
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Implementation of
LMNtal Model Checkers:

a Metaprogramming Approach
Yutaro Tsunekawaa Taichi Tomiokaa Kazunori Uedaa

a. Dept. of Computer Science and Engineering, Waseda University

Abstract
LMNtal is a modeling language based on hierarchical graph rewriting,

and its implementation SLIM features state space search and an LTL
model checker. Several variations and extensions of the SLIM have been
developed, and all of them achieve their functionalities by modifying SLIM
written in C. If a model checker is implemented in the modeling language
itself, it should be easy to develop prototypes of various model checkers
without changing the base implementation of the model checker. This
approach is called metaprogramming which has been taken extensively in
Lisp and Prolog communities.

In this paper, we design a framework for implementing extendable
model checkers. First, we define first-class rewrite rules to extend a mod-
eling language. Second, we design an API to operate on the states of
programs. These features enable programmers to handle state transition
graphs as first-class objects and implement diverse variants of a model
checker without changing SLIM. We demonstrate it by implementing an
LTL model checker and its variant and a CTL model checker. Furthermore,
we show how easy it is to extend these model checkers in our framework by
extending the CTL model checker to handle fairness constraints. The over-
head of metainterpretation is around an order of magnitude or less. All
these results demonstrate the viability of the resulting framework based
on meta-interpreters that handle explicit state space in a flexible manner.

Keywords Model Checkers, Meta-Interpreters, Graph Rewriting, State-
space Search

1 Introduction
A graph rewriting system consists of graphs and graph rewrite rules. Graph rewriting
systems allow us to model various state transition systems with their highly expressive
data structures that subsume lists, trees and multisets. For instance, they allow us

Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda. Implementation of LMNtal Model Checkers: a
Metaprogramming Approach. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND
4.0). In Journal of Object Technology, vol. 17, no. 1, 2018, pages 1:1–28.
doi:10.5381/jot.2018.17.1.a1

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2018.17.1.a1
http://dx.doi.org/10.5381/jot.2018.17.1.a1

2 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

to model concurrent systems whose configurations are made up of dynamically recon-
figurable network of processes. Some graph rewriting tools provide model checkers to
explore the state space of nondeterministic (and not necessarily confluent) rewriting
systems. Examples include Groove [Ren03] and SLIM [GHU11][UAH+09] (standing
for Slim Lmntal IMplementation), of which the latter uses LMNtal [Ued09] as a mod-
eling language.

There are different model checkers depending on transition systems and temporal
logics used to describe system properties: LTL (Linear-time Temporal Logic) model
checking for discrete transition systems, TCTL (Timed Computation Tree Logic)
model checking for timed automata, PCTL (Probabilistic CTL) model checking for
Markov decision processes, and so on. Indeed, several variations and extensions of
the SLIM model checker have been developed, for example by introducing real-time
model checking to SLIM. However, all those extensions were done by modifying and
extending SLIM which is a complex program with fifty thousand lines of C code. It
is not easy to change complicated and large software such as model checkers, which
has been an obstacle to the rapid prototyping of new model checkers.

In programming languages such as Lisp and Prolog, a metaprogramming approach
has been taken to change the syntax or the semantics of those languages without
modifying their implementations [Bra11]. Such a metaprogramming approach is ac-
complished by implementing and modifying a meta-interpreter of the language. It
enables those languages to provide prototypes of other experimental programming
languages or to add domain-specific features. For example, the initial implementa-
tion of Erlang, a fine-grained concurrent programming language, was developed from
a meta-interpreter of Prolog [Arm96].

If a program in a programming language can be expressed as first-class data struc-
ture and access the functionalities of the implementation, it is easy for programmers
to create variants of the interpreted language by implementing and modifying a meta-
interpreter. However, such a meta-interpreter cannot readily evolve into model check-
ers because it usually does not treat nondeterministic state transitions of programs
as first-class.

Our goal is to add the ability to handle state transitions of LMNtal programs to
LMNtal so that state space search and state space construction strategies for various
model checking algorithms can be explicitly specified in high-level languages. Fur-
thermore, by making state transitions explicit, one can attach additional information
to individual states and compare different states for applications involving heuristic
search. We first designed and implemented (i) rewrite rules that can be treated as
first-class data structures and (ii) API to use SLIM’s basic functionalities of operat-
ing on model states. To demonstrate this ability of state handling, we implemented
prototype model checkers of LMNtal in LMNtal. We show first-class rewrite rules
and API that enable programmers to operate on model states of LMNtal programs.
We also discuss implementations of model checkers in LMNtal using the API. The
results indicate a framework that is sufficient for a meta-interpreter to explore the
state space of systems.

This paper extends our results presented at the META’16 workshop [TTU16].
First, we redesigned and reimplemented the API to access and manipulate state space
to ensure better performance and computational complexity. Second, we evaluated
the performance of state space construction. Third, we experimented on the extension
of model checkers based on meta-interpreters. The source code of all the programs
described in this paper is available at https://github.com/lmntal/McLMNtal.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 3

prove(true).
prove((Goal1, Goal2)) :- prove(Goal1), prove(Goal2).
prove(Goal) :- clause(Goal, Body), prove(Body).

Figure 1 – Simple big-step meta-interpreter in Prolog

(Process) P ::= 0 | p(X1, . . . , Xm) (m ≥ 0) | P, P | {P} | T:-T
(Template) T ::= 0 | p(X1, . . . , Xm) (m ≥ 0) | T, T | {T} | T:-T | @p | $p

Figure 2 – Syntax of LMNtal

1.1 Metaprogramming
In this paper, metaprogramming means tools and techniques for changing the syntax
and the semantics of a language without modifying the language’s implementation.
Languages for symbolic computation, such as Lisp and Prolog, have promoted this
metaprogramming approach conventionally. This approach is used to implement a
prototype of a new language or features of the language adapted for a specific problem,
as will be discussed in further detail in Section 2.1.

As an example of metaprogramming, Fig. 1 shows a simple meta-interpreter of
Prolog based on big-step semantics. It is well-known that, by modifying the meta-
interpreter, we can modify the operational semantics of the interpreted language.
For example, we can easily modify the above interpreter to construct and return
proof trees, and a meta-interpreter based on small-step semantics to implement an
interpreter that enables tracing execution.

Prolog meta-interpreters as shown in Fig. 1 enumerate reachable final states by
exploring all the execution paths. On the other hand, they handle states explored
in different branches of nondeterministic search independently and cannot construct
the set of states or final results as first-class values. This is exactly why so-called
metapredicates such as findall are provided to collect information from otherwise
independent search paths.

1.2 LMNtal
The modeling language we use is a rule-based graph rewriting language LMNtal

[Ued09] (and its extension HyperLMNtal [UO12]; we call both of them LMNtal in
this paper), which we will describe briefly in this section.

An LMNtal program is composed of four elements: atoms, links, membranes and
rewrite rules. Atoms, links, and membranes constitute hierarchical graphs which are a
basic data structure in LMNtal. Intuitively, atoms and links correspond to nodes and
(undirected) edges in graph theory. Membranes group atoms and form a hierarchical
structure. A rewrite rule is made of a left-hand side (LHS) and a right-hand side
(RHS).

Figure 2 shows the syntax of LMNtal. P , called a process reflecting the view of
LMNtal as a model of concurrency, is either of the following: 0 is an empty process;
p(X1, ..., Xm) is an m-ary atom with m totally ordered links; P, P is called a molecule
which forms a multiset of processes; {P} is called a cell which groups the process P

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

4 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

with a membrane {}; and T:-T is a rewrite rule that rewrites a graph matching the
LHS template into the RHS template.

An atom name begins with lowercase letters and numbers, or it may be a single-
quoted string, while a link name begins with uppercase letters and represents either
end of the link. Links occurring just once in a process are called free links, and links
occurring exactly twice are called local links. If a link name is prefixed by “!”, it
represents an end of a hyperlink that may have an arbitrary number of endpoints.

T is called a process template and may occur in the LHS and the RHS of a rewrite
rule. Templates may contain a rule context @p and a process context $p in addition to
atoms, links, membranes and rewrite rules. A rule context matches all rewrite rules
in a membrane, while a process context matches all processes that are not rewrite
rules and are not explicitly specified in the membrane it belongs to. For instance,
{a(X),$p[],@q} stands for a cell containing an atom a(X), zero or more other atoms
with no free links (matched by $p[], where the [] stands for the absence of free
links), and zero or more rules (matched by @q). Both contexts and links are sort of
“variables,” but they play very different roles: Contexts act as wildcards for rules and
processes, while links represent graph edges.

LMNtal provides a predefined infix binary atom name = called a connector. An
atom X=Y means that the link X and the link Y are interconnected. This intercon-
nection is handled as structural congruence (i.e., 0-step rewriting); for instance, the
process p(X),q(Y),X=Y is equivalent to p(X),q(X).

