavior. MultEcore relies on Maude for the simulation
and formal analysis of the specified MLM systems.

Maude [CDE+07] is a specification language based on rewriting logic [Mes92], a
logic of change that can naturally deal with states and non deterministic concurrent
computations. A rewrite logic theory is a tuple (Σ;E;R), where Σ is called signature
and specifies the type structure (sorts, subsorts, etc.) and E is the collection of
equations and memberships declared in the functional module. Therefore, (Σ;E) is an
equational theory that specifies the system states as elements of the initial algebra
τ (Σ;E), and R is a set of rewrite rules that describe the one-step possible concurrent
transitions in the system. Rewrite specifications thus described are executable, since
they satisfy some restrictions such as termination and confluence of the equational
subspecfication and coherence of equations and rules. Indeed, Maude provides support
for rewriting modulo associativity, commutativity and identity, which perfectly captures
the evolution of models made up of objects linked by references as in graph grammar.
In summary, Maude provides, among others, the next useful features [CDE+02]:

Formal specification. The Maude specification of multilevel hierarchies and MCMTs
represents a formal semantics in rewriting logic. Since these specifications
are executable, they can be used for simulating/executing our models. The
automatic bidirectional transformation MultEcore ↔ Maude allows the execution
of MLM models from the MultEcore tool. Indeed, Maude’s flexibility and
customization capabilities have allowed us to represent MLM models and MCMTs
in Maude using a syntax very similar to the MultEcore syntax. This has led to
a straightforward transformation between MultEcore and Maude.

Execution of the specification. The Maude specification obtained from MLM hier-
archies and corresponding MCMTs using the above transformation are executable,
and therefore can be used to simulate them in Maude. The versatile rewriting
engine provides a lot of functionalities to customize the way we go trough the
execution steps. As we will see below, we can simulate our systems letting
Maude choose the path to follow, or we can specify a concrete path by means of
execution strategies.

Formal environment. Once the rewriting logic specification of the MLM hierarchies
and their MCMTs is available in Maude, we can use the formal tools in its formal
environment to analyze the systems thus described. For example, we can check
properties as confluence or termination of our specifications, but also perform
reachability analysis, model checking or theorem proving on them.

5.1 Multilevel hierarchies in Maude
In the Maude language, object-oriented systems can be specified by object-oriented mod-
ules in which classes and subclasses are declared, with the usual support for inheritance,
dynamic binding, etc. A class is declared with syntax class C | a1: S1,. . . , an: Sn,
where C is the name of the class, ai are attribute identifiers, and Si are the sorts of
the corresponding attributes. The objects of a class C are record-like structures of the
form < O : C | a1: v1, . . . , an: vn >, where O is the identifier of the object and vi

are the current values of its attributes.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


12 · Rodriguez et al.

1 class Model | name : Name, om : Name, elts : Configuration, rels : Configuration .
2 class Element | name : Oid, type : Oid .
3 class Node | .
4 class Relation | source : Oid, target : Oid, min-mult : Nat, max-mult : Nat* .
5 subclasses Node Relation < Element .

Figure 10 – Maude structure of a multilevel hierarchy

In a concurrent object-oriented system, the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting using rules that describe the effects of the
communication events of objects and messages. The system presented in this paper
evolves as the result of applying the rewrite rules on collections of objects.

A multilevel hierarchy is represented in Maude as a structure of sort System of the
form MLM{model1 model2 . . .modeln}, where MLM is the name of the multilevel
hierarchy and each modeli is an object of class Model that represents a model in the
hierarchy. Note that when the transformation from MultEcore to Maude is to be
performed, the modeller have to decide the branch that is it going to be executed.
For instance, for the PLS hierarchy used in this paper, the modeller would decide
between hammer or stool branch. Fig. 10 illustrates the specification of a multilevel
hierarchy in Maude. A model is represented as an object of class Model, which has
attributes representing its name, its ontological metamodel om, and the nodes (elts)
and relations (rels) that are part of it (line 1). As mentioned in the previous paragraph,
Configuration is a predefined sort in Maude implemented to deal with object-based
systems. Instances of classes Node (line 3) and Relation (line 4) represent, respectively,
nodes and relations. Both are subclasses (line 5) of a class Element (line 2) of elements
with a name and a type. In addition to the attributes inherited from Element, class
Relation has attributes for the source and target of a relation, and its multiplicity range
(min-mult, max-mult).

