
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

System Based Interference Analysis in
Capella

Amin Oueslatia Philippe Cuenotac Julien Deantonib

Christophe Morenoad

a. IRT Saint Exupery, Sophia Antipolis, France

b. Université Cote d’Azur, I3S/INRIA Kairos, Sophia Antipolis, France

c. Seconded from Continental Automotive France

d. Seconded from Thales Alenia Space

Abstract In embedded systems the emergence of System on Chip (SoC)
offers low cost, flexible and powerful computing architectures. These
new COTS capabilities enable new applications in aerospace domain with
more integration of avionic functionalities on a same hardware. The main
drawback of such integration is the difficulty of mastering application’s
deployment on SoC architecture, while understanding miscellaneous emerg-
ing behaviors. Model Based Engineering techniques have been introduced
to assist in system analysis at early stages of development process. For
instance, Capella [BVNE] is a tooled language to support design of systems
architecture (http://polarsys.org/capella). Capella helps to provide
a consistent view of system architecture.

However, Capella does is not satisfactory to understand emerging
behaviors. For instance it is not useful to understand how deployment of
different tasks (and their parameters) on different computing resources
impacts conflicts (interferences) on interconnect between computational
resources and memory. This problem is increasingly important with the
integration of various functionalities.

We propose to address this problem at different levels. First, we
equipped Capella models with two kinds of reasoning capabilities. The
first one is based on the worst case analytic evaluation of the interconnect
interferences of a specific deployment (easy to compute but pessimistic).
The second one is based on the (exhaustive) simulation and provides
accurate interconnect interferences (more computationally intensive than
the analytic methods but accurate). These reasoning capabilities help the
designer considerably but he still has to explore several potential solutions
by hand. To help him, we proposed a small DSL to express the exploration
space from which the former reasoning can be performed automatically.

Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno. System Based Interference
Analysis in Capella. Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International (CC
BY-NC-ND 4.0). In Journal of Object Technology, vol. 18, no. 2, 2019, pages 14:1–21.
doi:10.5381/jot.2019.18.2.a14

http://www.jot.fm/
http://polarsys.org/capella
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a14
http://dx.doi.org/10.5381/jot.2019.18.2.a14

2 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

We experimented with these techniques in the context of the ATIPPIC
collaborative project, based on the modeling of simple but representative
models in Capella.

Keywords Models, Operational Semantics, Interference Analysis

1 Introduction

The aerospace domain has a long tradition of dedicated hardware and software, tailored
to space conditions and designed to be more resilient to SEU (Single Event Upset).
Such design reduces the capabilities of embedded hardware and in many cases forced to
disable some of its capabilities (for instance processor caches are disabled because they
are very sensitive to SEU). Nowadays, better control of fault management techniques
opens the door to Commercial Off-the-Shelf (COTS) hardware components for satellites.
This makes it possible to define new computing architectures based on already existing
hardware to enable the integration of various avionic features on the same hardware.
These new architectures are essential for new low-cost satellites. However, beyond
the study of fault tolerance mechanisms (important but not the focus of this paper),
the computing power introduced by the use of COTS and the need to group various
functionalities on the same hardware board makes it more difficult to control the
deployment of the application on the architecture. For instance, it becomes more
difficult to understand miscellaneous emerging behaviors such as, for example, the
emergence of temporary bus congestion due to unexpected synchronizations between
different tasks.

Model Driven Engineering [Sch06] (MDE) has been introduced to assist in system
analysis at the early stages of the development process. MDE is increasingly being used
and is nowadays a common practice in many software related disciplines [WHR14].
For example, Capella [BVNE] is a tool-based open source language that supports
system architecture design (http://polarsys.org/capella). It was introduced by
Thalès1 and is used in many other companies. Capella is a great help in providing a
consistent view of the system architecture, which can be reviewed, shared, etc.

Despite interesting features, Capella is not yet fully equipped to assist system
designers with the understanding of emerging behaviors. This is mainly due to the
generality of Capella, encompassing various disciplines, which forbids the definition
of a full operational semantics from which simulation and behavioral analysis can be
conducted. For instance, when defining new software and hardware architectures for
satellite systems, it remains difficult to understand the impact of architectural choices
at the early stages of the development process. This makes it impossible to explore
different deployment and configuration solutions early on. In other words, despite
the use of Capella models (i.e., MDE), it is nowadays difficult to tame the adequacy
between the application and the architecture at an early stage of the development
process. This is a fortiori the case when new computing resources are required to
integrate new functionalities on the same hardware platform. Note that this is not a
pure classical scheduling problem (although it still needs to be resolved) but rather
a communication scheduling problem since the interconnect between the different
computational resources and the memory becomes a potential bottleneck that must
be used wisely. To do so, it is important to adjust (1) the deployment of the different
tasks of the system on the right computational resource and (2) to schedule their

1https://www.thalesgroup.com/fr

Journal of Object Technology, vol. 18, no. 2, 2019

http://polarsys.org/capella
https://www.thalesgroup.com/fr
http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 3

communication in such a way to avoid interference on the interconnect; i.e., it avoids
communications initiated by different tasks to use an interconnect at the same time,
for instance by delaying the start of some communications at specific point in time. Of
course, such decisions should be consistent with more traditional scheduling analysis,
i.e., with respect to periods and deadlines.

What we present in this paper is the use of Capella models allowing the exploration
of different architectures, in terms of deployment and parameterization, regarding
interference in interconnect. The models we used suitable for defining both hardware
and software models, as required in the context of the ATIPPIC project (a collaborative
industrial project). The main contribution is the development of a semantics adapted
to two different but complementary approaches to compute the level of interference on
interconnects of a systems. The first approach defines analytical method from which
latency bounds can be obtained in an interconnect. While pessimistic, this gives a
coarse grain idea at low cost,i.e., without expensive computing, of possible interference
on interconnect. The second approach defines an operational semantics for Capella
(based on the GEMOC studio). Based on this semantics it is possible to run simulation,
potentially exhaustive. These simulations allow computing interconnect usage and
latencies in task communications due to interference. While it requires simulations,
this method provides a fine grain understanding of interference in interconnects.

