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Abstract We present MTMJ, a multithreaded middleweight model lan-
guage for Java which is strongly typed and prevents multiple run-time
start of threads. The key point in designing the language is to balance
precision and efficiency by judicious utilization of context information dur-
ing type checking. While the types are flow-insensitive, the required flow-
dependent information is collected as type checking progresses. We prove
that our type system is sound and guarantees the good behavior of well-
typed programs. In particular, the execution of a typable program does
not lead to multiple start of threads. We also develop a type checker as
part of this research and apply it to several MTMJ programs.
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1 Introduction

Multithreading is a feature of the Java programming language [GJSB05] by which an
intended functionality can be implemented through a number of concurrent threads.
A multithreaded system developed in this way, however, may be of high complexity
so that it may not be easily assured that the system behaves well at run-time. The
property that every syntactically correct program is well-behaved is known as safety
and can be brought to the language through static or dynamic checking of programs.
The study of safety in a full-blown language like Java, however, is an arduous task.
Thus, one should first design and study a model language reflecting some, but not
all, features of the language it models. The results can then be used to retrofit the
language under study.

There are a number of model languages for Java among which Middleweight Java
[BPP03], MJ for short, has a fairly rich set of features making it analogous to Java
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while remaining amenable to in-depth analysis. MJ is a proper subset of Java in the
sense that its programs can be compiled and executed as ordinary Java programs. In
this paper, we concentrate on multithreading and the way it interacts with the other
features of Java. In doing so, we propose MTMJ which is a multithreaded language
based on MJ, hence its name. MTMJ prevents bad behaviors through its type system,
i.e., it is type-safe. In effect, it fulfills some new requirements for safe multithreading.
Therefore, a typable program will not enter a state at which no semantic rule can
be applied and, in turn, no transition to other states is possible. In this way, it
is guaranteed that well-typed programs do not encounter any unexpected error at
run-time.

The principal feature of MTMJ is multithreading. To create a thread in Java,
one should instantiate the class Thread. By invoking the method start on the
instance, then, the run-time system starts scheduling and executing that thread.
These constructs are incorporated into MTMJ without change. To study the safety
of MTMJ, thus, it is reasonable to examine those errors that may occur as a re-
sult of using such constructs. A number of concurrency errors in Java, such as
those occurred due to data races, have been extensively studied in the literature,
e.g., [SAWS05, DP09, WCG11, FFLQ08, MPA05].

In this paper, we concentrate on multiple invocation of start on the same Thread
object. It could simply occur when a programmer believes wrongly that he can
restart a thread by invoking start on the corresponding object. Consider a variable
th on which start has already been invoked representing a thread which performs
some task. It could be very common to invoke start again on th to repeat the
corresponding task. There are reports of software crashes resulted from such an
illusion, e.g., [Bug12b, Bug12a]. The run-time exception corresponding to this error
has been reported in the issue tracker of Android open-source project [And08]. It
should be noted that since such an error involves pointers around the whole program,
programmers may get in trouble to detect and remove the source of inadvertent
multiple invocation of start.

The rationale behind double invocation of start on the same thread is, in general,
to restart that thread or to start a new thread while the previous one is executing. The
following argument explains why the things that may happen as a result of double
invocation of start differ from what a programmer intends, and in turn, why we
should prevent it in a safe language. The argument is based on the fact that the
interaction with a running thread is possible only through the methods of the object
representing that thread, i.e., the object is a handle for the running thread.

An interpretation of restarting a thread is to stop that thread, if it is running
now, and to reschedule its whole instructions for a new execution. To realize such
an interpretation, the Thread object started earlier should be the handle of the new
thread created by the second invocation of start. However, as that object conveys
the state of the previous thread, this may lead to a misconception about the actual
state of the new thread. This endangers safety because the integrity of the high-level
abstractions introduced by the programmer through invoking start on a thread is
not guaranteed under such an interpretation.

Another interpretation of invoking start on an object whose corresponding thread
is running now is to create a second thread such that both threads are referred to
by the same object at the same time. By such an interpretation, a programmer will
not be certain which thread is affected by the methods he invokes on the object. It
is not clear, for example, how the result of invoking isAlive on the object can be
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Thread1 th; //Thread1 is a subclass of Thread
th = new Thread1();
th.start();
(Thread)th.start();

(A)

Cell y; //the class Cell has a field f of type Thread
y = new Cell();
y.f = new Thread();
y.f.start();
Cell x;
x = y;
x.f.start();

(B)

Figure 1 – Example ill-typed programs containing the kind of aliasing not allowed in MTMJ.

interpreted. In effect, the same resource—a Thread object—can be simultaneously
accessed by different processes in a possibly wrong manner.

The current implementations of Java deal with multiple invocation of start on
the same object in two ways: to raise a run-time exception [Ora11] or to ignore any
subsequent invocation of start [Nau96] altogether. Such an equivocal treatment of
this error confuses programmers further; example evidences are the bugs reported to
the bug database of Oracle [Ora05, Ora02]. Without a clear specification of the cases
handled by each solution, programmers may not even become aware of the existence
of errors in their programs—they may expect an exception if the program leads to
multiple start of threads but the run-time system takes the other way.

Inspired by the existing research on static detection of run-time errors such as
dereferencing null pointers and exceeding array bounds, e.g., [Saw98, FLL+02, HSP05,
PAC+08, DDE+11], MTMJ prevents multiple invocation of start on the same object
statically. To the best of our knowledge, the only reported result in static detection
of this error is the tool called E_Jlin [HAT+04]. Apart from being exogenous to the
language, it is not guaranteed that E_Jlin can certainly detect the error. The static
solution of MTMJ outperforms the run-time solution of Java provided the cost and
limitations it imposes are acceptable. In effect, identifying such an error only on
the basis of the text of a program may require complicated and costly analyses. In
particular, the expressions of type Thread that point to the same object—aliases for
expressions of type Thread—should be identified and stored during type checking.
The existence of several forms of aliasing in MTMJ will aggravate the problem.

MTMJ controls aliasing in such a way that each thread identifier can be the
value of only one expression of type Thread. This restriction has little impact on the
expressiveness of the language as the main reason to have expressions of type Thread
is to start corresponding threads somewhere in the program, and thus, aliases for a
thread are likely to lead to multiple start of the same thread. Nevertheless, to alleviate
the impact of such decisions on correct programs, we give guidelines to convert an ill-
typed, but correct, program to a well-typed program (See Table 1). The programs in
Fig. 1 contain the aliasing that is not allowed in MTMJ. In Program A, the expression
“(Thread)th” of type Thread is an alias for the expression “th” of type Thread1, a
subclass of Thread. The assignment of “y” to “x” in Program B is unsafe as well.
In fact, the expression “y.f” is an alias for “x.f” and both expressions are of type
Thread.
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The types of MTMJ are not flow-sensitive [FTA02, Pea10]. That is, the type
of the same expression does not depend on the place it appears in the program.
Nonetheless, MTMJ’s type system indeed emulates flow-sensitive typing using the
sets in the typing context that are modified during type checking—it is a type and
effect system. It should be noted that some flow-sensitive static analysis methods
have been devised based on a number of type reconstruction rules similar to the
typing rules of MTMJ. Another point about the type system of MTMJ is that it
does not require any additional type annotation for the analysis of multiple start of
threads. We prove that the type-system of MTMJ is sound. A type checker is also
implemented that automates the analysis of MTMJ programs. Finally, it should be
noted that the type-based program analysis proposed in this paper is modular. In
effect, a program is well-typed if its methods are well-typed. A method itself is well-
typed if the statements constituting its body are type-checked successfully. Moreover,
the type of a statement or expression depends only on the types of that statement’s
or expression’s components.

As MTMJ is composed of a fairly rich set of Java features, its type system can be
applied to many Java programs. Moreover, the type system of Java can be modified
according to the typing rules of MTMJ. This is among the topics for future research.
The manner in which MTMJ prevents multiple start of threads may also be used
to statically prevent some other similar errors such as the one that may be raised
when the method setDaemon in the class Thread of Java is invoked. Note that
multiple start of threads is not specific to the Java programming language. It may
occur in any object-oriented language where a thread is created through the invoca-
tion of a similar method on a thread object. Therefore, the constraints imposed by
the static semantics of MTMJ may also prevent erroneous start of threads in other
programming languages such as C] [Mic01] and Python [Pyt15]. It should be noted
that although the Java programming language provides high-level abstractions for
handling threads, we decide on Thread, which is the base class for multithreading in
Java. By preventing the errors regarding this construct, it can be used safely besides
other higher-level classes provided for concurrent programming.