The sort Name allows us to define how our objects are going to be identified.
For instance, the identifier of a model is represented as level(x), for x either 0 or a
natural number. Level 0 is always reserved for Ecore and n the lowest level in the
hierarchy. Identifiers are required to be unique. The transformation assigns these
names automatically when generated. As we will see in the next section, objects
generated in transformation rules are also given unique fresh names.

Given these declarations, Fig. 11 illustrates how models are represented. Specifically,
it shows the Maude term that represents the generic_plant level (corresponding to
Fig. 2a). Note that this is just one of the models in the MLM hierarchy. In this case
it has assigned level(1) (Line 1). Then we have the name of the model (“generic-plant”,
Line 2) and its metamodel at the level right above represented by om : “Ecore” (Line
3). It contains two sets, elts (Line 4) and rels (Line 8), for capturing the nodes and the
relations, respectively. For instance, the relation specified in Line 11, with identifier
oid(1,5), represents the in relation between a machine and a container: its name is
id(1,“in”), its type is id(0, “EReference”), and it links two nodes, id(1, “Machine”) as
source (in Line 5) and id(1, “Container”) as target (in Line 6). As expected, all the
information available in MultEcore is encoded in the Maude representation.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 13

5.2 The MCMT rules in Maude
In Maude, a distributed system is axiomatized by an equational theory describing its
states as an algebraic data type and a collection of conditional rewrite rules specifying
its behaviour. Rewrite rules are written crl [l] : t => t′ if C, with l the rule label, t and
t′ terms, and C a guard or condition. Rules describe the local, concurrent transitions
that are possible in the system, i.e., when a part of the system state fits the pattern t,
then it can be replaced by the corresponding instantiation of t′. The guard C acts as
a blocking precondition: a conditional rule can only be fired if its condition is satisfied.
Rules may be given without label or condition.

We can directly translate MCMT rules to conditional rewrite rules in Maude. We
illustrate this representation of rules with the CreatePart rule in Fig. 3. Fig. 12 shows
its Maude counterpart. The left-hand side of the rule (Lines 2-17) encodes the META
and FROM blocks of the rule. In this case, in the META section there is one model
level(L), and in the FROM one model level(J). Notice that we are not specifying a
concrete level, but we use variables that will be bound when the rewriting engine
matches the rule to our MLM concrete hierarchy. It is in the conditions where we can
constraint the behaviour of the rule by defining predicates or conditional expressions,
such as L < J. The counter specified in Line 16 is an auxiliary object that keeps a
counter so that we can create fresh new identifiers for the elements created in the
right-hand side. The rest of the left-hand side is fairly straightforward as it can directly
be inferred from the CreatePart rule displayed in Fig. 3). Atts..., Elts..., O..., etc. are
just variables we define to capture those attributes we do not explicitly specify.

The right-hand side of the rule (Lines 18-29) shows how the objects in the left-hand
side will be modified when the rule is applied; the ellipses are only to save space.
Model level(L) (the META) is left unmodified. We display in detail the level(J) model,
which corresponds to the TO block shown in Fig. 3. As we can see in Lines 22 and
24-25, there are two new elements. The first one corresponds to the new part, which
will have identifier oid(J, s N), name id(J, s s s N), and type P1 (note the reference to
the correspondent object in model level(L)). Notice that new identifiers and names are
generated by using the counter object. The s operator is a Maude predefined operator
that calculates the successor of a number. For instance, if J and N get bound to 3 and
100, we would get as results oid(3, 101) and id(3,103), respectively. A new relation is
also created, with source m1 (Line 12) and target the new part id(J, s s s N).

