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Abstract Generative metaprogramming is a powerful mechanism for reuse
through code manipulation, adaptation and composition. Its practicing
is complex, involving development demands similar to any actual system.
In C++, metaprogramming is currently practiced with templates, requir-
ing a functional programming style that is in contrast to the imperative
object-oriented nature of the main language. Thus, metaprograms bear
little resemblance to normal programs, and involve different programming
approaches in their development, effectively disabling any possibility for
design or code reuse between them. In this paper, we propose MetaC++,
an extension layer supporting multi-stage generative metaprogramming
for C++, offering the full-range of language constructs for implementing
compile-time metaprograms and allowing them to share development prac-
tices with normal programs. We present its design and implementation,
and outline the importance of such an extension to C++ through a number
of advanced application scenarios.

Keywords Metaprogramming; Generative Programming; Compile-Time
Metaprogramming; Multi-Stage Languages; Language Implementation.

1 Introduction
Multi-stage generative metaprogramming concerns programs encompassing definitions
that when evaluated, either at compile-time or at runtime, generate source code that
is put in their place. Such definitions handle source code in the form of Abstract
Syntax Trees (ASTs). Metaprogramming can help achieve various benefits [She01],
including performance, partial evaluation, reasoning or validation of object programs,
embedding of domain specific languages, and code reuse.

C++ [Str13] in particular has a long history of adopting metaprogramming prac-
tices. First was the C Preprocessor [KR88] whose macros allow generating code
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through text-based substitutions. Then C++ templates were introduced, offering a
Turing Complete [Vel03] functional language interpreted at compile time [AG04, Vel96]
as part of the type system, enabling compile-time computations. Template metapro-
grams have become an essential part of modern C++ programs with well-established
libraries [AG04, Ale01] being widely adopted and new ones emerging [SP12, Dio] as
the language evolves. Finally, besides variadic templates, C++11 also introduced the
constexpr specifier, enabling functions or variables to be evaluated at compile time.

Motivation. Despite the aforementioned support, metaprogramming in C++ is
still an open issue. The C Preprocessor is inadequate for metaprogramming as it oper-
ates at a lexical level. Additionally, template metaprograms involve a fundamentally
different programming approach compared to the class-based imperative nature of the
normal language. Metaprogramming involves an inherent complexity, while normal
C++ programming is also complex on its own. Thus, requiring metaprogrammers to
also be proficient in an entirely different programming style that involves custom coding
patterns and idioms, places a significant extra burden on them. More importantly
though, from a software engineering perspective, the different programming style
disables any design or source code reuse for similar problems. For instance, consider
the Fibonacci sequence implementations shown on the top part of Figure 1. The
runtime version uses just a normal function while the compile-time version requires
template classes and recursive template specialization.

Also, any C++ library code, including STL, has to be reimplemented to be used in
the context of a template metaprogram. For STL in particular, boost::mpl [AG04]
containers, iterators and algorithms essentially replicate the functionality of their STL
counterparts, while again requiring a different programming style. For example, the
bottom part of Figure 1 shows the normal code for creating a vector with integers and
its compile-time equivalent that uses the boost::mpl::vector sequence, the boost
::mpl::push_back and boost::mpl::at_c metafunctions, the boost::mpl::int_
integral constant wrapper and type declarations for expressing the compile-time data.

Apart from the different programming style, non-trivial metaprograms also require
lengthier and convoluted code. For example, as we will see in section 4, the equivalent
of a for loop over a standard container requires an elaborate combination of variadic
templates, template template parameters and recursive template specializations. Over-

Figure 1 – Examples of C++ programs and equivalent template metaprograms
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all, template metaprogramming involves extremely complicated code patterns that
are difficult to write, test, debug and maintain even for experienced C++ developers.

Functions qualified as constexpr allow the development of metaprograms in a
fashion similar to normal programs, but the limitations on the programming ele-
ments allowed for compile-time computations disable adopting them for full-scale
metaprogramming. In any case, metaprogramming is supported by computing values
at compile-time and instantiating template code with concrete types and values, so
there is no notion of code as a first class value that would allow supporting code
generation, traversal, manipulation or introspection.

On the other hand, multi-stage languages [TS00, Tah04, She99] take the pro-
gramming task of code generation and support it as a first-class language feature
through the use of special syntax, promoting a metaprogramming paradigm where the
meta-language is a minimal superset of the host language.

Contribution. In our work, we adopt aspects of multi-stage programming and
propose MetaC++, a multi-stage extension of C++ that supports generative metapro-
gramming. Key aspect of our design is that apart from a common syntax, metaprograms
should also share common development practices with normal programs, fully reusing
C++ as the language for implementing metaprograms. For instance, since classes,
modules and libraries can be used in C++ programs, they should also be allowed in
metaprograms and indeed in the same manner. Overall, our main contributions are:

• Multi-stage metaprogramming under the complex context of C++

• Generative metaprogramming for C++ without complicated template patterns

• A metaprogramming model for C++ that treats metaprograms as full scale
programs developed with common practices, language features and tools

• An implementation1 on top of the Clang [cla] C++ front-end for LLVM

• An AST Library for generative template metaprogramming in standard C++

In particular, MetaC++ introduces the following features to C++:

• Multi-stage programming where stage code can fully reuse the full C++ language

• Code as first class value using ASTs and corresponding AST composition tags

• typename and template keyword extensions for disambiguating unknown iden-
tifiers

• Integration of staging with existing compile-time evaluation features of C++,
such as the preprocessor or templates

• Improved error reporting for C++ metaprograms

The rest of the paper is structured as follows. Section 2 provides background infor-
mation related to ASTs, quasi-quoting and multi-stage languages. Section 3 introduces
MetaC++, detailing its syntax and semantics, and discusses its integration with the
normal language. Section 4 presents a case study for generative metaprogramming
in standard C++ and compares it with our approach. Section 5 discusses selected
application scenarios highlighting the software engineering value of our meta-language,
while section 6 elaborates on implementation details. Finally, section 7 reviews related
work, and section 8 summarizes and draws key conclusions.

1Our implementation is available at https://github.com/meta-cpp/clang
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2 Background
2.1 ASTs and quasi-quotation
Metaprogramming involves generating, combining and transforming source code, so it
is essential to provide a convenient way for expressing and manipulating source code
fragments. Expressing source code directly as text is impractical for code traversal and
manipulation, while intermediate or even target code representations are too low-level
to be deployed. Currently, the standard method for representing and manipulating
code is based on ASTs, a notion originating from the s-expressions [Ste90] of Lisp.
Although ASTs provide an effective method for manipulating source code fragments,
manually creating them usually requires a large amount of expressions or statements,
making it hard to identify the actually represented source code [WC93]. Thus, ways to
directly convert source text to ASTs and easily compose ASTs into more comprehensive
source fragments were required. Both requirements have been addressed by existing
languages through quasi-quotation [Baw99]. Normal quotation skips any evaluation,
thus interpreting the original text as code. Quasi-quotation works on top of that, but
instead of specifying the exact code structure, it essentially provides a source code
template that can be filled with other code. To better illustrate this notion consider
the following Lisp macro that generates the multiplication of the argument X by itself.
(defmacro square (X) ’(* ,X ,X))
(square 5) ; expanded during macro expansion, yields 25

Definitions after the backquote operator ’ are not directly evaluated but are inter-
preted as a code fragment (i.e. an AST). The unquote operator , operates in reverse,
escaping the syntactic form and inserting its argument in the expression being created.
This way, the invocation (square 5) creates the expression (* 5 5) that yields 25.

2.2 Multi-Stage Languages
Multi-stage languages extend the multi-level language [GJ95] notion of dividing a
program into levels of evaluation by making them accessible to the programmer through
special syntax called staging annotations [TS00]. Such annotations are used to specify
the evaluation order of the various program computations. In this sense, a staged
program is a conventional program that has been extended with the proper staging
annotations. Here, we will use the term stage code or meta-code for code that is
somehow characterized to be evaluated in a distinct execution stage. Then, the term
stage program refers to the collection of stage code belonging to the same stage.

Staging was originally focused at runtime, where the main stage (i.e. the normal
program) determines the "next" stage code to be evaluated during its execution. For
example, consider the following MetaML code exhibiting the use of staging annotations.
val code = <5>;
val square = <~code * ~code>;
val result = run square; (* evaluated at runtime, yields 25 *)

Brackets <_> create delayed computations thus constructing code fragments (i.e.
ASTs). Then, escape ~_ allows combining smaller delayed computations to construct
larger ones by splicing its argument in the surrounding brackets (i.e. combines ASTs).
Thus, the second assignment of the above code creates the delayed computation <5*5>.
Finally, run evaluates the delayed computation in the current stage (i.e. performs
code generation for the given AST), which in our example evaluates to 25.
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Figure 2 – Process of compile-time staging in multi-stage languages (only 2 stages shown)

Staging can also be applied during compilation, where "previous" stage code is
evaluated at compile-time to change the main stage code. This notion is depicted in
Figure 2, while an example written in Template Haskell [SJ02] is provided below.

square :: Expr -> Expr
square x = [| $x * $x |]
result = $(square [|5|]) -- evaluated at compile-time, yields 25

Quasi-quote brackets [| _ |] again create ASTs, while the splice annotation $
plays a dual role; within quasi-quotes it combines ASTs, acting similar to escape, while
outside of them it evaluates the expression and splices the result in its place, acting
similar to run, but with its evaluation occurring during compilation.

3 Meta C++
MetaC++ is a multi-stage extension of C++ that adopts compile-time staging and
the integrated metaprogramming model [LS15]. We continue by briefly introducing
the programming model, outlining the staging syntax and semantics of our language
and discussing C++ specific extensions required for generative metaprogramming.

3.1 Programming Model
Most multi-stage systems offer only the notion of staged expressions that are evaluated
in isolation, separated from other code present in the same stage. There is neither the
notion of a collective stage program, nor language support in the form of statements
(e.g. assignments, control flow) or definitions (e.g. variables, functions, classes) to
realize such a notion. Pure functional languages such as Template Haskell are stateless
and can thus use definitions across stages, setting virtually no distinction between
runtime and compile-time environments for code evaluation. When state is involved,
there is a need for clearly separated stages, each with its own definitions and state.

In the integrated metaprogramming model, independent snippets of stage code
at the same nesting, involving any language construct (e.g. expressions, statements,
definitions), are concatenated following their order of appearance in the main source
and treated as a unified program, with a lexically-scoped control flow, shared program
state, and the scoping rules of the main language. The concatenated stage fragments
may contain multiple code generation directives, so an integrated metaprogram behaves
as having multiple input and output locations within its enclosing program. We use
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the term enclosing program and not main program, as for nesting levels above one the
resulting integrated metaprograms are hosted within other integrated metaprograms.

The integrated metaprogramming model compared to fragmented stage code reflects
a fundamental methodological shift concerning transformations. In particular, we treat
transformations as any other program function. Effectively, since stage fragments at
the same nesting are related by transforming the same enclosing program, it seems an
unreasonable decision to physically separate them into distinct programs or modules
as it serves no particular goal and only complicates the engineering of metaprograms.

The target is to enable software engineering of metaprograms in a way similar to
normal programs, adopting all normal language features and programming practices for
their implementation. In this sense, a stage program in MetaC++ may be structured
using functions, classes, modules and libraries, while performing operations like typical
file I/O, network connections and communication, loading of DLLs, etc.

The way integrated stage programs are assembled and generate code for their
enclosing program resembles HTML generating systems such as PHP, ASP and JSP.
For example, in JSP, scripting elements placed alongside HTML code constitute
meta-code to be inserted and executed in the JSP page’s servlet class. However,
such systems are heterogeneous (i.e. the metalanguage is different from the object
language), operate on source text at a lexical level and support only one level of code
generation, while MetaC++ is homogeneous (i.e. the metalanguage is the same as the
object language), operates on code in AST form and supports multi-stage generation.

Examples exhibiting the integrated metaprogramming model are presented after
first discussing the staging syntax and semantics, in section 3.4 and later in section 5.

3.2 AST Tags
Such tags allow converting source text into ASTs, involve no staging, and are translated
into calls that create ASTs by parsing source text or combining other ASTs together.