This paper goes on as follows: Related works are discussed in Section 2. Section
3 gives the syntax and static semantics of MTMJ. Section 4 presents the dynamic
semantics of MTMJ. We show that MTMJ is strongly typed and it guarantees at
most one invocation of start on any Thread object. The proof sketch is in Section
5—details can be found through the web page containing the codes, software, and
some other things developed as part of this research [ISF16a]. Finally, Section 6
concludes the paper.

2 Related Work

2.1 Models for Java

There are a number of model languages for Java. Featherweight Java (FJ) [IPW01]
is a purely functional language in which no side effect occurs when an expression is
evaluated. Thus, it is not a good model for Java where changes in observable states
underlie the execution of a program. Classic Java [FKF99] may also be considered as
a model language for Java, although it contains some syntactic constructs, e.g., let
binding, not appearing in Java. In fact, it is not a subset of Java. Middleweight Java
[BPP03] is an imperative subset of Java with an appropriate set of features. There are
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also smaller subsets of Java such as Lightweight Java (LJ) [Str10] and larger subsets
like the one introduced by Drossopoulou et al. [DEK99, DVE00].

Multithreading has also been incorporated into some models of Java. For instance,
Concurrent Java [FF00] is an extension of Classic Java that supports multithreading.
Its expression “fork e” spawns a new thread whose body is e. This expression is
then evaluated only for its side effects. As with Classic Java, Concurrent Java is
not a subset of Java. Welterweight Java (WJ) [OW10] is another example based on
FJ which is imperative and supports concurrency. There are model languages that
include some other features of Java. For example, remote method invocation has
been considered in [AY07]. As another example, the language presented in [BDSS10]
provides code reuse through the units named records and traits.

Some core calculi have been proposed for object-oriented programming. For ex-
ample, the object calculus [AC96] is a simple, yet powerful, mathematical model
for the analysis of object-based languages. Moreover, the concurrent object calculus
[GH99] supports multithreading. A core calculus based on the lambda-calculus has
also been proposed for class-based languages [BPSM99]. Evidently, model languages
like MTMJ are less abstract than core calculi, thereby being more suitable for the
analysis of real-life languages such as Java.

2.2 Type Systems

Type systems have long been recognized as an effective mechanism to statically detect
program errors. In particular, standard type systems for mainstream object-oriented
languages such as C++, C], and Java ensure that well-typed programs behave well
in many respects. For example, they typically guarantee that all references to the
attributes—fields and methods—of any object are correct in the sense that the class
of the object or one of its direct or indirect superclasses contains the field or the
method being referred and the types of actual and formal parameters to methods are
consistent. Notwithstanding, such type systems usually cannot prevent the run-time
errors having complicated syntactic patterns. An example is null pointer dereferenc-
ing.

The point stated above has motivated scholars to propose more sophisticated type
systems. To provide memory safety for X10 programs [CGS+05], for example, the
basic type system of the language has been extended with region types [Gro06]. Con-
strained types, which are the basic types associated with predicates on the object’s
state, have also been introduced to X10 [NSPG08]. By these types, one can statically
detect the errors that may occur due to inconsistent design requirements of program
components. As another example, session types have been used as a means to prevent
deadlock during sessions where a session is defined to be a sequence of interactions be-
tween two threads [DCMYD06]. Type systems are also used to enforce security prop-
erties. For example, a security type system is proposed in [ISF16b] which provably
enforces a noninterference property defining allowable executions which do not lead
to insecure information flows. As with the attempts briefly reviewed above, MTMJ
aims at adding a new capability to the type systems of object-oriented languages.
The type system of MTMJ prevents multiple start of threads, an error resulting from
multithreading in object-oriented languages.

Journal of Object Technology, vol. 16, no. 3, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1


6 · Z. Iranmanesh, M. S. Fallah

2.3 Multiple Start of Threads

There are some works that deal with double invocation of start on the same object.
In Welterweight Java, it is resolved through the dynamic semantics where a new
thread object is instantiated for each run-time invocation of start. This solution,
however, has its own drawbacks. First, it requires some changes in the syntax of
Java. For example, start is invoked on a class name instead of an object of type
Thread. Second, such a solution may result in an execution which differs from what
a programmer expects. Another approach in preventing erroneous start invocation
is program testing [HAT+04].

The problem of aliasing, which can be thought of as a source of erroneous start in-
vocation, has been studied extensively in the literature, e.g., [Wad90, Min96, CPN98,
AKC02, Boy04, KA08, Die09]. Some works make use of linear types [Wad90] which
guarantee that a resource is used at most once. So-called unique pointers [Min96]
which cannot point to shared memory cells are built on the concept of linear types.
The implementation involves destructive reads which set the value of a unique variable
to null once the read occurs [Hog91, Min96]. The main drawback of this approach is
that programmers may not be aware of the side effects of setting a unique variable
to null. Although such a uniqueness is provided in [Boy01] without using destruc-
tive reads, the static analysis method underlying the solution is highly sophisticated.
Moreover, linear methods which may be invoked once are introduced in [KA08] where
methods are associated with objects. In the context of class-based object-oriented
languages with methods linked to classes instead of objects, our approach is more
flexible in the sense that start can be invoked many times, but each time on a new
Thread object.

Some other works utilize ownership types [CPN98, CÖSW13] to place restriction
on access to shared objects. Early ownership types are too restrictive and substantially
reduce the expressiveness of the language. There are some more flexible variants as
well [BV99, MPH99]. The achievements are interesting, but they require programmer
to annotate types. The type system we have proposed in this paper prevents some
kinds of aliasing without the need for additional type annotations. Furthermore,
we have investigated all possible constructs that may lead to aliasing in a powerful
subset of Java. The results can thus be employed in concurrency control, memory
management, and security in other languages where such constructs or their equiva-
lents exist. It should be noted that the researches performed on tracking typestates
such as [DF04, ASSS09] can be applied to prevent double start of threads, but they
also face the overhead and complexity imposed by requiring several annotations.

2.4 Graph-based Program Analysis

In addition to type systems, some other static methods are proposed for program
analysis which are based on program dependence graphs (PDG). The PDG [FOW87]
of a program is a graph that illustrates data and control dependencies among the
statements and expressions of the program—program dependence graphs and control
flow graphs may be used interchangeably. Such an analysis is automated by tools
like FindBugs [The15]. This tool checks programs for the absence of run-time errors,
e.g., the direct invocation of run instead of the invocation of start to create threads.
ThreadSafe [AS15] is another tool for detecting some concurrency-related errors which
are mainly categorized into race conditions, deadlocks, unpredictable results, and per-
formance bottlenecks. These tools, however, do not detect multiple start of threads.
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P ::= cd1 . . . cdn;s̄ Program

cd ::= class C extends C {fd1 . . . fdk cnd md1 . . .mdn} Class Definition

fd ::= C f ; Field Definition

cnd ::= C(C1x1, . . ., Cjxj){super(e1, . . ., ek); s1 . . . sn} Constructor
Definition

md ::= τ m(C1x1, . . ., Cjxj){s1 . . . sn} Method
Definition

τ ::= C | void Return Type

e ::= x | null | e.f | (C)e | pe Expression

pe ::= e.m(e1, . . ., ek) | new C(e1, . . ., ek) Promotable
Expression

s ::= ; | pe; | e1.f = e2; | C x; | x = e; Statement
| return e; | {s1 . . . sn}
| if (e1 == e2) {s1 . . . sk} else {sk+1 . . . sn}

Figure 2 – The syntax of MTMJ.

These analysis tools are not sound either. It is worthy of mention that a type-based
analysis is compositional in the sense that the modular analysis of different program
components can be combined to form the whole analysis. Moreover, such an analysis
is more declarative than graph-based analysis methods, which are mainly algorithmic.

3 Syntax and Static Semantics

3.1 Syntax

The syntax of MTMJ is given in Fig. 2. As can be seen, an MTMJ program is a
collection of class definitions together with a sequence of statements s̄ representing
the main body of the program. In addition to the classes defined by the programmer
as well as the built-in class Object, we consider a new built-in class Thread which
extends Object and represents threads. This class is the change made to the syntax
of MJ. The body of Thread is considered to be composed of a constructor and the
two methods run and start with the return type void and no method parameters.
For the sake of simplicity, we assume that the same local variables do not appear
in methods with different names. It is worthy of mention that although the syntax
does not contain “for” and “while” loops, the same functionality can be modeled using
recursive method invocation.

To create a new thread, we define a subclass of Thread. Then, we override the
method run with new instructions and instantiate an object of this subclass. When
invoked on this object, the method start allocates the required resources and the
thread is scheduled for execution. It is assumed that the allocation of resources is
always performed successfully and that there is no way to override start.

