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Abstract Class diagrams are widely used in modelling and system design.
They capture the relation between the requirements specification (problem
domain) and system components (solution domain). However, constant
changes to requirements and manual modelling may result in invalid soft-
ware models, and potentially invalid software solutions. We propose an
automated approach at the meta-model level to reason about the validity
of diagrams and/or their associated requirements. This paper introduces
the foundations of the formal framework TOMM, and illustrates how it
can be used for validation of class diagram based models, and potentially
extended for model generation and comparison.
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1 Introduction

Models are used to design, document, communicate, verify, test, and guide the imple-
mentation of software systems, specially in the context of Model-Driven Development
(MDD) [Sch06]. Key to these developments has been the Unified Modelling Language
(UML) [17b], which provides a series of diagrams that capture different perspectives
of software systems. In particular, class diagrams describe the relation between the
problem domain (requirements) and the solution domain (software systems), which is
the reason why they are widely used and actively researched [BC11; C+08; BMS10;
GBR07; MLL02; MLL02; CE06].

Formal verification can be used to determine the correctness of a class diagram
through properties such as satisfiability, i.e., a model is satisfiable if has at least one
correct non-empty instantiation [C+08]. While existing work frequently treats class
diagrams as isolated artefacts essentially focusing on internal properties, little has
been done to reason about the relation between diagrams and requirements. As a
consequence of this, it is possible to have a correct class diagram that does not model
correctly the requirements it is supposed to, i.e., a correct but invalid diagram.

We address this problem here by proposing a new framework which integrates
several kinds of formal reasoning, including model verification and validation. Our
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framework embraces the relation amongst artefacts, such as requirements specifications
and diagrams, all of them expressed in a common language in order to provide a
comprehensive context for formal reasoning. The problem of diagram validation is
also tackled by proposing an axiomatic system that allows us to establish the validity
of a class diagram with respect to its corresponding requirements specification.

This paper is structured as follows. In Section 2 we discuss the existing work on
model verification and highlight the contributions we make in this paper. An overview
of the components of our framework is included in Section 3. In Section 4, we describe
the notation used to capture requirements specifications and their corresponding
formalisation. We discuss class diagram formalisation in Section 5, and model validity
in Section 6. The evaluation of our requirements specifications and validation calculus
is given in Section 7. Finally, in Section 8 we summarise the research presented here
and outline further ongoing developments.

2 Related Work and Contributions

According to Balaban [BMS10], model correctness is denoted by a non-empty finite
reality. His work includes both the analysis of consistency (checking for non-emptiness)
and finite satisfiability (checking for termination). In a different approach, Cabot
[CCR07] deals with strong and weak satisfiability, as well as redundant constraints,
using Constraint Logic Programming [JL87].

In addition, there have been several attempts to include UML’s constraint language
OCL in order to verify UML models, including the work of Gogolla [GBR07], Soeken
[Soe+10], Miao [MLL02], and Clavel [CE06]. To this end, they propose different types
of formal encoding for class diagrams to enable the use of SAT/SMT solvers [DB11],
or to perform model checking [Lam77; CGR11].

In spite of all the work done regarding model verification, little has been explicitly
done regarding model validation. While it is clear that the former refers to well-defined
correctness, the proper definition of model validation is still unclear. To address this
limitation we propose one new definition in Section 6.

In addition to model verification, there is another topic that is relevant for our
work. In order to provide a context for model validation, it is necessary to discuss
requirements specifications. The CHAOS report [Int95] and the work of Jorgensen
[JM06] and Fuchs [FSS98] make it evident that the success of a software project is
closely related to the quality of its requirements. Similarly, the construction of valid
models depends on the specification of precise requirements.

We distinguish three categories of requirements specifications by surveying the liter-
ature [KS98; Pre05; Som15]. Graphical specifications include prototypes and diagrams,
textual specifications correspond to written documents, and formal specifications use
mathematical models. These categories are characterised by the type of notations
used, mainly graphical notations, natural or formal languages.

Class diagrams are sometimes shown as graphical specifications, however, they are
not meant to represent explicitly the user needs which are more commonly expressed
as textual specifications. Neither of these two formats can be used to formally reason
about requirements, hence the need to count on formal specifications as well.

The elements to draw class diagrams are unique and clearly defined in the UML
language specification [17b]. In contrast, there are numerous alternatives for textual
and formal specifications, which we discuss next.