In addition to the condition on models level(L) and level(J), other conditions are also

1 < level(1) : Model |
2 name : "generic-plant",
3 om : "Ecore",
4 elts : (
5 < oid(1,1): Node | name : id(1, "Machine"), type : id(0, "EClass") >
6 < oid(1,2): Node | name : id(1, "Container"),type : id(0, "EClass") >
7 < oid(1,3): Node | name : id(1, "Part"), type : id(0, "EClass") >),
8 rels : (
9 < oid(1,4): Relation | name : id(1, "out"), type : id(0, "EReference"),

10 source : id(1, "Machine"), target : id(1, "Container") >
11 < oid(1,5): Relation | name : id(1, "in"), type : id(0, "EReference"),
12 source : id(1, "Machine"), target : id(1, "Container") >
13 < oid(1,6): Relation | name : id(1,"contains"), type : id(0,"EReference"),
14 source : id(1, "Container"), target : id(1, "Part") >
15 < oid(1,7): Relation | name : id(1,"creates"), type : id(0,"EReference"),
16 source : id(1, "Machine"), target : id(1, "Part") >) >

Figure 11 – Maude specification for generic_plant model

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


14 · Rodriguez et al.

given as a conjunction of predicates. In this case, * references of variables are handled
by the predicate *. This predicate is necessary to provide a type with the transitive
dimension mentioned in Sect. 4.1. We call it * to be consistent with the original idea
(degree of genericness ∗t) presented in [MRS+18b]. Multiplicities, potencies, and other
facilities in the rules are handled similarly.

5.3 Execution and results
Given MLM hierarchies and MCMT rules specified in Maude as shown in the previous
section, we have several options for executing it. Given an initial ground MLM hierarchy
instantiation from which to start the execution, the Maude rewrite commands can
attempt the consecutive application of the rules in our specification. Maude provides
two different rewriting commands, for which we can specify a maximum number
of rewriting steps to take, implementing two different strategies: rewrite follows a
top-down rule-fair strategy and frewrite follows a depth-first position-fair strategy.

In addition, Maude also provides commands for the controlled execution of our
rules. Maude facilitates a rich strategy language with which we can specify our own
strategies. For example, we can perform a batch execution, just by specifying step
by step, which rules are to be applied, and, if desired, the objects on which it should
happen, by providing a partial substitution for the instantiation.

Let us show a very simple example of the use of the srewrite command (abbreviated
srew), which allows us to apply a concrete strategy to a given term (our initial state will

1 crl [CreatePart] :
2 { < level(L) : Model |
3 name : M,
4 elts : (< O01 : Node | name : M1, type : *Machine, A01 >
5 < O02 : Node | name : P1, type : *Part, A02 >
6 Elts),
7 rels : (< O03 : Relation | name : cr, type : *creates, source : M1, target : P1,A03>
8 Rels),
9 Atts >

10 < level(J) : Model |
11 name : M’,
12 elts : (< O04 : Node | name : m1, type : *M1, A04 >
13 Elts’),
14 rels : Rels’,
15 Atts’ >
16 < counter : Counter | value : N >
17 Conf }
18 => { < level(L) : Model | ... >
19 < level(J) : Model |
20 name : M’,
21 elts : (< O04 : Node | name : m1, type : *M1, A04 >
22 < oid(J, s N) : Node | name : id(J, s s s N), type : P1 >
23 Elts’),
24 rels : (< oid(J, N) : Relation | name : id(J, s s N), type : cr,
25 source : m1, target : id(J, s s s N), min-mult : 1, max-mult : 1 >
26 Rels’),
27 Atts’ >
28 < counter : Counter | value : s s s s N >
29 Conf }
30 if L < J
31 /\ *(*M1, level(sd(J,1)), M1, ...)
32 /\ *(*Machine, level(sd(L,1)), id(1, "Machine"), ...)
33 /\ *(*Part, level(sd(L,1)), id(1, "Part"), ...)
34 /\ *(*creates, level(sd(L,1)), id(1, "creates"), ...) .