For notational convenience, LMNtal provides the following syntactic scheme: Writ-
ing an atom p without its final link instead of the nth link of an atom q means that
there is a link between the nth link of q and the final link of p. Using this syntax, a
process f(X,Y),3(X) can be written as f(3,Y) by embedding the unary atom 3 to
the first argument of f. Also, from the predefined semantics of the connector, the
above process is equivalent to Y=Z,f(X,Z),3(X), to which we can apply the above
rule twice to obtain Y=f(3) by embedding 3 to f and f to the second argument of
=. This form is frequently used to represent graphs representing terms and function
calls, where the left-hand side stands for a link representing the whole term or the
result of a call. It is worth noting that numbers in LMNtal are represented as unary
atoms as the above 3(X) which is also written as X=3. Lists are represented using a
Prolog-like syntax; for instance, L=[H|T] is a ternary cons atom with the head H, the
tail T, and the link L representing the whole atom. The form p({...}) stands for a
graph p(X), {’+’(X), ...}, where a unary atom ’+’(X) is used to refer to the cell
from outside.

There are several extensions of LMNtal: typed process contexts and guarded rewrite
rules. Typed process contexts may occur in process templates and represent con-
straints on the forms of graphs. Guarded rewrite rules rewrite graphs only when
constraints specified in guards are satisfied. Constraints that can be specified in
guards include (in)equality constraints and type constraints.

For example, a program for the Euclidean algorithm can be written as follows:

n(20), n(8).
n($x), n($y) :- $x>$y | n($x-$y), n($y).

Here, the rule with the guard “$x>$y” is applied if there are subgraphs of the form
n($x) and n($y), where the typed process contexts $x and $y represent graphs rep-
resenting integer atoms and the value of the former is greater than the latter. The
$x-$y evaluates to an integer atom standing for the difference of the two values. Ap-

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 5

Figure 3 – State transition graph of five-disc Tower of Hanoi

plication of the rule is repeated until the arguments of the two unary atoms n becomes
the same.

Type constraints in guards include unary($x) which specifies that $x represents a
graph representing a unary atom and ground($x) which specifies that $x represents
a connected graph with a single free link.

Let us consider another example.

A=p([$x|T]), B=p([$y|S]) :- $x<$y | A=p(T), B=p([$x,$y|S])

The rule is applied if there are subgraphs of the form A=p([$x|T]) and B=p([$y|S])
and (the integer value represented by) $x is smaller than $y. In fact, the above rule
represent a single-rule program of the Tower of Hanoi. Given the initial graph

pegs(p([1,2,3,4,5,99]),p([99]),p([99])),

the above rule chooses two of the three available pegs, compares their top discs, and
moves the smaller disk to the other peg. As can be seen from both of the examples, the
data structure and the rewrite rules of LMNtal allow us to exploit the symmetry of the
problem: In the Euclidean algorithm example, the two numbers are indistinguishable
by their container names; in the Tower of Hanoi example, although the three pegs
are totally ordered, the above single rewrite rule covers three possible choices of the
two pegs. More examples in which symmetries are exploited will be discussed in
Section 4.1.3.

LMNtal has been used to describe diverse computational models with various
forms of concurrency and nondeterminism, including the (strong reduction) λ-calculus
and the π-calculus, as well as state transition systems from diverse areas, which are
included in our software distribution.1

1.3 SLIM: the model checker
SLIM is a model checker that takes a model described in LMNtal and a property
described as an LTL formula. It verifies whether the model satisfies the property or

1http://www.ueda.info.waseda.ac.jp/lmntal/ (portal site),
https://github.com/lmntal/ (source repository)

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

6 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

not. SLIM constructs a state transition graph whose states are hierarchical graphs
(henceforth we call them LMNtal graphs or simply graphs) and whose transitions are
applications of rewrite rules.

State transition graphs are constructed in a standard manner using a stack of
open states. Successor states are LMNtal graphs obtained from an original state by
applying a rewrite rule. In LMNtal, rewrite rules are applied nondeterministically
when multiple rewrite rules are applicable to the same graph or a single rewrite rule
is applicable to different subgraphs. SLIM computes successor states by applying
rewrite rules in all possible ways.

SLIM manages states with hash tables of which keys are hash values of gra-
phs [GHU11]. Since each state of a state transition graph is a graph, (hyper)graph
isomorphism checking is in general necessary to construct the state transition graph.
However, SLIM’s general graph isomorphism algorithm is invoked only when the hash
values conflict.

SLIM can also be used without LTL formulas, in which case SLIM explores the
whole state space and constructs a state transition graph. For instance, given the
Tower of Hanoi program described above, LaViT (LMNtal Visual Tool) invokes SLIM
and visualizes its state transition graph as shown in Fig. 3.

2 Frameworks for the metaprogramming approach
to model checking

In this section, we discuss a framework for constructing useful meta-interpreters, and
describe our design and implementation of the framework in LMNtal.

2.1 Useful meta-interpreters
Useful meta-interpreters should be easily modifiable and implemented. Although
meta-interpreters can be implemented in any Turing-complete programming languages,
the interpreters are not useful unless the size and the level of abstraction are appropri-
ate. Excessively complicated meta-interpreters cannot be modified easily, and exces-
sively simple meta-interpreters cannot be extended. For example, a meta-interpreter
of (a subset of) C could easily exceed 1000 lines of code (LOC), while that of Python
can be only one LOC using exec. In contrast, Prolog meta-interpreters are about 10
LOC, and Lisp meta-interpreters are about 100 LOC. They are at an appropriate
level of abstraction for the flexible modification of their functionalities.

Lisp and Prolog share two remarkable features. First, programs are expressed as
fundamental data structures of the language, which is called homoiconicity. Second,
the basic functionalities of the underlying implementation for program executions are
available to programmers. In Prolog, programs are expressed as terms and the func-
tionalities are available with clause and call, while in Lisp, programs are expressed
as lists and the functionalities are available with eval and apply.

We suggest an experimental framework to implement useful meta-interpreters in
LMNtal. First, we design and implement first-class rewrite rules to give LMNtal
homoiconicity. Second, we implement an API to access SLIM’s features that enable
LMNtal programs to execute LMNtal programs.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 7

• state_space.react_nd_set(RuleMem, GraphMem, RetRule, Ret)

• state_space.state_map_init(Ret)

• state_space.state_map_find(Map, {$key[]}, Res, Ret)

• state_space.state_map_find(Map, $key, Res, Ret)

Figure 4 – Syntax of the state space API

2.2 First-class rewrite rules
An LMNtal program is composed of (hierarchical) graphs and rewrite rules. If rewrite
rules are treated as graphs, the whole LMNtal program becomes first-class, i.e., it can
be created and manipulated by LMNtal programs. We introduced first-class rewrite
rules which are composed of graphs and behave like rewrite rules. A first-class rewrite
rule is defined as a graph with a ternary atom ’:-’

’:-’({Head }, {Guard }, {Body }),

where Head, Guard, and Body are processes other than rewrite rules. Such graphs
represent rewrite rules Head :- Guard | Body as first-class citizens. For example, a
first-class rule

’:-’({a(!X,!Y), b(!X), c(!Z)}, {}, {b(!W,!Y), c(!W), a(!Z)})

expresses the rewrite rule

a(X,Y), b(X), c(Z) :- b(W,Y), c(W), a(Z).

First-class rewrite rules do not belong to the syntactic category T :-T of ordinary
rules, but they act on processes just as the corresponding ordinary rules do. Further-
more, being first-class mean that they can be constructed and manipulated by rewrite
rules. This is achieved by dynamically compiling first-class rewrite rules to SLIM’s
abstract machine code and associating them in the membrane they belong to.

2.3 API to use SLIM’s internal functionalities
We designed and implemented an API that enables LMNtal programs to construct
state transition graphs of programs. It is shown in Fig. 4 and consists of four atoms
whose behavior is implemented using the foreign-language interface of SLIM to access
SLIM’s internal functionalities. The first one, state_space.react_nd_set, is to
compute possible destinations of nondeterministic state transition, and the rest are
member functions of the state_map collection for state management. All users have
to do is to import a library module state_space to use the API.

Each atom in Fig. 4 has links such as RetRule in order to return given rules. Such
links are necessary for later use of rules because, in LMNtal, data given as input to
API are consumed as resources unless they are explicitly returned through another
argument.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

8 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

2.3.1 state_space.react_nd_set
state_space.react_nd_set applies rewrite rules in a membrane RuleMem to a pro-
cess in a membrane GraphMem. It calculates all possible rewritings. After rewriting,
a list of rewritten processes is connected to Ret. If no possible rewritings exist, an
empty list is connected.

For example, state_space.react_nd_set rewrites a graph

state_space.react_nd_set({’:-’({a(!X)}, {}, {b(!X)})},
{a(1),a(2),a(3)},
retrule,
ret).

and the result is as follows:

retrule({’:-’({a(!X)}, {}, {b(!X)})}),
ret([{b(1),a(2),a(3)}, {a(1),b(2),a(3)}, {a(1),a(2),b(3)}]).

2.3.2 state_map collection
A state_map records a set of states, each represented as a membrane containing an
individual state, and assigns an ID to each state that is unique in the map. The unique
IDs act as handles of possibly complex LMNtal graphs and are used in representing
state transition graphs in an efficient manner.