Finally, based on each of these methods, we provide another small contribution, a
small Domain Specific Language (DSL) from which it is possible to specify the domain
of the parameters we want to explore. Then, we automatically generate the different
models for these domains, simulate them and provide a representation of the results
to help the designer to choose the appropriate configuration.

The modeling concepts and technologies used for this study are described in section
2. Then a simple running example as tutorial for the proposed methods is presented in
section 3, section 4 describes the implementation for analytic and operational solutions
and debates on design exploration extension, with in section 5 the demonstration of
the evaluation on the ATIPPIC avionic use case. Finally section 6 documents the
state of the art of such approaches, before concluding in section 7.

2 Background

2.1 Modeling Technologies

Capella Capella is an open source Model Based System Engineering (MBSE) solution
hosted at PolarSys working group of the Eclipse Foundation2. Capella provides
formalisms and toolsets that implements the ARCADIA method developed by Thales
[BVNE, Roq16]. The method defines a four-phase workflow: operational analysis and
system analysis to identify operational and system level needs, logical and physical
architectures to identify components that meet these needs. For each phase of the
workflow, Capella provides a set of diagrams to support system description, such as
functional data flow diagram to describe functions and their exchanges, functional
chains diagram to identify functions necessary to realize a given requirement and
scenarios to describe a sequence of messages exchanged over time.

In this paper we only focus on Physical Architecture description and more precisely
on Physical Architecture Blank diagram (PAB). Indeed, PAB provides a suitable syntax
for Hardware and Software co-modeling. However, as we target low level details of an

2https://www.polarsys.org/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.polarsys.org/
http://dx.doi.org/10.5381/jot.2019.18.2.a14

4 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

hardware architecture, we still need to complete the model with micro-architecture
specific information that is not covered by standalone Capella meta-models.

KitAlpha Kitalpha3 is an set of eclipse plugins, based on Capella, that allow to
extend Capella models with Domain Specific information. Also hosted in PolarSys
repository, it enables customization of Capella syntax for a specific viewpoint. Devel-
oping a viewpoint allows to describe specific concerns on top of Capella’s generic ones.
For instance, this mechanism was used to define the specification of fault tolerant
mechanism directly in Capella4.

Gemoc Studio The GEMOC Studio is a set of eclipse plugins that provides generic
components through Eclipse technologies for the development, integration, and use
of heterogeneous executable modeling languages5. It embeds a set of metalanguages
that allow to define the operational semantics of these languages. When a semantic
definition is provided, it automatically generates an interpreter, an fully aware debugger
and recently a compiler.

2.2 Modeling Interferences

The performance and deadline of an embedded system are mainly affected by the
communication scheduling of the application and in particular by possible inter-
ference on access to shared hardware resources. We focus our approach on data
memory transaction because it is the major factor on communication scheduling for
an application.

What we call Interference is the result of a concurrent access to a bus. From a
task point of view, Interference produces latency on bus communication interface, i.e.,
memory transactions are delayed. In the following, we define bus interference as the
duration during which more than one task attempts to access to the same bus. The
duration is computed on an hyper period during which each task that uses the bus is
executed at least once.

For example, let’s consider two tasks on two different computing resources, of
1ms period. They both start their execution by reading data from memory for 30µs.
The first task t1 runs for 200µs and produces data to memory with a transaction
that takes 20µs. The second task t2 runs for 350µs and produces data to memory
with a transaction that takes 40µs. In this case, both t1 and t2 try to access to the
memory bus at the same time as they start: there is an interference. Either t1 or
t2 accesses the bus first and the other access is delayed, in this case for 30µs. The
other communication (writes) do not interfere since the execution time of the tasks
are different. Therefore in this case the interference is equal to 30µs.

Note that the interference rate can be calculated by dividing the interference by
the total transfer time over an hyper period. For example in the previous example the
interference rate = 30

30+30+40+30 = 30
130 ≈ 23%.

Such high level analysis is important because memory and interconnect components
can be the bottleneck in the communication scheme of the application. So it is
important to master the bus performance in a chip to detect and minimize the local
interference.

3https://www.polarsys.org/kitalpha/
4https://youtu.be/MXdZdCRDMH4
5http://gemoc.org/studio

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.polarsys.org/kitalpha/
https://youtu.be/MXdZdCRDMH4
http://gemoc.org/studio
http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 5

3 Running example

In this paper, we use the simplified example of Figure 1 to illustrate the two approaches
we propose for interference analysis. Since it is not representative of real world software
and hardware architecture, a concrete use is presented below. The example was done
under the Capella tool, using the PAB diagram which was extended with a Kitalpha
viewpoint (see section 4.1). The hardware architecture is composed of four Physical
Components, two represents CPUs, the third is an interconnect and the last one
is a memory. These Physical Components are connected by Physical Links which
are considered as bus connections in our case of study. In addition, we allocate two
Physical Components Behavior to represent the software tasks, one on each CPU. The
data dependency between the two tasks is abstracted by the Component Exchange Link
that directly connects the Output Flow Port of Task1 to the Input Flow Port of Task2.
These output and input ports are then allocated on Component executions Physical
Ports and the data dependency is explicitly translated into two transactions carried
by two physical Paths. The first Physical Path in red consists of two physical Links
and connects CPU1 to the memory passing through the interconnect. It represents
the transaction path for writing Task1 data to memory. The second Physical Path in
blue is also realized by two physical Links and connects CPU2 to the memory passing
through the interconnect. It represents the transaction path for reading Task2 data
from memory.