3.2 Basics of the Type System

Class names are considered as types. Moreover, the type information of classes is
obtained from a class table which is considered as a fixed part of any typing context.
A class table ∆ is a triple of functions (∆m,∆c,∆f ). The type of a method m′ of a
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class C is
∆m(C)(m′) = C1, ..., Cn −〈Φm′〉→ τ,

where Ci and τ are the type of the ith parameter and the return type of m′, re-
spectively. The set Φm′ comprises the expressions on which start is invoked in the
body of m′. Note that we use void as input type when there is no input parameter
to the method and as output type if the body of the method does not return any
value. Similarly, ∆c(C) is a sequence C1, ..., Cn,ΦC , where Ci is the type of the ith
parameter to the constructor of class C and ΦC is composed of the expressions in the
constructor on which start is invoked. The type of a field f ′ of class C is ∆f (C)(f ′)
as well. Moreover, the subclass relation “≺” and the direct subclass relation “≺1” are
defined as in MJ.

It should be noted that the set Φm in the type of method m contains the elements
of Φm′ of any method m′ invoked in the body of m. The typing rule concerning the
invocation of method m, then, utilizes Φm to prevent any illegal invocation of start.
It is assumed that the body ofm can be overridden in subclasses provided Φm remains
a subset of that in the superclass. This facilitates the static analysis of programs in
the presence of dynamic dispatch. In fact, by this restriction, it is enough to only
investigate Φm in the superclass and there is no need to check for the invocation of
start in the body of overridden methods. A correct program that is deemed ill-typed
due to noncompliance with this restriction can be converted to a typable program
as shown in the fourth row of Table 1. In effect, a conditional structure, whose
condition always evaluates to true and else branch contains the extra members of
Φm in the subclasses, is added to the body of m in the superclass. This table also
contains guidelines regarding other restrictions that may cause a correct program to
be regarded as an ill-typed program.

At the beginning of type checking, ∆m, ∆c, and ∆f are initialized as functions
shown in Fig. 3. The sets Φm and ΦC are initially undefined but they are computed
as type checking progresses. The function mbody(C,m) returns the arguments and
the body of m when it is considered as a method in class C. The same information
is obtained from the function cnbody(C) for the constructor of C.

The type system of MTMJ is given in Figs. 5-9. We present only some more
intricate typing rules in order to convey the main concepts of the type system. The
complete set of rules can be found in the online appendix of this paper [ISF16a]. As
with Java and as justified in Section 1, the method start must not be invoked more
than once on an object of class Thread or its subclasses. The typing rules of MTMJ
prevent such an error.

The typing judgment has two sets Φ and Φ′, with Φ ⊆ Φ′, in its hypotheses and
consequent, respectively. As expressions evaluate to object identifiers, by invoking
a method on an expression, we mean the execution of the method identified by the
value—object identifier—of that expression. During type checking, the sets Φ and
Φ′ keep track of those expressions of type Thread on which start has already been
invoked. That is, the type system predicts the run-time invocation of start on such
expressions in the execution of part of the program type checked so far. The expres-
sions that begin with new, however, are not collected in Φ, since their evaluation
culminates in a new thread on which start has not been invoked yet—the type sys-
tem, indeed, does not allow the corresponding thread to start before being returned
by the class constructor.

A double invocation of start on an expression in Φ is prohibited by the type
system of MTMJ. The invocation of start on an expression that evaluates to the
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Table 1 – Guidelines to convert ill-typed correct programs to well-typed programs.

The phrase and the
reason for being ill-typed A well-typed substitute

(C′)e, aliasing through up-
casting a thread expression e of
type C

1. Declare a local variable of type C′ using C′ x;

2. Instantiate x as a value of type C by x =
new C();

3. Set the field f of x to that of e using x.f = e.f ;
if f doe not contain any reference to a Thread
object

4. Instantiate other fields f of x to values of corre-
sponding types Cf using x.f = new Cf (); and
repeat (3) and (4) for the fields of x.f

e.m(e1, . . . , en), aliasing
through invoking method m
whose return type is C and
returns a Thread object or an
object containing a reference
to a Thread object

1. Declare a local variable of type C through C x;

2. Instantiate x as a value of the same type using
x = new C();

3. Add a fresh formal parameter y of type C to m

4. Pass x as an actual parameter tom correspond-
ing to y by e.m(e1, . . . , en, x)

5. Remove the last statement in the body of m
which is return e′;

6. Set the return type of m to void

7. If e′ is not new C(), set the fields of y to those
of e′ at the end of the body ofm similar to what
explained in the case of up-casting

e.f = e′;, aliasing through as-
signing a thread expression of
type C to a field where the ex-
pression is not null and does
not begin with new

1. Instantiate e.f as a value of type C through
e.f = new C();

2. Set the fields of e.f to those of e′ through the
steps explained in the case of up-casting

Methodm in class C is overrid-
den in a subclass C′ such that
there are new invocations of
start in the overridden method

1. Add a conditional structure if(null ==
null){}else{} to the body of m in C

2. Add extra invocations of start of m in C′ to
the else branch of the structure above

Method m is in a loop of invo-
cations and there is an expres-
sion e.start() in m where e is
of type C, does not begin with
new, and contains some formal
parameters to m

1. Declare a local variable of type C using C x;

2. Instantiate x as a value of the same type

3. Set the fields of x to those of e through the steps
explained in the case of up-casting

4. Invoke start on x
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∆m(C)(m′) =



C̄ −〈↑〉→ τ
if P = ∗ class C extends C′{∗ cnd md1 . . .mdn} ∗
∧∃1 ≤ i ≤ n. mdi = τ m′(C̄ x̄){s̄}

∆m(C′)(m′)
if P = ∗ class C extends C′{∗ cnd md1 . . .mdn} ∗
∧∀1 ≤ i ≤ n. mdi 6= τ m′(C̄ x̄){s̄}

∆c(C) = C1, . . . , Cj , ↑
if P = ∗ class C extends C′{∗ cnd ∗} ∗
∧ cnd = C(C1 x1, . . . , Cj xj){s̄}

∆f (C)(f ′) =



C′′

if P = ∗ class C extends C′{fd1 . . . fdn∗} ∗
∧∃1 ≤ i ≤ n. fdi = C′′ f ′; ∧∆f (C′)(f ′) ↑

∆f (C′)(f ′)
if P = ∗ class C extends C′{fd1 . . . fdn∗} ∗
∧∀1 ≤ i ≤ n. fdi 6= ∗ f ′;

Figure 3 – Initialization of the class table. The symbol “∗” stands for wild card and “↑” for unde-
fined.

value of a member of Φ is prevented as well. To identify such expressions, we may
decide to store all assignments to expressions of type Thread. However, this solution
is too expensive and may render type checking a costly process. As a solution to this
problem, we prevent two different expressions from pointing to the same object of type
Thread—such an object may be a field of an object, a field of a field of an object,
and so on. In this way, we can prevent the bad aliasing stated above but at the cost of
preventing some correct phrases. This constraint does not reduce the expressiveness of
MTMJ. As far as we have investigated, the programmer can compensate for the above
restriction in safe programs, i.e., the programs without erroneous double invocation
of start, by creating appropriate new objects, for example. We will expound on this
issue when explaining our typing rules.

It is assumed that if some invocation of start such as e.start() occurs in a re-
cursive method m, the expression e either begins with new or does not contain any
parameter of m. By this assumption, Φm is derived by one-pass checking of the body
of m. Otherwise, Φm may include infinitely many expressions making type derivation
undecidable. For example, consider the following code where class C has a field f
of type Thread and a field g of type C. As stated earlier, in every run of m, the
expression new Thread() is guaranteed to return a new thread on which start has
not been invoked yet. Considering x.f.start(), however, the set Φm contains x.f,
x.g.f, x.g.g.f, and so on. This infinite set is obtained because x is replaced with
x.g each time the method is invoked recursively.

void m(C x) {
new Thread().start();
x.f.start();
this.m(x.g);

}

It is worthy of mention that if the above assumption is not true for some recursive
method, such a method can be converted to a typable one as shown in the last row
of Table 1.
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∆th(C) =


true if C ≺ Thread
true if ∃f, C′.

(
C′ = ∆f (C)(f) ∧ ∆th(C′)

)
true if ∃C′′. (C′′ ≺ C ∧ ∆th(C′′))
false otherwise

giveMethod(C,m) =

{
run if C ≺ Thread ∧ m = start
m otherwise

giveStart(C,m, e) =

{
{e} if C ≺ Thread ∧ m = start ∧ e 6= new ∗
∅ otherwise

checkIfStart
(m,C, e,Φ)

=


true if m 6= start
true if C ⊀ Thread
true if e /∈ Φ
false otherwise

replace(x1, . . . , xn,
Φ, e′1, . . . , e

′
n)

=
{
e′′|∃e ∈ Φ.