Quasi-quotes (written .<...>.) may be inserted around language elements, such
as class or function definitions, expressions, statements, etc., to convey their AST
form and are used to create ASTs from source text. For instance, .<1+2>. represents
the AST for the source text 1+2. Quasi-quotes can be nested at any depth (AST
representing other ASTs) to allow forms for multiple levels of staging. Identifiers
within quasi-quotes are resolved in the context where the respective AST is inserted,
while hygienic macros [KFFD86] are also supported through the notation $id that
introduces contextually unique identifiers. Quasi-quotes may also include preprocessor
directives to allow generating code containing #define, #include, etc. Such directives
are not expanded within the quasi-quotes, but are treated as AST values.

Escape (written .~(expr)) is used only within quasi-quotes to prevent converting
the source text of expr into an AST and evaluate it normally. Practically, escape is
used on expressions already carrying AST values which need to be combined into an
AST being constructed via quasi-quotes. For example, assuming x already carries the
AST value of .<1>., the expression .<.~x+2>. evaluates to .<1+2>.. We also support
the escaped expression to carry a numeric, boolean or string value, in which case,
the value is automatically converted to its corresponding AST value as if it were a
constant. For instance, if x is 1, then the expression .<.~x+2>. evaluates to .<1+2>..

Quasi-quotes (and any escapes they contain) are translated into calls that create
ASTs by parsing source text or combining other ASTs together. In particular, they are
translated to calls of the internal compiler function meta::quasiquotes. For example,
.<.~x+.~y>. is translated to meta::quasiquotes(".~x+.~y", 2, x, y).
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3.3 Staging Tags
Staging tags generally imply compile-time evaluation of the associated source code,
and are essential in supporting staging. Syntactically, they define the boundaries
between stage code fragments and introduce stage nesting.

Generate (written .!(expr)) is used for evaluating the stage expression expr
and inserting its value (that must be of an AST type) into the enclosing program by
replacing itself. It effectively performs in-place code generation, operating analogously
to JSP expressions tags (<%= expr %>). Generate tags are allowed within quasi-
quotes, but are just AST values that are not directly evaluated. This allows expressions
carrying an AST with a generate tag to be inserted into the enclosing program, meaning
generate tags may generate further generate tags, thus supporting meta-generators.

Execute (written .&stmt) defines a stage stmt representing any single statement,
local definition or block in the language. It operates analogously to JSP scriptlet tags
(<% stmts %>) that insert code into the service method of the JSP page’s servlet.
Any definitions introduced are visible only within stage code. Execute tags can also be
nested (e.g. .&.&stmt), with their nesting depth specifying the exact stage program
they will appear in. Additionally, execute tags can be quasi-quoted and be converted
to AST form, meaning their generation will introduce further staging.

Define (written .@defs) introduces stage defs, which syntactically represent any
global program unit in the language (e.g. function or class definitions, namespaces).
It operates analogously to JSP declaration tags (<%! decls %>) that introduce
declarations in the JSP page’s servlet class, but also allows introducing classes and
namespaces. Definitions introduced are visible only in stage code, while nested define
tags (e.g. .@.@def), like nested execute tags, specify the stage the defs will appear in.

Preprocessor directives may appear after execute or define tags (e.g. .@#include,
or .&#define) enabling file inclusion, macro definitions and conditional compilation
in stage code. Stage preprocessor directives are expanded in the stage program and
do not affect normal program code or interfere with normal preprocessor directives.

Below we show the typical staged power written in MetaC++. It is selected (and
a bit verbose) to illustrate the syntax and semantics of our language. Motivating
examples for generative metaprogramming using MetaC++ are presented in section 5.

.@AST* ExpandPower(unsigned n, AST* x) { //stage function definition
if (n == 0) return .<1>.;
else return .<.~x*.~(ExpandPower(n-1, x))>.;

}
.@AST* MakePower(unsigned n, AST* name){ //stage function definition

AST* expr=ExpandPower(n,.<x>.);//call function of same stage nesting
return .<int .~name (int x){ return .~expr; }>.; //apart from

} //expressions,statements,declarations and names can also be escaped
.&AST* power = MakePower(3, .<power3>.); //stage variable declaration
.!(power);//generation directive accessing the stage variable power
//code generation result: int power3(int x) { return x*x*x*1; }

The adoption of three staging tags instead of the typical single code generation
tag (e.g. MetaML run or Template Haskell splice) is essential to follow the integrated
metaprogramming model. In particular, the execute and define tags play the role of
stage statements and definitions and have nothing to do with code generation that
is only performed through generate tags. For example, the code .&f() is different
from .!(f()) as the former only invokes the stage program function f (possibly
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affecting global stage program data), while the latter invokes it and uses its result
(presumably an AST value) to perform code generation. We could achieve some execute
functionality using the generate form by performing the necessary action and returning
an empty AST to be inserted, but that would require introducing extra stage functions
to accommodate statements. More importantly though, without execute we would
not be able to introduce local definitions for stages, such as variables, lambdas, and
new local types (e.g. synonyms or classes). This is important as local stage program
definitions serve the same role as local definitions in normal programs. Additionally,
execute and define tags cannot be combined in a single overloaded tag that will operate
differently based on its argument. The reason is that C++ allows both local and
global definitions for various elements (e.g. variables, classes, types) so a single tag
could not unambiguously differentiate between the two options and forcing one option
over the other would limit expressiveness, as indicated by the code below.

.@AST* x = .<1>.; //global stage variable declaration

.&AST* x = .<2>.; //local stage variable declaration
int y = .!(.<.~(::x)+.~x>.); //accessing local&global stage variables
//code generation result: int y = 1 + 2;

The example may seem contrived but it is simply the staged equivalent of the
following C++ code that uses a global variable and a local variable that shadows it.

int x = 1;
void f() { int x = 2; int y = ::x + x; } //y = 1 + 2

Moreover, generate tags and escape tags operate in a similar way, both taking
AST values as arguments and inserting them at the context of use; for generate tags
the context of use is the enclosing program, thus performing code generation, while
for escape tags it is the enclosing quasi-quote, thus performing AST combination. If
generate tags were not allowed within quasi-quotes, the two tags could be combined in
an overloaded tag that would operate as an escape tag within quasi-quotes and as a
generate tag outside of them. However, disallowing generate tags within quasi-quotes
means offering no support for meta-generators, and thus limits expressiveness. We
consider the extra syntax to be minimal and well-worth the added expressiveness of
meta-generators, so we keep both tags with their originally discussed semantics.

3.4 Staging Loop
The staging loop takes place after the original source code has been parsed into an AST
and is responsible to evaluate meta-code and produce a modified AST that consists
of pure C++ code and can be normally compiled. Each stage program consists of
code at the same stage nesting with their order of appearance in the main source,
while the evaluation order of stages is inside-out, i.e. from most to least nested. Thus,
the staging loop is repeated until no further stages exist and involves three steps: (i)
determining the maximum stage nesting level; (ii) assembling the stage program for
this nesting level; and (iii) building and executing the assembled stage program.

The maximum stage nesting is initially computed by traversing the AST and
counting the encountered staging tags. This computation should be repeated at the
beginning of every stage evaluation since the maximum stage nesting may be increased
if the evaluation of the last stage has generated further meta-code. Then, we perform a
depth-first traversal to collect the AST nodes representing code located under staging
tags at the maximum nesting. For example, in the original source of Figure 3, only
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Figure 3 – Staging loop example with two stages showing stage assembly and evaluation

nodes under staging tags of nesting 2 (top left, highlighted) are considered for stage
assembly. These nodes are then used to generate the stage program code. Nodes from
execute and define tags are used as they are while pruning their staging tag node from
the main program AST, i.e. they are consumed by the stage they target and are not
available in any other stage (even stages introduced by meta-generators). For nodes
originating from generate tags, apart from the associated expr, we also need a special
invocation that will internally handle the required AST modification, replacing the
generate node with the result of its evaluation. For this purpose we deploy a library
function offered by our meta-compiler (meta::codegen) that is linked only in stage
programs. For example, the .!(x) expression of the original source of Figure 3 leads
to the meta::codegen(x) invocation in the stage program of nesting 2 (top right)
that in turn generates the AST* g(...){...} function for stage 1 (middle left).

The collected AST nodes are then assembled to form the stage program (Figure 3,
stage assembly arrows numbered 1 and 3). Code from define tags represents global
definitions and declarations so it is placed in global scope, while code from execute
and generate tags essentially constitutes the executable part of the stage program so
it is placed within the body of a generated main function (the main function of the
stage program that is unrelated with the main function of the normal program). In
both cases, the assembled code fragments preserve their relative order of appearance
in the original source text so as to follow standard C++ scoping rules.

Selecting the stage code of the maximum nesting level at each iteration, yields
an assembled stage program that contains no meta-code. Additionally, both quasi-
quoting and code generation functionality is handled through internal meta-compiler
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library functions, ensuring that metaprograms are syntactically just standard C++
programs that use the meta-compiler as part of their execution environment. Finally,
the executable part of the stage code is placed within a main function just to make
the stage program a normal executable C++ program. Examples of stage programs,
assembled by the MetaC++ compiler, are shown in the right part of Figure 3. Overall,
stage programs can be compiled using the original language compiler and executed
using the original language runtime environment.

When a stage program is executed (Figure 3, stage evaluation arrows numbered 2
and 4), it affects the original program through the meta::codegen calls, transforming
its AST into a modified version, called intermediate program, that is used for the next
staging loop iteration. Eventually, when an intermediate program contains no more
stage code it constitutes the final program (Figure 3, bottom left) that is the result of
the staging loop and is then compiled using the original language compiler.

3.5 Extended Syntax Disambiguation
In the context of generative metaprogramming, it is common to encounter unknown
identifiers without resulting to invalid code. For example, quasi-quoted code that
will be inserted at some source location will typically involve identifiers (e.g. types
or variables) that are visible at that source location. However, the quasi-quotes
themselves may syntactically reside in an entirely unrelated declaration context or
scope, causing the used identifiers to be unknown within quasi-quotes. The same
applies for normal program code that refers to identifiers generated by meta-code.
Conceptually, identifiers introduced by a generate tag should be visible to subsequent
code as if they were part of the original source; however, syntactically they do not
exist prior to stage execution, resulting in unknown identifiers.

For C++, the latter poses a significant challenge as its context-sensitive grammar
does not allow unambiguously parsing code with unknown identifiers. In particular,
there may be different ways to parse a code segment based on whether an unknown
identifier names a variable, a type or a template, as shown in the following example.

X * x;
A < B > c;

In the first line, if X refers to a type, then the statement declares a variable named
x with type pointer to X, otherwise it is a multiplication between variables X and x.
In the second line, if A is a class template then the statement declares a variable c of
type A<B>, while if all identifiers are variables we have a weird yet valid expression
that tests if A is less than B and then if the result is greater than c.

Standard C++ has a similar issue with dependent names [Cpp] within templates,
where types and expressions may depend on template parameters types. We revisit
the above example for code present within a template that has a type parameter T.

T::X * x;
T::A < T::B > c;

Since T is a template parameter, we do not know if T::X, T::A and T::B name
variables, types or templates, again resulting in ambiguous parsing. C++ solves this
problem by allowing the programmer to explicitly disambiguate the intended use
through the typename and template keywords. As shown below, using typename
treats the qualified identifier as a type, using template treats it as a template, while
using no additional keyword treats it as a variable.
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typename T::X * x; //X and B are types
T::template A<typename T::B> c; //A is a template

In our work, we extend the use of the typename and template keywords to be valid
even for unqualified identifiers, semantically referring to type and template definitions
that will be available after the staging process (e.g. they may be generated by meta-
code). An unknown identifier is considered to be a type if prefixed by typename, a
template, if prefixed by template, or a variable otherwise. In this sense, our original
example contains a multiplication and a series of comparison operations. If we wanted
the code to express variable declarations, we would instead write:

typename X * x; //X is a type
::template A<typename B> c; //A is a template and B is a type

Apart from referring to unknown identifiers, this syntax is actually valid standard
C++; since C++11 both keywords can be used outside of templates, while since C++17
the template disambiguator is allowed if the left part of the scope resolution operator
refers to a namespace [Cpp], which in the last example is the global namespace.