More generally, without considering all the Capella formalisms, Task1 and Task2
are both periodic (respectively 20ms and 30 ms) with offsets (respectively 0ms and 7ms.
Task1 executes on CPU1 for a certain time interval (between BCET 9ms and WCET
12ms), then writes data (5 MBytes) to Memory using cpu1_to_interconnect (red link)
and interconnect_to_memory (black link) buses. While Task2 is allocated on CPU2,
reads data (5 MBytes) from Memory through interconnect_to_memory (black link)
and CPU2_to_interconnect (blue link) buses and then runs for a certain time interval
(BCET 5ms and WCET 7ms). The frequency and data width of the three bus are
identical, 125MHz and 8Bytes, enabling a bandwidth of 1GBps. The execution scenario
described is similar to the producer-consumer problem replacing the shared variable by
a shared resource which is depicted in this example by the interconnect_to_memory
bus (black link). In the following and for the sake of readability, we will avoid using
Capella naming. We will only refer to diagram elements with the name of the concepts
they represent.

4 Proposition

The proposal is to compute the interference and influence on bus load of the on-
chip communication (buses) based on Capella models. These properties are mainly
influenced by the timing of the component’s uses of buses. To compute them it requires
1) to identify the concepts from Capella that are involved in communications and 2)
to define the parameters of these concepts that affect bus communication schedules.

As the computation targets the early stages of the application design, we do not
consider, in a first step, optimization features of components (e.g. interconnect memory
buffers). Moreover local memory transactions such as data cache access and control
from processor are not considered. We abstract such mechanisms and only consider
communication with bus interfaces.

We focuses on specific parts of Capella model level; namely the Physical Archi-

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

6 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

Figure 1 – Capella PAB running example viewpoint

tecture. Interesting elements of the Physical Architecture are represented in PAB
diagrams, which represent allocation of functions into behavioral components mapped
to hardware execution components. Applied to a SoC, this represents in one hand
mapping of behaviors defined in software component to general purpose processors and
in the other hand mapping of behaviors defined in hardware IP to hardware execution
support (e.g., Programmable Logic part). In other words, such diagram describes
deployment of software architecture on an hardware architecture.

However, Capella’s expressiveness is not rich enough to describe all domain specific
properties required by our analysis. Consequently, in order to define their execution
semantics, we identified in the following, a set of concepts on which properties for
analysis are defined. Note that these concepts are mainly inspired by the UML
Profile for MARTE [OMG09] especially the Hardware Resource Modeling (HRM)
and Software Resource Modeling (SRM) packages and are mapped onto Capella (see
section 4.1):

• Execution Components (tasks): Components representing software or hard-
ware implementation of tasks. They are the initiators of data traffic. These
components follows a read-compute-write semantics, meaning that all readings
from memory are done before the computation and all writings to memory are
done after the computation.

• Computation resources: General purpose processors and programmable logic
units, on which tasks are allocated. They provide computational capabilities
and communication interfaces for tasks.

• Communication resources: Components responsible of routing and transfer-
ring data, like for instance Buses, Interconnects and IO interfaces.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 7

• Memory resources: Component representing data storage. They are sources
or destinations of some transactions, used as data storage and data exchange
zone for tasks.

• Sensors/actuators: Components respectively representing first data providers
and last data consumers.

Based on these concepts, we select for each of these components a set of properties
and parameters that are relevant for bus performance analysis. Conflicts on the
interconnect occurs when two or more data memory transactions use the same bus
at the same time. Thus time properties have a significant impact on interferences
and associated latencies. We consider timing properties related to concepts previously
identified, which have an impact on the communication scheduling. We propose the
main following properties, organized according to the concepts defined previously:

• Component execution (tasks):

– Trigger: This enumeration defines whether task is triggered periodically or
triggered upon receipt of a specific event on a task port.

– Period: When the task trigger is periodic, its period specifies the task
execution rate.

– Offset: When the task trigger is periodic, the offset represents the date
from which the task is executed.

– ExecutionTime: Defines the duration for which the task is executed. It is
defined by an interval specifying the best and worst execution time (BCET,
WCET)

– DataSize: Defined by inputDataSize and/or outputDataSize, which respec-
tively defines the size of data read before the execution and the size of data
written after the execution.

– DataPath: Union of an input data path and an output data path, specifying
the succession of buses (the route) used respectively to read and write data
from and to a memory.

• Communication resources (buses):

– InterfaceSize: Defines the size of packets that can be sent by the communi-
cation resource.

– Frequency: Represents the speed at which packets are handled by the
communication resource.

• Sensor: Holds same properties as component execution but only those related
to data production.

• Actuator: Holds same properties as component execution but only those related
to data production.

Finally concepts identified previously but not carrying properties (e.g., Memory
resources) are used to ensure structural correctness of models. For instance we can
check that a data path is started or ended by a memory resource, thus avoiding two
other types of component from communicating without storing data in memory. Note
that such path can be derived from the existing notion of Physical Path in Capella.
Same kind of structural correctness can be verified on sensors and actuators.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

8 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

Figure 2 – Kitalpha extension Class Diagram

4.1 Extending the Capella model

In Capella, for the description of components and properties set, we specialize the
abstraction level of PAB objects to include missing information. To do so, Kitalpha
tool is used to generate viewpoint extension.

On the running example of Figure 3, we distinguish three different kinds of Physical
Components, computation resources for CPU 1 and 2 (in blue), a bus controller for
interconnect (in orange) and a memory resources (in red). Physical Links mapped
on buses Physical Components Behavior mapped on component execution are in also
depicted in section 3.

In addition to properties, Kitalpha also provides the possibility to extend the model
by defining operations describing actions associated and realized on each element.
These operations are needed for simulation of operational scenario. Figure 2 shows
the tab view generated by Kitalpha for setting components properties and calling
behavioral methods.

In our study, we only implemented a subset of hardware and software components
and properties enough to cover our analysis. We are aware that for the sake of
compatibility and standardization, a better solution would be to rely on an existing
solution (e.g., by using the MARTE profile as implemented in Time4Sys 6). This may
be done in the future but it requires efforts to adapt the behavioral semantic layer to
the selected profile.