Textual specifications can be written in structured documents, as the ones proposed
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by the IEEE in the standard ISO/IEC/IEEE 29148 [ISO11]. This proposal differen-
tiates the structure of stakeholder, system, and software requirements specification
documents in order to provide a complete set of perspectives for the requirements.
In our work (Section 4.1) we have been inspired by this standard to propose our
document structure.

In addition to the structure of a document, we have proposed a Controlled Natural
Language (CNL) to be used to limit textual specifications. CNLs impose constraints
over Natural Language, in order to enforce the usage of well-defined vocabulary and
grammatical rules that reduce ambiguities and enable computability, while maintaining
the familiarity of natural language. An example of CNL is the SBVR Structured English
[17a], also proposed by the OMG, and characterised by its use of visual elements,
such as colouring and underlining, to identify components within a sentence. CNLs
have demonstrated how computational engines can be used to predict, parse, check
and correct requirements, as well as enable a more nature interaction with software
models. We present a CNL targeted to describe concise requirements specifications
within structured documents (Section 4.1).

In order to perform formal validation of class diagrams and requirements specifica-
tions, it is necessary for both of them to be written in compatible formal notations.
Existing work describes several alternatives to formalise Class Diagrams [Bre+97;
SF97; Cal+02; OD08]. They make use of mathematical constructs such as ontolo-
gies and topological functioning model, and languages including Z and description
logics. Trying to extend any of these formalisms towards requirements specifications
constitutes a challenge that can be addressed by considering a notation that natively
includes elements of specifications and diagrams alike. Here we use predicate logic for
this purpose.

A logic system is integrated by a formal language with clear semantics and syntax,
and an inference engine that can be used to reason about statements within the system
[Fit12; SA91; Cro90]. Predicate logic extends the elements of propositional logic to
include quantifiers and predicates [Woo14]. In Section 4 and Section 5 we discuss the
predicates that integrate our validation framework.

The significant existing work on requirements engineering [GMB94; FKV91; ZLL02;
HJR02; PD06; BMM19; Ble+18], CNLs [17a; FSS98; WS09; Cla+05], and class
diagram extraction [IA10; Cha+09; HA12; Ben+16], formalisation and reasoning
[Szl06; CCR07; Cal+02; MGB05; MC01], makes us wonder about the need for yet
another effort. However, the novelty of our approach resides on its holistic design,
which aims to put all these efforts together in one seamless framework that will be: a)
usable for non-experts, b) applicable for non-critical systems, c) extensible to support
other software models, d) an interface to ease usage of formal methods, and e) capable
of supporting different reasoning tasks (namely validation, verification, comparison,
refinement, etc.). Though these properties are yet to be developed and proved, the
foundations presented in this paper clearly are an initial step in that direction.
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3 TOMM

Figure 1 – TOMM conceptual design

Thinking of Models
and More (TOMM) is
a framework that seeks
to integrate formal rea-
soning over software
models and specifica-
tions in a seamless
way. In other words,
it aims to enable dif-
ferent tasks, such as
validation, verification,
generation and com-
parison over models
and specifications cap-
tured in a common
formal representation.
This is achieved through the interaction of several research areas, such as natural lan-
guage processing, formal methods, and machine learning in the context of model-driven
development.

The vision for TOMM is to make it possible to handle requirements specifications
and class diagrams in a flexible and integrated way. To achieve this, both requirements
specifications and class diagrams are captured at the meta-models level, and formalised
in predicate logic. The formalisation enables us to do inference, validation and
comparison of models. Figure 1 shows the different artefacts within our framework
and how they interact with each other.

In addition to Class Diagrams, the inputs for TOMM include ConSpec Specifications
as a representation of requirements. These are written using a language and a document
structure designed to ease formalisation and interaction with models. And they are
properly introduced in the following section.

4 Requirements Formalisation

Software requirements are typically expressed informally, using textual or graphical
languages, as discussed in Section 2. The IEEE has provided a guidance for complete
and well-structured requirement documents in the ISO/IEC/IEEE 29148 standard
[ISO11]. However, this guidance, though intuitive, is not optimal for formal reasoning,
and does not hold any explicit relationship with class diagrams. We address these
limitations in Section 4.1, proposing an original CNL oriented to capture functional
requirements specifications and a structured document inspired by legal contracts and
the IEEE standard.