Figure 12 – Maude representation of the CreatePart rule (note the ellipses)

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 15

be the Maude representation of either hammer_config (Fig. 2d) or stool_config (Fig. 2e))
where we specify the rules (and optionally some constraints within them) ordering.

1 srew PLS using CreatePart ;
2 CreatePart ;
3 SendPartOut ;
4 SendPartOut ;
5 TransferPart ;
6 TransferPart ;
7 Assemble ;
8 TransferPart .

Figure 13 – Strategy for manufacturing a
Hammer in hammer_config configuration

Let us assume that we want to make
a complete iteration over the ham-
mer_config model (for a smoother ex-
planation, in this scenario we do not
consider having the specialghead as in-
stance of SpecialGenHead displayed in
Fig. 8 and described in Sect. 4). We
would need then to create a head, a
handle, and eventually we would get as-
sembled a new hammer. Fig. 13 shows
the defined strategy we can execute to
test if such a final state is reached.

PLS in Line 1 corresponds to the initial term (the complete hierarchy). As the
strategy is written, each application of the CreatePart rule (Lines 1 and 2) can create
either a Handle or a Head. This is not a problem as the rewriting engine provides all
the solution, and then it discards the non valid ones when applying the Assemble rule
(a solution right before the execution of Assemble might have produced 2 Handles).
However, we can constrain the applications of the CreatePart rule by explicitly providing
a partial substitution:

CreatePart[P1 <- id(2, "Handle")] ;
CreatePart[P1 <- id(2, "Head")] ;

With this, we are binding P1 to generate first a Handle, then a Head. In both cases,
we would end up having the same solution.

GenHead 1-1-*

Conveyor 1-1-*

Tray 1-1-* Tray 1-1-*

GenHandle 1-1-*

Conveyor 1-1-*

Assembler 1-1-* Conveyor 1-1-*

Hammer 1-1-*

out@1-1-* out@2

out@1-1-* out@2

cout@1-1-*

cout

cout@1-1-*

cout in@1-1-* in@2

out@1-1-*

out@2

cout@1-1-* cout

contains@1-1-* contains@2

Figure 14 – hammer_config with a Hammer

The rest of the rules are applied se-
quentially. Taking the model in Fig. 2d
as reference, we would create a handle
and a head, and move them to the con-
veyors c1 and c2, respectively, using the
rule SendPartOut. Then we move both
parts to the tray t1 with the rule Trans-
ferPart and the parts are assembled into
a hammer using the rule Assemble. Fi-
nally, the hammer is moved from the con-
veyor c3 to the tray t2 using again the
rule TransferPart. Once we get a solu-
tion model by running the rules, Maude
generates an XML file which is transformed back into MultEcore. Fig. 14 shows how
the solution would look in the graphical view of MultEcore.

6 Related work
There exist several tools and technologies that support dynamic execution of models
through model transformation in a graphical manner. A Tool for Multi-Paradigm
Modeling (AToMPM) [SVM+13], the Foundational UML (fUML) [Sub11] and the
Executable Meta-Object Facility (xMOF) [MLWK13], are some examples that grant
such capability. AToMPM is an open-source framework for designing DSML environ-

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


16 · Rodriguez et al.

ments, performing model transformations, manipulating and managing models which
runs entirely over the web. The fUML is an executable subset of UML that can be
used to define, in an operational style, the structural and behavioural semantics of
systems. However, due to its exclusive focus on UML, it cannot be applied to arbitrary
domain-specific languages. The Action Language for Foundational UML (ALF) [Sei14],
which is built on top of fUML, provides functionality for executing UML models in a
textual way. They both are intended to work together, resulting in a more complete
framework that provides both graphic and programmatic (when a high degree of details
is required) facets. The xMOF is a metamodelling language that integrates Ecore with
the behavioural part of fUML. It is aimed at developing executable DSMLs that can
be simulated using the fUML virtual machine. In [BEK+06], the authors present an
approach for the definition of in-place transformations in EMF. All the approaches
mentioned above are based on traditional two-level approaches which disallow the
multilevel capabilities presented in this paper.