4.2 Analytic Solution

The first approach we propose is based on analytic evaluation of effect of memory
transaction on architecture to estimate interference (latency) on software elements
(task) and hardware elements (bus), and to evaluate bus occupation. Only static
context is considered meaning following assumptions on memory transactions: 1) all
transactions are atomic 2) the interconnect arbitration is not considered 3) all trans-
actions crossing a bus port interface are concurrent. As a consequence, performance
properties like delays and interferences are computed under worst case hypothesis.
While possibly pessimistic, calculated values can be used as bound to have a first idea
of the design performances all along the design activity.

The computation of the various performance properties are defined as follows. We
first provide intermediate definitions used as helpers in the computation:

6https://www.polarsys.org/time4sys/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.polarsys.org/time4sys/
http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 9

• let T be the set of all tasks in the system.

• let Tp be the set of tasks that make use of a specific port. It is defined as follows:

Tp = { t ∈ T | t.dataPath→ contains(p) }

• let Bandwidthbus (MB/s) be defined as follows

Bandwidthbus = Frequencybus × InterfaceSizebus

Let now define how the different performance properties are computed:

1. transferT imetask (µs) := (the time spent to carry data in a period.)

(task.outDataSize+ task.inDataSize)

min(task.port.allocation.Bandwidth)

2. maxDelayedT imetask (µs):= (the maximum time during which a task can be blocked
by other tasks using the same port in a period.)

let allTptask = { Tp | p ∈ task.ports.allocation } in
let hyperPeriodbus = LCM(t.period∀t ∈ allTpbus) in

max
ct∈allTptask

((∑
t∈ct

hyperPeriodbus
t.period

×transferT imet
)
−transfertT imetask

)
3. maxInterferencebus (µs):= (the maximum time during which the bus can have

data blocked on its interface computed in an hyper period.)

let allTpbus = { Tp | p ∈ bus.ports.allocation } in

max
t∈allTpbus

(
maxDelayedT imet

)
4. loadbus (%):= (occupation of the bus computed in an hyper period.)

let allTpbus = { Tp | p ∈ bus.ports.allocation } in
let hyperPeriodbus = LCM(t.period∀t ∈ allTpbus) in∑

t∈allTptask

TransferT imet

hyperPeriodbus

The calculation have been performed with parameters definition in Kitapha and
java code for computing the formula. For more information on Kitalpha viewpoint see
section 4.1.

The analytic method applied on the running example of Figure 1 allowsmaxInterferencebus
and loadbus to be calculated when accessing to the memory component. First, the
Bandwidthbus is equal to 1000 MB/s for all the buses, (i.e., Frequencybus (125 MHz)
× InterfaceSizebus (64 bits = 8 Bytes) = 1000 MB/s. The TtransferT imetask1
computed on CPU1 gives task1.outDataSize (5MB) / min(task.dataPath.bandwidth)
(1000) = 5/1000 = 5ms, and transferT imetask2 = 5ms (5/1000).

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

10 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

Figure 3 – Running Example from Figure 1 With the Analytic Computation Layer

The maxDelayT imetask1 is max(hyperPeriodbus (LCM(20,30)=60) / t.period (30)
×transferTimet (5, 5) - transferT imetask1 (5)) = max (60/30×5) = 10ms and by
analogy maxDelayT imetask2 is equal to 15ms. Applying the formulas:
maxInterferenceInterconnect_to_Memory = (maxDelayT imet(10, 15)) = 15ms (rate =
15/60 = 25%)
maxInterferencecpu1_to_interconnect = 10ms (rate = 10/20 = 50%)
maxInterferencecpu2_to_interconnect = 15ms (rate = 15/30 = 50%)
loadInterconnect_to_Memory = transferT imet(5 × 3 + 5 × 2)/hyperPeriodbus(60) =
25/60 = 41.66%
loadcpu1_to_interconnect = 15/60 = 25% and loadcpu2_to_interconnect = 10/60 =
16, 66%

We have extended Capella views with a layer that computes these values to help the
designer to understand the impact of its design choices on the performances. Figure 3
shows a view of the result based on the running example.

4.3 Operational Solutions

The second approach we propose, is based on model simulation. As we want to
reason at high-level of abstraction, we use the Capella model as a reference for our
simulation, which allows us to evaluate interferences from the model parameters. So
we used GEMOC studio facilities to define an operational semantics of the Capella
PAB diagram for interference estimation.

In our model, communications are initiated by tasks. In most cases, a task reads
data from memory, executes itself and writes back results to memory. Some tasks
are scheduled periodically and others are triggered as soon as their input data are
available. We do not consider a fixed execution time for tasks, instead execution time

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 11

is randomized between its best and worst case. However when on a read or write
access the bus may be busy by another on-going transaction. Then the task should
wait for the bus until the current transaction is complete which generates latency.
Thus, a communication bus can only process one transaction at the same time, it is
considered busy until the end of the transaction.

4.3.1 Encoding the behavior of the system under Gemoc

In the Kitalpha viewpoint, we first need to define the set of operations which describe
the system behaviour. In the case of component execution (task), we define the
following operations: start(), stop(), execute(), read(), write(), waitForRead() and
waitForWrite() as shown in figure 2. Once we defined these operations, we define
the actions to be performed in each operation and the dynamic information required
to monitor the evolution of the system during execution. To illustrate this, let’s
consider the case a task waiting for a bus: the wait() operation is thus executed
increasing the bus latency counter and updating the value of the bandwidth. In Gemoc
Studio, dynamic information are called Runtime Data (RTD) and execution function,
defined for the Domain Specific Actions (DSA), are implemented in Kermeta7. A DSA
implements the execution semantic for operation defined from system data.