4.1 SpeCNL and ConSpec

SpeCNL is proposed here as a Controlled Natural Language to capture functional
requirements in a semi-formal and intuitive manner through well-defined parts of
speech, concepts, and sentences.
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ConSpec is a document structure which provides a context in which SpeCNL
requirements can be expressed, and mapped to elements of class diagrams. This
document is based on legal contracts, in which the obligations and responsibilities of
the parts are defined in clearly stated clauses. A ConSpec document is composed by
a title, the current version of the document, and a set of clauses that describe the
functional requirements.

Every clause in a ConSpec document is identified by a unique clause number, and
must include one activity and the actors that perform such activity. In addition,
every clause can contain pre-conditions, activity conditions, and post-conditions to
indicate the constraints to be satisfied before, during, and after the execution of the
activity. Consequences in case these constraints are violated can be included, as well
as dependencies with other clauses.

The library system introduced by Callan [Cal94] has been used repeatedly in
related work [HG00; KD99; BC11], and we make use of it in Text 1 to demonstrate
our document structure for functional requirements, together with our CNL.

Text 1 – Segment of Callan’s requirements for a library system[Cal94]

A library issues loan items to customers. Each customer is known as a member and is issued
a membership card that shows a unique member number . Along with the membership number,
other details on a customer must be kept such as a name, address, and date of birth. A loan
item is uniquely identified by a bar code. There are two types of loan items, language tapes,
and books. A language tape has a title language (e.g. French), and level (e.g. beginner). A book
has a title, and author(s). An item can be borrowed, reserved or renewed to extend a current
loan.

In order to manually translate these requirements into a ConSpec specification, it
is first necessary to identify all potential activities, which are coloured in red, potential
entities are coloured in blue and potential attributes are coloured in grey . Using these
identified elements, we manually generate the equivalent SpeCNL elements, and locate
them in their corresponding field within the ConSpec specification.

Figure 2 – Example of manual simplification of sentences

The first step to
generate ConSpec spec-
ifications is to is to
simplify the existing
requirements into sen-
tences closer to SpeCNL.
Figure 2 shows the pro-
cess to manually sim-
plify the sentence “An
item can be borrowed”
into the sentence “Cus-
tomers borrow loan-
items”. Some inter-
pretations and assump-
tions were required
here; for instance, we
assume that “Customers” are the subject of the sentence, and that “item” and “loan-
items” are equivalent words.

Though this process requires some cognitive effort, the tasks proposed are intuitive,
and they can help to detect potential problems within the requirements.
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The simplified sentence “Customers borrow loan-items” is then used to generate a
ConSpec clause, using the grammar rules of SpeCNL included in Tables 4, 5, 6 and 7.
The parsing trees shown in Figure 3 illustrate how these rules are used with to parse
this simplified sentences into the elements of a clause.

Figure 3 – Parsing trees for sample activity
and actors

Following these steps, simplification
and parsing, the original requirements
are translated into a ConSpec specifica-
tion which is shown in ConSpec 1. With
this example we also show how Con-
Spec encourages the stakeholders (users,
sponsors, engineers, etc.) to be clear
and precise about what the expected
functionality is.

Reading ConSpec documents like
this one is an intuitive activity for the
stakeholders, no different from reading
any other text in English. Writing
ConSpec documents, however, requires
knowledge about the rules of SpeCNL
and the structure of ConSpec (Tables 4,
5, 6 and 7). This can be eased with the
help of tools to edit, predict, collect and
validate specifications, which is part of our work currently in progress.

ConSpec 1 – Segment of the manual translation of Text 1 into ConSpec specification
Title: Callan Library System
Version: 1.0
Clauses:

- C1:
Action: reserve loan-item
Actors:

- Customers
Preconditions:

- Customers are members
- Members have member-number
- Members have name
- Members have address
- Members have date-of-birth
- Books are loan-items
- Books must have title
- Books must have author
- Language-tapes are loan-items
- Language-tapes must have language
[...]

- C2:
Action: borrow loan-item
Actors:

- Customers
Preconditions:

- Loan-item must be available
Dependencies:

- C1
- C3:

Action: renew loan-item
Actors:

- Customers
Preconditions:

- Loan-item must be borrowed
[...]
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4.2 Formalisation

SpeCNL and ConSpec were designed with the intention to facilitate formalisation
of requirements and to establish a relation with class diagrams. For instance, the
substitution rule ACTOR → ENTITY can be easily transformed into predicate logic
as Actor(x) ∧ Entity(x). In order to formalise a contract, it is necessary to parse each
of its elements using the corresponding substitution rules. The sequence of substitution
rules applied is known as the parsing tree [Joh98] of the element.