(
e′′ =

[
e′i/

n
i=1xi

]
e ∧ e′′ 6= new ∗

) }
if not ∃e, e′ ∈ Φ.

(
e 6= e′ ∧

[
e′i/

n
i=1xi

]
e =

[
e′i/

n
i=1xi

]
e′ 6= new ∗

)
check(Φ′,Φ) =

{
false if ∃e′. e′ ∈ Φ′ ∩ Φ
true otherwise

chTP (∆,m,C) =



true if ∃C′. (C ≺1 C′ ∧ m /∈ dom(∆m(C′)))

true if ∃C′.


C ≺1 C′ ∧ m ∈ dom(∆m(C′))∧
∆m(C)(m) = C1, . . . , Cn −〈ΦC

m〉→ τ ∧
∆m(C′)(m) = C1, . . . , Cn −〈ΦC′

m 〉→ τ ′ ∧
φCm ⊆ ΦC′

m ∧ (τ = τ ′ ∨ τ ≺ τ ′)


false otherwise

Figure 4 – Definitions used in the typing rules of MTMJ. The symbol “∗” stands for wild card and
P for the program being type checked.

3.3 Typing Rules for Expressions

The typing rules of MTMJ for some expressions are given in Fig. 5. By a set being
undefined, we mean that it has not been derived yet in the process of type checking—a
set which has been derived is, therefore, a defined set.

3.3.1 The Rule for Casting

The rule TE-UpCast copies the set Φ′ from its premise into its conclusion. The
judgment ∆ ` C ′ ok states that C ′ is in the domain of ∆. Moreover, this rule has a
new premise ¬∆th(C) in comparison with MJ, where C is the type of the argument
of casting which is the expression e here. Since (C ′)e is an alias for e, e should not
be a thread or contain a thread in its fields. We enforce such a restriction by using
∆th(C) which is false when no thread appears in e—the definition of ∆th(C) is given
in Fig. 4. To be type-safe, MTMJ also requires ∆th to examine the subclasses of its
argument. This is because the class—type—of the value of an expression may be a
subclass of the static type of that expression.

If the casting (C ′)e is ill-typed because ¬∆th(C) does not hold where C is the
class of e, we show that there is a typable code that can emulate what is intended
from such a casting. As seen in Fig. 4, C ≺ C ′ ≺ Thread is the first case which
causes ∆th(C) to be true. In such a case, the substitute code contains a declaration
of the form “C ′ x = new C();” that defines an expression of type C ′, i.e., the type of
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∆; Γ; Φ ` e : C|Φ′ C ≺ C′ ∆ ` C′ ok ¬∆th(C)

∆; Γ; Φ ` (C′)e : C′|Φ′
(TE-UpCast)

∆; Γ; Φ ` e : C0|Φ0 ∆; Γ; Φ0 ` e1 : C1|Φ1 . . . ∆; Γ; Φn−1 ` en : Cn|Φn

mg = giveMethod(C0,m) ∆m(C0)(mg) = C′1, . . . , C
′
n −〈Φmg 〉→ τ

C1 ≺ C′1 . . . Cn ≺ C′n mbody(C0,mg) = (x1, . . . , xn, s̄)

checkIfStart(m,C0, e,Φn) Φcurrent = giveStart(C0,m, e)
if Φmg ↑ then if ∆; (C0,mg) ` loop(C0,mg)(

then ∆1 = ∆[∆m(C0)(mg) 7→ C′1, . . . , C
′
n −〈∅〉→ τ ] else ∆1 = ∆

)
Γ1 = x1 : C′1, . . . , xn : C′n, this : C0 ∆1; Γ1; ∅ ` s̄ : τ |Φ′′


else Φ′′ = Φmg

Φ′mg
= replace(this, x1, . . . , xn,Φ′′, e, e1, . . . , en) ∧ Φ′mg

↓
if Φ′mg

6= ∅ then check(Φ′mg
,Φn ∪ Φcurrent)

Φ′ = Φn ∪ Φcurrent ∪ Φ′mg

if τ 6= void then ¬∆th(τ)

∆; Γ; Φ ` e.m(e1, . . . , en) : τ |Φ′
(TE-Method)

∆; Γ; Φ ` e1 : C1|Φ1 . . . ∆; Γ; Φn−1 ` en : Cn|Φn

∆c(C) = C′1, . . . , C
′
n,ΦC C1 ≺ C′1 . . . Cn ≺ C′n

cnbody(C) = (x1, . . . , xn, super(e′1, . . . , e
′
k); s̄)

if ΦC ↑ then
if ∆; (C,C) ` loop(C,C)(

then ∆1 = ∆[∆c(C) 7→ C′1, . . . , C
′
n, ∅] else ∆1 = ∆

)
Γ1 = x1 : C′1, . . . , xn : C′n, this : C

∆1; Γ1; ∅ ` super(e′1, . . . , e′k); : void|Φs ∆1; Γ1; Φs ` s̄ : void|Φ′′


else Φ′′ = ΦC

if ∆th(C) then (Φn = Φ ∧ Φ′′ = ∅)
Φ′C = replace(this, x1, . . . , xn,Φ′′, thisC , e1, . . . , en) ∧ Φ′C ↓

if Φ′C 6= ∅ then check(Φ′C ,Φn)
Φ′ = Φn ∪ Φ′C

∆; Γ; Φ ` new C(e1, . . . , en) : C|Φ′
(TE-New)

Figure 5 – Typing rules for some expressions. The symbol “↑” stands for undefined and “↓” for
defined.
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C y;
y = new C();
(C’)y.m(); //Class C is a subclass of C’.

//Method m is defined in C’.
//Class C’ has a field f1 of type C1
//which has a field f of type Thread and
//a field g which does not have any reference
//to a Thread object.
//The up-casting (C’)y is ill-typed because y
//has a reference to a Thread object.

?
C’ x;
x = new C();
x.f1 = new C1();
x.f1.f = new Thread();
x.f1.g = y.f1.g;
x.m();

Figure 6 – Converting an ill-typed correct program to a well-typed program.

(C ′)e. The code also includes assignments that assign the fields of e to those of x, i.e.,
“x.f = e.f ;” for any field f that appears in class C ′. Suppose that the constructor of
C takes no parameter. It is worth mentioning that the operator new creates a new
object. This prevents aliasing, and thus, the invocation of start on this object is safe.
This conversion is also given, in the first row, in Table 1. A list of similar conversions
can be found in this table.

The premise ¬∆th(C) may also be false because ∃f, C ′′. (C ′′ = ∆f (C)(f) ∧ ∆th(C ′′))
is true. This is the case for the ill-typed program given in Fig. 6 where field f1 in
class C is of a type—class—having a field f of type Thread. Here, the conversion
stated above for the case of the subclasses of Thread is extended. In effect, the
fields containing threads are not directly assigned, but we first create new objects as
in the case above and then assign these new objects to the fields. This is performed
for the fields f1 and f in the well-typed program given in Fig. 6. Note that this
program can be safely extended with both y.f1.f.start(); and x.f1.f.start();,
although (C’)y.f1.f.start(); cannot be used instead of the latter in the original
code. It is worthy of mention that although some more instantiations may be made
in the substitute code, they are required for correct invocations of start on non-null
Thread objects. Finally, the case ∃C ′′. (C ′′ ≺ C ∧ ∆th(C ′′)) is treated similarly.

3.3.2 Typing Method Invocations

The rule TE-Method is for type checking the invocation of a method m on an
expression e with parameters e1, . . . , en. The type of e is first derived according to
∆, Γ, and Φ. It includes Φ0 that is considered as part of the context in type checking
the parameters to m. As stated earlier, Φi−1 is contained within Φi. Therefore, Φn

consists of the elements of Φ together with those expressions on which the invocation
of start is predicted as a result of type checking the expressions e and e1, . . . , en.
The function giveMethod assigns run or m to mg as defined in Fig. 4. The types of
the arguments of mg are obtained from ∆m. The types C1, . . . , Cn are then checked
to comply with these types.
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Preventing Multiple Start of Threads. If m is start and the class of e is a
subclass of Thread, e should not be a member of Φn—the function CheckIfStart in
Fig. 4 is used for this purpose. If m is start, Φcurrent is set to {e} and is included in
Φ′. The invocations of start in the body of mg which are collected in the set Φmg

should also be checked against Φn and Φcurrent, through the function check. However,
mg may not be type checked yet, and therefore, Φmg

may still be undefined. If so,
the body of mg in class C0 is type checked against the typing context containing Γ1

which includes the parameters to the method mapped to their types and variable this
mapped to type C0.