Another extension for the typename keyword is that we allow it to appear in the
context of a constructor initializer list to disambiguate between member initializers
and base class initializers. In standard C++, a dependent name appearing within a
constructor initializer list may only refer to a base class, so it is implicitly a type and
there is no need for disambiguation. However, in the context of metaprogramming, an
unknown identifier within a constructor initializer list may refer either to an unknown
base class or an unknown class member. Using the typename keyword the identifier is
treated as a type, denoting a base class initializer, otherwise the identifier is treated as
a variable, denoting a member initializer. For instance, the following AST represents
a constructor definition of class (or struct) X that has a base class A and a member b.

.<typename X() : typename A(), b() {}>.

3.6 Integrating with Compile-Time Evaluation Features of C++
It is important for the staging infrastructure to integrate well with other compile-time
evaluation features of C++, as they also support metaprogramming. In particular,
we consider the integration of our staging infrastructure with the preprocessor, the
template system, the constexpr specifier and the static_assert declarations.

3.6.1 Preprocessor
As previously discussed, the staging process takes place after parsing the original
source code. This would imply that any preprocessor directives encountered in the
source text have already been taken into account and expanded accordingly. However,
invoking the preprocessor for the entire source file without taking the staging process
into consideration may be problematic. For instance, we cannot include a header file
(e.g. a standard library header) in both normal and stage code as the second inclusion
would be skipped due to the conditional compilation guards (#ifndef - #define -
#endif) of the header file. Instead, a staging-aware preprocessing step is required in
which every source code fragment is aware of its stage nesting and takes into account
only directives declared for that particular stage nesting. This means that a stage
program may freely use preprocessor directives without interfering with other stages
or the main program, perfectly aligning with the intent to support stages with all
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normal programming features of the language. Overall, the result of staging-aware
preprocessing encompasses the changes introduced by preprocessor directives (i.e.
included files, conditional compilation and macro expansions) for all stages, contains
no further preprocessor directives, and is the source code given as input to the parser.

Integrating the staging infrastructure with the preprocessor also requires supporting
meta-code in header files. A typical scenario is generating a class definition that needs
to be included in several source files. When such a header file is included in a source
file, any stage definitions it contains will become part of the source file code and thus
be taken into account in the staging process. Naturally, we expect any code generated
this way to remain the same across different inclusions of the header file, ensuring
that source files using it end up with a consistent view. Including a header file that
contains meta-code is even possible from within a stage directive; the staging tag
associated with the include directive is applied on all definitions included from the
header file, increasing their stage nesting by 1, thus maintaining their evaluation order
in the staging process. This is shown in Figure 4 where the original program includes

Figure 4 – Stage assembly and evaluation example involving stage preprocessor directives
and headers with meta-code; generation directives and their outcomes are highlighted
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the header file Generator.h within stage code and uses the Generator class for code
generation. Code within Generator.h also uses staging to turn the Generator class into
a singleton using the stage function MakeSingleton. Thus, the preprocessed program
has a maximum stage nesting of 2 and involves two stages before it takes its final form.

3.6.2 Templates
The staging process takes places before template instantiation, so any template
definitions are present in the program AST and can be considered for use in stage code.
Stage template definitions will become part of some stage program, and they will be
instantiated as a normal part of that stage program’s translation, without requiring any
further action by the staging system. Additionally, template definitions or arguments
for template instantiation may be generated by a metaprogram. Such generated code
becomes part of the main program AST and any corresponding instantiations are
handled later as part of the normal final program compilation.

As part of integrating staging with the template system, we also consider variadic
templates and parameter packs in particular. Staging tags within a template definition
are always at a different stage nesting and therefore cannot interact with parameter
packs. On the other hand, AST tags do not involve staging and may interact with
parameter packs of a variadic template, as shown by the code below.

template<typename... T> void a (T... t) {
f(.<1 + .~t>. ...); //quasi-quote pattern
g(.<.~(h(t))...>.); //escape pattern

}

During translation, the call a(.<2>., .<3>.) will instantiate the template, expand-
ing the parameter packs as if the code was originally written as f(.<1+2>., .<1+3>.)
and g(.<.~(h(.<2>.)), .~(h(.<3>.))>.). Supporting this functionality requires
some extra handling due to quasi-quotes and escapes being translated to internal
compiler function calls that parse source text. This source text should be available
when performing the stage assembly, however, the parameter pack expansion occurs
later, during template instantiation. To resolve this issue, we deploy another internal
compiler function, called meta::escape_pack, responsible for retrieving the size of the
pack, and the pack itself during its execution, in order to generate the associated source
text based on the given pattern and finally parse that text to AST. The name of the
parameter pack is available during stage assembly, so it is possible to generate code for
both retrieving the size of the pack through the sizeof... operator and expanding the
pack in the context of the meta::escape_pack call. For instance, in the above example
the quasi-quoted code .<.~(h(t))...>. is translated to meta::quasiquotes(".~(
h(t))...", 1, meta::escape_pack("(h(t))", sizeof...(t), t...)). For the
example invocation, the inner call to meta::escape_pack becomes meta::escape
_pack("(h(t))", 2, .<2>., .<3>.) that will internally call meta::quasiquotes
(".~(h(t)), .~(h(t))", 2, .<2>., .<3>.) to generate the desired AST.

3.6.3 constexpr and static_assert
The constexpr specifier declares functions or variables that can be evaluated at compile
time and thus be used in a context requiring a compile-time constant expression. Due
to the adoption of the integrated metaprogramming model, constexpr is orthogonal
to the staging infrastructure. A constexpr specifier located within meta-code will
simply become part of some stage program and will enable its compile-time evaluation
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during the compilation of that stage program. Similarly, any constexpr specifiers
located within normal code or introduced through code generation will be part of the
final program and will be available for compile-time evaluation during its compilation.

static_assert declarations can be used for compile-time assertion checking. For
meta-code using static_assert declarations checking occurs normally during the
compilation of the stage, while for generated static_assert declarations it occurs
during the compilation of the transformed main program. static_assert declarations
within templates are always checked upon instantiation. For any other static_assert
declarations, i.e. found in non-stage and non-dependent contexts, checking occurs
during parsing of the original program if the associated expression involves no staging
or unknown identifiers, otherwise it is deferred for the compilation of the final program.

3.7 Compile Error Reporting for Metaprograms and Generated Programs
A source of criticism related to templates involves their cryptic error messages that
may require digging across several levels of instantiations to locate the error cause.

MetaC++ offers improved compile-error reporting for metaprograms by adopting
the techniques discussed in [LS13]. In particular, the AST of every stage program
along with the updated version of the main AST it produces are unparsed to generate
source code files that are stored as additional output files of the compilation, effectively
providing a glass-box view of the staging process. Then, to provide a precise error
report, the compiler maintains for AST nodes information about their origin and uses
it to track down the error across all involved stages and outputs, creating a chain of
source reference information that supplements the normal compilation error message.
The message itself is unchanged as it constitutes an error of normal C++ code (either
stage program or the final program) and is not related to the staging process. The
additional error chain across all stages and outputs provides the missing information
context of the staging process required to fully understand the error report.

3.8 Discussion
A critical decision in the design of MetaC++ involved the tradeoff between type
safety and expressiveness. In traditional multi-stage languages like MetaML, code
generation occurs at runtime, at which point it is too late to report type errors, so such
languages sacrifice some expressiveness and perform static type-checking to guarantee
well-formedness of all generated code. A similar approach would also be beneficial in
a compile-time context, enabling to type-check metaprograms independently of their
usages. However, the complexity of C++ would make such an approach impossible or
impractical to adopt even for expressions, let alone statements and declarations, without
greatly limiting expressiveness. Also, since code is generated during compilation, any
type errors will be caught during type-checking of the assembled stage programs or the
final program and be reported as compile errors. Thus, we focused on expressiveness
and chose to allow generating any language construct at the cost of dropping strong
type-safety guaranties. Essentially, we followed the same path C++ takes with its
templates that are type-checked late, at instantiation time.

With type-safety not being critical, we further chose to simplify AST usage by
adopting a uniform AST type instead of having an AST type hierarchy that reflects
and enforces AST usage based on the source location (e.g. ExprAST, StmtAST,
TopLevelDeclarationAST, LocalDeclarationAST, ClassMemberDeclarationAST, etc.).
This enables quasi-quotes to be less verbose, avoiding any extra syntax that would be
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required to disambiguate between different uses of a specific code form. For example,
consider referring to a variable declaration such as int x; that may appear in global
context, local context or within a class body. If we used multiple AST types we would
require extra syntax to distinguish between the possible cases, e.g. have the following
quasi-quotes to match each case: .<globalDecl:int x;>., .<localDecl:int x;>.,
.<classMember:int x;>., each producing a different AST type (TopLevelDeclara-
tionAST, LocalDeclarationAST and ClassMemberDeclarationAST respectively). With
the uniform AST type approach, we have a single quoted declaration .<int x;>.
that accommodates all possible declaration contexts. Additionally, enforcing typed
AST usage based on the source location would limit expressiveness as some entities
can only appear in specific contexts. For example, a DeclarationAST node could
involve a function declaration that would be invalid to be used within a block. Instead,
the unified AST allows generic code forms that can be deployed in multiple source
locations. On the other hand, a single AST type further reduces type-safety as we
cannot statically determine if a used AST will generate invalid code, e.g. using a
quoted declaration at an expression context. Nevertheless, type information about
an AST value is available during metaprogram execution, so the metaprogram logic
may consider it to avoid generating ill-formed code. Also, even if erroneous code is
generated, as discussed, any errors will still be caught at compile-time when parsing
and type-checking the generated code, and eventually be reported as compile errors.

Another design decision relates to macro hygiene. Most metalanguages offer
hygienic behavior by default, while enabling explicit name capture through special
syntax. We have purposefully chosen an inverse activation policy since we consider it
to be a better fit in the context of generative metaprogramming. In particular, many
metaprogram scenarios involve generating complete named element definitions such
as classes, functions, methods, constants, namespaces and generics as well as code
that uses existing definitions (e.g. code that uses an STL algorithm or container). In
all these cases, the supplied name has to be directly used for deployment, thus name
capture is the only way. Also, when generating non-template code fragments that
may be further combined, any name clashes or inadvertent variable captures can be
easily avoided in the respective generator by enclosing any statements in blocks and
declaring generated variable properly so as to shadow any prior declarations. The only
scenario where undesirable name capture may occur involves template code fragments
that will be filled-in with other code fragments, where the inserted code fragments
may undesirably capture names in the template itself. This is the only case where the
template generator should force hygiene for template variables. Overall, we considered
that for most scenarios name capture would suffice, so we made the common case less
verbose, while also offering extra syntax to enforce hygiene where necessary.

4 Examining Generative Metaprogramming in Standard C++
In C++, the only form of compile-time computation and composition that can
be exercised to allow generative metaprogramming is through templates. In this
context, before exploring the chances for a multi-stage language extension, we aimed
to support generative metaprogramming directly in C++ by practicing compile-time
code manipulation through template metaprogramming.

Effectively, we had to enable the writing of compile-time evaluated code that could
somehow produce code that is executed as part of the normal runtime control flow.
Now, the resulting source code cannot be composed in the form of typical source text
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since templates offer no capability to apply in-place source text insertion.
Moreover, we had to enable the typical manipulation of source fragments through

ASTs; however, template metaprograms do not offer a built-in notion of code expressed
in AST form. Thus we explicitly introduced this notion by developing an AST template
metaprogramming library. It is critical to emphasize that a compile-time library is
necessary to guarantee that no runtime overhead is introduced, the latter being a
fundamental property of compile-time metaprograms.

Because such ASTs should be created and manipulated during compilation, they
must be modelled as types that incorporate any required data as nested types or const
definitions. Additionally, they require other ASTs, i.e. other types, as construction
parameters, meaning they must be implemented as templates. Finally, to provide
an analogy of the in-place code insertion for composed ASTs we introduced an eval
function whose code is recursively composed at compile-time via template instantiation,
while at runtime evaluates precisely the respective composed AST. The following code
outlines some indicative AST node classes (i.e. template declarations) and illustrates
how the AST template metaprogramming library can create AST node instances (i.e.
template instantiations) and use them for code composition.