From Figure 3 we observe that ConSpec documents include only the root and the
leaves of the parsing trees. The former corresponds to the clause element being parsed
and the later to its value. In this example, the clause elements are activity and actors,
with values “borrow loan-items” and “Customers” respectively. We use these parsing
trees in order to formalise this specification.

For each non-terminal in the transformation rules described in Appendix B and
Appendix C, there is a corresponding predicate that takes as argument the terminal
used in the corresponding application of rules (leaves). In the case of the parsing trees
in Figure 3, the following predicates can be manually extracted.

Example 1 – Predicates for parsing trees shown in Figure 3

ACTOR(Customers) ∧ ENTITY(Customers) ∧NON(Customers)∧
ACTIVITY(borrow, loan-items) ∧VBB(borrow) ∧ ENTITY(loan-items)∧
QUALIFIED_ENTITY(loan-items) ∧QUALIFIER(loan) ∧NN(loan) ∧ ...

In this way, all the elements of a ConSpec document can be formalised as first-order
predicates. However, not all of the predicates generated are required to establish a
relation with class models; in Section 6 we discuss relevant predicates for this relation.
In the next Section (5) we discuss the notation and the process to formalise class
diagrams using first-order predicates.

5 Class diagrams formalisation

In this section we present the elements required to formalise class diagrams into
predicates. In this way, diagrams and specifications will be expressed in a common
language, making it possible to reason over them.

Class diagrams are part of the Unified Modelling Language standard, and they have
clearly defined structures, semantics, and notation. Table 3 in Appendix A contains
the pre-defined meta-data from UML and Table 1 describes the predicates required to
formalise class diagrams.

Table 1 – Structure of ConSpec document

Class Diagram Component Predicate
Class: indicates that the variable c is the name of a
classifier of type t ∈ CU

CLS(c, t)

Attribute: expressed that class c has an attribute a of
type t ∈ T , with visibility v ∈ VU and scope s ∈ SU

ATR(c, a, t, v, s)

Operation: indicates that class c contains an
operation o with visibility v ∈ VU and scope s ∈ SU .
This operation receives the set of parameters P and
has return type t ∈ T ∪ void

OPR(c, o, t, v, s, P )
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Table 1 – Structure of ConSpec document

Class Diagram Component Predicate
Type: indicates that t is a type TYPE(t)

Relation: indicates that there is a relationship (of
type t ∈ Tr) between classes s and d. This relation
has name n, role name r (at the d side), and #∗
indicates the cardinality of the relationship such that
#l,#u ∈ #U , and #l is the lower boundary, and #u

is the upper boundary

REL(s, d, t, n, r,#l,#u)

Inheritance: indicates that class g generalises s, or
conversely, that s is a specialisation of g INH(g, s)

In order to show how a diagram can be formalized using these predicates, we use
the diagram corresponding to the library example from Section 4. Figure 4 shows the
original diagram presented by Callan [Cal94] and Example 2 shows the most significant
predicates corresponding to formalisation of this diagram. It is observed that the
formalisation of class diagrams is a straight forward mapping from elements of the
class model to predicates. In the next sections, the relation between class diagram
and requirements will be established using these formalisations.

Example 2 – Predicates for Callan’s Class Diagram

CLS(Book) ∧ TYPE(Book)∧
CLS(LoanItem) ∧ TYPE(LoanItem)

CLS(LoanTransaction) ∧ TYPE(LoanTransaction)

ATR(LoanItem, title, ε, ε, instance) ∧ CLS(LoanItem) ∧ TYPE(ε)

ATR(LoanItem, barcode, String, ε, instance)

ATR(Customer, name, String, ε, instance) ∧ TYPE(String)

ATR(Book, subject, ε, Public, instance)

OPR(LoanTransaction, borrow, ε, ε, instance, {})
OPR(LoanItem, check_in, void, Public, classifier, {(barcode, String)})
REL(Library,MembershipCard,Relation, Issues,membercode, ε, ε)

REL(Library, subsection,Aggregation, ε, classmark, ε, ε)

REL(Customer,Book, ClassedRelation, borrows, ε, 0, 8)

INH(LoanItem,Book)

INH(LoanItem,LanguageTape)

6 Class diagrams validation

According to Sommerville [Som15], requirements validation is “the process of checking
that requirements define the system that the customer really wants”. Similarly, through
software validation “the software is checked to ensure that it is what the customer
requires”. There is an evident relation between requirements and software validation,
however, these definitions pay no attention to model validation, which we informally
define as “the process of checking that the models reflect the needs that the customer
has expressed in the requirements”. More formally, model validity in TOMM is defined
as follows.
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Figure 4 – Library Class Diagram

Definition 1 A model is valid if it is sound and complete.