Typing Recursive Methods. The judgment ∆; (C0,mg) ` loop(C0,mg) states
that method mg of class C0 is a member of some loop—the rules defining such a
judgment are given in the online appendix of this paper [ISF16a]. Note that if mg is
in some loop of invocations, type checking its body may repeat infinitely many times.
This is because type checking the body ofmg requires Φmg which is still undefined. To
prevent this, typing context should be constructed in such a way that type checking
remains decidable. In doing so, Φmg

is set to the empty set and the resulting class
table ∆1 is considered in type checking the body. As it is assumed that invocations of
start in recursive methods do not contain parameters, such invocations are collected
in the set Φ′′ by one-pass checking of the body. Note that ∆1 is considered temporarily
in type checking the body of mg. The correct content of Φmg is later assigned to this
set by the rule T-MDefn in Fig. 9.

As an example, consider the following code. It is a loop in the form of a method
which invokes itself.

void m() {
Thread t;
t = new Thread();
t.start();
this.m();

}

Assume that m is invoked somewhere in the program. When this invocation is type
checked through TE-Method, the body of m is also type checked if Φm is undefined.
In type checking the body ofm, Φm is temporarily set to the empty set. Otherwise, the
type checking of “this.m()” leads to another type checking of the body of m which,
in turn, makes the whole process endless. Note that the variable “t” is collected in
the set Φ′′ derived as the set containing the expressions on which start is invoked in
the body of m.

Required Replacements. Since Φn and Φcurrent contain the suspicious expres-
sions that are composed of actual parameters, an occurrence of a formal parameter in
Φmg

is replaced by its corresponding actual parameter through the function replace in
Fig. 4. For the same reason, e is also substituted for the local variable this. If these
replacements convert two different expressions in Φmg to the same, type checking fails.
This signifies probable double invocation of start on the same thread at run-time.
For a successful replacement, it is also checked if Φ′mg

is non-empty. If so, the contents
of Φ′mg

are examined by the function check. The set Φ′ is then constructed as the
union of Φn, Φcurrent, and Φ′mg

.

The Bad Aliasing Due to Method Invocations. Note that the expression re-
turned by a method is an alias for the invocation of that method on an object. The
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∆; Γ; Φ ` pe : τ |Φ′

∆; Γ; Φ ` pe; : void|Φ′
(TS-PE)

∆; Γ; Φ ` e1 : C1|Φ1 ∆; Γ; Φ1 ` e2 : C2|Φ2

∆; Γ; Φ2 ` s̄1 : void|Φ3 ∆; Γ; Φ2 ` s̄2 : void|Φ4

C1 ≺ C2 ∨ C2 ≺ C1
Φ′ = Φ3 ∪ Φ4

∆; Γ; Φ ` if (e1 == e2){s̄1} else {s̄2} : void|Φ′
(TS-If)

∆; Γ; Φ ` e′ : C1|Φ′ ∆; Γ; Φ′ ` e : C2|Φ′′
∆f (C1)(f) = C3 C2 ≺ C3

e = null ∨ e = new C2(e1, . . . , en) ∨ ¬∆th(C2)

∆; Γ; Φ ` e′.f = e; : void|Φ′′
(TS-FieldWrite)

∆; Γ; Φ ` x : C3|Φ′ ∆; Γ; Φ′ ` e : C2|Φ′′
C2 ≺ C3 x 6= this

e = null ∨ e = new C2(e1, . . . , en) ∨ ¬∆th(C2)

∆; Γ; Φ ` x = e; : void|Φ′′
(TS-VarWrite)

∆; Γ, x : C; Φ ` s1 . . . sn : τ |Φ′

∆; Γ; Φ ` C x; s1 . . . sn : τ |Φ′
(TS-Intro)

s1 6= C x;
∆; Γ; Φ ` s1 : void|Φ1 ∆; Γ; Φ1 ` s2 . . . sn : τ |Φ′

∆; Γ; Φ ` s1s2 . . . sn : τ |Φ′
(TS-Seq)

Figure 7 – Typing rules for some statements.

last premise prevents such an aliasing if the resulting aliases are threads or contain
threads in their fields.

3.3.3 Typing Constructor Invocations

The rule TE-New type checks the invocation of class constructors. Since constructors
are, in fact, a special kind of methods, most of the premises of TE-Method are
adapted for this rule. Note that the variable this in Φn points to the current object.
However, the same variable in the body of constructor points to the new object that
is returned by its invocation. To distinguish between these objects, every occurrence
of this in ΦC is replaced by thisC . In this way, invocations of start on expressions
containing this are not mistakenly prevented due to such invocations in constructor
C. Note that variable this is not changed in the body being type checked or in the
mapping Γ. Finally, if ∆th(C) is true, we should have Φn = Φ and ΦC = ∅. This
guarantees that no invocation of start occurs in the parameters e1, . . . , en or in the
body of the constructor C.
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3.4 Typing Rules for Statements

The typing rules of MTMJ for some statements are given in Fig. 7. The rules TS-PE
and TS-Intro simply repeat Φ′ of their premises in their conclusion.

3.4.1 Typing Conditional Statements

The rule TS-If is for type checking if-then-else statements. The expressions e1 and e2
in the condition part of the statement are first type checked. The set Φ1 obtained from
type checking e1 appears in the context for typing e2. Similarly, the set Φ2 obtained
from type checking e2 is considered as part of typing context for the two branches
s̄1 and s̄2. The set Φ′ in the conclusion of the rule would then be the union of Φ3

and Φ4 resulted from type checking the two branches. In this way, any invocation of
start in the branch which may not be executed at run-time is also considered. This is
typical of any static approach to the prevention of errors in conditional structures. In
fact, the knowledge of which branch actually occurs depends on run-time values taken
by expressions. Although the value of some expressions, e.g., null, may be known a
priori, this is not generally true. The following code is an example of a conditional
structure.

if (x.m().f == y.g.n()){t1.start();}
else {t2.start();}

The expression “x.m().f” represents an access to the field “f” of the object pointed
by the value returned by “m” in which m itself is a method of the object identified by
“x”. As the value of such an expression may not be known statically, the type checker
assumes that both branches may be executed at run-time. Therefore, both t1 and
t2 are collected in Φ′. It should be noted that in a valid if-then-else statement, the
types of the two expressions compared in the condition part of the statement should
be related by the subclass relation.

3.4.2 Typing Sequences of Statements

A sequence of statements s1, . . . , sn is type checked by the rule TS-Seq. As seen,
the set Φ1 obtained from type checking s1 appears in the typing context for the tail
sequence. This rule cannot be applied to those sequences beginning with a variable
declaration—such sequences are type checked by the rule TS-Intro.

3.4.3 Typing Assignments

The rules TS-FieldWrite and TS-VarWrite are for type checking the assignment
of an expression e to a field e′.f and to a variable x, respectively. According to
these rules, the left side of the assignment is first type checked. The set Φ′ then
appears in the typing context for e. The set Φ′′ in the conclusion of the rules is the
one resulted from type checking e. The type of e should also be a subclass of the
type of the left side of the assignment. Since the left side of an assignment is an
alias for its right side, we should be certain that the right side is not—or does not
contain—a thread. This is realized by adding ¬∆th(C2) to the premises of the rule.
Nevertheless, the aliasing stated above does not occur for an expression e of the form
new C2(e1, . . . , en), even if ∆th(C2) is true. This is because the new object identifier
returned by new C2(e1, . . . , en) is assigned to the left side of the assignment such
that the corresponding object can only be accessed through the expression in the
left. It is worth noting that an assignment not satisfying the last line of premises in
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C ≺1 Object
∆; Γ, this : C; Φ ` super(); : void|Φ

(T-CObject)

Γ = Γ′, this : C0 Γ′ 6= ∗, this : C′, ∗ C0 ≺1 C
∆; Γ′; Φ ` e1 : C1|Φ1 . . . ∆; Γ′; Φn−1 ` en : Cn|Φn

∆c(C) = C′1, . . . , C
′
n,ΦC C1 ≺ C′1 . . . Cn ≺ C′n

cnbody(C) = (x1, . . . , xn, super(e′1, . . . , e
′
k); s̄)

if ΦC ↑ then
if ∆; (C,C) ` loop(C,C)(

then ∆1 = ∆[∆c(C) 7→ C′1, . . . , C
′
n, ∅] else ∆1 = ∆

)
Γ1 = x1 : C′1, . . . , xn : C′n, this : C

∆1; Γ1; ∅ ` super(e′1, . . . , e′k); : void|Φs

∆1; Γ1; Φs ` s̄ : void|Φ′′


else Φ′′ = ΦC

Φ′C = replace(x1, . . . , xn,Φ′′, e1, . . . , en) ∧ Φ′C ↓
if Φ′C 6= ∅ then check(Φ′C ,Φn)

Φ′ = Φn ∪ Φ′C
∆; Γ; Φ ` super(e1, . . . , en); : void|Φ′

(T-CSuper)

Figure 8 – Typing rules for the super call.