//AST nodes for a constant integer, if statement and add expression
template<int val> struct const_int

{ static int eval(...) { return val; } };
template<typename Cond, typename Stmt> struct if_stmt {

template<typename... Args> static void eval(Args... args)
{ if (Cond::eval(args...)) Stmt::eval(args...); }

};
template<typename Left, typename Right> struct add_expr {

template<typename... Args> static decltype(auto) eval(Args... args)
{ return Left::eval(args...) + Right::eval(args...); }

};
//Code below represents the (contrived) AST if (1) 2 + 3;
using Code=if_stmt<const_int<1>,add_expr<const_int<2>,const_int<3>>>;
void test(){ Code::eval(); } //compile-time code generation of eval

Supporting such AST functionality is a challenging endeavor even for a limited set of
the language constructs (in our library implementation2 we focused on a C with Classes
subset), but once implemented, its adoption for creating AST values is just a matter
of instantiating template classes with appropriate arguments. Using the metaparse
[SP12] library, we could further automate the appropriate AST instantiations based
on compile-time strings providing a more natural syntax. For instance, the AST of
the previous example could be written as ast<_S("if(1)2+3;")>::type.

With the AST library available, and template metaprograms being able to express
any AST computation (they are Turing-Complete [4]), it is computationally possible
to express any generative metaprogram. This, however, has little software engineering
value, as the most important criterion is not the feasibility of the approach but the
implementation complexity it involves. In this context, it became clear that hiding
the advanced template metaprogramming techniques used to implement ASTs within
library code was not sufficient, as similar techniques would be required by the client
programmer to implement custom AST transformations. This is illustrated below
with the supposedly simple example of merging statement ASTs into a block.

2Our AST metaprogramming library is available at https://github.com/meta-cpp/meta-ast
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#include <meta_ast.hpp> //defs below are part of the library header
template<typename... Stmts> struct block {/*...*/};
template<typename F, typename...Args> struct call {/*...*/};
template<typename T, T Func> struct cfunc {/*...*/};
#define CFUNC(f) cfunc<add_pointer_t<decltype(f)>, f>
template <char... chars> struct String {/*...*/};
//client code begins here
template<typename... Ts> struct TypeVec { //compile-time vector
using impl = std::tuple<Ts...>;
template<int N> using at=typename std::tuple_element<N-1,impl>::type;
static const int size = sizeof...(Ts);

};
template<template<typename...> class Seq, typename Stmts>
struct MergeStmts { //meta-function implementation
//struct AppendToSeq used for appending to a compile-time sequence
template<typename Old, typename New> struct AppendToSeq;
template<template<typename...>class Seq,typename New,typename... Old>
struct AppendToSeq<Seq<Old...>, New> { using type=Seq<Old...,New>; };
//struct loop used for iterating over a sequence at compile-time
template<template<typename...>class Seq, int N> struct loop {

using type = typename AppendToSeq<typename loop<Seq, N - 1>::type,
typename Stmts::template at<N> >::type;

};
template<template<typename...> class Seq>
struct loop<Seq, 0> { using type = Seq<>; };
using type = typename loop<Seq, Stmts::size>::type; //for invocation

};
using Code = MergeStmts<block, TypeVec< //meta-function invocation
call<CFUNC(printf), String<’F’, ’o’, ’o’, ’ ’>>,
call<CFUNC(printf), String<’b’, ’a’, ’r’>>

>>::type; //Code represents: { printf("Foo "); printf("bar"); }
void test() { Code::eval(); }

Even such a simple task requires variadic templates, template template parameters
and recursive template specializations to be used in client code. Conversely, the same
example is straightforward in MetaC++, using just a loop over a standard container.

.@#include <vector> //include the std vector header in meta-code

.@AST* MergeStmts(const std::vector<AST*>& stmts) {
AST* result=nullptr; //AST for resulting statements, initially empty
for (AST* stmt : stmts) //iterate over all statements

result = .<.~result; .~stmt;>.; //merge statements in a list
return .<{.~result;}>.;//create block with the merged statement list

}
void test(){.!(MergeStmts({.<printf("Foo ");>.,.<printf("bar");>.}));}
//code generation result: void test(){{printf("Foo ");printf("bar");}}

Comparing the two approaches exemplifies our original statement about template
metaprograms bearing little resemblance to normal programs, involving different
programming approaches and disabling reuse. It also justifies our decision to abandon
attempts for a pure C++ approach and focus on a multi-stage language extension.
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5 Detailed Case Studies
We present various application scenarios highlighting the importance of extending
C++ with generative metaprogramming features. In particular, we discuss adopting
compile-time reflection to generate desired code structures, enriching client code
with exception handling based on custom exception policies, and generating concrete
design pattern implementations. These scenarios are very important as achieving
similar functionality in standard C++, if all possible, would involve a combination of
preprocessor and template metaprogramming tricks, resulting in code that is difficult
to write, understand and maintain. Some scenarios involve directly invoking meta-
functions for code generation, while others rely on the integrated metaprogramming
model and utilize basic object-oriented features like encapsulation, abstraction and
separation of concerns. Scenarios in the second category have been earlier introduced in
[LS15] as key benchmarks to assess the expressive power of metaprogramming systems,
emphasizing the importance of engineering stage programs like normal programs. We
briefly revisit these scenarios and elaborate on their implementation in MetaC++.

Notice that the presented scenarios mostly focus on code generation involving
a single stage. Since in the integrated metaprogramming model metaprograms are
essentially normal programs, code generation naturally generalizes to multiple stages
if the stage code is itself subject to code generation. A representative example falling
in this category was already presented in Figure 4 with a stage generator class that
was turned into a singleton through further metaprogramming.

5.1 Compile-Time Reflection
Compile-time reflection is a significant feature considered for an upcoming C++
standard. The reflection study group of the C++ standards committee has issued a
call for compile-time reflection proposals [SC13] identifying four broad areas where
reflection would be useful in C++ and choosing a representative use-case for each
area. We show how these use-cases can be implemented in MetaC++. In the code,
functions within the meta namespace are offered by the meta-compiler to export its
internal data structures (e.g. meta::getClassDecl) and support creating ASTs from
strings (e.g. meta::id("x") creates the AST .<x>.).

5.1.1 Generating Equality Operators
Equality operators typically perform member-wise equality checks between two objects.
We use the context-aware meta::getDeclContext function to retrieve the compiler
data structure for the current class definition. This can then be used to iterate over
the class members and generate the desired equality checks, as show in the code below.
Notice that variable expr, initially holding the AST of constant boolean expression
true, at each iteration combines its previous value with the check for the current
member, effectively accumulating equality checks for all members.

.@AST* genEqualityOp(const ClassDecl& Class) {
AST* expr=.<true>.;//empty check to be combined with the && operator
for (auto& field : Class.fields()) { //iterate over all class fields
AST* id = meta::id(field.getName());
expr = .<.~expr && .~id==rhs..~id>.; //merge with current == check

}
AST* classId = meta::id(Class.getName());
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return .< bool operator==(const typename .~classId& rhs) const
{ return .~expr; } >.;

}
class Point {

int x, y;
.!(genEqualityOp(*meta::getDeclContext())); //generates the code:
// bool operator==(const Point& rhs) const
// { return true && x==rhs.x && y==rhs.y; }

}

5.1.2 Struct-of-Arrays Vector
Having a collection of ordered instances of a structure can be represented either as
an array of structs or as a struct of arrays. The latter data layout is preferable in
some applications for performance reasons. Using compile-time reflection, we can
generate a struct of arrays structure for a given struct, potentially adding extra
functionality to offer an array like interface. As shown in the following code, we use
meta::getClassDecl to obtain the compiler data structure for the target struct and
then iterate over its members to generate the desired code pattern.

.@AST* genSOAVector(const ClassDecl& Class, AST* name) {
AST* members = nullptr; //AST for generated struct, initially empty
AST* initList = nullptr;//AST for the initializer list in operator[]
for (auto& field : Class.fields()) { //iterate over all class fields
AST* type = meta::type(field.getType());
AST* id = meta::id(field.getName() + "s");
AST* member = .< std::template vector<.~type> .~id; >.;
members=.<.~members;.~member;>.; //merge members with current
initList=.<.~initList,.~id[i]>.; //accumulate the initializater list

}
AST* id = meta::id(Class.getName());
AST* indexOperator = //AST with the operator[] implementation
.<typename .~id operator[](size_t i) const {return {.~initList};}>.;

return .< struct .~name {.~members; .~indexOperator; }; >.;
}
struct S { int a, b; };
.!(genSOAVector(*meta::getClassDecl("S"), .<typename SoA_S_vector>.));
// struct SoA_S_vector {
// std::vector<int> as; std::vector<int> bs;
// S operator[](size_t i) const { return { as[i], bs[i] }; }
// };

5.1.3 Replacing Assert
Providing access to compile-time context information (e.g. file name and line number)
without using preprocessor macros is possible (but more syntactically verbose) if we
wrap the code with quasi-quotes and a generation tag. This is shown in the following
code where the meta-function generate_assert will extract the compile-time context
information of its AST argument to generate a function call that incorporates all
necessary runtime information. The generated function call will typically refer to a
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library implementation (e.g. a standard library assertion function), or it could refer
to a custom user-defined assert function, that is passed as an argument to genAssert.
.@AST* genAssert(AST* expr, AST* assertFunc = .<std::assertion>.){
if(!expr||!expr->isa<Expr>) //raise error for non-expression ASTs

{ meta::error("expected expression AST"); return nullptr; }
else //generate the assert call with compile-time context information

return .<.~assertFunc(.~expr, .~(to_string(expr)),
.~(expr->getFile()), .~(expr->getLine()))>.;

}
namespace std {//normal function assumed to be part of the std library

void assertion(bool expr, string str, string file, unsigned line) {
if (!expr) { cerr << "Assertion failed: " << str << ", file " <<

file << ", line " << line << endl;
abort();

}
}

}
.!(genAssert(.<sizeof(int)==4>.));//instead of assert(sizeof(int)==4);
// std::assertion(sizeof(int)==4,"sizeof(int)==4","examples.cpp",80);

5.1.4 Enumerating Enums
Having access to the compiler data structures for a target enum through the meta::
getEnumDecl function, it is straightforward to implement features like enum-to-string
conversions, string-to-enum conversions or checked int-to-enum conversion without
involving intrusive changes to the enum declaration or requiring duplicating information.
For example, the following code shows how to generate an enum-to-string function.
.@AST* generateEnumToString(const EnumDecl& Enum, AST* name) {

AST* cases = nullptr; //AST for case entries, initially empty
for (auto& field : Enum.fields()) { //iterate over all enum fields

AST* id = meta::id(field.getName());
cases = .<.~cases; case .~id: return .~(field.getName());>.;

} //create a case for each field and merge with previous cases
AST* enumId = meta::id(Enum.getName());
return .< std::string .~name (typename .~enumId v)

{ switch(v) { .~cases; default: return ""; } } >.;
}
enum Difficulty { Easy, Hard };
.!(generateEnumToString(*meta::getEnumDecl("Difficulty"),.<to_str>.));
// std::string to_str(Difficulty v) {
// switch(v) { case Easy: return "Easy";
// case Hard: return "Hard";
// default: return ""; }
// }

5.2 Exception Handling
As discussed in [LS12], compile-time metaprogramming can be used to implement
exception handling patterns. This is achieved by adopting meta-functions capable of
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generating the appropriate exception handling layout, and invoking them at compile-
time with the desirable parameters to generate a concrete instantiation of the exception
handling pattern. With our language, it is further possible to maintain a collection
of the available exception handling patterns and select the appropriate one based on
configuration parameters or the metaprogram control flow, while requiring no changes
at the call sites within client code. This is illustrated in the following example.