V alid(µ) =⇒ Sound(µ) ∧ Complete(µ)

Where µ is any given model.

Definition 2 A model is sound if all of its elements are derived from the speci-
fications. It is formally expressed as:

Sound(µ) =⇒ ∀φ ∈M,∃ψ1, ψ2, ...ψn ∈ Sv | ψ1 ∧ ψ2 ∧ ...ψn |=R φ

In here φ is a predicate from the set M of predicates describing the model,
ψ1, ψ2, ...ψn are predicates from the set Sv of relevant predicates describing the
specification, and the symbol |=R indicates that the predicate φ is inferred from
the application of some rule R over the predicates ψ1, ψ2, ...ψn

In this way, soundness establishes the relation from the predicates of the model µ
to the predicates of the specification σ.

Definition 3 A model is complete if and only if all the elements of the specifi-
cation are related to an element in the model. Using the previous notation, we
formally describe completeness as follows:

Complete(µ) =⇒ ∀ψ ∈ Sv,∃φ1, φ2, ...φn ∈M | ψ |=R φ1 ∧ φ2 ∧ ...φn

Inversely to soundness, completeness establishes the relation from the predicates
of the specification σ to the predicates of the model µ.

Notice that in both definitions above, we refer to the set Sv of relevant predicates
from the specification. This is because, as stated in Section 4, not all predicates
generated from the parsing tree provide information that contributes to the verification
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process. For example, conditional sentences express constraints which are not part of
class diagrams, unless OCL is used. The relevant predicates in Sv are those used in
the inference rules presented next.

Definition 4 The subset Sv of relevant specification predicates for class diagram validity
is defined as:

Sv = {ACTOR,ACTIVITY,VBB,QUALIFIED_ENTITY,

STRUCTURAL_SENTENCE,TYPE_SENTENCE}

We have previously referred to the application of some inference rule |=R to indicate
that there is a relation between predicates in M and Sv, this relation is identified by
a series of validity axioms that permit to establish completeness and soundness.

The validity axioms about to be described, together with the set of predicates
representing a ConSpec specification and a class diagrams, constitute our validation
calculus. This calculus depends on the definition of semantic equivalences between
words, represented with the symbol ≈, to explicitly state that two words have the
same meaning in the context of the problem. For example, in banking system, the
words "customer" and "client" may both refer to the account holders; whereas in
marketing systems, the one may refer to the company hiring the system, and the
other one to visitors of marketing campaigns. In this way, disambiguation is handled,
and valid elements can be related even if their names vary from one representation to
another. This is formally defined as follows.

Definition 5 Semantic equivalence is the relation w1 ≈ w2, where w1 and w2

are words that have the same meaning in the context of the problem and solution
domains. This relation is:

• symmetric: w1 ≈ w1

• reflexive: if w1 ≈ w2 then w2 ≈ w1

• transitive: if w1 ≈ w2 and w2 ≈ w3 then w1 ≈ w3

The axioms to be defined allow to establish both properties mentioned above:
soundness and completeness. Each soundness axiom corresponds to one element of
the class diagram, and it has an inverse axiom to reason about the corresponding part
in the specification. Here the soundness axioms are shown together with their inverse
(completeness) axioms.

Class and Actor Axioms

The class axiom states that there is a relation between the class predicates in M and
the actor predicates in Sv.

∀γx ∈M∃αa ∈ Sv | a ≈ x
>

Where γx is any predicate of the form CLASS(x, ∗) in M and γy is any predicate
of the form ACTOR(a) and x ≈ a is the semantic equivalence between x and a. Note
that in this case, the value of the classifier type in the class predicate is indicated as
ignored using the symbol ∗, this is because it is assumed to reflect a design choice and
not an element of the problem domain, hence it is irrelevant for the axiom. The same
assumption and notation are applicable for the rest of the rules.

The inverse of the class axiom is the actor axiom, which using the same notation
is expressed as:
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∀αa ∈ Sv∃γx ∈M | x ≈ a
>

Operation and Activity Axioms

The operation axiom establishes that any operation in M is derived from an activity
in Sv

∀ωx ∈M∃δa ∈ Sv | a ≈ x
>

In this case, the formula ωx represents any predicate OPR(∗, x, ∗, ∗, ∗, ∗) in M ,
and δa represents predicates ACTIVITY(a, ∗) in Sv.