TS-FieldWrite or TS-VarWrite can be rewritten as a well-typed program with
the same functionality.

3.5 Typing Rules for the super Call

Figure 8 shows typing rules for the super call. The rule T-CObject is applicable
if Object is the direct superclass of the current class. T-CObject extends the
corresponding rule of MJ by adding Φ to the hypotheses and the consequent of the
typing judgment. In the rule T-CSuper, C is the direct superclass of C0. Since no
valid object is created before executing the constructor of C, the variable this may
not appear in the parameters e1, . . . , en. To enforce this, the typing context for these
parameters, Γ′, is obtained by removing “this : C0” from Γ. Most of the premises of
T-CSuper are the same as TE-New.

3.6 Typing Rules for the Whole Program

The rules given in Fig. 9 type check a program. According to T-ProgDef, a program
P is well-typed if the constructors and methods of its classes are well-typed. The
function chTP in Fig. 4 also checks for the conditions that should be satisfied by
overridden methods. Moreover, the main body of the program, s̄, should be typable.
Note that the context Γ is empty because the main body has no argument. The
variable this is not included in Γ either because the main body cannot access such a
variable.

The judgment ∆ ` C cok|∆′ defined by the rule T-CDefn states that the con-
structor of class C is well-typed. Moreover, the type of the constructor is updated
and a new mapping ∆′ is produced. As seen in the premises of this rule, the body
of the constructor of C that is composed of a super call followed by a sequence of
statements should be typable according to the typing rules of MTMJ. Note that if C
is in a loop of invocations, ΦC is set to the empty set when its body is type checked.
The typing context Γ includes typed arguments as determined by ∆c(C). Moreover,
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if m = start then (
C ≺ Thread ∧ C 6= Thread∧

P = ∗ class C extends C′{∗ cnd md1 . . .mdn} ∗

)
⇒ ∀1 ≤ i ≤ n. mdi 6= void start(){∗}


mg = giveMethod(C,m)

∆m(C)(mg) = C1, . . . , Cn −〈∗〉→ τ

if τ 6= void then ¬∆th(τ)
if ∆; (C,mg) ` loop(C,mg)

(then ∆1 = ∆[∆m(C)(mg) 7→ C1, . . . , Cn −〈∅〉→ τ ] else ∆1 = ∆)

mbody(C,mg) = (x1, . . . , xn, s̄)
Γ = x1 : C1, . . . , xn : Cn, this : C

∆1; Γ; ∅ ` s̄ : τ |Φ′
∆′ = ∆[∆m(C)(mg) 7→ C1, . . . , Cn −〈Φ′〉→ τ ]

∆ ` mbody(C,m) ok|∆′
(T-MDefn)

dom(∆m(C)) = {m1, . . . ,mn} ∆0 = ∆
∆0 ` mbody(C,m1) ok|∆1 . . . ∆n−1 ` mbody(C,mn) ok|∆n

∆ ` C mok|∆n

(T-MBodies)

∆c(C) = C1, . . . , Cn, ∗
if ∆; (C,C) ` loop(C,C)

(then ∆1 = ∆[∆c(C) 7→ C1, . . . , Cn, ∅] else ∆1 = ∆)

cnbody(C) = (x1, . . . , xn, super(e′1, . . . , e
′
k); s̄)

Γ = x1 : C1, . . . , xn : Cn, this : C
∆1; Γ; ∅ ` super(e′1, . . . , e′k); : void|Φs

∆1; Γ; Φs ` s̄ : void|Φ′
if ∆th(C) then Φ′ = ∅

∆′ = ∆[∆c(C) 7→ C1, . . . , Cn,Φ′]

∆ ` C cok|∆′
(T-CDefn)

dom(∆) = {C1, . . . , Cn} ∆0 = ∆
∆0 ` C1 cok|∆1 . . . ∆n−1 ` Cn cok|∆n

∆n ` C1 mok|∆n+1 . . . ∆2n−1 ` Cn mok|∆2n

dom(∆m(Ci)) = {mCi
1 , . . . ,m

Ci
kCi
} (i = 1, . . . , n)

∀1 ≤ i ≤ n, 1 ≤ j ≤ kCi
. chTP (∆2n,m

Ci
j , Ci)

P = ∗; s̄ ∆2n; ∅; ∅ ` s̄ : void|Φ
∆ ` P ok

(T-ProgDef)

Figure 9 – Typing programs.
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s1 ::= Thread1 th; 1 ::= TS-Intro
s2 ::= th = new Thread1(); 2 ::= TS-Seq
s3 ::= th.start(); 3 ::= TS-VarWrite
s4 ::= (Thread)th.start(); 4 ::= TS-PE
e1 ::= th.start() 5 ::= TE-Method
e2 ::= (Thread)th.start() 6 ::= TE-UpCast
Γ′ ::= Γ, th :Thread1

1

2

3
X

∆; Γ′; ∅ ` s2 : void|∅
2

4

5
X

∆; Γ′; ∅ ` e1 : void|{th}
∆; Γ′; ∅ ` s3 : void|{th}

4

5

6
X ∆th(Thread1)

X ∆; Γ′; {th} ` (Thread)th :↑
∆; Γ′; {th} ` e2 :↑
∆; Γ′; {th} ` s4 :↑

∆; Γ′; ∅ ` s3s4 :↑
∆; Γ′; ∅ ` s2s3s4 :↑

∆; Γ; ∅ ` s1s2s3s4 :↑

Figure 10 – Typing Program A in Fig. 1.

the type of this is set to C. In this part of the type system, a class is type checked
irrespective of the other parts of the program. Thus, the initial set Φ for type checking
the super call is taken empty. The resulting set Φs is then used for type checking the
rest of the body. The last premise requires that ΦC should be empty if ∆th(C) is true.
This guarantees that the object created by invoking the constructor does not include
any start invocation on threads. Although this may reject those class constructors
that are not even invoked in the main body of the program, we add it to the premises
of the rule to be consistent with the other rules of the type system.

The rule T-MBodies defines the judgment ∆ ` C mok|∆n which means that the
methods of class C are well-typed and ∆n contains their types in which there is no
undefined component type. Typable methods themselves are derived from the rule
T-MDefn that defines the judgment ∆ ` mbody(C,m) ok|∆′. The first premise of
T-MDefn avoids start from being overridden in the subclasses of Thread. To check
the body that will actually execute, the function giveMethod assigns run to mg if m
is start. The return type of mg should match the one obtained from ∆m(C)(mg). It
is worth noting that ∆th should not be true for type τ , as explained in TE-Method,
to be consistent with type checking those methods invoked in the main body of the
program. It has also been justified in our explanation of TE-Method that one-pass
checking of the body of mg is sufficient to derive Φmg

even if this method is in some
loop of invocations. Moreover, if mg is in some loop of invocations, checking its body
against the new derived Φmg

is not required as no member of this set can be an alias
for expressions on which start is invoked in the body.

3.7 Examples of Type Checking

Here, we give some examples to clarify how the typing rules of MTMJ can prevent
double invocation of start on the same thread. In effect, it is shown that the programs
in Fig. 1 are not typable in MTMJ.

In Program A, it is assumed that Thread1 is a subclass of Thread. Therefore,
∆th(Thread1) = true. As shown in Fig. 10, the type checker can derive no type for
this program. In this figure, the symbol “↑” stands for “has not been derived yet”,
“X” for the omitted premises that are satisfied, and “::=” for “is defined to be”.

To type check “(Thread)th.start()” through the rule TE-Method, the ex-
pression “(Thread)th” should be type checked first. However, the rule TE-UpCast
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s1 ::= y.f = new Thread(); 1 ::= TS-Seq
s2 ::= y.f.start(); 2 ::= TS-FieldWrite
s3 ::= Cell x; 3 ::= TS-PE
s4 ::= x = y; 4 ::= TE-Method
e1 ::= y.f.start() 5 ::= TS-Intro
Γ′ ::= Γ, y :Cell 6 ::= TS-VarWrite
Γ′′ ::= Γ′, x :Cell

1

2
X

∆; Γ′; ∅ ` s1 : void|∅
1

3

4
X

∆; Γ′; ∅ ` e1 : void|{y.f}
∆; Γ′; ∅ ` s2 : void|{y.f}

5

6
X ∆th(Cell)

∆; Γ′′; {y.f} ` s4 :↑
∆; Γ′; {y.f} ` s3s4 :↑

∆; Γ′; ∅ ` s2s3s4 :↑
∆; Γ′; ∅ ` s1s2s3s4 :↑

Figure 11 – Typing Program B in Fig. 1.

cannot be applied here, as it requires ∆th(Thread1) to be false. Note that when
“th.start()” is type checked through TE-Method, “th” is added to the set Φ.
There is no other invocation of start in the method run of Thread1.