We have two operations on this mapping: state_map_init and state_map_find.
state_map_init creates an empty state_map and returns it through Ret. state_map
_find returns different graphs depending on the type of the second argument: If the
second argument is a cell, this API returns the ID of the state through Res. If the
second argument is an integer atom expressing the ID of a state, the API returns the
cell associated with the ID through Res. Map must be connected to a state_map and
the state_map is returned through Ret .

For example, state_map_init and state_map_find behave as shown in the fol-
lowing rewriting steps:

state_map_find(state_map_init, {a(1),a(2),a(3)}, res, ret).
−→ state_map_find(<state_map>, {a(1),a(2),a(3)}, res, ret).
−→ res(13458), ret(<state_map>).

In the first step, state_map_init returns a state_map. Next, state_map_find
records the cell {a(1),a(2),a(3)} and returns its ID (say 13458) and a new state_map.

As described in the end of Section 1, computing an ID of an LMNtal graph ef-
ficiently is highly nontrivial and involves graph hashing and the checking of graph
isomorphism. The point of our state_map is that it makes these functionalities inside
SLIM available to LMNtal programmers without letting them re-implement those.
Technically, this is achieved by SLIM’s mechanism called special atoms. Like ordinary
unary atoms, special atoms can be created and passed around by links connected
to them, but have no atom names visible to programmers. Instead, they represent
abstract data and can be created and passed around in LMNtal programs only by
using foreign-language interface rather than ordinary rules.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 9

2.3.3 Design space of the APIs
We have introduced four operations in this section. These operations are mainly
used to construct state spaces in LMNtal. In our previous version [TTU16], we
introduced and used membrane.eq to check the isomorphism of two graphs for state
space construction, which was expressive enough but not necessarily efficient. In the
present version, we add state_map operations to access SLIM’s internal functionalities
of managing states in order to exploit various optimizations. Unlike membrane.eq to
compare two explicit graphs, the SLIM model checker checks the isomorphism of an
explicit graph and a graph encoded as a byte string and stored in state_map with
a hash value. The performance of our interpreter was improved without losing the
functionality of state space construction and management.

3 LMNtal meta-interpreters
Now we are ready to present an LMNtal meta-interpreter. An LMNtal meta-interpreter
constructs a state transition graph from an LMNtal program. We implemented LM-
Ntal meta-interpreters using first-class rewrite rules and the API described in Section
2.

3.1 Algorithm
State transition graphs are composed of nodes representing states and edges repre-
senting transitions between states. An LMNtal meta-interpreter constructs a state
transition graph from an LMNtal program. Algorithm 1 shows an algorithm for con-
structing state transition graphs. A state transition graph is represented as a pair of
a set of states S and a set of transitions T . At first, S contains only the initial state
s0 and T is an empty set. Stack is a stack of unexpanded states and contains only the
initial state in the beginning. The algorithm has inner and outer loops and constructs
state transition graphs by depth-first search. The first state on Stack is expanded
in every iteration of the outer loop. The function expand takes an unexpanded state
and returns the set of all possible transition destinations. The inner loop confirms
the freshness of newly expanded states and their transitions. New states are added
to S, and new transitions are added to T .

3.2 Implementation
The LMNtal meta-interpreter we have implemented works on an LMNtal program
and computes (i.e., rewrites it to) a state transition graph of the program. State
transition graphs represent all states and their transition relations generated by non-
deterministic execution of programs. Each state of an LMNtal program is an LMNtal
graph, while a state transition is the application of a rewrite rule to an LMNtal graph.

The input (i.e., initial form) of the LMNtal meta-interpreter is expressed by a
graph of the form:

Ret = run(RuleSet, Init).
RuleSet is connected to2 a cell containing first-class rewrite rules. Init is a cell con-
taining an initial state. Ret is a link to this run atom. The output (i.e., the final

2Henceforth we omit the phrase “connected to” when it is clear that the two entities are intercon-
nected by links.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

10 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

Algorithm 1 Constructing state transition graphs
S := {s0}; T := ∅; Stack := ∅
push s0 Stack
while Stack ̸= ∅ do

s := pop Stack
succ := expand(s)
for all s′ ∈ succ do

if s′ ̸∈ S then
S := S ∪ {s′}
T := T ∪ {(s, s′)}
push s′ Stack

else if (s, s′) ̸∈ T then
T := T ∪ {(s, s′)}

end if
end for

end while

form) of the LMNtal meta-interpreter is a state transition graph expressed as follows:

Ret = state_space(Init, Map, States, Transition)

Init is an atom expressing an ID of the initial state. Map is a state_map which maps
all states to IDs. States is a hash table of ids mapping to states. Transitions is a hash
table of pairs of ids expressing transitions. Ret is a reference to this state_space
atom.

States of an LMNtal program are graphs, but they are abstracted to IDs by
state_map. The abstraction of states enables LMNtal meta-interpreters to run more
efficiently with less memory. A transition between states is expressed as a graph
Ret = ’.’(From,To), where From is an ID of a graph expressing the source state
and To is an ID of a graph expressing the destination state. The hash table of state
transitions is used to remove multiple edges between nodes: our meta-interpreters
create minimal state transition graphs by removing duplication of transitions.

Figure 5 shows the source code of the LMNtal meta-interpreter, where each rule
is prefixed by a rule name and a @@.

The rules run and exp0 initialize an LMNtal meta-interpreter. These rules cre-
ate empty sets of states and of state transitions and a stack containing an initial
state, and initializes a state map. The rules exp and exp’ correspond to the outer
loop of Fig. 1. If the stack is non-empty, exp expands an unexpanded state by
react.nd_set; otherwise exp’ returns the computed state space, and the meta-
interpreter halts. The rules suc and suc’ correspond to the inner loop of Fig. 1.
If there is an unchecked transition destination s′ of a source state s, suc finds an ID
of s′ by state_space.state_map_find. Otherwise, suc’ breaks the inner loop. The
rules ns and ns’ check whether s′ is a new state. If s′ is new, ns adds s′ to the set
of states and adds the transition from s to s′ to the set of transitions. The rules nt
and nt’ check whether the transition from s to s′ is new. If the transition is new, nt
adds it to the set of transitions. We used LMNtal’s set library to manage states and
transitions. set.empty expresses an empty set. set.find looks up an element from
a set, and set.insert inserts an element to a set.

For example, suppose we apply the LMNtal meta-interpreter to the following

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 11

run @@ Ret = run(Rs, {$ini[]}):-
Ret = exp0(Rs, s(ID,{$ini[]}),

state_space.state_map_find(state_space.state_map_init, {$ini[]}, ID),
set.empty, set.empty).

exp0@@ Ret = exp0(RS, S0, Map, Ss, Ts), S0 = s($id,{$ini[]}) :- int($id) |
Ret = exp(RS, [s($id,{$ini[]})], Map, set.insert(Ss, $id), Ts), ini($id).

exp @@ Ret = exp(RS, S0, Map, Ss, Ts), S0 = [s($id,{$src[]})|Stk] :- int($id) |
Ret = suc(R, Stk, Exp, p($id,{$src[]}), Map, Ss, Ts),
Exp = state_space.react_nd_set(RS, {$src[]}, R).

exp’@@ Ret = exp({$rs[],@rs}, [], Map, Ss, Ts), ini(I) :-
Ret = state_space(I, Map, Ss, Ts).

suc @@ Ret = suc(RS, Stk, [{$dst[]}|Suc], Src, Map, Ss, Ts) :-
M = state_space.state_map_find(Map, {$dst[]}, ID),
Ret = ns0(RS, Stk, Suc, Src, p(ID,{$dst[]}), M, Ss, Ts).

suc’@@ Ret = suc(RS, Stk, [], p($id,{$src[]}), Map, Ss, Ts) :- int($id) |
Ret = exp(RS, Stk, Map, Ss, Ts).

ns0 @@ Ret = ns0(RS, Stk, Suc, Src, p($d,D), Map, Ss, Ts) :- int($d) |
Ret = ns(RS, Stk, Suc, Res, Src, p($d,D), Map, S, Ts),
S = set.find(Ss, $d, Res).

ns @@ Ret = ns(RS, Stk, Suc, some, p($s,Src), p($d,Dst), Map, Ss, Ts) :-
int($s), int($d) |
Ret = nt(RS, Stk, Suc, Res, p($s,Src), p($d,Dst), Map, Ss, T),
T = set.find(Ts, ’.’($s, $d), Res).

ns’ @@ Ret = ns(RS, Stk, Suc, none, p($s,Src), p($d,Dst), Map, Ss, Ts) :-
int($s), int($d) |
Ret = suc(RS, [s($d,Dst)|Stk], Suc, p($s,Src), Map, S, T),
S = set.insert(Ss, $d), T = set.insert(Ts, ’.’($s,$d)).

nt @@ Ret = nt(RS, Stk, Suc, some, Src, p($d, {$dst[]}), Map, Ss, Ts) :-
int($d) |
Ret = suc(RS, Stk, Suc, Src, Map, Ss, Ts).

nt’ @@ Ret = nt(RS, Stk, Suc, none, p($s,Src), p(D, {$dst[]}), Map, Ss, Ts) :-
int($s) |
Ret = suc(RS, Stk, Suc, p($s,Src), Map, Ss, set.insert(Ts, ’.’($s,D))).