ConceptBase [JGJ+95] is a tool that implements the object model of a Datalog-
based variant of Telos [MBJK90]. It supports subtyping chains and unrestricted
class-instance relationships. However, it does not make a clear organization of elements
in hierarchical models. Furthermore, it does not support key features of MLM as
flexible depth (supported by our approach via Potency concept). The MOMENT-QVT
tool [BCR06] is a model transformation engine that provides partial support for the
QVT relations language [RVA06]. QVT (Query/View/Transformation) is a standard
set of languages for model transformation defined by the OMG. In [AGT12], authors
present an approach to transform from a multilevel setting to a two-level configuration
(and the other way around) using the ATL Transformation Language (ATL) [JABK08],
which is not designed to work within a multilevel context. However, our approach
makes it possible to directly define the behaviour of our multilevel hierarchy (by using
MCMTs). Since we can directly translate and use MLM hierarchies in Maude, a
transformation to a two-level setting to be able to rely on a model transformation
engine (like ATL or QVT [Kur07]) is not necessary.

In [RGdLV08], the authors show how Maude is used to represent a subset of the
PLS example used in this paper. The subset corresponds to the left-hand branch of
the multilevel hierarchy shown in Fig. 2. In their work, they encode both the PLS
metamodel and an instance of it, to later be able to simulate it and perform formal
analysis and model checking. Changes in either the metamodel or the model would
need to be done manually in the Maude implementation. Our approach hides the
Maude implementation so the user can make modifications directly in the graphical
editor which are in turn translated automatically to Maude.

7 Conclusions and future work
In this paper, we have described how flexible and reusable model transformations
(by means of the MCMTs) can be applied in the context of MLM. In addition to a
theoretical foundation, we have developed a prototype of an infrastructure to connect
our MLM tool MultEcore with Maude in order to execute/simulate the constructed
models. We have showcased the flexibility and reusability of the MCMT rules, first,
in the vertical aspect by adding an extra level into an MLM hierarchy, and second,
in the horizontal aspect by using the same rules for two branches of the hierarchy.
Furthermore, two important new features have been successfully applied. First, the
default restriction forcing the levels in the rules to be consecutive has been lifted,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 17

providing vertical flexibility. Second, multiplicities are now supported in the MCMTs,
enriching the syntax and enhancing the reusability of the rules.

We see several directions for future work. The infrastructure that connects Mul-
tEcore with Maude has been constructed as a proof of concept, and we are working on
considerable extensions. To generalise from the examples in this paper, we will design
an experiment in which we pick several mainstream behavioural models, refactor them
to MLM hierarchies using [LG18], adapt them to MultEcore using the rearchitecter
tool presented in [MRS18a], and then execute them using the presented infrastructure.

We have developed a first version of the multiplicities (cardinalities) in MCMTs.
However, we intend to further extend this feature for more complex cases with potential
nested definitions. We plan also to provide MultEcore functionalities to control the
Maude execution directly from the editor. Moreover, we want to give the user the
control to make executions customizable so that step-by-step or batch simulations might
be performed. Another task is to provide the MultEcore-Maude transformation engine
with more comprehension so that it becomes more fault tolerant. We currently offer the
user the possibility to define both the multilevel hierarchy and the behavioural rules.
We also want to work on improving the part of the infrastructure for the definition of
behavioural properties to later verify them with Maude, in a user-friendly manner.
Furthermore, we are currently working on better ways to specify rule orchestration
and prioritization to improve the definition and application of strategies in a more
generic, reusable and user-friendly way.

References
[AGM15] Colin Atkinson, Ralph Gerbig, and Noah Metzger. On the execution

of deep models. In EXE@ MoDELS, pages 28–33, 2015. URL: http:
//ceur-ws.org/Vol-1560/paper5.pdf.

[AGT12] Colin Atkinson, Ralph Gerbig, and Christian Tunjic. Towards multi-
level aware model transformations. In International Conference
on Theory and Practice of Model Transformations, pages 208–223.
Springer, 2012.