The second step is the implementation of the control flow semantic. We first
define the Domain Specific Events (DSE) which trigger the execution functions (from
DSA). We may have several instances of a concept (e.g. in the running example
of figure 1 there is two instances of task). For each instance Gemoc generates a
Model Specific Event (MSE). For example, in the context of task, we define a start,
stop, execute, read, write, waitForRead and waitForWrite DSE. Applying this to
the running example, in which we have two task instances, Gemoc will generate an
instance of the corresponding DSE for each task as following: MSE_Task1_start,
MSE_Task2_start, MSE_Task1_stop, MSE_Task2_stop. . . etc. A MSE is an ordered
set of event occurrences that will execute the associated DSE function instances. To
ensure a correct execution of the system, MSE occurrences should trigger the execution
functions in a specific order (e.g. the start of a task occurs before the execute). This
order is obtained by setting constraints between DSE events, using specific invariants
defined in CCSL[And09] (Clock Constraint Specification Language), and in MoCCML
(Model of Conccurrency Modeling Language) extension. By reasoning on temporal
properties of the DSE, these two languages allow us to define the order in which MSE
events occur. MoCCML expressions can be implement by automata for more complex
scenario.

The built model semantic includes six types of tasks, each type having its own
execution semantic. Four of them are scheduled periodically and the two others are
data triggered. For the task execution semantics, the event schedule is defined by the
physical time requirement (e.g execution time included between a BCET and WCET
given in µ). It is necessary to take physical time into consideration when defining the
model semantic. The different task behaviors are described as following (a wait can
preceded read and write when bus is busy):

1. Starts, reads data from bus, executes, writes data on bus and stops, scheduled
periodically.

2. Starts, reads data from bus, executes and stops, scheduled periodically.
7http://diverse-project.github.io/k3/

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

12 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

initial

error_state

Ready running

finished

reading

writing

waiting_r

waiting_w

initialToReady

ReadyToReady

ReadyToReady2

ReadyTorunning

when exec and time
[execTime < wcet

&&
time < period]

do time++; execTime++

runningTofinished

finishedTofinished

finishedToReady

ReadyToreading

ReadyTowaiting_r waiting_rToreading

readingToreading

readingTowaiting_r

waiting_rTowaiting_r

readingTorunning

runningTowriting

runningTowaiting_w

waiting_wTowriting

when write and time
[writeTime < transactionTime

&&
time < period]

do time++; writeTime++

waiting_wTowaiting_w

writingTowaiting_w

writingTofinished

Figure 4 – Periodic task semantic in MoCCML

3. Starts, executes, writes data to bus an stops, scheduled periodically.

4. Starts, executes and stops, scheduled periodically.

5. Starts, executes, writes data to bus and stops, scheduled when data dependency
is satisfied.

6. Starts, executes and stops, scheduled when data dependency is satisfied.

We implement the above semantics using two MoCCML automata, one for periodic
tasks and another for data triggered tasks. Each transition in the automata triggers
a time event. The physical time is build according time event scheduling build with
resolution from our system requirement (1µ). Figure 4 shows the automata describing
the periodic tasks behaviors. A periodic task starts in the Ready State and waits until
its offset decount reach 0. Depending on the bus state (taken or idle), a task can
read data from bus, wait for the bus or execute. In the MoCCML automata, this is
managed by taking one of the three transitions leading to waiting_r state, reading
state or running state. Choosing one transition depends on its associated conditions
and events of the DSE which is triggered. For instance, when transitioning from ready
to reading, the conditions are task of type 1 or 2 and dataInputSize > 0, and the
associated event as the read MSE of the task. However, we also to constrain all the
read and write occurrences on the same bus, as it is impossible to have more then one
task communicating on the same bus. A CCSL constraints is used to exclude all the
read and write combinations allocated to the same bus. In the context of the running
example, we exclude all occurrences of Task1_read from triggering simultaneously
with Task2_write, forcing one of the two tasks to trigger its wait event. Once a task
is in the reading state, task triggers read event and stays in reading until the bus
transfer time is completed. When the task read ends, it enters in the running state
by triggering the execution event of the transition. As the execution time is included
in BCET and WCET interval, the execution timing event is randomize leading to
different execution time from one period to another. The writing state, is similar to the
reading state with the possibility of going into waiting state if the bus is busy. Finally,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 13

Figure 5 – Results of simulation under Gemoc environment

task enters to the finished state by triggering the stop event and continues to consume
time until it reaches the next period’s schedule. In this MoCCML automata, each
transition event is linked to a MSE event. Triggering an event causes the execution of
the associated execution function in the DSA, updating the runtime data for changing
the system state.

4.3.2 Simulation and results analysis

The operational method applied to the running example of Figure 1 evaluates
InterferenceRatebus and Loadbus by simulating the model. We have developed
different scenarios in which we vary the value of Task2 offset. In some scenarios,
tasks are no more schedulable due to interference effects induced by the task execu-
tion time which varying randomly between BCET and WCET. For instance, if the
InterferenceRateCPU1_to_Interconnect is greater than 15%, and if Task1 executes
for 12ms, then Task1 cannot end before its 20ms deadline. To validate the system
requirement, we generate different simulation scenarios based on different hypothesis
on system parameters (task scheduling, data decomposition or aggregation) which
allows to estimate InterferenceRatebus and Loadbus value. Figure 5 shows the results
of simulation of the running example under Gemoc Studio for a configuration where
the offset of Task2 is fixed to 9ms.

If we compare the results between the operational and the analytic solution on
the running example, we can conclude that 1) the non schedulable scenario cannot be
detected by analytic solution, 2) the schedulable scenario of operational solution is
always bounded by value calculated in analytic scenario.

4.4 Design Space Exploration

In previous sections we show how we equipped Capella with analytic and simulation
based reasoning capabilities. Based on them, we can retrieve information helping the
designer to evaluate the quality of system design candidate. However, at early stage
of the development process, some characteristics of the system may not be totally
known, for instance the exact kind of hardware bus and its performances. Also, the

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

14 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

Figure 6 – Abstract syntax of the little DSL for Design Space Exploration

algorithm used by the task and their scheduling properties may change. If we consider
a camera-based system, different compression algorithm may be used. Some of them
take more time to compute but require less data to transfer (better compression) while
others are faster but produce more volume of data. Exploring all these possibilities
manually may be painful for a designer. Consequently we proposed a small DSL
dedicated to defining the potential solutions to be explored. Then, from such a
description we automatically generate the models with the appropriate characteristics
that we can simulate (possibly in parallel) to obtain a whole sets of simulation results.
These results can then be explored in different manners. In our experiments we used
Jupyter8, an in the web notebook, to easily explore the results of the simulations.