Figure 5 – LMNtal meta-interpreter

graph.

ret = run({’:-’({a(!X)}, {}, {b(!X)})}, {a(1), a(2), a(3)}).

The resulting state space is obtained as an above-mentioned quadruple named
state_space. To manipulate the state space further, we can easily convert it into
concrete LMNtal processes using the following two rules:

Ret = state_space(I, M, S, T) :-
Ret = ss(I, M, set.to_list(S), set.to_list(T)).

Ret = ss(I, M, [$x|S], T) :- int($x) |
Ret = ss(I, state_space.state_map_find(M, $x, Res), S, T),
state($x, Res).

Applying these two rules to the result of the meta-interpreter, we obtain the
following:

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

12 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

Figure 6 – State transition graph rendered by SLIM and LaViT

Table 1 – The environment of experiments

CPU Intel Xeon E5-4620 v2
CPU frequency 2.6GHz
Memory 512 GiB

ret(ss(5056,<state_map>,[],
[[6336|6208],[5568|6208],[5440|6336],[5056|5312],[5056|4928],[5312|5696],
[5440|5568],[4928|5696],[5312|6336],[4928|5568],[5696|6208],[5056|5440]])).

state(5056,{a(1). a(2). a(3). }). state(5696,{a(3). b(1). b(2). }).
state(5312,{a(1). a(3). b(2). }). state(6336,{a(1). b(2). b(3). }).
state(4928,{a(2). a(3). b(1). }). state(5568,{a(2). b(1). b(3). }).
state(6208,{b(1). b(2). b(3). }). state(5440,{a(1). a(2). b(3). }).

This is a first-class version of the state transition graph generated and rendered
by SLIM and LaViT shown in Fig. 6.

3.3 Performance
We describe the performance of the LMNtal meta-interpreter for state space construc-
tion, which is an important measure of our model checkers described in Section 4. We
experimented with the computer shown in Table 1. Figure 7 shows the graphs com-
paring the LMNtal meta-interpreter with SLIM for the following four examples with
varying parameters.

• Dining Philosophers Problem,

• Tower of Hanoi,

• Euclidean Algorithm, and

• Sort.

The Dining Philosophers Problem is a model with a deadlock state in which all
philosophers keep waiting for their left forks holding their right forks. Sort is a one-
rule program

L = [$x,$y|L2] :- $x > $y | L = [$y,$x|L2].

which nondeterministically finds and swaps unordered adjacent elements anywhere in
a list of integers. Note that the link L in the rule may match any link at the top

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 13

or inside of a list as long as the link is followed by at least two elements. After the
exchanges, the list is sorted in ascending order.

We further measured the performance of 20 more problem instances, which are
shown in Table 2. The execution time of each instance was measured three times.
The models were written as briefly and intuitively as possible rather than keeping
efficient execution in mind.

The results show that the LMNtal meta-interpreter runs within an order of mag-
nitude compared to SLIM for those instances except for one instance whose memory
footprint is large. To further analyze the overhead of our interpreter, we show in Fig. 8
breakdown of the total execution time into that of the interpreter core and of the API
(left) and the breakdown of the execution time of the API (right), using the example
of the Tower of Hanoi. The breakdown shown in the two graphs in Fig. 8 indicates
that the interpretation overhead and the API overhead are more or less balanced and
that the time of state expansion and the time of equivalence checking is more or less
balanced; i.e., there is no single bottleneck whose removal would improve the overall
performance significantly. Nonetheless, our current implementation of the callback
interface is not necessarily lightweight and there is room for further improvement.

Figure 7 – Comparison of the running times of the LMNtal meta-interpreter with SLIM

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

14 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

Table 2 – Performance of state space construction

Instance Name States Time(s) (SLIM) Time(s) (Meta) Ratio
Knight_4 1657 0.06 0.28 4.66
Knight_5 508493 15.42 137.31 8.90
Peterson_2 115 0.03 0.06 2.00
Peterson_3 7779 0.70 5.17 7.38
PhiM_5 1370 0.22 1.68 7.68
PhiM_6 5785 1.12 9.21 8.22
PhiM_7 24484 5.96 52.57 8.82
PhiM_8 103691 31.25 308.90 9.88
Qlock_5 657 0.07 0.35 5.00
Qlock_6 3920 0.34 2.33 6.85
Qlock_7 27407 2.55 19.39 7.60
Qlock_8 219210 22.59 203.27 8.99
Queen_8 2057 0.09 0.46 5.11
Queen_9 8394 0.32 1.85 5.78
Queen_10 35539 1.37 7.98 5.82
Queen_11 166926 6.56 46.46 7.08
Rabbit_10 22052 1.20 4.75 3.95
Rabbit_12 92020 5.63 23.77 4.22
Rabbit_14 377234 25.36 159.66 6.29
Rabbit_16 1531664 110.04 1570.23 14.26

3.4 Extensions of the LMNtal meta-interpreter
3.4.1 User-defined Structural Congruence
We can construct an implementation of a semantically extended version of LMNtal
with a meta-interpreter. We introduce an interpreter that allows users to define struc-
tural congruences. This interpreter runs in simulation (as opposed to nondeterministic
search) mode: it chooses and applies one applicable rule in every step and halts if
there are no applicable rules. Assume an LMNtal program that reduces a polynomial
such as 2x + x2 + 3x + 1. If we express a term AxB as term(A,B) the polynomial
above could be represented as

ans = add(add(add(term(2,1), term(1,2)), term(3,1)), term(1,0))

Now we can write a rule to calculate the sum:

R = add(term($a,$x), term($b,$y)) :- $x=:=$y | R = term($a+$b,$x).

However, this rule does not rewrite the polynomial because term(2,1) and term(3,1)
are not siblings in the expression tree. We now define associativity and commutativity
of addition as structural congruences:

(Assoc) R = add(add(A, B), C) ≡ R = add(A, add(B, C))
(Comm) R = add(A, B) ≡ R = add(B, A)

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 15

Figure 8 – Breakdown of execution time

These congruences enable the following computation:

ans = add(add(add(term(2,1), term(1,2)), term(3,1)), term(1,0))
≡ ans = add(add(add(term(1,2), term(2,1)), term(3,1)), term(1,0)) (Comm)
≡ ans = add(add(term(1,2), add(term(2,1), term(3,1))), term(1,0)) (Assoc)
→ ans = add(add(term(1,2), term(5,1)), term(1,0))

Our implementation achieves this in the following manner. First, the implementation
expands each of (Comm) and (Assoc) into rewrite rules from the LHS to the RHS
and from the RHS to the LHS. Second, with these rules from structural congruences,
the implementation constructs a state space starting from the current state. Third,
the implementation finds a state from the states space and applies an ordinary rule
to the state. These steps are repeated while there is an applicable rule.

Although rewriting with associativity and commutativity deserves optimized dedi-
cated implementation, we took this example to illustrate a straightforward implemen-
tation applicable to any laws giving finite sets of equivalent graphs. Our interpreter
is made of 26 rules.

3.4.2 Introducing A* Search into State Space Exploration
We describe another variant of an LMNtal meta-interpreter. Assume that there is
a goal state and we want to obtain the shortest path to the goal from the initial
state. Applications of a model checker in this direction are found in the field of
automated planning. In order to perform A* search to obtain the shortest path,
our new interpreter takes a heuristic function, rewrite rules with costs, and an initial
state. A heuristic function consists of rewrite rules which calculate the score of a state.
The cost of state transitions is obtained from the rewrite rules on state expansion.
The interpreter checks an equivalence of states using state_map API. Supplemental
information such as the score and the accumulated cost of states is associated with
the ID of a state. The main part of our implementation consists of 21 rewrite rules.

4 LMNtal model checkers
In this section, We describe an LTL model checker and a CTL model checker that use
the API to construct state transition graphs.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

16 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

4.1 LTL model checker
LTL model checking is a method to verify properties described in linear-time temporal
logic (LTL) on state transition systems. LTL model checkers take LTL formulae
and model descriptions as inputs. They return true if a model satisfies the LTL
formula; otherwise, they return a sequence of states that violates the LTL formula
as a counterexample. When LTL model checkers verify whether a model satisfies
an LTL formula p, they search exhaustively a sequence of states which satisfies ¬p.
An LTL formula p semantically corresponds to a set of allowed infinite sequences of
non-temporal propositions p0, p1, A sequence of states π = s0, s1, . . . satisfies an
LTL formula p, denoted π |= p, iff there is a path p0, p1, . . . such that sk |= pk holds
for all k ≥ 0. State transition graphs explored by a model checker are obtained by
synthesizing a model and a Büchi automaton derived from an LTL formula. Such a
Büchi automaton satisfies the following property: given an LTL formula p, there is
an infinite sequence π including accepting states such that π |= p holds.

An LTL formula is used to specify temporal properties [CGP99]. Figure 9 shows
a graph representation for LTL formulae. LTL formulae have temporal operators □
(globally), ♢ (in the future) and U (until). In Fig. 9, these operators are defined as
g, f and u. A formula f(ϕ) means that ϕ holds at some state in the future; g(ϕ)
means that ϕ holds at every state in the execution path; u(ϕ1,ϕ2) means that ϕ1

holds until ϕ2 holds; and x(ϕ) means that ϕ holds at the next state. There exists a
Büchi automaton corresponding to an LTL formula.