Inversely, the activity axiom is defined as:

∀δa ∈ Sv∃ωx ∈M | a ≈ x
>

Attribute and Structural Axioms

The attribute axiom establishes the relationship between structural sentences and class
attributes.

∀ρxy
∈M∃σab

∈ Sv | a ≈ x ∧ b ≈ y
>

In a structural sentence two distinctive elements are required: the entity and the
attribute of the entity. They are represented in the formula σab

. for the predicate
STRUCTURAL_SENTENCE(a, ∗, b). The attribute predicate ATR(x, y, ∗, ∗, ∗) is
captured in the ρ formulas with parameters x, y.

Its corresponding completeness axiom is defined in terms of actors as follows:

∀σab
∈ Sv∃ρxy

∈M | a ≈ x ∧ b ≈ y
>

Inheritance and Type Axioms

This axiom establishes the relationship between inheritance predicates and type
sentences.

∀ηxy
∈M∃τab

∈ Sv | a ≈ x ∧ b ≈ y
>

In this axiom the formula τ represents the TYPE_SENTENCE(b, *, a) predicate,
and the formula η represents the INH(x, y) predicate. Variables x and y in eta represent
a superclass and a subclass respectively, while b is a subtype and a is a type, as seen
in the substitution rules of Table 6.

The completeness axiom related to this is the linked to type sentences in the
following way:

∀τab
∈ Sv∃ηxy

∈M | a ≈ x ∧ b ≈ y
>

With these foundations, we establish some of the relations from the components
of a class diagram to the ConSpec specification. Axioms for predicates TYPE(t) and
REL(s, d, t, n, r,#l,#u) are not included in this first version of TOMM, but we will de
defined on a next version. By checking the current set of axioms against the predicates
of the model and the specification respectively, it is possible to check whether a class
diagram is complete, sound, and ultimately valid.
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7 Evaluation

7.1 Requirements Specification

In order to evaluate our specification format, a series of publicly available requirements
were collected and translated into ConSpec and SpeCNL. These requirements were
taken from the NLRP-Bench [TLK15] system, which contains specification documents
and class diagram available in publications, academic works and some shared by
institutions and companies. Requirements were sampled based on their category,
length and domain to cover most of the cases. The list of chosen requirements for the
evaluation is shown in Table 2.

Table 2 – Sample requirements

Requirements Category Length Domain
Ships Academic 49 words Transportation
Trains Academic 78 words Transportation
ATM Simulation Academic 750 words Banking
ACME Library Academic 16 pages Business
Library Publications 217 words Business
Steam-Boiler Publications 10 pages Hardware
Laws of Chess Publications 18 pages Gaming
Whois Protocol Real System 100 words Communication protocol
Light Control System Real System 13 pages Hardware

Each clause in a ConSpec document is associated with a unique activity; however,
the lack of activities in the original “Ships” requirements made it difficult to generate
any such clause. Hence, we had to introduce a neutral action in which we can list the
elements and structure of the original requirements. This neutral action allowed us
to generate a clause with activity “exist” and actors “Ships”, in which all the other
conditions could be expressed.

For brevity, we do not discuss the individual evaluation of all the requirements;
instead, we condense our findings here. Comparison sentences require to be extended
beyond single numeric values and adjectives, to support ranges, and variables. Con-
ditional sentences need to support more complex structures, and references to other
clauses. Type sentences can be simplified, including several sub-types in one single
statement. A neutral action should be added into ConSpec to collect generic structural
components. Clause conditions should support references to other classes, and an open
field should be included to add information that cannot be written into SpeCNL. Fi-
nally, we consider that further research on machine translation could help to automate
this process.

In spite of the need for some improvements (which will be addressed in the future
versions), SpeCNL and ConSpec have successfully demonstrated to be able to cope
with various requirements for academic, published and real-life systems for different
domains.

7.2 Validation Calculus

We evaluated the reliability of our validation calculus for class diagram analysing
common properties of formal systems, i.e. consistency completeness and soundness
[Coo78; Kar93; MA14]. In order to avoid confusion with model completeness and
soundness, we define these properties for our formal system as follows.
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Definition 6 A formal system is consistent if no contradictions are derived
from the application of the inference rules.

A contradiction occurs when a formula φ and its negation ¬φ are both present
within the axioms or the theorems of the system. Our formal system is composed by
the sets of predicates representing class diagrams and ConSpec specifications, and
the axioms to be checked. Negation of predicates cannot be derived by any means,
hence it is impossible for contradictions to be present in our system. Thus it can be
concluded that the system is consistent.