[AK08] Colin Atkinson and Thomas Kühne. Reducing accidental complexity
in domain models. Software & Systems Modeling, 7(3):345–359, 2008.

[AK17] Colin Atkinson and Thomas Kühne. On evaluating multi-level model-
ing. In MoDELS, 2017.

[AK18] Colin Atkinson and Thomas Kühne. Deep instantiation. In En-
cyclopedia of Database Systems, Second Edition. Elsevier, 2018.
doi:10.1007/978-1-4614-8265-9\_80608.

[AKdL18] Colin Atkinson, Thomas Kühne, and Juan de Lara. Editorial to the
theme issue on multi-level modeling. Softw. Syst. Model., 17(1):163–
165, February 2018. doi:10.1007/s10270-016-0565-6.

[BCR06] Artur Boronat, José Á. Carsí, and Isidro Ramos. Algebraic specifica-
tion of a model transformation engine. In International Conference
on Fundamental Approaches to Software Engineering, pages 262–277.
Springer, 2006.

[BEK+06] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns,
Gabriele Taentzer, and Eduard Weiss. Graphical definition of in-place

Journal of Object Technology, vol. 18, no. 2, 2019

http://ceur-ws.org/Vol-1560/paper5.pdf
http://ceur-ws.org/Vol-1560/paper5.pdf
http://dx.doi.org/10.1007/978-1-4614-8265-9_80608
http://dx.doi.org/10.1007/s10270-016-0565-6
http://dx.doi.org/10.5381/jot.2019.18.2.a4


18 · Rodriguez et al.

transformations in the eclipse modeling framework. In MoDELS, pages
425–439. Springer, 2006.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martı-Oliet, José Meseguer, and José F Quesada. Maude: Spec-
ification and programming in rewriting logic. Theoretical Computer
Science, 285(2):187–243, 2002.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn Talcott. All about Maude
a high-performance logical framework: how to specify, program and
verify systems in rewriting logic. Springer-Verlag, 2007.

[CFH+09] Krzysztof Czarnecki, J Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F Terwilliger. Bidirectional transformations:
A cross-discipline perspective. In International Conference on The-
ory and Practice of Model Transformations, pages 260–283. Springer,
2009.

[Dep] HVL Computer Science Department. MultEcore Maude Website. URL:
https://ict.hvl.no/multecore-maude/.

[dLG10] Juan de Lara and Esther Guerra. Generic meta-modelling with con-
cepts, templates and mixin layers. In MoDELS, pages 16–30, 2010.
doi:10.1007/978-3-642-16145-2\_2.

[dLGC15] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. Model-
driven engineering with domain-specific meta-modelling languages.
Software and System Modeling, 14(1):429–459, 2015. doi:10.1007/
s10270-013-0367-z.

[dLV02] Juan de Lara and Hans Vangheluwe. Atom 3: A tool for multi-
formalism and meta-modelling. In International Conference on Funda-
mental Approaches to Software Engineering, pages 174–188. Springer,
2002.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2006.
URL: https://doi.org/10.1007/3-540-31188-2, doi:10.1007/
3-540-31188-2.

[EMOMV07] Steven Eker, Narciso Martí-Oliet, José Meseguer, and Alberto
Verdejo. Deduction, strategies, and rewriting. Electronic Notes in
Theoretical Computer Science, 174(11):3–25, 2007.

[GM13] Joseph A Goguen and Grant Malcolm. Software Engineering with OBJ:
algebraic specification in action, volume 2. Springer Science & Business
Media, 2013.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
Atl: A model transformation tool. Science of computer programming,
72(1-2):31–39, 2008.

[JGJ+95] Matthias Jarke, Rainer Gallersdörfer, Manfred A Jeusfeld, Martin
Staudt, and Stefan Eherer. Conceptbase—a deductive object base for

Journal of Object Technology, vol. 18, no. 2, 2019

https://ict.hvl.no/multecore-maude/
http://dx.doi.org/10.1007/978-3-642-16145-2_2
http://dx.doi.org/10.1007/s10270-013-0367-z
http://dx.doi.org/10.1007/s10270-013-0367-z
https://doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 19

meta data management. Journal of Intelligent Information Systems,
4(2):167–192, 1995.