Our implementation of an LTL model checker takes (i) a model description as first-
class rewrite rules, (ii) an initial state, and (iii) a Büchi automaton derived from the
negation of an LTL formula represented as a hierarchical graph. The model checker
generates an atom no_acceptance_cycle_exists when the model satisfies the LTL
formula. Otherwise, it generates a list of states leading to the violation of p.

4.1.1 Property description
We explain how we express a Büchi automaton in LMNtal before we describe our LTL
model checker. Each state of a Büchi automaton is represented by a unique integer,
and a Büchi automaton is expressed using a 5-ary atom

Ret = ba(S,Delta,S0,F)

where S is a list of integer atoms representing a set of states; Delta is a list of atoms
Ret = d(From,Prop,To) representing a set of transition relations; S0 is an integer
atom representing the initial state; F is a list of integer atoms representing a set of
accepting states.

An atom Ret = d(From,Prop,To) expresses a transition relation that a state
From can be rewritten to a state To if a proposition Prop is satisfied. It is a transition
augmented with additional information about the requirements. From and To are
integer atoms representing states, and Prop is a graph that represents a proposition
defined in Fig. 10.

Predicate in Fig. 10 is a hyperlink to a graph expressing the property of each state,
which is expressed as a ternary atom

Ret = pred({Head }, {Guard }).

A state satisfies a predicate Ret = pred({Head },{Guard }) if the state has a subgraph
that matches Head and satisfies the constraints Guard. When there are multiple copies

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 17

(LTL Formula) ϕ ::=

true | false | Predicate | not(ϕ) | or(ϕ1,ϕ2)

| and(ϕ1,ϕ2) | imply(ϕ1,ϕ2) | g(ϕ) | f(ϕ) | x(ϕ) | u(ϕ1,ϕ2)

Figure 9 – Graph representation for LTL formulae

(Proposition) P ::=

true | false | Predicate | not(P) | and(P1,P2) | or(P1,P2) | imply(P1,P2)

Figure 10 – Graph representation for propositions

of a predicate, the predicate is shared using a hyperlink instead of a normal link Ret.
The API state_space.react_nd_set described in Section 2.3 is used to check if the
predicate is satisfied: if a rewrite rule Head:-Guard|Head is applicable to a state,
the state satisfies the predicate Ret = pred({Head },{Guard }).

For example, let a predicate P be “a process a(X) exists” and Q be “a process
b(Y) exists.” A proposition P ∧ (¬Q∨P) is expressed by the graph shown in Fig. 11,
where circles are atoms, rectangles are membranes, solid lines are links and broken
lines are hyperlinks. Arrows around circles illustrate the order of links.

4.1.2 Implementation
We have implemented an LTL model checker in LMNtal. The algorithm used is based
on Nested Depth-First Search [CVWY91].

The input of our LTL model checker is expressed in an atom mc as follows:

Ret = mc(A,Rs,Init)

A is a Büchi automaton given as a ba atom described in Section 4.1.1; Rs is a cell
containing first-class rewrite rules; and Init is a cell containing an initial state. If the
model does not satisfy the specification expressed in the ba atom, our LTL model

Figure 11 – Hierarchical graph representation of proposition P ∧ (¬Q ∨ P), where P stands
for “a process a(X) exists” and Q stands for “a process b(Y) exists.”

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

18 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

dfs1, stack1([[’.’($s,$q)|T]|T0]), hash1(H0), on_stack(H1) :- int($s), int($q) |
dfs1_foreach(succ($s, $q)), stack1([[’.’($s, $q)|T]|T0]),
hash1(set.insert(H0, ’.’($s, $q))), on_stack(set.insert(H1,’.’($s,$q))), st_([]).

dfs1, stack1([[], [’.’($s,$q)|T]|T0]) :- int($s), int($q) |
dfs1_acc($q, [], f), stack1([[’.’($s,$q)|T]|T0]).

dfs1, stack1([[]]) :-
no_acceptance_cycle_exists.

dfs1_acc(t), stack1([[’.’($s,$q)|T]|T0]):- int($s), int($q) |
dfs2, stack2([[’.’($s,$q)]]), stack1([[’.’($s,$q)|T]|T0]).

dfs1_acc(f) :- dfs1_pop.

dfs1_pop, stack1([[’.’($s,$q)|T]|T0]), on_stack(H) :- int($s),int($q) |
dfs1, stack1([T|T0]), on_stack(set.erase(H,’.’($s,$q))).

dfs1_foreach([’.’($s,$q)|T]), hash1(H0) :- int($s), int($q) |
dfs1_foreach_inner([’.’($s,$q)|T],Res), hash1(set.find(H0, ’.’($s,$q), Res)).

dfs1_foreach([]), st_(St_), stack1(St) :-
dfs1, stack1([St_|St]).

dfs1_foreach_inner([’.’($s,$q)|T], none), st_(St) :- int($s), int($q) |
dfs1_foreach(T), st_([’.’($s,$q)|St]).

dfs1_foreach_inner([’.’($s,$q)|T], some) :- int($s), int($q) |
dfs1_foreach(T).

Figure 12 – First DFS of the LTL model checker

checker outputs a counterexample:

counterexample(Path)

where Path is a list of states leading to an acceptance cycle which is a cycle with
accepting states. Otherwise, the output is an atom no_acceptance_cycle_exists.
A state of state transition graphs explored by our LTL model checker is expressed as
a graph Ret = ’.’(Sm,Sa), where Sm is a unique id of the model’s state and Sa is
a unique id of the automaton’s state.

We show the core part of the LTL model checker implemented in LMNtal in Fig. 12
and Fig. 13. The whole LTL model checker including the rest of the rules consists
of 72 rewrite rules. Considering that each state is a combination of a model state
and an automaton state and that the search algorithm is more complicated than the
standard interpreter shown in Section 3.2, this size seems to be quite reasonable for
a model checker.

Nested DFS takes advantage of the post-order traversal for detecting an acceptance
cycle and creating a counterexample. We use a somewhat tricky data structure to
implement post-order Nested DFS in LMNtal. Each of stack1 and stack2 holds a
stack containing lists of unexpanded successors. If the top of the stack is an empty list,
all of the descendants of a node have been visited in post-order. Otherwise, rewrite
rules with succ expand the head node of the list. Each of hash1 and hash2 holds
a set of visited nodes for the first DFS and the second DFS, respectively. on_stack

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 19

dfs2, stack2([[’.’($s,$q)|T]|T0]), hash2(H0) :- int($s), int($q) |
dfs2_foreach(succ($s,$q)),stack2([[’.’($s,$q)|T]|T0]),
hash2(set.insert(H0, ’.’($s,$q))), st_([]).

dfs2, stack2([[]]), :- dfs1_pop.

dfs2, stack2([[], [’.’($s,$q)|T]|T0]) :- int($s), int($q) |
dfs2, stack2([T|T0]).

dfs2_foreach([’.’($s,$q)|T]), on_stack(H) :- int($s), int($q) |
dfs2_foreach_inner0([’.’($s,$q)|T],Res),on_stack(set.find(H,’.’($s,$q),Res)).

dfs2_foreach([]), st_(St_), stack2(St) :-
dfs2, stack2([St_|St]).

dfs2_foreach_inner0(S, none) :- dfs2_foreach2(S).

dfs2_foreach_inner0([’.’($s,$q)|$g], some) :- int($s), int($q), ground($g) |
terminate0([]).

dfs2_foreach2([’.’($s,$q)|T]), hash2(H0) :- int($s), int($q) |
dfs2_foreach_inner([’.’($s,$q)|T],Res), hash2(set.find(H0, ’.’($s,$q), Res)).

dfs2_foreach_inner([’.’($s,$q)|T], none), st_(St) :- int($s), int($q) |
dfs2_foreach(T), st_([’.’($s,$q)|St]).

dfs2_foreach_inner([’.’($s,$q)|T], some) :- int($s), int($q) |
dfs2_foreach(T).

Figure 13 – Second DFS of the LTL model checker

holds a set of nodes on the searching path of the first DFS. A cycle is found when the
second DFS visits a node in on_stack.

Our LTL model checker is composed of rewrite rules with an atom dfs1 and with
dfs2. The former constructs a state transition graph until an accepting state is vis-
ited in post-order, and the latter searches a cycle through a reachable accepting state.
The successors are obtained by synthesizing both the successors of model states and
of automaton states. The rewrite rules with succ (not shown in Fig. 12 and Fig. 13)
calculate the successors using our state space API. In these rules, state_map and
state_space.react_nd_set are used to obtain the successors. The API state_space
.react_nd_set is used to obtain the successors of model states and to check the propo-
sitions of Büchi automata. The successors of automaton states are obtained if there
is a transition in the automaton and the transition source satisfies the proposition for
the transition. The states are managed with state_map in the same way as shown in
Section 3.2.