4.5 DSL for Domain Space Exploration

Our DSL (whose abstract syntax is represented Figure 6 is adaptable to any EMF
model and proposes to represent the range of variation of different model attributes.
This DSL remains very simple for our current use but is subject to several evolutions.

An Exploration is importing a model by using an ImportStatement. This allows
to access to all elements of the model to be explored. An important point is that an
exploration defines the languageName with which the exploration must be conducted.
This is important since it indicates which semantics should be apply to drive the
simulation. Then, for each element in the domain to be explored, the user creates
a PropertyVariation with reference to an Attribute from the initial model into a
reference named variableProperty. Finally, a VariationDomain on this property is
defined as a Float interval. This clearly means that only Float compatible attributes
can vary during our exploration. We have several extensions of this DSL under study
(supporting different data types but also topology variation, for instance to represent
different allocations of the tasks on the hardware); but this simple DSL was expressive
enough in our initial ATIPPIC use case.

To make it usable we defined a textual concrete syntax using Xtext9. An example
of the use of this syntax is given in Figure 7. In the tooling, we provided efforts
to ensure that completion is enabled for both the choice of the language and the
navigation to the model attributes, helping users to make a correct exploration model.

4.6 Exploitation of an Exploration Model

Once a designer defined an exploration model, it can be used to export a set of
executable artifacts, each generated according to different configuration of the model

8https://jupyter.org/try
9http://eclipse.org/xtext

Journal of Object Technology, vol. 18, no. 2, 2019

https://jupyter.org/try
http://eclipse.org/xtext
http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 15

Figure 7 – a Simple example of use for our DSL

depending on the property variations defined in the exploration model. More precisely,
based on the Cartesian product of the different values covering the exploration domain
of each property variation, a model is generated and then compiled into a java Class
allowing its monitored execution. By monitored execution, we mean that it is possible,
by changing arguments of the main function, to log values of interest during the
simulation in a csv format. With the set of executable artifacts, a script to launch the
different executions is generated. During the execution of each model, a csv file and a
corresponding gnuplot script is generated so that it is possible to have a first view of
the results.

Additionally, to make easier the exploration of the results, we used jupyter lab,
which provides, among other things, an easy way to generate a dedicated interface
to browse the resulting csv files according to the parameters. A screen shot of the
resulting view is provided in the companion webpage.

5 Case study

The avionic use case developped in the ATIPPIC project targets the market for
low cost earth observation or communication mini satellites cruising at Low Earth
Orbit (LEO) build upon COTS (non Rad-Hard components). The avionic supports
standard featuresto perform its control and maintenance, and embeds a payload. The
satellite control is operated with a star tracker sensor to determine the orientation (or
attitude) of the spacecraft with respect to the stars, a GNSS compatible with GPS
or Gallileo band to acquire its positioning, standard RF communication means for
Telemetry/Telecommand (TM/TC) actions, and internal communication interfaces
as CAN bus or SPaceWire (SPW) used to acquire sensors signals and to actuate the
satellite propulsion, or the energy management with solar panel orientation. The
SPW or CAN communication allows the integration of an application payload. For
the sake of the study, the avionic use case is completed with an earth observation
payload application. This is a typical use case supported by as the ATIPPIC On Board
Computer(OBC) which offers extensive functionalities for payload integration such as
storage capacity though mass memory implementation and fast RF communication
links to download image to ground through Telemetry Image interface (TMI). The On
Board Computer (OBC) architecture is based on redundant architecture, not scope of
the analysis and so not detailed here, embedding a SoC as main computing processor.
The objective of this study is to evaluate in the early stage of development of the
system architecture, how to balance control and application between the Programmable
Logical (PL) part and the CPU of a SoC (to reduce implementation constraints on
the PL area), by analyzing the required timing requirement of the communication
scheme to detect possible overloads of the internal bus communication.

The analysis is performed on a sub-part of the overall system architecture comprising
an on-board avionic to control and acquisition of the signal of three optical head via

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

16 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

SPW interfaces, to format the raw data performing star tracker resolution and to
reconfigure its heads if necessary. The payload includes the acquisition of raw images
through SPW interface, data formatting and compression for storage in an external
flash mass memory (controlled by an integrated memory controller implemented in the
PL area), and transmission to the TMI interface connected to an external RF TMI-X
transmitter.

The OBC electronic is build with a SoC from the Xilinx Zynq7000 family offering
PL capabilities. The SoC is decomposed with a Processing System area (PS) including
a dual CortexA9 processor in the Application Processor part, a central interconnect
connected to a set of I/O devices and a memory interconnect to allow access to external
DDR memory device. Note that DDR access is also possible directly from L2 cache
controller of the dual CortexA9 or from the central interconnect. The PL provides a
user configurable area to allow the integration of the required hardware IP components.
The PL is connected to the PS via the central interconnect with AXI General Purposes
ports (GPx) and via the memory interconnect with AXI High Performance ports
(HPx) to access to DDR.

The use case architecture, see Figure 8, manages access to DDR from different
source: from the PS by the CorteXA9 cores via the SCU, or from PL area by
the swp_IP addressing the AXI_HP0 port of the DDR_Interconnect, or by the
spw_payload_camera_IP addressing the AXI_HP2 port of the DDR_Interconnect.
For the PL part, the memory transaction flows have been segregated on separated
slave port of the DDR_Interconnect, visible by Grey Physical Link in the Figure.

Figure 8 – Use Case System Architecture

In this architecture interference may occurs locally on following component :

• AXI_HP2_Interco for the image control since the transfer of acquired raw im-
ages (1,2 Mb acquired every 0.01s) to the DDR realized by spw_payload_acquisition

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 17

can be concurrent with the Flash writing of the compressed image (factor 2)
from the DDR to the Nand Flash controlled by Memory_payload_manager.