[Küh18a] Thomas Kühne. Exploring potency. In Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, pages 2–12, 2018. doi:10.1145/3239372.
3239411.

[Küh18b] Thomas Kühne. A story of levels. In Proceedings of MULTI Workshop:
co-located with ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems, pages 673–682, 2018. URL:
http://ceur-ws.org/Vol-2245/multi_paper_5.pdf.

[Kur07] Ivan Kurtev. State of the art of QVT: A model transformation lan-
guage standard. In International Symp. on Applications of Graph
Transformations with Industrial Relevance, pages 377–393. Springer,
2007.

[LG18] Juan de Lara and Esther Guerra. Refactoring multi-level models.
ACM Trans. Softw. Eng. Methodol., 27(4):17:1–17:56, November 2018.
doi:10.1145/3280985.

[LGC14] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and
how to use multilevel modelling. ACM Trans. on Software Engineering
and Methodology (TOSEM), 24(2):12, 2014.

[Mac19] Fernando Macías. Multilevel modelling and domain-specific languages.
PhD dissertation, University of Oslo, Norway, 2019.

[MBJK90] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis
Koubarakis. Telos: Representing knowledge about information systems.
ACM Transactions on Information Systems (TOIS), 8(4):325–362,
1990.

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155, 1992.

[MGS+13] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel A. Fer-
nández, Bjørn Nordmoen, and Mathias Fritzsche. Where does model-
driven engineering help? Experiences from three industrial cases. Soft-
ware & Systems Modeling, 12(3):619–639, 2013.

[MLWK13] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel.
xMOF: Executable DSMLs based on fUML. In SLE, pages 56–75.
Springer, 2013.

[MRS16] Fernando Macías, Adrian Rutle, and Volker Stolz. Multecore: Combin-
ing the best of fixed-level and multilevel metamodelling. In MULTI@
MoDELS, pages 66–75, 2016.

[MRS18a] Fernando Macías, Adrian Rutle, and Volker Stolz. A tool for the
convergence of multilevel modelling approaches. In MULTI@ MoDELS,
2018.

[MRS+18b] Fernando Macías, Adrian Rutle, Volker Stolz, Roberto Rodriguez-
Echeverria, and Uwe Wolter. An approach to flexible multilevel mod-
elling. Enterprise Modelling and Information Systems Architectures,
13:10:1–10:35, 2018.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1145/3239372.3239411
http://dx.doi.org/10.1145/3239372.3239411
http://ceur-ws.org/Vol-2245/multi_paper_5.pdf
http://dx.doi.org/10.1145/3280985
http://dx.doi.org/10.5381/jot.2019.18.2.a4


20 · Rodriguez et al.

[MWR+19] Fernando Macías, Uwe Wolter, Adrian Rutle, Francisco Durán, and
Roberto Rodriguez-Echeverria. Multilevel Coupled Model Trans-
formations for Precise and Reusable Definition of Model Behaviour.
Journal of Logical and Algebraic Methods in Programming, 2019.
doi:10.1016/j.jlamp.2018.12.005.

[RDLGN15] Alessandro Rossini, Juan De Lara, Esther Guerra, and Nikolay
Nikolov. A comparison of two-level and multi-level modelling for
cloud-based applications. In ECMFA, pages 18–32. Springer, 2015.

[RDV09] Jose E. Rivera, Francisco Durán, and Antonio Vallecillo. A graphical
approach for modeling time-dependent behavior of DSLs. In Visual
Languages and Human-Centric Computing, 2009. VL/HCC 2009.
IEEE Symposium on, pages 51–55. IEEE, 2009.

[Ren03] Arend Rensink. The groove simulator: A tool for state space genera-
tion. In International Workshop on Applications of Graph Transforma-
tions with Industrial Relevance, pages 479–485. Springer, 2003.