Table 3 shows the execution time of SLIM and the LTL model checker implemented
in LMNtal. LTL formulae used in experiments include safety, recurrence and response
properties. For instances with no acceptance cycles (i.e., those which explore the whole
state space), the ratio is quite constant, while other cases see big variance in their
performance compared to that of SLIM. This is because nested depth-first search of
the two model checkers may not necessarily explore the state space exactly in the
same order, finding different counterexamples.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

20 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

Table 3 – Performance of the LTL model checkers

Instance Name Results States Time(s) States Time(s) Ratio
(SLIM) (Meta)

Byzantine_10 counterexample 557 0.11 1434 4.35 39.5
Byzantine_11 counterexample 688 0.12 1918 6.95 57.9
Byzantine_12 counterexample 833 0.14 2500 12.08 86.3
Mutex_10 no accepting cycle 6144 0.82 6144 9.81 11.96
Mutex_11 no accepting cycle 13312 1.83 13312 23.38 12.77
Mutex_12 no accepting cycle 28672 4.71 28672 56.67 12.03
PhiM_5 counterexample 332 0.07 65 0.03 0.43
PhiM_6 counterexample 665 0.10 93 0.04 0.40
PhiM_7 counterexample 2073 0.20 126 0.05 0.25
Rabbit_8 counterexample 1612 0.15 1457 1.71 11.4
Rabbit_9 counterexample 3268 0.25 2857 3.63 14.54
Rabbit_10 counterexample 6839 0.50 5831 8.77 17.54

// system rules
’:-’({p_thinking(!Lx0, !Rx0), fork_free(!Rx1, !Lx0)},

{},
{p_one_fork(!Lx0, !Rx0), fork_used(!Rx1, !Lx0)}),

’:-’({p_one_fork(!Lxx0, !Rxx0), fork_used(!Rxx1, !Lxx0), fork_free(!Rxx0, !Lxx1)},
{},
{p_eating(!Lxx0, !Rxx0), fork_used(!Rxx1, !Lxx0), fork_used(!Rxx0, !Lxx1)}),

’:-’({p_eating(!Lxxx0, !Rxxx0), fork_used(!Rxxx0, !Lxxx1), fork_used(!Rxxx1, !Lxxx0)},
{},
{p_thinking(!Lxxx0, !Rxxx0), fork_free(!Rxxx0, !Lxxx1), fork_free(!Rxxx1, !Lxxx0)}),

// init state
p_thinking(L0, R0), fork_free(R0, L1).
p_thinking(L1, R1), fork_free(R1, L2).
p_thinking(L2, R2), fork_free(R2, L0).

Figure 14 – Model of dining philosophers problem

4.1.3 Example: Dining Philosophers Problem
The Dining Philosophers problem is about the synchronization of processes. Philoso-
phers spend their lives thinking and eating, sitting around a table. There is a fork
between each pair of adjacent philosophers. A philosopher holds two forks, first on
the left, then on the right. A philosopher with two forks can start eating. After
eating, the philosopher puts the forks back on the table. We verify whether the sit-
uation “one of the philosophers eats” happens infinitely often. Figure 14 shows a
model description as first-class rewrite rules and the initial state as a graph. Atoms
in this graph correspond to philosophers and forks. All these atoms and links form
a circular graph. In this way, LMNtal nicely manages the symmetry of the model;
that is, LMNtal identifies symmetric variants of graphs as isomorphic and reduces
the size of the state transition graph of the symmetric model. In the case of five
Dining Philosophers, the resulting state space consists of 18 states if the philosophers
are indistinguishable from each other, but once each philosopher is given a name, the
number of states becomes 82.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 21

counterexample([
’.’({p_thinking(fork_free(p_thinking(fork_free(p_thinking(fork_free(L8))))),L8)}, 0),
’.’({p_thinking(fork_free(p_one_fork(fork_used(p_thinking(fork_free(L9))))),L9)}, 1),
’.’({p_thinking(fork_free(p_one_fork(fork_used(p_one_fork(fork_used(L10))))),L10)},1),
’.’({p_one_fork(fork_used(p_one_fork(fork_used(p_one_fork(fork_used(L11))))),L11)},1),
’.’({p_one_fork(fork_used(p_one_fork(fork_used(p_one_fork(fork_used(L12))))),L12)},1)

])

Figure 15 – Counterexample of the dining philosophers problem

Let a proposition p represent the existence of a process p_eating(L,R). An LTL
formula □♢p expresses the property that the situation “one of the philosophers eats”
happens infinitely often in this model. The negation of □♢p translates to the following
graph representation of a Büchi automaton

ba([0, 1],
[d(0,true,0), d(0,not(!P),1), d(1,not(!P),1)],
0,
[1]),

pred({p_eating(!X,!Y)}, {}, !P).

When the LTL model checker runs on the model in Fig. 14 and a graph representing
the LTL formula □♢p, it returns a counterexample that every philosopher holds one
fork, i.e., a situation of deadlock shown in Fig. 15.

4.1.4 Extension: Depth-Limited Search
We have adapted the LTL model checker in Fig. 12 and Fig. 13 into a depth-limited
version of Nested DFS. The depth of a state is defined as the minimal number of
transitions to reach it from the initial state. We add a depth parameter to the
elements of the stacks for Nested DFS (stack1 and stack2) and the sets for visited
nodes (hash1 and hash2). The depth values are incremented when expanding new
states and decremented when shorter paths to existing states are found. The new
state is expanded only if its depth is lower than a given depth limit. Otherwise, the
model checker merely stops the search of this path. The depth of a state is passed
from the first DFS loop to the second because the depth of a state must be consistent
through both of the loops. On the basis of the depth-limited search, we can also
obtain the iterative deepening depth-first search version of the LTL model checker.

4.2 CTL model checker
CTL model checking is a method to verify properties described in computation tree
logic (CTL) on state transition systems. CTL model checkers return true if the initial
state of a model is contained in a set of states that satisfy a given CTL formula.
Otherwise, they return false.

Figure 16 shows a graph representation for CTL formulae. A modal operator in
CTL formulae is a pair of a path quantifier E or A and an LTL-like temporal operator
F , G or U . E means that there exists a execution path satisfying a CTL formula,
while A means that a CTL formula holds for all execution paths. For example, EGϕ
specifies that there is a path of which all states satisfy ϕ.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

22 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

(CTL Formula) ϕ ::=

true | false | p(Predicate) | not(ϕ) | or(ϕ1,ϕ2) | and(ϕ1,ϕ2) | imply(ϕ1,ϕ2)

| ax(ϕ) | ex(ϕ) | ag(ϕ) | eg(ϕ) | af(ϕ) | ef(ϕ) | au(ϕ1,ϕ2) | eu(ϕ1,ϕ2)

Figure 16 – Graph representation for input CTL formulae

CTL model checking is achieved by the calculation of Sϕ, a set of states that satisfy
the input CTL formula ϕ. Sϕ can be computed inductively upon the structure of ϕ.
For example, let p be a proposition and ϕ be a CTL formula EX¬p. We first find
Sp = {s ∈ S | s |= p} from the set S of the model’s whole states. We next calculate
the complement of Sp, that is, a set S¬p. Finally, we find SEX¬p from S¬p as follows:

SEX¬p = {s ∈ S | there is a transition from s to s′ ∈ S¬p}.

4.2.1 Implementation
We implemented a CTL model checker for models described in LMNtal. The algo-
rithm described in [CE82] is the base of our CTL model checking algorithm. Our
implementation takes first-class rewrite rules and an initial state as a model descrip-
tion and takes a CTL formula as a specification. The input of the CTL model checker
is expressed by an atom

Ret = mc(ctl(Ctl), Rs, Init)

where Rs is a cell containing first-class rewrite rules; Init is a cell containing an initial
state; and Ctl is a graph expressing a CTL formula defined in Fig. 16.

We show the core part of the CTL model checker implemented in LMNtal in
Fig. 17. The CTL model checker was constructed as a natural extension of the meta-
interpreter described in Section 3.2. It consists of a total of 105 rewrite rules, of which
11 rules are the LMNtal meta-interpreter described in Fig. 5, and the remaining 94
rules are for computing sets of states satisfying individual CTL operators.

The rule finish checks whether an initial state belongs to a set of states that
satisfy the input CTL formula. If the initial state is contained in the set, our CTL
model checker returns an atom true and halts; otherwise, the model checker returns
an atom false and halts. The rule pred calculates a set of states that satisfy the input
predicate. Atom names starting with s_ mean computing sets of states satisfying
properties starting with individual CTL operators. The other rewrite rules correspond
to logical operators. For example, if the input CTL formula is ϕ1 ∨ ϕ2, the rule or
takes Sϕ1 and Sϕ2 , and returns Sϕ1∨ϕ2 = Sϕ1 ∪Sϕ2 . The calculation of SEGϕ starting
from the rule eg is a bit complicated. Such states must appear in a strongly connected
component (SCC) of a state transition graph, because they appear infinitely often in
the path of the finite state transition graph. In other words, s |= EGϕ means that
there is an SCC in a state transition graph and there is a finite path from a state s
to any state in the SCC. So, in the calculation of SEGϕ, the model checker calculates
SCCs of the state transition graph and states that are reachable to a state in an SCC.