• SCU and inside theDDR Controller as image compression Image_compression_payload
and image formatting spw_payload_driver can interfers with access to image
data because they are assigned to different cores of the CortexA9, and executed
asynchronously as the compression process is slowest then the driver’s image
formatting. This design choice is motivated by future extensions of image pro-
cessing functions, and by the reservation for new functions implemented in the
PL area but not described in this use case.

The timing requirement of the architecture must be evaluated and we provide the
means to assess them early in the design by identifying the software latency on tasks
DelayTimetask, the AXI bus hardware latency and load respectively Interferencebus
and Loadbus. This allows to challenge our design, offering the advantage of relaxing
PL occupation size, and giving the means to compare alternative solutions. Note that
alternative solutions may also vary depending on the configured scheduling of software
tasks, or on the reassignment of software tasks into the PS.

In the two graphs of Figure 9, we compare bus average interference value (total
interference duration on each bus divided by the number of transaction achieved
by the bus) generated for two different approaches of image compression. In the
first strategy, we consider a 2 by 2 image compression strategy. The second strategy
compresses the images by group of 4. The first strategy executes more often than
the second one and generates smaller transactions. While the execution rate of
the second is lower and exchanged data size is larger. The results show that the
first approach generates interference only on CortexToDDR bus (linking the DDR
and the SCU of Cortex A9), less than the 4 images compression strategy which
besides generating interferences on the CortexToDDR also generates interferences on
the 2 other bus (the 2 buses linking PL to DDR through the interconnect). More
information and simulation results based on the use case can be found on the companion
webpage:https://project.inria.fr/interferenceanalysis/

6 Related Works

There exist many tools for network simulation (e.g., NS3 [Car10] or OMNET++ [VH08]).
However, these tools are used for accurate simulation of network protocol and usually
does not focus on the node, viewed only as traffic generators. Consequently in the
following we consider only platform close to our domain (embedded systems). Also, we
did not tried to make some guided design space exploration like in [BZS18] or equiva-
lent but these methods are compatible with ours, their fitness function requiring a
simulation or the evaluation of properties by using the analytic method. Consequently
we do not compare to them.

Platform Architect10 distributed by Synopys provides an industrial solution to
perform SoC architecture analysis and optimization for performance and power. It is
based on SystemC TLM libraries with accurate modeling for interconnect, memory
controller and virtual processor (accurate memory transaction definition and resource
consumption). It allows through simulation and trace analysis to evaluate performance
of a multicore or SoC architecture. This tool is used by SoC designer to optimize their

10https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html

Journal of Object Technology, vol. 18, no. 2, 2019

https://project.inria.fr/interferenceanalysis/
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
http://dx.doi.org/10.5381/jot.2019.18.2.a14

18 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000

M
e
a
n
 i
n
te

rf
e
re

n
ce

 o
n
 b

u
s

(m
s)

Time (ms)

2 images compression strategy

HP2
HP23

CortexToDDR

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000 6000 7000

M
e
a
n
 i
n
te

rf
e
re

n
ce

 o
n
 b

u
s

(m
s)

Time (ms)

4 images compression strategy

HP2
HP23

CortexToDDR

Figure 9 – Results of simulation for 2 compression strategies

design. However, compared to our approach, analysis requires strong hardware skills.
It seems not adapted to the system design level and does not interface with the MBSE
system design methods and tools, to our knowledge.

TTool\Diplodocus[AB12, AMAB+06, GA16]11 is a modelling tool based on UM-
L/SySML, developed by Telecom ParisTech. One of its extension is a tool for SoC
partitioning by finding the best candidate software and hardware architecture for
executing a set of functions. It encodes a semantic for software execution derived from
task graphs and uses concept for hardware definition (CPU, memory, interconnect,
router..), whose parameters can configured, allowing exploration. The simulation is
done by translation of the model element to (predefined) SystemC blocks. Compared
to our approach it requires to have the predefined SystemC block and their execution
environment which is realized outside of the modeling tool. Consequently it does not
take benefit of model level simulation, debugging and exploration.

7 Conclusion

In this paper we have presented a use of model driven engineering that enables reasoning
on bus interferences of an aerospace integrated architecture. We have identified the
required information for such analysis. The analysis is based either on an analytic
method, which provides instantaneous but pessimistic results or on a simulation based
method, which provides more accurate results but require a simulation step. To help
the designer in choosing the best parameters for its architecture we provided a small
DSL based on which he can define exploration space. The exploration space is used to
generate different instance of models from which reasoning can be conducted. Results
are then presented in a small dedicated interface in a notebook.

11https://ttool.telecom-paristech.fr/diplodocus.html

Journal of Object Technology, vol. 18, no. 2, 2019

https://ttool.telecom-paristech.fr/diplodocus.html
http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 19

Many future works are envisioned. Here is a few of them: the use of new design
properties to allow more accurate results (caches, bus arbitration, DMA, etc); the
use of more powerful analysis based on exhaustive simulations to guarantee temporal
properties; the introduction of stochastic information (about execution time or data
size) to provide stochastic results; the integration of the exploration DSL and/or results
in dedicated exploration tools based, for instance, on parallel coordinates chart.

References

[AB12] Ludovic Apvrille and Alexandre Becoulet. Prototyping an Embedded
Automotive System from its UML/SysML Models. In 4th European
Congress on Embedded Real Time Software and Systems (ERTS 2012),
TOULOUSE, France, January 2012.

[AMAB+06] Ludovic Apvrille, Waseem Muhammad, Rab´ea Ameur-Boulifa, Sophie
Coudert, and Renault Pacalet. A UML-based Environment for System
Design Space Exploration. 2006.

[And09] Charles André. Syntax and Semantics of the Clock Constraint Specifica-
tion Language (CCSL). Research Report RR-6925, INRIA, 2009. URL:
https://hal.inria.fr/inria-00384077.