.@using ExceptionPolicy = std::function<AST*(AST*)>;//policy prototype

.@AST* Logging(AST* code) //a logging policy: just log any exceptions
{ return .< try {.~code;} catch(std::exception& e) {log(e);} >.; }

.@struct RetryData { //data for a retry meta-function policy:
unsigned attempts; //retry a number of times
unsigned delay; //wait for a given delay time between attempts
AST* failureCode; //execute arbitrary code if all attempts fail

};
.@ExceptionPolicy CreateRetry(const RetryData& data) { //retry creator
return [data](AST* code){ //return a lambda implementing the pattern
return .< //the lambda returns an AST with the following code
unsigned i;
for (i = 0; i < .~(data.attempts); ++i)
try { .~code; break; } //execute the code and break on success
catch(...){ Sleep(.~(data.delay)); }//catch exceptions, wait&retry

if (i == .~(data.attempts)) { .~(data.failureCode); } //after max
>.; //attempts run failure code

};
}
.@class ExceptionPolicies { //compile-time class holding the policies
static std::map<std::string, ExceptionPolicy> policies;
static std::string policy;

public:
static void Install(std::string p, ExceptionPolicy f){policies[p]=f;}
static void SetActive(std::string p) { policy = p; }
//create AST with the exception handling code for the active policy
static AST* Apply(AST* code) { return (policies[policy])(code); }

};
.&ExceptionPolicies::Install("LOG", Logging); //install logging policy
.&ExceptionPolicies::Install("RETRY", //create and install a custom

CreateRetry({5, 1000, .<std::cerr << "fail";>.})); //retry policy
.&ExceptionPolicies::SetActive("RETRY"); //set initial active policy
.!(ExceptionPolicies::Apply(.<f()>.)); //generates the code below
// unsigned i;
// for (i = 0; i < 5; ++i)
// try { f(); break; } catch(...) { Sleep(1000); }
// if (i == 5) { std::cerr << "fail"; }
.&ExceptionPolicies::SetActive("LOG"); //change active policy
.!(ExceptionPolicies::Apply(.<g()>.)); //generates the code below:
// try { g(); } catch e { log(e); }

We utilize a meta-code class ExceptionPolicies in an object-oriented fashion
to hold and compose exception handling policies. We initially install a number of
required policies, such as LOG and RETRY, and then generate the respective exception
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handling code through invocations of the Apply function. In the example, Logging is
directly a policy meta-function, while CreateRetry uses its supplied data parameters
to offer the policy meta-function through a lambda function. Such parameters are
provided once, upon policy installation, and are not repeated per policy deployment,
relieving programmers from repeatedly supplying them at call sites. Most importantly,
it allows a uniform invocation style, enabling different policies to be activated wherever
required, without inherent changes at the generation sites.

5.3 Design Patterns
Design patterns [GHJV95] constitute generic reusable solutions to commonly recurring
problems. They are not reusable modules, but recipes for applying solutions to a
given problem in different situations. This means that in general, a pattern has to be
implemented from scratch each time deployed, thus emphasizing design reuse as op-
posed to source code reuse. In this context, metaprogramming can support generating
pattern implementations. Essentially, the pattern skeleton is turned into composition
of ASTs, the pattern instantiation options become composition arguments, the actual
client code is supplied in AST form and the pattern instantiation is handled by code
generation directives. Effectively accommodating such requirements, requires features
beyond stage expressions. With MetaC+,+ we can apply practices like encapsulation,
abstraction and separation of concerns, thus greatly improving metaprogram develop-
ment. For example, we can implement abstract pattern generators, have multiple such
objects or even hierarchies of them available, and select the appropriate generator for a
target context via a uniform invocation style. This is shown in the excerpt below (full
code in Appendix B) with parameterized meta-code for generating adapter patterns.

.@class Adapter { //adapter pattern generator interface
protected: const ast::ClassDecl& Class;
public:
using AdapterMap = std::map<std::string, std::string>;
virtual AST* adapt(AST* name, const AdapterMap& renames) const = 0;
Adapter(const ast::ClassDecl& Class) : Class(Class) {}

};
.@class AdapterByDelegation : public Adapter {//pattern implementation
AST* MakeMethods() const; //skipped for brevity, see Appendix B

public:
AST* adapt(AST* newId, const AdapterMap& renames) const override {

AST* classId = meta::id(Class.getName());
return .< class .~newId { //new class based on adapted methods AST

typename .~classId* instance; //adapted instance
public: .~(MakeMethods()); //insert adapted methods
typename .~newId (typename .~classId* o) : instance(o){}

};>.; //constructor with the adapted instance as argument
}
AdapterByDelegation(const ast::ClassDecl& Class) : Adapter(Class) {}

};
.@class AdapterBySubclassing:public Adapter {/*skipped for brevity*/};
class Window { public: int Draw (DC& dc) {/*...*/}

void SetWholeScreen (void) {/*...*/}
}; //this is the runtime class to be adapted
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.&Adapter::AdapterMap renames{ {"SetWholeScreen", "Maximize"} };

.&const ast::ClassDecl& C = *meta::getClassDecl("Window");

.&Adapter* adapter = new AdapterByDelegation(C);//create a generator

.!(adapter->adapt(.<typename WindowAdapter>., renames));//generates:
// class WindowAdapter {
// Window* instance;
// public: int Draw (DC& dc) { return this->instance->Draw(dc); }
// void Maximize (void) { this->instance->SetWholeScreen(); }
// WindowAdapter(Window* o) : instance(o) {}
// };
.&delete adapter;//memory management in stages as with normal programs

6 Implementation Overview
MetaC++ is implemented as an extension layer on top of the Clang [cla] compiler,
(Figure 5). Extensions include the staging-aware preprocessing, the added staging
annotation tokens in the lexical analyzer, the handling of staging constructs in the
syntax analyzer, the extensions in the semantic analyzer and AST library to take
into account the staging infrastructure as well as the introduction of the staging loop
and the staging runtime library (i.e. meta-compiler library functions). We continue
with a brief, high-level overview of these extensions. A detailed discussion covering
implementation aspects and relevant source code excerpts is available on Appendix A.

As discussed, code within quasi-quotes as well as code following a generate tag may
contain unknown identifiers, so it is parsed as dependent code, i.e. as though it appeared
within the definition of some template. As such, it is expected that quasi-quotes
involving unbound identifiers will include AST nodes typically encountered only within
template definitions, such as UnresolvedLookupExpr, DependentScopeDeclRefExpr,
CXXUnresolvedConstructExpr, CXXDependentScopeMemberExpr, etc.

Changes in the semantic analyzer involved introducing new AST nodes for the
staging elements and extending all AST visitors to handle them. It also required
extending the declaration context, scoping and lookup infrastructure to become staging-
aware, so that any symbol would only be visible in the stage nesting it was declared
in. Supporting this required having multiple declaration contexts hierarchies (one per
stage) instead of a single one, and shifting among them to match the stage nesting.

The staging loop is implemented as previously described, with the assembled stage
program code being compiled by a separate Clang compiler instance and executed
using the LLVM MCJIT execution engine [Docb]. Using this execution engine has the
added benefit of supporting debugging of the dynamically generated code using GDB
[Doca], effectively supporting stage program debugging.

Figure 5 – MetaC++ extension layer on top of the Clang C++ compiler
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Regarding compiler performance, the staging process of MetaC++ introduces
minimal overhead by itself. Assembling a stage program involves just a couple of
straightforward traversals over the program AST, while translating it is proportional to
the size of the metaprogram, which typically would be orders of magnitude smaller than
the normal program. The time spent on this is not significant compared to the time
required to parse, analyze and translate any included standard library header. Any
introduced overhead comes directly from the metaprogramming logic that dictates the
number of stages and the time required for their execution. Thus, a trivial metaprogram
may execute instantly involving no overhead, but an elaborate metaprogram may
take a lot of time to execute, affecting compilation performance. Nevertheless, the
same situation applies for template or constexpr-based metaprogramming in standard
C++. Actually, metaprogram execution in MetaCPP can be significantly faster than
executing equivalent constexpr functions at compile-time, as in our case the code is
compiled through JIT, while constexpr functions are interpreted.

There is one implementation-related aspect that can potentially impact stage
execution performance, particularly for metaprograms involving intensive AST com-
position. In Clang, ASTs are designed to be immutable, so the proposed method of
transformation is source code rewriting through the Rewriter API that allows inserting
and removing source text based on AST node locations. Thus, a generate tag does not
replace itself with the evaluated AST value in the main program AST, but instead the
evaluated AST value is converted to source text that replaces the generate tag code in
the original source text. Likewise, escapes used to combine existing ASTs in new ASTs
being created by the enclosing quasi-quotes, require converting the existing ASTs to
source text, combining it with the source text of the quasi-quotes and finally parsing
the resulting source text to AST. To overcome this, we are investigating alternatives for
source code transformation at the AST level, including the TreeTransform functionality,
used for template instantiations, or some custom AST processing library (e.g. [Krz]).

To allow our meta-language to be used on other platforms and compilers, we
also offer the option to run only the staging loop (similar to the preprocess-only
option), effectively operating as a standalone source-to-source transformation tool.
The resulting source file is the final outcome of the staging loop that consists of pure
C++ code and can then be compiled with any typical C++ compiler.

7 Related Work
We focus on supporting multi-stage generative metaprogramming for C++. As such,
we consider work on multi-stage languages, generative programming and metapro-
gramming systems targeted for C++ to be related to ours. We already compared
C++ template metaprograms to our language, so we don’t repeat the discussion here.

7.1 Multi-Stage Languages
Early multi-stage languages, like MetaML [She99] and MetaOCaml [CLT+01] were
statically typed functional languages that generate code at runtime and offer strong
type-safety guaranties. Later research also covered staging during compilation, e.g.
Template Haskell [SJ02], and its adoption in the context of imperative languages,
including Converge [Tra08], Metalua [Fle07] and Delta [LS15]. Languages with compile-
time staging typically offer less type-safety guaranties, as they are allowed to report
type errors during compilation, and focus on expressiveness. MetaC++ shares these
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elements and as it focuses on generative metaprogramming, it drops type-safety
guaranties in favor of expressiveness. In particular, it allows expressing any AST code
fragment and supports generating all language elements. It also distinguishes itself
from most multi-stage languages by treating code with the same stage nesting as a
unified coherent program, instead of isolated stage expressions. In this direction, it is
closely related to Delta from which it adopts the integrated metaprogramming model.
However, Delta is dynamically typed and has simpler grammar, AST representation,
lookup and scoping rules, so offering similar staging features in C++ is far more
challenging. For instance, Delta variables are declared by use, so an unknown identifier
simply becomes a variable AST node. In MetaC++, parsing the unknown identifier
may require disambiguation, while the created AST node will refer to a dependent
variable and require extra handling when the declaration it refer to becomes available.

Relevant to our work are also multi-stage extensions of other mainstream languages.
Metaphor [NR04] is a C# extension that supports runtime staging and features a
reflection system that can interact with the staging constructs, thus allowing the
generation of types. We too offer support for reflection and allow generating any
code fragment, including types. Mint [WRI+10], a Java extension that supports
runtime staging, tries to overcome the issue of scope extrusion in order to maintain
type-safety. In our language, unbound variable within quasi-quotes are resolved in
the context where the quoted code will actually be inserted, offering no name binding
guaranties and involving no scope extrusion issue. Backstage Java [PS11] is a Java
extension for compile-time staging that supports non-local changes and ensures that
changes introduced by individual stage fragments are consistent. Our model treats
such stage fragments as a unified program with a well-defined control flow, so there are
no generation inconsistencies. Also, we support non-local changes as well by retrieving
the internal compiler data structures and modifying them directly.

7.2 Generative Programming
There are various languages and systems supporting some form of generative program-
ming. We present those we consider to be relevant to ours.

The Jakarta Tool Set [BLS98] supports creating domain specific languages using
Jak, a Java extension with AST construction and manipulation features, and Bali, a
parser generator for creating syntactic extensions. A domain specific program is parsed
into an AST using the parser generated created by Bali, the AST is then modified
through a Jak transformation program and the result is unparsed into a pure host-
language program. Our language can also express algorithmic AST transformations,
but it doesn’t support syntactic extensions based on grammar specification.

SafeGen [HZS05] supports writing generators for Java programs. It features cursors
that are variables matching program elements against first-order logic predicates, and
generators, written as quasi-quotes, that use cursors to output code fragments. It can
generate any legal Java code and ensures type-safety of generated code, but it is not as
expressive as our language since it does not support algorithmic code generation logic.

Genoupe [DLW05], CTR [FCL06], Meta-trait Java [RT07] and MorphJ [HS11] are
all C# and Java extensions that provide compile-time reflective facilities allowing
to statically iterate over fields or members derived from some pattern and generate
code for each match in a type-safe way. They offer limited or no support for code
manipulation and they cannot generate arbitrary code. MetaFJig [SZ10] is a Java-like
language that treats class definitions as first class values allowing them to be composed
with some operators. Our language can support similar functionality with these
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languages using its reflective features and expressing the pattern matching logic in an
algorithmic fashion. In fact, concepts such as class composition or class morphing can
be directly adopted and offered as metaprogramming libraries.