Definition 7 A formal system is sound if every formula that can be proved in
the system is valid with respect to the semantics of the system.

It is known that all formulas are predicates, and all the predicates correspond to
individual elements of a class diagram or a specification. If all the possible predicates
from the specification were to be considered, then the system would not be sound.
However, the introduction of the subset Sv in Section 6 allows to limit these predicates,
resulting in the following semantics.

Definition 8 Semantics for diagram and specification predicates
1. CLS predicates are valid only if they are inferred from an ACTOR predicate.
2. OPR predicates are valid only if they are inferred from an ACTIVITY

predicate.
3. ATR predicates are valid only if they are inferred from an

STRUCTURAL_SENTENCE predicate.
4. INH predicates are valid only if they are inferred from an

TYPE_SENTENCE predicate.

Because the semantics of the system and its actions are the same, we argue that
the system is sound.

Definition 9 A formal system is complete with respect to a given property if
every formula having that same property can be derived using that system.

In other words, the system is complete if all the valid formulas can be generated
from the axioms and the inference rules. Our system shows that all valid formulas,
representing elements from the specification or the class diagram, are generated from
the application of the validation axioms described in Section 6. And since no new
formulas can be generated, we argue that our validation calculus is complete.

So far, we have evaluated the reliability of our validation calculus based on its
formal properties, which allows us to establish a high degree of trust in the system
itself, regardless of its usage. We briefly discuss now the usage of our calculus in
the context of the library example. The formalisation of the class diagram shown in
Example 2 is checked against the formalisation of the ConSpec specification shown in
Example 1 using the axioms presented in section 6.

First we evaluate soundness of the model, i.e., we check that all elements in the
model are derived from the specification. We attempt to apply the class rule over
the predicate CLS(Loan Transaction), which requires a predicate ACTOR(Loan
Transaction) to be present in the specification. Because this predicate is not present
in the formalisation of the specification we conclude that the model is not sound.

We then evaluate model completeness. As an example we take the predicate
ACTOR(Customers) from the specification, which requires to have a predicate of the
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form CLS(x) in the specification, where x is a word equivalent to “Customers”. If we
assume that Customer ≈ Customers, then we can conclude that the actor rule holds
for this particular predicate. If we continue to evaluate all the relevant predicates
(Definition 4) in the specification, it results that, with the appropriate equivalences,
all predicates are also present in the model; hence, the model is complete.

We then conclude that the class diagram shown in Figure 4 is invalid with respect
to the requirements shown in Text 1, because there are elements in the model that do
not correspond to the specification.

In this section we evaluated the reliability of our validation calculus regarding its
formal properties. However, the evaluation of its application (usage) requires us to
formalise ConSpec requirements and class diagrams into their corresponding predicates.
Though it is, in principle, possible to do this formalisation manually (as shown in this
paper), the effort required to do it this way would quickly discourage the usage of our
framework; hence, we are currently working on the development of a tool to automate
formalisation and validation. A more comprehensive evaluation of the usage of our
framework will be presented in a future publication about our the development of our
tool.

8 Conclusion

In this paper, we introduced a framework for formal reasoning over models and
specifications which addresses a major limitation in model verification and validation.
The current work includes the formalisation of class diagrams and requirements
specifications to validate the relation between them using well-defined predicates and
a formal system. Requirements to be formalised must be written in a structured
document (ConSpec) using simplified English (SpeCNL), which have also been proposed
here.

We are currently extending TOMM to reflect the results presented in this pa-
per. These include additional formal systems to support model inference and model
comparison. Tool support is being developed to integrate automated formalisation
and reasoning using SMT solvers. Machine learning is being applied to automate
translation of requirements into specifications, and to identify semantic equivalences.
In addition, model equivalence is being extended to Generative Adversarial Networks
(GAN) in order to automate model generation.