[RGdLV08] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio
Vallecillo. Analyzing rule-based behavioral semantics of visual modeling
languages with maude. In International Conference on Software
Language Engineering, pages 54–73. Springer, 2008.

[RVA06] Sreedhar Reddy, R Venkatesh, and Zahid Ansari. A relational ap-
proach to model transformation using qvt relations. TATA Research
Development and Design Centre, pages 1–15, 2006.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[SCGdL11] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. Generic
model transformations: Write once, reuse everywhere. In ICMT, pages
62–77, 2011. doi:10.1007/978-3-642-21732-6_5.

[Sei14] Ed Seidewitz. UML with meaning: executable modeling in founda-
tional UML and the Alf action language. In HILT, pages 61–68. ACM,
2014.

[Ste07] Perdita Stevens. A landscape of bidirectional model transformations.
In International Summer School on Generative and Transformational
Techniques in Software Engineering, pages 408–424. Springer, 2007.

[Sub11] OMG Semantics Of A Foundational Subset. For executable UML
models (fUML), version 1.0, 2011.

[SVM+13] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner
Hansen, Simon Van Mierlo, and Huseyin Ergin. AToMPM: A web-
based modeling environment. In MoDELS, pages 21–25, 2013.

[UML] UML. http://www.uml.org/.
[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of

practice in model-driven engineering. IEEE software, 31(3):79–85,
2014.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.1016/j.jlamp.2018.12.005
http://dx.doi.org/10.1007/978-3-642-21732-6_5
http://dx.doi.org/10.5381/jot.2019.18.2.a4


Executing Multilevel Domain-Specific Models in Maude · 21

About the authors

Alejandro Rodríguez is a PhD student at the Western Nor-
way University of Applied Sciences. He is currently researching
in Model-driven software engineering, multilevel modelling and
coloured Petri net fields. He is part of the Software Engineering,
Sensor Networks and Engineering Computing department. Contact
him at arte@hvl.no

Francisco Durán is Full Professor at the Department of Com-
puter Science of the University of Málaga, Spain. He received his
Ph.D. degree in Computer Science from the University of Málaga
in 1999, after several years as an International Fellow at SRI Inter-
national, CA. He is one of the developers of the Maude system, and
his research interests deal with the application of formal methods
to software engineering, including topics such as cloud systems,

model-driven engineering, component-based software development, open distributed
programming, reflection and meta-programming, and software composition.

Adrian Rutle is Associate Professor at the Western Norway
University of Applied Sciences, Norway. His research focuses on
the application of theoretical results from the field of model-driven
software engineering. His work has recently focused on modelling
and simulation for smart robotics, MLM, patient workflows and
their verification. His main expertise is the development of formal
modelling frameworks for domain-specific modelling languages,
graph-based logic for reasoning about static and dynamic properties

of models, and the use of model transformations for the definition of semantics of
modelling languages.

Lars Michael Kristensen received the PhD in computer science
from University of Aarhus, and is currently professor in software
engineering at Western Norway University of Applied Sciences.
He has published more than 70 papers in strictly referred journal
and conferences, is member of the Editorial Board of the TopNoC
Springer journal, and is a member of the steering committee for
the International Petri Nets conference. He is co-author of the

most recent textbook on Coloured Petri Net and CPN Tools which is one of the most
widely used software tools for modelling and validation of concurrent systems.

Acknowledgments Francisco Durán was partly funded by the project PGC2018-
094905-B-I00 (Spanish MINECO/FEDER), and by Univ. Málaga, Andalucía Tech.

Journal of Object Technology, vol. 18, no. 2, 2019

mailto:arte@hvl.no
http://dx.doi.org/10.5381/jot.2019.18.2.a4

	Introduction
	The infrastructure
	DSML Structure - Multilevel Modelling
	DSML behaviour - MCMTs
	PLS behaviour definition
	Horizontal and vertical flexibility

	Formal specification and execution with Maude
	Multilevel hierarchies in Maude
	The MCMT rules in Maude
	Execution and results

	Related work
	Conclusions and future work
	Bibliography
	About the authors