4.2.2 Example: model of an oven
Figure 18 shows an example model of an oven. Labels in each circle express the
properties of the oven in a state. The prefix “∼” of labels means negation. We verify

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 23

finish@@Ret = mc1(Ini, ctl(sat(S)), SS) :-
Ret = result(set.find(S, Ini, Res), Res, SS).

true@@Ret = mc1(Ini, Ctl, state_space(M, S, T)), Ret_=true :-
Ret = mc1(Ini, Ctl, state_space(M, set.copy(S, S_), T)), Ret_=sat(S_).

p@@Ret = mc1(Ini, Ctl, state_space(M, S, T)), R = p($x), pred({$h[]}, {$g[]}, $y):-
hlink($x), hlink($y), $x==$y |
Ret = mc_(Ini, Ctl),
R = s_p(set.init, set.to_list(S_), {’:-’({$h[]}, {$g[]}, {$h[]})},

state_space(M, set.copy(S, S_), T)), pred({$h[]}, {$g[]}, $y).

not@@Ret = mc1(Ini, Ctl, state_space(M, S, T)), Ret_=not(sat(S_)) :-
Ret = mc_(Ini, Ctl, state_space(M, set.copy(S, R), T)),
Ret_=s_not(set.diff(R, R_), set.copy(S_, R_)).

or@@Ret = mc1(Ini, Ctl, SS), Ret_=or(sat(S0), sat(S1)) :-
Ret = mc1(Ini, Ctl, SS), Ret_=sat(set.union(S0, S1)).

ex@@Ret = mc1(Ini, Ctl, state_space(M, S, T)), Ret_ = ex(sat(S_)) :-
Ret = mc_(Ini, Ctl),
Ret_ = s_ex(set.init, set.to_list(T_), S_, state_space(M, S, set.copy(T, T_))).

eu@@Ret = mc1(Ini, Ctl, state_space(M, S, T)), Ret_=eu(sat(S0), sat(S1)) :-
Ret = mc_(Ini, Ctl),
Ret_=s_eu(set.copy(S1, S1_), S0, set.to_list(S1_), set.to_list(T_),

state_space(M, S, set.copy(T, T_))).

eg@@Ret=mc1(Ini, Ctl, state_space(M, S, T)), Ret_=eg(sat(S0)) :-
Ret = mc_(Ini, Ctl, state_space(M, S, set.copy(T, T_))),
Ret_=s_eg0(S0, set.to_list(T_), [], []).

Figure 17 – Core part of the CTL model checker

a CTL formula ag(ef(p(Init))) that means “the initial state is reachable from any
state.” This model is based on [CGP99], with atomic proposition Init appended to
all states.

Figure 19 shows a model description as first-class rewrite rules and an initial state.
A CTL formula ag(ef(p(Init))) is equivalent to

not(eu(true, not(eu(true, p(Init)))))

. When the CTL model checker runs on the model in Fig. 19 and a CTL formula
not(eu(true, not(eu(true,p(Init))))), the model checker returns true. Figure
18 shows that State 3 satisfying Init is reachable from any states. Thus the CTL
model checker finished successfully.

Table 4 shows the execution time of the CTL model checker implemented in LM-
Ntal. The performance of Mutex instances that satisfy the safety specification is
somewhat better than their LTL counterparts. In addition to set library, we use
hashmap library to manage state transition graphs. It enables us to implement the
traversal of state transition graphs efficiently. On the other hand, some of the other
instances are not as efficient. This is partly due to the implementation of predicate
checking that involves the decoding of states and application of the react_nd_set
API to the decoded states.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

24 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

Figure 18 – State transition graph of an oven

4.2.3 Extension: Fairness
We can easily extend our CTL model checker to handle fairness constraints that can be
expressed in LTL but not as CTL formulae. Fairness constraints rule out unrealistic
paths of models such as “one philosopher keeps eating.” The extended CTL model
checker only checks paths satisfying fairness constraints. Fairness constraints FC are
expressed as a list in LMNtal as follows:

Ret = [pred_fair({Head }, {Guard }), . . .]

The atom pred_fair expresses a predicate for states in the same way as the pred
atom described in Section 4.1.1. Paths satisfying fairness constraints FC have an
infinite number of occurrences of states satisfying all predicates in the FC.

We mainly extend the calculation of SEGϕ. Let fair scc be an SCC containing,
for each predicate p in FC, a state satisfying that predicate. In the calculation of
SEGϕ, we rule out SCCs that are not fair scc. We also extend the rules ex and eu.
In the basic CTL model checker, ex takes Sϕ for the calculation of SEXϕ. On the
other hand, in this extended CTL model checker, states in the set taken by ex must
be included in fair scc of state transition graphs. So we extend ex to take a set
Sϕ ∩ {s | s ∈ fair scc} as well. We have extended eu in a similar manner.

5 Related work
There are a number of model checkers whose modeling languages and implementation
languages are the same, including Java Pathfinder (for Java bytecode) and CBMC

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 25

//system rules
’:-’({-start, -close, -heat, -error, -init}, {}, {start, -close, -heat, error, -init}),
’:-’({-start, -close, -heat, -error, -init}, {}, {-start, close, -heat, -error, init}),
’:-’({start, -close, -heat, error, -init}, {}, {start, close, -heat, error, -init}),
’:-’({-start, close, -heat, -error, init}, {}, {-start, -close, -heat, -error, -init}),
’:-’({-start, close, -heat, -error, init}, {}, {start, close, -heat, -error, -init}),
’:-’({-start, close, heat, -error, -init}, {}, {-start, -close, -heat, -error, -init}),
’:-’({-start, close, heat, -error, -init}, {}, {-start, close, heat, -error, -init}),
’:-’({-start, close, heat, -error, -init}, {}, {-start, close, -heat, -error, init}),
’:-’({start, close, -heat, error, -init}, {}, {start, -close, -heat, error, -init}),
’:-’({start, close, -heat, error, -init}, {}, {-start, close, -heat, -error, init}),
’:-’({start, close, -heat, -error, -init}, {}, {start, close, heat, -error, -init}),
’:-’({start, close, heat, -error, -init}, {}, {-start, close, heat, -error, -init}),
//init state
-start, close, -heat, -error, init

Figure 19 – Model of the oven

Table 4 – Performance of the CTL model checker

Instance Name States Property Results Time(s)
Byzantine_3 420 recurrence false 0.49
Mutex_10 6144 safety true 6.60
Mutex_11 13312 safety true 15.67
Mutex_12 28672 safety true 37.90
PhiM_4 327 response false 0.75
PhiM_5 1370 response false 3.67
PhiM_6 5785 response false 20.52
Rabbit_4 200 safety false 1.35
Rabbit_5 482 safety false 6.69
Rabbit_6 1096 safety false 32.77

(for C and C++); however, model checkers whose approaches are more or less close
to ours are those for declarative languages, which we describe below.

XMC is a model checker for process calculi implemented in XSB, a tabled logic
programming language [CDD+98]. It is based on a top-down interpreter of a given
model and a specification and exploits the tabling mechanism of XSB to handle state
space. It is concise due to the interpreter-based approach and is also efficient due
to the optimized indexing techniques for tabling. How to incorporate such indexing
techniques in our state space implementation for graphs is highly non-obvious. The
experiences of the tabled logic programming approach to model checking is reported
in [LM00] which points out the affinity of CTL model checking with the interpreter
approach, the finding we also observed. A concise survey and report of the use of
declarative languages for verification can be found in [Leu08].

Compared to CTL model checkers implemented in XSB, our CTL model checker
code is larger because we explicitly explore state space while they use builtin back-
tracking mechanism of Prolog. To our knowledge, the tabling mechanism is not
provided as a first-class citizen to programmers via an API. We have made our state
space explicit because complicated efficient algorithms in underlying implementations,
such as graph isomorphism, are worth making accessible from programmers because

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

26 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

they are useful in their own right. Another difference between LMNtal and Prolog is
that LMNtal is an inherently concurrent language which enables rather concise mod-
eling of diverse computational models, while the modeling of concurrency in Prolog
is via interleaving.

McErlang [FS07] is a model checker for Erlang implemented in Erlang. Functions
in Erlang are first-class and thus can be manipulated by Erlang programs as can be
done in other functional languages. However, Erlang functions are not expressed as
data structures and cannot be modified. On the other hand, the extension of LMNtal
in this work allows the change of rewrite rules themselves.

Maude [CDE+07] provides both full-fledged metaprogramming constructs, with
which it seems to be possible to describe model checkers (though Maude provides di-
rect support of LTL model checking). Unlike LMNtal, Maude requires various decla-
rations. This contributes to performance, but the source code tends to be significantly
longer.

OPEN/CAESAR [Gar98] provides a core platform for the verification and testing
for various modeling languages in order to enable the sharing of various functionalities
needed to build model checkers. Its open architecture based on callback achieves mod-
ularity and orthogonality, but the whole framework is centered around mainstream
languages (such as C), and states are assumed to be expressible as fixed-length byte
strings. Our approach, in contrast, is centered around a platform supporting highly
complex data structures, namely dynamically evolving graphs.