A Predefined values for UML Class Diagrams

Table 3 – Class Diagram Predicates

Meta-field Possible values
Classifier types CU = {class, abstract, interface}
Visibility VU = {+,−,#, /,∼, ∗}
Scope SU = {classifier, instance, ε}
Primitive Types PU = {Integer,Boolean, String, Unlimited Natural, Real, ε}
Cardinality Symbols #U = N ∪ {m,n, ε, ∗,+, ?}

Relation Types Tr = {Association,Dependency,Aggregation,Composition,
Realization,Relation,Classed Association}
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B Grammar Rules for SpeCNL

Table 4 – Parts of Speech for SpeCNL

Tag Meaning Tag Meaning
NON any noun either singular or plural NOS a singular noun
NOP a plural noun VBB any verb in infinitive form
VB any verb in simple present conjugation VBP any verb in simple past form
VBI any verb in participle form ADJ an adjective
NUM any real number INT any integer number
DEC any decimal number DIG any digit
LAMBDA the empty string

Table 5 – Base Concepts for SpeCNL

Concept Substitution Rule
Modals MODAL → can | must

Comparators

COMPARATOR → INEQUALITY or EQUALITY |
INEQUALITY | EQUALITY |
COMPARATOR_SYMBOL

INEQUALITY → greater than | less than
EQUALITY → equal to
COMPARATOR_SYMBOL → > | < | = | >= | <=

Entities

ENTITY → PLURAL_ENTITY |
SINGULAR_ENTITY | QUALIFIED_ENTITY |
NON | ATTRIBUTE

SINGULAR_ENTITY → SINGULAR_INDICATOR
QUALIFIER NOS

PLURAL_ENTITY → PLURAL_INDICATOR
QUALIFIER NOP

QUALIFIED_ENTITY → QUALIFIER NON
SINGULAR_INDICATOR → a | an | one | 1 |the
PLURAL_INDICATOR → INT |the
QUALIFIER → ADJ | NN | VBI |

QUALIFIER-QUALIFIER | LAMBDA

Attributes ATTRIBUTE → ENTITY APOS NON |
NEUTRAL_INDICATOR NON of the NON

Actions ACTION → VB | MODAL VB

Table 6 – Sentences for SpeCNL

Sentence Structure

Structural : define the
properties of the objects
within the problem domain

STRUCTURAL_SENTENCE → NON
MODAL have STRUCTURAL_ITEM

STRUCTURAL_ITEM → ENTITY |
ENTITY, STRUCTURAL_ITEM |
ENTITY, and STRUCTURAL_ITEM

Comparison: used to
compare values of
attributes

COMPARISON_SENTENCE → ATTRIBUTE
CONSTRAINT COMPARATOR NUM |
ATTRIBUTE CONSTRAINT ADJ

CONSTRAINT → OBLIGATION | POSSIBILITY
OBLIGATION → must be
POSSIBILITY → can be

Cardinality: represent
limits on the size of
collections

CARDINALITY_SENTENCE →
ENTITY ACTION LIMIT NUM NON

LIMIT → up to | at least | maximum | minimum
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Table 6 – Sentences for SpeCNL

Sentence Structure

Conditional : identifies
the actions to follow
after specific cases

CONDITIONAL_SENTENCE →
if CASE then CONSEQUENCE

CASE → ENTITY
CONDITION_MODE CONDITIONAL |
CASE and CASE | CASE or CASE

CONDITION_MODE → is | is not
CONDITIONAL → COMPARATOR NUM |

VBP | ADJ | NN
CONSEQUENCE → VBB ENTITY

Type: hierarchical
classification of entities

TYPE_SENTENCE → SUBTYPE are TYPE
SUBTYPE → PLURAL_ENTITY
TYPE → PLURAL_ENTITY

C Grammar Rules for ConSpec

Table 7 – Structure of ConSpec document

Clause Element Structure

Clause Number : identifies each
requirement

CLAUSE_NUMBER → LETTER_C NUMBER
NUMBER → NUMBER DOT NUMBER |

NUMBER DIG | DIG

Activity: describes a task that
must be supported by the
system

ACTIVITY → VBB | VBB ENTITY |
TO VBB | TO VBB ENTITY

Actors: represent the entities
that can perform the current
activity

ACTOR → ENTITY

Conditions: constraints that
must be observed before,
during, and after the execution
of the corresponding activity

PRECONDITION → CONDITION
ACTIVITY_CONDITION → CONDITION
POSTCONDITION → CONDITION
CONDITION → STRUCTURAL_SENTENCE |

COMPARISON_SENTENCE |
CARDINALITY_SENTENCE |
CONDITIONAL_SENTENCE |
TYPE_SENTENCE |
CONSTRAINT_SENTENCE

Consequences: actions to be
taken in case of errors
resulting from the current task

CONSEQUENCE → VBB ENTITY |
TO VBB ENTITY

Dependencies: indicates a
relation between activities that
must occur before the current
one

DEPENDENCY → LETTER_C NUMBER
NUMBER → NUMBER DOT NUMBER |

NUMBER DIG | DIG
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