In Program B, the class Cell is supposed to have a field of type Thread, and thus,
∆th(Cell) = true. Part of the type derivation illustrated in Fig. 11 shows that the
program is ill-typed. In fact, the statement “x = y;” cannot be type checked through
TS-VarWrite, because it requires the expression assigned to “x” to be either null
or “new Cell()”, or ∆th(Cell) be false. As seen, the expression “y.f” is added to Φ
when “y.f.start()” is type checked.

3.8 Complexity of Type Checking

The statements in the main body of the program are type checked in order. Con-
sidering these statements as well as those that constitute the bodies of constructors
and methods, the complexity of type checking can be computed. In fact, typing a
program is composed of type checking the constructors and methods of that program.
Assume that Sm is the number of statements in the method main, C is the number
of classes in the program, M is the maximum number of methods in the classes, ST
is the maximum number of statements in the methods and constructors, and PA is
the maximum number of parameters in the expressions appearing in the program.
Here, by statements, we mean atomic statements having no statement within. For
a conditional statement, for example, the statements appearing in its branches are
also considered in calculating ST . Each statement may contain at most two expres-
sions which themselves may contain several expressions as their parameters. Thus,
for the methods and constructors that are not in some loop of invocations, the cost
of type checking is in the order O(Sm + (C ×M × ST × PA)). For such methods,
it can be assumed that type checking proceeds in such a way that the types of all
methods and constructors invoked in the body of a method have already been derived
when that method is type checked. For a loop of invocations consisting of n methods
and constructors, type checking the bodies is performed in the order of O(n2) steps.
Therefore, the cost of type checking the methods and constructors making a loop of
size n is O(n2 × ST × PA). It can be shown that cost of type checking a loop of n
methods and constructors can be reduced to the order of O(n) steps [ISF16b].
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3.9 A Type Checker for MTMJ Programs

We have implemented the type system of MTMJ in the framework Xtext [xte13].
This framework takes the syntax of a language in an EBNF-like style and produces
an ANTLR parser [Par07] for that language. There are several ways to encode a
type system in Xtext. We have decided on Xsemantics [Bet11] which takes typing
rules as comprising a set of premises and one conclusion. The complete set of codes
developed as well as instructions for using the type checker of MTMJ can be found
in [ISF16a] which also contains some example programs. Some of these programs
are safe multithreaded applications that are successfully type checked by our type
checker. This is not the case for ill-typed programs which do not comply with the
requirements of the type system of MTMJ.

4 Dynamic Semantics

The operational semantics of MTMJ is given as an abstract machine comprising a set
of states and the rules defining state transitions. As it is based on the semantics of
MJ, we repeat shortly some parts of MJ’s dynamic semantics here. In MJ, a state, also
said a configuration, is a quadruple consisting of a heap, a variable stack, a closed
frame, and a frame stack that are denoted by H, V S, CF , and FS, respectively.
These components are defined as follows:

• H: A partial function that maps an object identifier to its class and field values.

• V S: A mapping from variable names to their types and values.

• CF : The next term to be evaluated.

• FS: The current evaluation context.

A value may be null or an object identifier. An object identifier itself is an abstraction
of a low-level implementation, e.g., it may represent some kind of pointer. The variable
stack is a list of method scopes mapping the variables of methods to their types and
values—a method scope is denoted by MS. A method scope itself consists of several
block scopes BS. The domain of a block scope is the variables appearing in a block
within the corresponding method. A block may be the main body of the method or
the body of a control structure. The operator “◦” concatenates a BS to an MS or
an MS to V S—the evaluation of a variable begins from the innermost scope. The
complete operational semantics of MJ can be found in [BPP03].

MTMJ extends the operational semantics of MJ with some new rules defining
the behavior of concurrent threads. In the first step, a state is redefined as a global
configuration made up of a heap H and a function TP . The heap remains the same as
in MJ. The function TP takes a thread identifier and returns its local configuration.
A local configuration of a thread th is the triple (V Sth, CFth, FSth) of a variable
stack, a closed frame, and a frame stack. For example, CFth is a term in the body of
th.

Figure 12 elaborates on the operational semantics of MTMJ, where “�” shows
small-step transitions. The rule E-Translate states that if the term to be evaluated
is not the invocation of start, the thread runs as an MJ program. By a nondeter-
ministic choice, th is the current thread and its body should be executed. The rule
E-MethodVoidStart explains what happens when start is invoked on a thread. By
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th ∈ dom(TP1) TP1(th) = (V S1
th, CF

1
th, FS

1
th) CF 1

th 6= th′.start()
(H1, V S1

th, CF
1
th, FS

1
th)→ (H2, V S2

th, CF
2
th, FS

2
th) is an MJ transition

TP2 = TP1[th 7→ (V S2
th, CF

2
th, FS

2
th)]

(H1, TP1)� (H2, TP2)
(E-Translate)

th′ ∈ dom(TP1) TP1(th′) = (V Sth′ , th.start(), CF ◦ FS′
th′ )

H(th) = (C,F) C ≺ Thread
mbody(C, run) = ((), s̄th) th 6∈ dom(TP1)

BSth = {this 7→ (th, C)}
TP2 = TP1[th′ 7→ (V Sth′ , CF, FS′

th′ )] ∪ {(th, ((BSth ◦ [ ]) ◦ [ ], s̄th, (return th; ) ◦ [ ]))}
(H,TP1)� (H,TP2)
(E-MethodVoidStart)

th ∈ dom(TP1) TP1(th) = NPE ∨ TP1(th) = CCE
TP2 = TP1 \ {(th, TP1(th))}

(H,TP1)� (H,TP2)
(E-DeleteThread)

Figure 12 – The operational semantics of MTMJ.

invoking start on an object th initialized from Thread or its subclasses, th is sched-
uled for execution—the current thread is th′. When th′ invokes th.start, the thread
identifier th is added to the domain of TP2 that maps th to its initial local configu-
ration. The closed frame CFth is the body of run in the class of th. The variable
stack V Sth is the concatenation of [ ]—which is the initial V S—and the method scope
MS = BSth ◦ [ ] of run. The term return th is also pushed on top of the initial FS.
By executing return th, the method scope of run is removed from the variable stack.
CFth′ is also set to CF which means that the execution of th′ should be continued
with the statements following the invocation of start.

According to the rule E-DeleteThread, a thread should be removed from TP when
it encounters run-time exceptions. Here, we only consider the two exceptions Null-
PointerException (NPE) and ClassCastException (CCE). The operational semantics
concerning these exceptions has been given in MJ. For instance, (H,V S,null.f, FS)
is a configuration that reduces to NPE. It should be noted that type safety can be
provided even in the presence of run-time exceptions. Although we may prefer the
type system to be able to trap all possible errors, it is not feasible, or even plausible,
in real-life programming languages. If we insist on a completely static solution, we
should then act in an overly conservative manner, and in turn, reject many healthy
programs.

5 Type Soundness

We prove that MTMJ is strongly typed and ensures that start is invoked at most once
on any Thread object at run-time. As run-time transitions of MTMJ are between
configurations rather than expressions or statements, we should first define a well-
typed configuration. In doing so, we extend the definition of a typable configuration
(H, V S, CF, FS) of MJ with respect to a class table ∆ which is represented by the
judgment ∆ ` (H, V S, CF, FS) : τ ′. This judgment holds if the evaluation process
leads to a value of type τ ′ when it starts from the given configuration and follows
the transitions of the operational semantics. It also holds if the evaluation process
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arrives at a valid error state. The following auxiliary judgments are useful in defining
a typable configuration.

• ∆ ` H ok: The types of the field values of an object in H are in compliance
with the static types given by ∆f (C), where C is the type of that object.

• ∆, H ` V S ok: The type of the value of any variable in V S is a subclass of the
static type of that variable.

• ∆, H, V S ` FS : τ → τ ′: FS is well-typed in the sense that given a value of type
τ , which is the result of evaluating the closed frame CF of the configuration,
its execution results in a value of type τ ′.