7.3 Metaprogramming Systems for C/C++
MS2 [WC93] was the first language to offer Lisp-like macros for syntactically rich
languages, like C. MS2 has similarities with our language as its macros manipulate
ASTs in an algorithmic way and generate code, operating similarly to our multi-stage
computations. However, it is less expressive than our language, as it cannot generate
types, and it also targets a syntactically and semantically simpler language than C++.

’C [PHEK99], is a two-level language that extends C with quasi-quote operators
and supports metaprogramming through dynamic code generation. It introduces type
constructors that allow dynamic code to be statically typed, however it does not offer
strong type safety guarantees in the sense of MetaML. MetaC++ is more expressive as
it can express any AST code fragment as opposed to just expressions and compound
statements, and apart from functions can also generate types, structs and declarations.

OpenC++ [Chi95] is a C++ extension that offers a compile-time Meta-Object
Protocol and focuses on enabling syntax extensions. Meta-objects are available during
compilation and provide a compile-time reflection mechanism used to manipulate
source code, eventually generating a pure C++ source file. However, meta-objects are
restricted only for top-level class and member function definitions and the protocol
adopted for their translation focuses only on objects, limiting the potential source
locations for code generation to only class definitions, object declarations and instanti-
ations, member read and write operations, and method invocations. Our language
focuses on generative metaprogramming and naturally supports code generation in a
far wider range of source locations, while it also offers compile-time reflection facilities.

C++ proposals for compile-time code generation and injection [VD17] and meta-
classes [Sut18] are also closely related to our work, as we share the goal for supporting
generative metaprogramming using normal C++ source code. Their approach is
based on constexpr blocks, being closer to standard C++ constexpr functions but
also inheriting their limitations. Additionally, our approach is more expressive as it
supports multi-stage code generation and allows arbitrary code generation contexts.

8 Conclusions
We presented a generative multi-stage extension of C++ in which metaprograms share
both common syntax and development practices with normal programs, fully reusing
C++ as the language for implementing metaprograms. As shown with a case study
for generative metaprogramming in standard C++, our approach helps overcoming
the issues of template metaprograms that involve a different syntax and programming
model compared to the normal language, thus disabling design or source code reuse.

We covered issues of both language design and implementation. We presented the
adopted programming model and provided an overview of the staging annotations
introduced for the meta-language as well as the extensions required for the normal
language. We also detailed the staging assembly and evaluation process and illustrated
the integration of our staging infrastructure with other compile-time evaluation features
of the language. Then, we focused on practical application, presenting details for the
extensions and modifications involved in our clang-based implementation.
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Finally, we presented a series of application scenarios, focusing on compile-time
reflection and the use of staging to generate exception handling patterns and design
patterns, illustrating and validating the software engineering value of our approach.

Our work follows a different path compared to the currently prevalent approach of
template metaprogramming. Nevertheless, it promotes a model in which metaprograms
are no different than normal programs and can thus be developed and deployed in a
coherent and uniform manner, without requiring elaborate template tricks. Essentially,
with templates, metaprogramming is targeted mostly for experts and library authors,
while with our proposition it becomes accessible to every C++ programmer.

Overall, we consider our work to be a significant step for metaprogramming in
C++ and believe that integrating the two worlds will push forward current practices,
allowing more advanced and comprehensive metaprograms to appear in the future.
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A Implementation Details
A.1 Preprocessing Extensions
The staging-aware preprocessing is currently partially implemented with normal pre-
processor directives expanded directly for normal program code and stage preprocessor
directives being treated as special declarations that do not directly affect parsing,
but instead become part of the main program AST and follow the standard rules
for stage assembly, eventually taking effect later when the staging loop reaches the
matching nesting. For example, a stage include directive is not actually directly
preprocessed in the context of the original source file, but instead during the assembly
of the corresponding stage and within its source code context. The target was to
support stage preprocessor directives with minimal changes by adopting a delayed
preprocessing scheme that utilizes the original preprocessor. An excerpt of the code
extensions for the described functionality is provided below.

//AST class for a stage preprocessor directive, e.g. .@#directive
class PreprocessorDirectiveDecl : public Decl {

StringRef Directive; //directive is verbatimely copied in stage code
//additional code here...

};
PreprocessorDirectiveDecl* Sema::ActOnPreprocessorDirectiveDecl(

StringRef D, SourceLocation Start, SourceLocation End){
PreprocessorDirectiveDecl* PD =//AST for the parsed stage directive

PreprocessorDirectiveDecl::Create(Context,CurContext,D,Start,End);
CurContext->addHiddenDecl(PD); //add directive in current context
return PD;

}
Decl* Parser::ParsePreprocessorDirectiveDecl() {

SourceLocation Start = Tok.getLocation(), End;
getPreprocessor().DiscardUntilEndOfDirective(&End);
const char* begin = PP.getSourceManager().getCharacterData(Start);
const char* end = PP.getSourceManager().getCharacterData(End);
StringRef Directive(begin, end - begin);
return Actions.ActOnPreprocessorDirectiveDecl(Directive,Start,End);

}
Parser::DeclGroupPtrTy Parser::ParseExternalDeclaration(/*...*/) {

//...original code here...
switch (Tok.getKind()) { //...original code here...

case tok::hash: SingleDecl=ParsePreprocessorDirectiveDecl();break;
}

}

A potential problem of this approach is that stages require further preprocessing
and if they include files with meta-code (e.g. as in Figure 4) the preprocessed stage
will end-up containing meta-code, thus breaking the working model of stage code
being normal program code that can be compiled with the original language compiler.
Nevertheless, such code can be compiled recursively through the meta-compiler, at
the cost of slightly increasing the implementation complexity of the staging loop.

A real issue relates to stage macro definitions and the fact that delayed expansion of
their invocations may cause parsing discrepancies. For example, consider the following
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code that attempts to declare a stage function with an empty body.

.@#define EMPTY_BLOCK {}

.@void f() EMPTY_BLOCK

Since the macro definition does not affect the original parsing context, the function
definition sees an identifier instead of an opening and closing brace, thus failing to parse
correctly. Considering that the problem arises only in macros, and that our language
offers far greater metaprogramming support compared to preprocessor macros, we
could argue for dropping the problematic define directives and replacing them with
stage programs. However, such an approach is not pragmatic as C++ is a mainstream
programming language with huge code bases potentially utilizing such macros, that
we simply cannot reject.

Overall, we plan to revisit our implementation to deliver a fully working solution
for the staging-aware preprocessing step that we described earlier.

A.2 Syntactic Extensions
The lexical analyzer extensions are minimal and straightforward, requiring only the
introduction and recognition of staging annotations, as shown with the code below.

PUNCTUATOR(periodless, ".<") //staging annotation token definitions
PUNCTUATOR(greaterperiod,">.")
PUNCTUATOR(periodtilde, ".~")
PUNCTUATOR(periodexclaim,".!")
PUNCTUATOR(periodamp, ".&")
PUNCTUATOR(periodat, ".@")
//lexer extensions to recognize staging annotations
bool Lexer::LexTokenInternal(/*...*/){

//...original code here...
switch(CurChar) { //...original code here...

case ’.’: //...original code for other cases that begin with ’.’...
std::map<char, tok::TokenKind> mappings{ { ’@’,tok::periodat },

{ ’<’, tok::periodless }, { ’~’, tok::periodtilde },
{ ’!’, tok::periodexclaim }, { ’&’, tok::periodamp } };

auto iter = mappings.find(NextChar);
Kind = iter == mappings.end() ? tok::period : iter->second;
break;

case ’>’: //...original code for other cases that begin with ’>’...
Kind = NextChar == ’.’ ? tok::greaterperiod : tok::greater;
break;

}
}

The syntax analyzer extensions require more effort in order to match each staging
annotation with the desired parse form and the contexts it may appear in. For instance,
define and execute tags typically appear at global scope, while generate tags, escape
tags and quasi-quotes typically appear in an expression context. As such, the code for
parsing external declarations and expressions is extended as shown below.

Parser::DeclGroupPtrTy Parser::ParseExternalDeclaration(/*...*/) {
//...original code here...
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switch (Tok.getKind()) { //...original code here...
case tok::periodat: {
ParseScope Scope(this, Scope::DeclScope); //new declaration scope
Define* D=Actions.ActOnStartDefine(ConsumeToken());//Sema actions
ParseExternalDeclaration(/*...*/);//parse decl after the .@ token
SingleDecl = Actions.ActOnEndDefine(D, PrevTokLocation);
break;

}
case tok::periodamp: {
ParseScope Scope(this, Scope::DeclScope); //new declaration scope
Execute* E=Actions.ActOnStartExecute(ConsumeToken())//Sema actions
StmtResult Res = ParseStatement(); //parse stmt after the .& token
SingleDecl=Actions.ActOnEndExecute(E,Res.get(),PrevTokLocation);
break;

}
}
//...original code here...

}
ExprResult Parser::ParseCastExpression(/*...*/) {

//...original code here...
switch (Tok.getKind()) { //...original code here...
case tok::periodless: {
unsigned ScopeFlags = Scope::BreakScope | Scope::ContinueScope |
Scope::ControlScope| Scope::DeclScope | Scope::FnScope |
Scope::BlockScope | Scope::ClassScope | Scope::QuasiQuotesScope;

ParseScope QuasiQuotesScope(this, ScopeFlags);//special quote scope
SourceLocation StartLoc = ConsumeToken(), EndLoc;
Actions.ActOnStartQuasiQuoteExpr(StartLoc);//make quote DeclContext
AST* ast = ParseQuasiQuotes(); //parse the code inside quasi-quotes
if (ast && TryConsumeToken(tok::greaterperiod, EndLoc))

return Actions.ActOnEndQuasiQuoteExpr(StartLoc, EndLoc, ast);
else

return Actions.ActOnQuasiQuoteError();
}
case tok::periodexclaim: //fallback //parse .!() or .~() exprs
case tok::periodtilde: return ParseMetaGeneratedExpr();

}
}

Beyond the typical expression context, we further support code generation to
occur in a variety of source locations including statements, top level declarations,
declaration contexts (e.g. body of a class, struct or union), parameter declarations,
types and names. The statement context is supported directly through the expression
context as expr; is a valid C++ statement. To support top level declarations and
declaration contexts, we extend the parser to accept the forms .!(...); and .~(...);
as declarations that are subject to code generation, as illustrated below.

Parser::DeclGroupPtrTy Parser::ParseExternalDeclaration(/*...*/) {
if (Decl* D = TryParseMetaGeneratedDecl())

return Actions.ConvertDeclToDeclGroup(D);
//...original code here...
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}
Parser::DeclGroupPtrTy Parser::ParseCXXClassMemberDeclaration(/*..*/){

if (Decl* D = TryParseMetaGeneratedDecl())
return Actions.ConvertDeclToDeclGroup(D);

//...original code here...
}
Decl* Parser::TryParseMetaGeneratedDecl() {
if (Tok.isOneOf(tok::periodexclaim, tok::periodtilde)) {
TentativeParsingAction TPA(*this);//tentative parse-it may be an expr
SourceLocation StartLoc = Tok.getLocation(), EndLod;
ExprResult Res=ParseMetaGeneratedExpr();//parse the .!() or .~() expr
if (!Res.isInvalid() && TryConsumeToken(tok::semi, EndLoc)) {

TPA.Commit();//if generated expr parsed successfully commit actions
return Actions.ActOnMetaGeneratedDecl(StartLoc,EndLoc,Res.get()));

}
TPA.Revert();//if parsing failed revert actions and continue normally
}
return nullptr;

}

The remaining cases are supported by further accepting the forms .!(...) and
.~(...) as valid identifiers that are again subject to code generation. In this sense, the
source code to get the name of an identifier token (present in various parsing functions),
is replaced with calls to the following introduced ParseIdentifier function.