6 Conclusion and future work
We have proposed a metaprogramming approach to developing prototypes of various
model checkers. We described first-class rewrite rules designed for metaprogramming
and API to access and use the functionality of LMNtal’s underlying implementation.
We implemented an LMNtal meta-interpreter for state space construction that runs
almost within an order of magnitude compared to SLIM. We successfully implemented
and extended model checkers using these features for manipulating state transition
graphs. This seems to demonstrate that our design of the API extracted the essence
of model checkers.

The primary goal of this work is to propose a way of rapid prototyping of model
checkers. LMNtal model checkers pursue high-level model description and flexibility
for playing with models, making it complementary to other model checkers (such
as SPIN) that pursue performance. Considering LMNtal’s rather heavyweight data
structure for concise and intuitive modeling, the performance seems acceptable at
least for proof of concept model checkers. To improve scalability, however, we plan to
enhance our minimalistic API and reduce the overhead of the callback mechanism.

Our future work includes implementing model checkers for various transition sys-
tems and modal logics other than LTL and CTL model checkers. We are currently
working on a TCTL model checker. Furthermore, now equipped with an extendable
syntax, we plan to build domain-specific languages for state space search with various
strategies and heuristics.

Unlike the SLIM model checker that features scalable multi-core model checking,
our state space API does not yet allow concurrent accesses. It might be possible
to make the API thread-safe, but to build a parallel version of metaprogramming-
based model checkers is a highly nontrivial task because that means exposing and
handling parallelism in the model checking algorithm expressed in LMNtal. It is a

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.5381/jot.2018.17.1.a1

Implementation of LMNtal Model Checkers: a Metaprogramming Approach · 27

highly challenging future work to extend our framework in this direction.

References
[Arm96] J. Armstrong. Erlang—a survey of the language and its industrial appli-

cations. In Proc. INAP, volume 96, 1996.
[Bra11] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-

Wesley, 2011.
[CDD+98] B. Cui, Y. Dong, X. Du, K. N. Kumar, C. R. Ramakrishnan, I. V. Ra-

makrishnan, A. Roychoudhury, S. A. Smolka, and D. S. Warren. Logic
programming and model checking. In Proc. 10th International Sympo-
sium on Principles of Declarative Programming (PLILP/ALP’98), vol-
ume 1490 of LNCS, pages 1–20. Springer-Verlag, 1998. doi:10.1007/
BFb0056604.

[CDE+07] M. Clavel, F. Dura, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and C. Talcott. All About Maude—A High-Performance Logical Frame-
work, volume 4350 of LNCS. Springer-Verlag, 2007. doi:10.1007/
978-3-540-71999-1.

[CE82] E. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on
Logics of Programs, volume 131 of LNCS, pages 52–71. Springer-Verlag,
1982. doi:10.1007/BFb0025774.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[CVWY91] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. In Proc.
CAV 1990, volume 531 of LNCS, pages 233–242. Springer-Verlag, 1991.
doi:10.1007/BF00121128.

[FS07] L.-Å. Fredlund and H. Svensson. McErlang: A model checker for a dis-
tributed functional programming language. ACM SIGPLAN Notices,
42(9):125–136, 2007. doi:10.1145/1291151.1291171.

[Gar98] H. Garavel. OPEN/CAESAR: An open software architecture for verifi-
cation, simulation, and testing. In Proc. TACAS 1998, volume 1384 of
LNCS, pages 68–84. Springer-Verlag, 1998. doi:10.1007/BFb0054165.

[GHU11] M. Gocho, T. Hori, and K. Ueda. Evolution of the LMNtal runtime
to a parallel model checker. Computer Software, 28(4):137–157, 2011.
doi:10.11309/jssst.28.4_137.

[Leu08] M. Leuschel. Declarative programming for verification: Lessons and
outlook. In Proc. PPDP’08, pages 1–7. ACM, 2008. doi:10.1145/
1389449.1389450.

[LM00] M. Leuschel and T. Massart. Infinite state model checking by ab-
stract interpretation and program specialisation. In Proc. LOP-
STR’99, volume 1817 of LNCS, pages 62–81. Springer-Verlag, 2000.
doi:10.1007/10720327_5.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.1007/BFb0056604
http://dx.doi.org/10.1007/BFb0056604
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BF00121128
http://dx.doi.org/10.1145/1291151.1291171
http://dx.doi.org/10.1007/BFb0054165
http://dx.doi.org/10.11309/jssst.28.4_137
http://dx.doi.org/10.1145/1389449.1389450
http://dx.doi.org/10.1145/1389449.1389450
http://dx.doi.org/10.1007/10720327_5
http://dx.doi.org/10.5381/jot.2018.17.1.a1

28 · Yutaro Tsunekawa, Taichi Tomioka, Kazunori Ueda

[Ren03] A. Rensink. The groove simulator: A tool for state space generation. In
International Workshop on Applications of Graph Transformations with
Industrial Relevance, volume 3062 of LNCS, pages 479–485. Springer-
Verlag, 2003. doi:10.1007/978-3-540-25959-6_40.

[TTU16] Y. Tsunekawa, T. Tomioka, and K. Ueda. Implementa-
tion of LMNtal model checkers: a metaprogramming ap-
proach. In Proc. Meta-Programming Techniques and Reflection,
http://2016.splashcon.org/event/meta2016-implementation-of-
lmntal-model-checkers-a-metaprogramming-approach, 2016.

[UAH+09] K. Ueda, T. Ayano, T. Hori, H. Iwasawa, and S. Ogawa. Hierar-
chical graph rewriting as a unifying tool for analyzing and under-
standing nondeterministic systems. In Proc. ICTAC 2009, volume
5684 of LNCS, pages 349–355. Springer-Verlag, 2009. doi:10.1007/
978-3-642-03466-4_24.

[Ued09] K. Ueda. LMNtal as a hierarchical logic programming language. The-
oretical Computer Science, 410(46):4784–4800, 2009. doi:10.1016/j.
tcs.2009.07.043.

[UO12] K. Ueda and S. Ogawa. HyperLMNtal: An extension of a hierarchical
graph rewriting model. Künstliche Intelligenz, 26(1):27–36, 2012. doi:
10.1007/s13218-011-0162-3.

About the authors
Yutaro Tsunekawa is a Research Associate and a PhD student at Waseda University
in Japan. He is interested in programming languages, graph rewriting systems, and
model checking. He is currently working on optimized model checking for graph
rewriting systems. Contact him at tsunekawa@ueda.info.waseda.ac.jp.

Taichi Tomioka is a Master’s student in Computer Science at Waseda University,
Tokyo. He is studying graph rewriting systems, model checking, and abstract inter-
pretation.

Kazunori Ueda is Professor in Computer Science and Engineering at Waseda Uni-
versity, Tokyo. His research interests include design and implementation of pro-
gramming languages, concurrency and parallelism, high-performance verification, and
hybrid systems. Contact him at ueda@ueda.info.waseda.ac.jp, or visit http:
//www.ueda.info.waseda.ac.jp/~ueda/.

Acknowledgments The authors are indebted to the present and past members of
the LMNtal group on which the present work was based. In particular, Kota Nara
gave the authors useful ideas in the beginning of this research, Shota Matsumoto
discussed the techniques of verification related to this research, and Takahiro Yana-
gawa discussed the implementation of the LTL model checker. The authors would
like to thank anonymous reviewers for their useful comments and pointers to the lit-
erature. This work was partially supported by Grant-in-Aid for Scientific Research
((B) JP26280024, JP18H03223), JSPS, Japan.

Journal of Object Technology, vol. 17, no. 1, 2018

http://dx.doi.org/10.1007/978-3-540-25959-6_40
http://dx.doi.org/10.1007/978-3-642-03466-4_24
http://dx.doi.org/10.1007/978-3-642-03466-4_24
http://dx.doi.org/10.1016/j.tcs.2009.07.043
http://dx.doi.org/10.1016/j.tcs.2009.07.043
http://dx.doi.org/10.1007/s13218-011-0162-3
http://dx.doi.org/10.1007/s13218-011-0162-3
mailto:ueda@ueda.info.waseda.ac.jp
http://www.ueda.info.waseda.ac.jp/~ueda/
http://www.ueda.info.waseda.ac.jp/~ueda/
http://dx.doi.org/10.5381/jot.2018.17.1.a1

	Introduction
	Metaprogramming
	LMNtal
	SLIM: the model checker

	Frameworks for the metaprogramming approachto model checking
	Useful meta-interpreters
	First-class rewrite rules
	API to use SLIM's internal functionalities
	state_space.react_nd_set
	state_map collection
	Design space of the APIs

	LMNtal meta-interpreters
	Algorithm
	Implementation
	Performance
	Extensions of the LMNtal meta-interpreter
	User-defined Structural Congruence
	Introducing A* Search into State Space Exploration

	LMNtal model checkers
	LTL model checker
	Property description
	Implementation
	Example: Dining Philosophers Problem
	Extension: Depth-Limited Search

	CTL model checker
	Implementation
	Example: model of an oven
	Extension: Fairness

	Related work
	Conclusion and future work
	Bibliography
	About the authors