The above judgments are defined by a number of typing rules in MJ. For instance,

∆; context(H,V S) ` CF : τ ∆, H, V S ` FS : τ → τ ′

∆, H, V S ` CF ◦ FS : τ ′′ → τ ′

is one of the rules defining ∆, H, V S ` CF ◦ FS : τ → τ ′. In this rule, CF is first
type checked according to the typing rules of MJ for expressions and statements. The
function context returns the corresponding typing context Γ by extracting the types
of object identifiers and variables as appeared in H and V S. Here, if the head of FS is
an open frame containing a hole “•” of type τ , the hole will be replaced with the value
obtained from evaluating CF . Thus, FS should be of type τ → τ ′ being analogous
to a function that takes a value of type τ and returns a value of type τ ′—there are a
set of rules in MJ for type checking an FS of the form OF ◦ FS′ in which OF is an
open frame. If the head of FS is a closed frame—containing no hole within—and the
evaluation of FS results in a value of type τ ′, its type is considered as τ → τ ′, where
τ can be any type. From the premises, it can then be deduced that the return type
of CF ◦ FS is τ ′. Again, as it has no hole in its head, the type of CF ◦ FS is taken
τ ′′ → τ ′ for an arbitrary τ ′′.

Prior to defining a well-typed global configuration in MTMJ, we first show that
the following properties hold in MTMJ. The proof of lemmas and theorems of this
section can be found through the web page containing the codes, software, and the
other things developed as part of this research [ISF16a].

Lemma 1. Any well-typed expression e of type C ≺ Thread is of one of the following
forms.

1. A local variable x.

2. x.f1.f2. · · · .fn, i.e., a local variable x followed by a sequence of field references.

3. new C(ē).

4. new C ′(ē).f1.f2. · · · .fn.

Lemma 2. Every expression e evaluating to a value in dom(TP ) is of the forms
stated in Lemma 1.

Lemma 3. A well-typed expression e of type C ≺ Thread cannot be an alias for any
well-typed e′ of type C ′ ≺ Thread.

Corollary 1. There is at most one expression of the form (1) or (2)—stated in
Lemma 1—in the program text evaluating to a given th ∈ dom(TP ).
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giveThreads(H,V S, S) =



∅ if V S = [ ]

giveThreads(H,V S′, S) if V S = [ ] ◦ V S′

giveTh(H,BS, S)∪ if V S = (BS ◦MS) ◦ V S′
giveThreads(H,MS ◦ V S′, S)

giveTh(H,BS, S) =
⋃

x∈dom(BS)

(
{x|BSV (x) ∈ S} ∪
fldTP({x,BSV (x)}, BSV (x), H, S)

)

fldTP(E, v,H, S) =


⋃

f∈dom(F)
checkFld(E,F(f), H, S) if v 6= null and

F = HV (v)

∅ otherwise

checkFld(E, v,H, S) =


{e.f |e ∈ E}∪ if v ∈ S
fldTP({e.f |e ∈ E} ∪ {v}, v,H, S)

fldTP({e.f |e ∈ E} ∪ {v}, v,H, S) otherwise

Figure 13 – The function giveThreads in which BSV (x) stands for the value of x as returned by
BS and HV (v) is the field values of v in H.

Lemma 4. Every expression of the form (3) or (4) in Lemma 1 evaluates to a thread
identifier that is not in dom(TP ).

The rules defining a well-typed global configuration of MTMJ are given in Fig.
14. In the rules given in this figure, the function giveThreads, which is defined in Fig.
13, returns the set of those expressions in the body of a thread that are of the form
(1) or (2) stated in Lemma 1 and their values are in dom(TP ). Note that a double
invocation of start on the same thread does not occur for the other forms because,
according to Lemma 4, such expressions return a thread identifier not started yet.
For a thread th, giveThreads takes the heap H, the variable stack V S associated with
th, and S that is equal to dom(TP ). Then, it partitions V S into block scopes. For a
block scope BS, giveThreads calls giveTh which returns the set of those local variables
whose values are in dom(TP ). The function giveTh also investigates the field values
of local variables through fldTP and checkFld. This continues recursively until null
appears as a value. It should be noted that for an expression x.f1. · · · .fn returned
by giveThreads, the function also returns expressions of the form oi.fi. · · · .fn, where
oi is the value of x.f1. · · · .fi−1.

According to the rule TG-CFG in Fig. 14, a global configuration (H,TP ) is of
type τ if the following judgments are derivable.

1. ∆ ` H ok.

2. ∆, H ` TP : τ : From the rule TG-TP, TP is of type τ if the following condi-
tions are satisfied by every th ∈ dom(TP ).

• The type of th obtained from H(th) is a subclass of Thread. In the
premises of TG-TP, this is stated by ∆, H ` th : Thread.

• V Sth is well-typed in the context ∆, H.
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∆ ` H ok ∆, H ` TP : τ

∆ ` (H,TP ) : τ
(TG-CFG)

∀th ∈ dom(TP )
∆, H ` th : Thread

∆, H ` V Sth ok
Φth = dom(TP ) ∪ giveThreads(H,V Sth, dom(TP ))

∆, H, V Sth,Φth ` CFth ◦ FSth : void→ τ


∆, H ` TP : τ
(TG-TP)

Figure 14 – A well-typed global configuration.

• The type system of MTMJ yields the type void → τ for CFth ◦ FSth.
Therefore, the set of expressions on which start has already been invoked,
i.e., Φth, should appear as part of the typing context. Since a configu-
ration is a run-time concept, in order to type check a configuration by
the typing rules of MTMJ, one should build the context using the run-
time information. In particular, Φth is considered as the set of all values
on which start has been invoked together with those variables or fields
that start has been invoked on their values—such values can be obtained
from V S and H. The former is dom(TP ) and the latter is obtained from
giveThreads(H,V Sth, dom(TP )). It should be noted that our arguments
for type soundness, given later as a theorem, is valid only if the set Φth does
not include more so-called static expressions than those collected during
type checking through the type system of MTMJ—by a static expression,
we mean an expression containing no hole or value. That is, in the program
text, start should be explicitly invoked on all static expressions collected
in Φth. This certainly happens because of what is stated by Corollary 1
and the fact that the value of an expression does not appear in dom(TP )
unless start is invoked on that value. Moreover, the pairs of actual/formal
parameters excluded from Corollary 1 does not menace the validity of a
prospective proof of type soundness, as the type system of MTMJ substi-
tutes actual parameters for formal ones when checking for illegal invocation
of start.

As seen in Fig. 14, MTMJ extends the judgment ∆, H, V S ` FS : τ → τ ′ with
Φ in its hypotheses. Thus, it also extends the rules defining such a judgment—these
rules are given in the online appendix of this paper [ISF16a]. Some of these rules only
add a Φ to the hypotheses of the judgments appearing in the corresponding rule of
MJ. However, other rules check some new conditions.

To prove the soundness of the type system of MTMJ, we first define a terminal
global configuration as comprising only threads whose execution is complete; that is,
threads which have their frame stack empty and a value for their closed frame. This
occurs only if the execution of run is complete.

Definition 1. (Terminal Configuration). A global configuration (H,TP ) is said to
be terminal if TP (th) = (V Sth, v, [ ]) for every th ∈ dom(TP ), where v is a value.

In what follows, it is proved that MTMJ is type-safe, i.e., it satisfies the properties
progress and preservation. That is, no well-typed nonterminal global configuration
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will get stuck and the types of well-typed configurations are preserved during semantic
reductions.

Theorem 1. (Progress). If (H1, TP1) : τ , then either (H1, TP1) is a terminal global
configuration or (H1, TP1)� (H2, TP2) for some global configuration (H2, TP2).

Theorem 2. (Type Preservation). If (H1, TP1) : τ and (H1, TP1) � (H2, TP2),
then there exists a type τ ′ such that (H2, TP2) : τ ′ and τ ′ ≺ τ .

The type safety of MTMJ guarantees that no multiple invocation of start on the
same thread happens for a typable program at run-time.

Corollary 2. A well-typed program P does not lead to multiple start of the same
thread.

Proof. As MTMJ is type-safe, no nonterminal global configuration gets stuck during
the execution of P . Moreover, the dynamic semantics of MTMJ has no reduction
for those global configurations involving multiple invocation of start on the same
thread—see the rule E-MethodVoidStart. This completes the proof.

6 Conclusion

In this paper, we have proposed MTMJ which is a multithreaded model language for
Java. To do so, we have extended Middleweight Java with the primitives required
for multithreading. The language is so designed that run-time misbehaviors can be
predicted by the type system. In particular, MTMJ checks for erroneous multiple
invocation of start statically, although it is dynamically checked in Java. To achieve
this, MTMJ prohibits special kinds of aliasing through its type system. We have
proved that MTMJ is type-safe, thereby trapping those programs whose execution
results in multiple start of threads. Multiple invocation of an arbitrary method on
the same object is not in general erroneous because, unlike Thread objects, such
an object is not necessarily a handle for an executing entity. However, our approach
is applicable to cases where one intends to prohibit multiple invocation of the same
method on the same object. Extending MTMJ with other constructs, such as the
synchronization construct, and modifying the type system of Java according to the
typing rules of MTMJ deserve future research.
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