[BVNE] Stéphane Bonnet, Jean-Luc Voirin, Véronique Normand, and Daniel
Exertier. Implementing the mbse cultural change: Organization, coach-
ing and lessons learned. INCOSE International Symposium, 25(1):508–
523. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
j.2334-5837.2015.00078.x, arXiv:https://onlinelibrary.wiley.
com/doi/pdf/10.1002/j.2334-5837.2015.00078.x, doi:10.1002/j.
2334-5837.2015.00078.x.

[BZS18] Alexandru Burdusel, Steffen Zschaler, and Daniel Strüber. Mdeopti-
miser: a search based model engineering tool. In Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, pages 12–16. ACM,
2018.

[Car10] Gustavo Carneiro. Ns-3: Network simulator 3. In UTM Lab Meeting
April, volume 20, pages 4–5, 2010.

[GA16] Daniela Genius and Ludovic Apvrille. Virtual Yet Precise Proto-
typing: An Automotive Case Study. In 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), pages
691–700, TOULOUSE, France, January 2016. URL: https://hal.
archives-ouvertes.fr/hal-01291888.

[OMG09] OMG. UML Profile for MARTE, v1. Object Management Group, Nov.
2009. formal/2009-11-02.

[Roq16] Pascal Roques. MBSE with the ARCADIA Method and the Capella
Tool. In 8th European Congress on Embedded Real Time Software
and Systems (ERTS 2016), Toulouse, France, January 2016. URL:
https://hal.archives-ouvertes.fr/hal-01258014.

[Sch06] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY-, 39(2):25, 2006.

Journal of Object Technology, vol. 18, no. 2, 2019

https://hal.inria.fr/inria-00384077
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2015.00078.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2015.00078.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2015.00078.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2015.00078.x
http://dx.doi.org/10.1002/j.2334-5837.2015.00078.x
http://dx.doi.org/10.1002/j.2334-5837.2015.00078.x
https://hal.archives-ouvertes.fr/hal-01291888
https://hal.archives-ouvertes.fr/hal-01291888
https://hal.archives-ouvertes.fr/hal-01258014
http://dx.doi.org/10.5381/jot.2019.18.2.a14

20 · Amin Oueslati, Philippe Cuenot, Julien Deantoni, Christophe Moreno

[VH08] András Varga and Rudolf Hornig. An overview of the omnet++ simu-
lation environment. In Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and
systems & workshops, page 60. ICST (Institute for Computer Sciences,
Social-Informatics and . . . , 2008.

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of
practice in model-driven engineering. IEEE software, 31(3):79–85, 2014.

About the authors

Amin Oueslati is an enginner at the IRT Saint Exupery, Sophia
Antipolis, France. He was graduated in 2013 from Polytech Nice
Sophia (Master degree in computer science). Former research
engineer at INRIA Kairos Team. He moved to IRT Saint Exupery
in 2018 and joined the ATIPPIC Project. He is currently working
on research topics involving MBSE methods.

Contact him at amin.oueslati@irt-saintexupery.fr.

Philippe Cuenot is Research Engineer at IRT Saint Exupéry,
Toulouse, France (seconded from Continental Automotive France).
He was graduated in 1989 from ISTG Ploytech Grenoble French
University (engineering diploma in Industrial Computer Science
and Instrumentation). He joined Continental Automotive France
(formally Siemens Automotive France) for development of engine
management system real time software. In 2005 he moved to the

Electronic Advanced Development team as innovation project leader on system and
software methods. Since 2014, he is in delegation to the IRT Saint Exupery in System
engineering department. Contact him at philippe.cuenot@irt-saintexupery.fr .

Julien Deantoni is an associate professor in computer sciences
at the University Cote d’Azur. After studies in electronics and
micro informatics, he obtained a PhD focused on the modeling
and analysis of control systems, and had a post doc position at
INRIA in France. He is currently a member of the I3S/Inria Kairos
team (https://team.inria.fr/kairos). His research focuses on
the join use of Model Driven Engineering and Formal Methods
for System Engineering. More information at http://www.i3s.
unice.fr/~deantoni/.

Christophe Moreno is Project manager IRT Saint Exupéry,
Toulouse, France (seconded from Thales Alinea Space). He was
graduated in “Computers science for industrial applications” from
ENSEA in 1987. After a period as consultant in SW development
in different domain as transport, production, military where he
developed a real time operating system for Tigre Helicopter, he
joined Thales Alenia Space in 1994 . He developed Ostrales RTOS
as reference RTOS for TAS satellite since Proteus-Jason satellite

(2000). He occupied the role of SW project manager on the first Proteus Observation

Journal of Object Technology, vol. 18, no. 2, 2019

mailto:amin.oueslati@irt-saintexupery.fr
mailto:philippe.cuenot@irt-saintexupery.fr
https://team.inria.fr/kairos
http://www.i3s.unice.fr/~deantoni/
http://www.i3s.unice.fr/~deantoni/
http://dx.doi.org/10.5381/jot.2019.18.2.a14

System Based Interference Analysis · 21

Satellite and the first Telecom Spacebus 4000 satellite before to take skill management
function in TAS organisation. He joined IRT Saint Exupery in 2017. Contact him at
christophe.moreno@irt-saintexupery.fr .

Acknowledgments The authors thank all people and partners involved in the
ATIPPIC project managed in the IRT Saint-Exupéry Sophia, and in the GLOSE
project. This work performed in the ATIPPIC project context and is supported by the
French Research Agency (ANR) and by the industrial partners of IRT Saint-Exupéry
Scientific Cooperation Foundation (FCS).

Journal of Object Technology, vol. 18, no. 2, 2019

mailto:christophe.moreno@irt-saintexupery.fr
http://dx.doi.org/10.5381/jot.2019.18.2.a14

	Introduction
	Background
	Modeling Technologies
	Modeling Interferences

	Running example
	Proposition
	Extending the Capella model
	Analytic Solution
	Operational Solutions
	Encoding the behavior of the system under Gemoc
	Simulation and results analysis

	Design Space Exploration
	DSL for Domain Space Exploration
	Exploitation of an Exploration Model

	Case study
	Related Works
	Conclusion
	Bibliography
	About the authors