IdentifierInfo *Parser::ParseIdentifier() {
IdentifierInfo *II = nullptr;
if (Tok.is(tok::identifier))//original code was just the if statement
II=Tok.getIdentifierInfo(); //extension to checks for generated code

else if (Tok.isOneOf(tok::periodexclaim, tok::periodtilde)) {
ExprResult Res=ParseMetaGeneratedExpr(); //parse a .!() or .~() expr
if (!Res.isInvalid()) {
II=PP.newIdentifierInfo(makeUniqueName()); //make unique identifier
II->setFETokenInfo(Res.get()); //set AST as extra identifier data

}
}
return II;

}

In all cases, the parsed entity (identifier or declaration) contains the AST of the
expression enclosed within the generate or escape tag. The code generated during
stage execution may consist of a single identifier or declaration, substituting itself
in the originally parsed form, or it may involve multiple or more complex language
elements, potentially extending the originally parsed form upon code generation. For
example, consider the following code that generates a function definition.

.@AST* retType = .<int>.;

.@AST* name = .<add>.;

.@AST* formals = .<int x, int y>.;

.@AST* body = .<return x + y;>.;
typename .!(retType) .!(name) (typename .!(formals)) { .!(body); }
//code generation result: int add (int x, int y) { return x + y; }
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The function to be generated is parsed as typename ID1 ID2 (typename ID3)
{...}, where typename ID1 and typename ID3 are dependent types and ID2 is a name.
Thus, the parsed entity denotes a function named ID2 that takes a single unnamed
argument of dependent type ID3 and returns a value of dependent type ID1. The
types ID1 and ID3 as well as the name ID2 are associated with the corresponding
expression ASTs of .!(retType), .!(formals) and .!(name). Then, upon stage
execution and based on the actual values of these expressions the return type ID1
is substituted by int, the name ID2 is substituted by add and the formal argument
list is transformed by substituting the unnamed argument of type ID3 with two int
arguments named x and y. Further examples with the supported source locations for
code generation and their corresponding parse forms are presented in Table 1.

Table 1 – Adopting specific parse forms to support code generation for various source
locations

Code within quasi-quotes may consist of various language elements such as expres-
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sions, statement or declaration lists, top level declarations, parameter declarations,
declaration contexts (e.g. body of a class, struct or union), and types. Thus, parsing
such code requires extending the tentative parsing infrastructure to support matching
any of the alternative code forms, taking into account a significant portion or even the
entire quasi-quote contents instead of few tokens past the opening quote. For example,
the fact that the quasi-quote .<int x; void f(); friend void g();>. refers to
declarations within a class body instead of top level or statement level declarations only
becomes clear mid-parse after encountering the friend declaration, meaning multiple
different parses may be required to match the given form. The code bellow offers a
high level overview of the quasi-quote parsing implementation.

AST* Parser::ParseQuasiQuotes() {
using ParseFunc = std::function<AST* (Parser&)>;
std::vector<ParseFunc> parseFuncs { //parsing function wrappers that

ParseType, ParseExpression, //simulate each parsing context
ParseParameterDeclaration, ParseTopLevelDeclarations,
ParseStatementOrDeclarationList, ParseClassBody

};
DiagnosticErrorTrap ErrorTrap(Diags);//trap errors in parse attempts
Diags.setSuppressAllDiagnostics(true);//but do not issue diagnostics
AST* ast = nullptr;
for (const ParseFunc& f : parseFuncs) {

TentativeParsingAction TPA(*this); //mark any parsing as tentative
if ((ast = f(*this)) && !ErrorTrap.hasErrorOccurred())
{ TPA.Commit();break; }//if parsing succeeded commit actions&exit

else { //otherwise revert parsing, clear any errors and remove
TPA.Revert(); ErrorTrap.reset(); //any tentative declarations
RemoveTentativeDeclarations(Actions.CurContext, getCurScope());

}
}
Diags.setSuppressAllDiagnostics(false); //restore diagnostics
return ast;

}

Multiple alternative parses may match but only the first match is kept at this
point. Any alternatives are explored in the context where the quasi-quoted code will
be inserted, effectively adapting the original parse form, as shown below.

.@AST* ast = .<int x;>.; //parsed as a top level declaration

.!(ast); //ok, used as top level declaration
void f(){ .!(ast); } //ok, valid use as a statement-level declaration
class X { .!(ast); }; //ok, valid use as a class member declaration
int y=.!(ast); //stage execution error:use as an expression is invalid

Another viable approach would be to keep all potential parse forms and then
disambiguate based on the insertion context, but this would involve a significant
overhead in both parsing time (always parse all forms) and memory consumption.

A.3 Semantic Extensions
Various extensions are required for the semantic analysis (i.e. the Sema class) to
handle the staging infrastructure, with the most important being the treatment of
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unknown identifiers. Code involving unknown identifiers (within quasi-quotes or after
a generate tag) is essentially treated as dependent code, i.e. as though it appeared
within the definition of a template. This means that the AST representation of such
code fragments may include nodes that are typically encountered only within template
definitions, such as DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr
, UnresolvedLookupExpr, CXXUnresolvedConstructExpr, etc., and requires exten-
sions to generate and accept dependent types and variables outside of template
definitions. In particular, the semantic name classification method (Sema::Classify)
consulted by the parser to resolve identifiers and direct parsing is extended to treat un-
known names as dependent identifiers. Moreover, unknown identifiers specifying types
(based on the context or through the extended typename keyword) are transformed
into artificial DependentNameType objects by adopting the same technique as in Sema
::ActOnDelayedDefaultTemplateArg but with an empty NestedNameSpecifier in-
stead of a synthesized one, as shown below.

ParsedType Sema::ActOnUnknownType(const IdentifierInfo &II,
SourceLocation NameLoc) {

NestedNameSpecifier *NNS = nullptr; //build a fake DependentNameType
QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
return CreateParsedType(T, BuildTypeSourceInfo(Context, NameLoc, T));

}

Similarly, we handle the usage of the scope resolution operator involving unresolved
identifiers through artificially dependent nested name specifiers. The same applies for
the ::template form in which the global scope is treated as an artificially dependent
context. The following code sketches the implementation for these extensions.

//handle the a::b form
bool Sema::BuildCXXNestedNameSpecifier(IdentifierInfo &Id,

SourceLocation IdLoc,SourceLocation CCLoc,CXXScopeSpec &SS,/*...*/){
LookupResult Found(/*...*/); //...original code here...
//if identifier not resolved, build a dependent nested-name-specifier
if (Found.empty() && CurContext->allowUnresolvedIds())
{ SS.Extend(Context, &Id, IdLoc, CCLoc); return false; }

//...original code here...
}
//handle the ::template a form
TemplateNameKind Sema::isTemplateName(CXXScopeSpec &SS, bool

hasTemplateKeyword, UnqualifiedId &Name,TemplateTy &Result,/*...*/){
LookupResult R(/*...*/); //...original code here...
//if id is not resolved return a dependent template name
if(R.empty()&&hasTemplateKeyword&&CurContext->allowUnresolvedIds()){

Result = TemplateTy::make(Context.getDependentTemplateName(
SS.getScopeRep(), Name.Identifier));

return TNK_Dependent_template_name;
}
//...original code here...

}
//handle the ::template a::b form
bool Sema::ActOnCXXNestedNameSpecifier(CXXScopeSpec &SS,

TemplateTy Template, SourceLocation CCLoc, /*...*/) {
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//...original code here...
DependentTemplateName *DTN =

Template.get().getAsDependentTemplateName();
if (DTN && DTN->isIdentifier() && DTN->getQualifier() &&

DTN->getQualifier()->getKind() == NestedNameSpecifier::Global){
QualType T = Context.getDependentTemplateSpecializationType(

ETK_None, nullptr, DTN->getIdentifier(), TemplateArgs);
NestedNameSpecifier *NNS = NestedNameSpecifier::Create(Context,

DTN->getQualifier(), true, T.getTypePtr());
SS.MakeTrivial(Context, NNS, SourceRange(SS.getBeginLoc(),CCLoc));
return false;

}
//...original code here...

}

All above cases also require extending the use of NestedNameSpecifier objects as
well as loosening some assertions regarding their usage.

The presence of unknown identifiers involves further extensions related to lambda
functions. Unknown identifiers found within a capture list (presumably capturing a
generated variable in an outer scope) require introducing artificial dependent-typed
variables so as to keep the capture list valid. Similarly, unknown identifiers within the
body of a lambda function, referring either to a variable generated within its body or
a generated identifier within its capture list, require introducing an artificial capture
list entry to keep the lambda body valid.

Various small scale extensions are also needed to suppress certain typing checks
that would otherwise fail for generated code or code in quasi-quotes. For example,
we cannot statically determine the result of a code generation expression, so we treat
it as a dependent type to skip any further type-checking. The same applies for the
this keyword appearing in quasi-quotes without an enclosing class definition. For
instance, in the quasi-quoted code .<this->f()>. there is no information about the
type of this so we should skip any type-checking regarding the presence of a member
function f. Similarly, a quasi-quoted return statement without an enclosing function,
e.g. .<return 0;>., should not type check its return value against an inexistent
return type. Examples of such extensions are presented in the code excerpt below.

QualType Sema::getCurrentThisType() {
//...original code here...
if (ThisTy.isNull() && getCurQuasiQuotesDecl()) //treat unresolved
ThisTy=Context.DependentTy; //quasi-quoted ’this’ as type dependent

//...original code here...
}
ExprResult Sema::CreateBuiltinUnaryOp(UnaryOperatorKind Opc, /*...*/){
//...original code here...
switch (Opc) { //...original code here...
case UO_Generate://treat unary operators .! and .~ as type dependent
case UO_Escape: resultType = Context.DependentTy; break;

}
//...original code here...

}
StmtResult Sema::BuildReturnStmt(/*...*/) {
//...original code here...
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//treat quoted returns outside functions as type dependent
if(!getCurFunctionOrMethodDecl() && getCurQuasiQuotesDecl())
FnRetType = Context.DependentTy;

//...original code here...
}

Additional extensions are required to allow specific code forms to appear in source
locations that would typically be considered erroneous. For example, quasi-quotes
denoting a function or template definition may appear within the body of a function,
even though C++ does not allow function or template definitions within the scope of a
function. Similarly, quasi-quotes may include break, continue and return statements
without necessarily appearing within a switch, loop or function body. Also, quasi-
quotes may include virtual or friend function declarations without necessarily appearing
in a class scope. To properly handle such cases, quasi-quotes introduce a scope capable
of hosting various items by combining multiple bit-fields of the ScopeFlags enum
(shown earlier as part of the Parser::ParseCastExpression extensions). They also
introduce a new declaration context in order to collect any declarations appearing
inside them and disallow them to interfere with enclosing declaration contexts of
normal program code. For quasi-quotes denoting class members in particular, a fake
enclosing class is artificially introduced supporting entities that appear only inside
classes and keeping any class-related semantic checks valid. In this context, constructor
definitions require additional handling as the name of the class is unknown and the
member initializer list may include unknown member fields. In particular, within
the artificially introduced class, any declaration beginning with the form typename
ID (parameter declarations) is considered to be a constructor, presumably for a class
named ID, while any missing member fields within the initializer list are handled by
inserting fake dependent type member entries in the artificial class body. As such,
the quoted code .<typename X(): x(){}>. is effectively parsed and semantically
analyzed as though it occurred in the following context.

template<typename T> class X { //artificially generated class scope
T x; //artificially inserted dependent class members
X() : x() {} //equivalent quoted code to be parsed

};

Apart from the Sema class extensions, semantic analysis also requires extending
the declaration context and scoping infrastructure to become staging-aware, so that
any symbol would only be visible in the stage nesting it was declared in. Supporting
this requires having multiple hierarchies of declaration contexts and scopes (one for
each stage) instead of a single one, and shifting among them to match the respective
stage nesting. The following code illustrates this extended infrastructure and presents
an example of its usage to implement the semantic actions for the define staging tag.

class Sema {
//...original code here...
std::map<unsigned, DeclContext*> Contexts; //decl context hierarchies
std::map<unsigned, Scope*> Scopes; //scope hierarchies
unsigned CurStage; //stage nesting
void ShiftStage(bool enter) {
Contexs[CurStage]=CurContext;//update stored declaration context and
Scopes[CurStage] = CurScope; //scope entries with latest information
CurStage = enter ? CurStage + 1 : CurStage - 1; //shift stage
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if (enter && Contexts.find(CurStage) == Contexts.end()) {
//on first stage nesting enter create a TranslationUnitDecl & Scope
TranslationUnitDecl *TUDecl = TranslationUnitDecl::Create(Context);
TUScope = new Scope(nullptr, Scope::DeclScope, Diags);
TUScope->setEntity(TUDecl);
Context.setTranslationUnitDecl(TUDecl); //update context and link
CurContext->addHiddenDecl(TUDecl); //with the stage DeclContext
Contexts[CurStage] = TUDecl;
Scopes[CurStage] = TUScope; //store current stage info

}
else //otherwise restore the existing stage TranslationUnitDecl

Context.setTranslationUnitDecl(
Cast<Decl>(Contexts[CurStage])->getTranslationUnitDecl());

CurContext = Contexts[CurStage]; //use the declaration context and
CurScope = Scopes[CurStage]; //scope entries from the updated stage

}
Define* ActOnStartDefine(SourceLocation StartLoc) {
ShiftStage(true); //enter a nested stage
Define *D = Define::Create(Context, CurContext, StartLoc);
CurContext->addHiddenDecl(D);//add new DeclContext for following def
PushDeclContext(CurScope, D);
return D;

}
Define* ActOnEndDefine(Define *D, SourceLocation EndLoc) {
D->setEndLoc(EndLoc); PopDeclContext();
ShiftStage(false); //leave from a nested stage
return D;

}
}

Finally, all aspects of the AST library need to be extended to support the staging
infrastructure and other related extensions such as the extra syntax disambiguation.
This involves introducing new AST nodes for the staging elements and extending the
various AST visitors and serialization routines, as well as extending the AST-to-text
transformations (AST printing and pretty printing) to generate appropriate source
text for both new and extended AST nodes.

A.4 Compiler Staging Loop
The staging loop operates as described in section 3.4, with the computation of the
maximum stage nesting and the assembly of stage code being implemented as custom
AST visitors (RecursiveASTVisitor subclasses). The code assembled for each stage
program is compiled by a separate Clang compiler instance, while any internal meta-
compiler functions used in stage code (i.e. meta::codegen, meta::quasiquotes, meta
::getClassDecl, etc.) are just part of the meta-compiler code base with appropriate
linkage so as to be exported to the execution environment. An excerpt of the extended
Clang driver, illustrating the implementation of the staging loop and the custom AST
visitors it involves, is presented below.

template<typename Derived> //AST visitor to count the stage nesting
class StageNestingVisitor : public RecursiveASTVisitor<Derived> {
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public:
StageNestingVisitor() : stageNesting(0) {}

#define DEF_TRAVERSE_STAGING_TAG(NAME, TYPE) \
bool NAME(TYPE *Val) { \

++stageNesting; \
bool result = RecursiveASTVisitor<Derived>::NAME(Val);\
--stageNesting; \
return result; \

} //macro to generate Traverse funcs for the 3 staging tag AST nodes
DEF_TRAVERSE_STAGING_TAG(TraverseGenerate, Generate)
DEF_TRAVERSE_STAGING_TAG(TraverseExecute, Execute)
DEF_TRAVERSE_STAGING_TAG(TraverseDefine, Define)

protected:
unsigned stageNesting;

}
//AST Visitor to assemble stage progam code
class StageAssembler : public ASTConsumer,

public StageNestingVisitor<StageAssembler> {
public:
StageAssembler() : maxStageNesting(0) {}
void HandleTranslationUnit(ASTContext&Context) override //ASTConsumer
{ TraverseDecl(Context.getTranslationUnitDecl()); } //API refinement

bool VisitGenerate(Generate *G){//Visit func for ’generate’ tag node
if(CheckAndUpdateMaxStageNesting())//write max nesting code to stmts
stmts << "meta::codegen(" << to_string(G) << ");\n";

return true;
}
bool VisitExecute(Execute*E){//Visit func for execute writes to stmts
if (CheckAndUpdateMaxStageNesting()) stmts << to_string(E) << "\n";
return true;

}
bool VisitDefine(Define *D) { //Visit func for define writes to defs
if (CheckAndUpdateMaxStageNesting()) defs << to_string(D) << "\n";
return true;

}
std::string getStageCode() const { //assemble collected stage code
std::ostringstream ss; //add meta lib header & main stage function
ss << "#include <meta>\n" << defs.str() << "\n"

<< "int main() {\n" << stmts.str() << "return 0;\n}\n";
return ss.str();

}
unsigned getMaxStageNesting() const { return maxStageNesting; }

private:
bool CheckAndUpdateMaxStageNesting() {
if(stageNesting>maxStageNesting){ //if we encounter a higher nesting
maxStageNesting = stageNesting; //update the maximum stage nesting
defs.str(std::string()); //clear the code streams to discard
stmts.str(std::string()); //code from the previous nesting

}
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return stageNesting == maxStageNesting; //return if at max nesting
}
unsigned maxStageNesting;
std::ostringstream defs, stmts;

};
//AST visitor to rewrite the program code
class MainRewriter : public ASTConsumer,

public StageNestingVisitor<MainRewriter> {
public:
MainRewriter(CompilerInstance *C, unsigned nesting) :
maxStageNesting(nesting),
Rewrite(C->getSourceManager(),C->getLangOpts()) {}

void HandleTranslationUnit(ASTContext&Context) override {
iter = generated.begin();//iterator for the generated code fragments
TraverseDecl(Context.getTranslationUnitDecl()); //perform traversal
generated.clear(); //clear the code generated for the current stage

}
bool VisitGenerate(Generate *G){ //Visit func for ’generate’ tag node
if (stageNesting == maxStageNesting) //focus on max stage nesting
Rewrite.ReplaceText(G->getSourceRange(),to_string(*iter++));

return true; //replace tag code with the matching meta::codegen call
}
bool VisitExecute(Execute *E){ return Prune(E->getSourceRange()); }
bool VisitDefine (Define *D) { return Prune(D->getSourceRange()); }
bool Prune(SourceRange SR){ //prune .& and .@ tags at max nesting
if (stageNesting == maxStageNesting) Rewrite.ReplaceText(SR, "");
return true;

}
std::string getTransformedCode() const { //get final source text
FileID FID = Rewrite.getSourceMgr().getMainFileID();
const RewriteBuffer *Buffer = Rewrite.getRewriteBufferFor(FID);
return std::string(Buffer->begin(), Buffer->end());

}
//func used by meta::codegen to provide the generated code fragments
static void addGenCode(AST *ast) { generated.push_back(ast); }

private:
static std::vector<AST*> generated;
std::vector<AST*>::const_iterator iter;
unsigned maxStageNesting;
Rewriter Rewrite;//Rewriter used for source-to-source transformations

}; //as clang ASTs are immutable by design
//exported meta-compiler lib function invoked during stage execution
META_LIBRARY void meta::codegen(AST*a){ MainRewriter::addGenCode(a); }
int cc1_main(ArrayRef<const char*>Argv){ //meta-compiler main function
std::unique_ptr<CompilerInstance> Compiler(new CompilerInstance());
InitializeCompilerFromCommandLineArgs(Compiler, Argv);//main Compiler
while(true) { //staging loop implementation
StageAssembler assembler; //visitor to track and assemble stage code
Parse(Compiler, &assembler); //parse input to AST and apply visitor
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if(unsigned nesting=assembler.getMaxStageNesting()){//if staged code
std::string stageCode=assembler.getStageCode();//stage source text
std::unique_ptr<CompilerInstance>//use a separate (normal) compiler

StageCompiler(new CompilerInstance()); //for the assembled stage
InitializeCompilerFromText(StageCompiler, stageCode);
Parse(StageCompiler); //parse the stage source text
std::unique_ptr<CodeGenAction> Act(new EmitLLVMOnlyAction());
if (!StageCompiler->ExecuteAction(*Act) || //generate stage binary

!Execute(std::move(Act->takeModule()))) //execute stage binary
break; //on stage generation or execution errors exit the loop

//AST visitor that will generate the transformed program code
MainRewriter rewriter(Compiler.get(), nesting);
std::string code = rewriter.getTransformedCode(); //reinit compiler
InitializeCompilerFromText(Compiler,code); //with the updated code

}//if there is no more meta-code we have pure C++ code so we perform
//a normal compiler invocation and exit the staging loop

else { ExecuteCompilerInvocation(Compiler.get()); break; }
}

}

B Full Code for Adapter Pattern Generator Case Study

.@class Adapter { //adapter pattern generator interface
protected: const ast::ClassDecl& Class;
public:
using AdapterMap = std::map<std::string, std::string>;
AST* adapt(AST* newId, const AdapterMap& renames) const {
AST* methods=nullptr;//AST of adapted class methods, initially empty
for (auto& method : Class.methods()) { //iterate over class methods
if (method.getAccess()!=AS_public) continue;//handle public methods
const std::string name = method.getName();
auto iter = renames.find(name); //if no renaming, use original name
std::string newName = iter == renames.end() ? name:iter->second;
AST* actuals=nullptr;//AST of adapted call actuals, starts empty
const ast::Formals* formals = method.formals();
for (auto& formal:formals) //iterate formals to create actuals list
actuals = .<.~actuals, .~(meta::id(formal.getName()))>.

AST* call = MakeCall(meta::id(name),actuals);//make proper call AST
const ast::Type* retType = method.getReturnType();
//return the adapted call result for non-void functions
AST* body = retType->isVoidType() ? call : .<return .~call;>.;
AST* newMethod = //full AST for the adapted method
.<typename .~retType .~(meta::id(newName)) (.~formals){.~body;}>.;

methods = .<.~methods, .~newMethod>.; //merge with previous methods
}
return MakeClass(newId, methods); //make the proper class AST

}
virtual AST* MakeCall(AST* name, AST* actuals) const = 0;
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virtual AST* MakeClass(AST* newId, AST* methods) const = 0;
Adapter(const ast::ClassDecl& Class) : Class(Class) {}

};
.@class AdapterByDelegation : public Adapter {//pattern implementation
public: //using delegation
AST* MakeCall(AST* name, AST* actuals) const override

{ return .<this->instance..~name)(.~actuals)>.; }
AST* MakeClass(AST* newId, AST* methods) const override {

AST* classId = meta::id(Class.getName());
return .< class .~newId { //new class based on adapted methods AST

typename .~classId* instance; //adapted instance
public: .~methods; //insert all adapted methods
typename .~newId (typename .~classId* o) : instance(o){}

}; >.; //constructor with the adapted instance as argument
}
AdapterByDelegation(const ast::ClassDecl& Class) : Adapter(Class) {}

};
.@class AdapterBySubclassing : public Adapter{//pattern implementation
public: //using subclassing
AST* MakeCall(AST* name, AST* actuals) const override

{ return .<.~(meta::id(Class.getName()))::.~name)(.~actuals)>.; }
AST* MakeClass(AST* newId, AST* methods) const override {

AST* classId = meta::id(Class.getName());
return .<class .~newId : .~classId { public: .~methods; }; >.;

}
AdapterBySubclassing(const ast::ClassDecl& Class) : Adapter(Class){}

};
class Window { //runtime class to be adapted

public: int Draw (DC& dc) {/*...*/}
void SetWholeScreen (void) {/*...*/}

};
.&Adapter::AdapterMap renames{ {"SetWholeScreen", "Maximize"} };
.&const ast::ClassDecl& C = *meta::getClassDecl("Window");
.&Adapter* adapter1 = new AdapterByDelegation(C);//create a generator
.!(adapter1->adapt(.<typename WindowAdapter1>., renames));//generates:
// class WindowAdapter1 {
// Window* instance;
// public: int Draw (DC& dc) { return this->instance->Draw(dc); }
// void Maximize (void) { this->instance->SetWholeScreen(); }
// WindowAdapter(Window* o) : instance(o) {}
// };
.&Adapter* adapter2 = new AdapterBySubclassing(C);//create a generator
.!(adapter2->adapt(.<typename WindowAdapter2>., renames));//generates:
// class WindowAdapter2 : Window {
// public: int Draw (DC& dc) { return Window::Draw(dc); }
// void Maximize (void) { Window::SetWholeScreen(); }
// };
.&delete adapter1; //memory management in stages as in normal programs
.&delete adapter2; //memory management in stages as in normal programs
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