
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

External Dispatch: Yet Another
Object-Oriented Single and Multiple

Dispatch Mechanism

Miguel Oliveira e Silvaa

a. DETI-IEETA, University of Aveiro, Portugal

Abstract Although multiple dispatch properly solves difficult program-
ming problems such as binary methods, the large majority of existing
object-oriented programming languages still don’t support it. The few
languages that provide such a mechanism do so in ways that either lie
outside an object-oriented modular construct (class), or possess some other
limitations, such as arbitrarily choosing one of the dispatch object types
as the repository for dispatch methods. This article presents a new object-
oriented language mechanism for single and multiple dispatch. As a proof
of concept, we will use Java as the base language. This mechanism is
compatible with existing object-oriented language constructs, and provides
a simple, expressive, and universal dispatch tool. Our proposal introduces
a new object-oriented external dispatch mechanism, which complements
the traditional object-oriented internal single dispatch mechanism. This
new mechanism is applicable not only to multiple dispatch, but can also be
used as an alternative to decorators and some creational design patterns.
A more complete realization for external dispatch motivated the definition
of a new singleton language mechanism that is also presented.

Keywords multiple dispatch; single dispatch; external dispatch; object-
oriented programming languages; multimethods; binary methods; type
covariance; encapsulation; modularity; static typechecking; subtyping;
inheritance; mixins, decorator design pattern; creational design patterns;
singleton; Java.

1 Introduction

A distinctive characteristic of object-oriented programming languages is the single
dynamic dispatch mechanism: the method to be executed depends on the runtime type
of the target object. This language construct is built using the inheritance mechanism
and provides support for subtype polymorphism. It allows the construction of more
modular and abstract programs. We consider this dispatch as internal, because the

Miguel Oliveira e Silva. External Dispatch: Yet Another Object-Oriented Single and Multiple Dispatch
Mechanism. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In Journal of
Object Technology, vol. 16, no. 2, 2017, pages 1:1–18. doi:10.5381/jot.2017.16.2.a1

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2017.16.2.a1
http://dx.doi.org/10.5381/jot.2017.16.2.a1
http://dx.doi.org/10.5381/jot.2017.16.2.a1

2 · Miguel Oliveira e Silva

target object is also the dispatch object, i.e. the method to be executed is defined in
the type of the dispatch object.

However, it is well known that this mechanism fails when the need arises to support
the runtime selection of multiple types, as happens, for example, when binary methods
are involved [BCC+95]. Its expressivity is limited also by the restriction that the
method dynamic selection is hardwired with the object type used, so it is not easy to
dynamically select a method that is not defined in the object’s class.

In an attempt to properly support multiple dispatch, multi-method languages
were developed [Ste90, Cha92]. Multi-method languages allow the definition of global
methods (outside object classes) that are selected for execution depending on the
runtime types of the objects passed as arguments. However, it can be argued that this
mechanism goes against object-oriented modular architecture precisely because meth-
ods are defined externally to classes. It has also been acknowledged that this approach
raises encapsulation and modularity problems [Bru02, page 102]. In Tuple [LM98]
some of these problems were solved, but at the cost of defining a new type construct
(tuple classes), that becomes the receiver of dispatch messages (method invocation),
replacing objects in that role (and losing some important features such as fields and
inheritance). Other approaches can also be found in [BC97, CLCM00, KRLS13].

This article proposes a new object-oriented language mechanism for single and
multiple dispatch. As a proof of concept, we developed a Java language extension that
implements this mechanism.1 To help the presentation, the problem of the intersection
of 2D shapes (rectangles, circles, etc.) will be used as an example.

The contributions of this article are: (1) a new object-oriented single and multiple
dispatch mechanism; (2) the definition of a set of rules to enforce its static safety; (3)
a new language mechanism for singletons.

This article is organized as follows. Section 2 discusses the motivation for this
work. Section 3 presents some important existing approaches to support multiple
dispatch. Our proposal is presented in section 4. The singleton mechanism is presented
in section 5. Some single dispatch applications of the mechanism are presented in
section 6. Finally, some concluding remarks are made in section 7.

2 Motivation

Object-oriented programming promotes a modular methodology in which objects can
be viewed as self-contained entities that expose an abstract behavior and hide the
implementation from their external clients. Toward such goal, object-oriented languages
provide mechanisms for encapsulation, and mechanisms for subtype polymorphism
and dynamic dispatch. These mechanisms enhance the support for a modular abstract
definition and use of objects. A client only needs to know the object’s interface and
what it does, and not how it is implemented. Also, different types of objects can be
used through the same polymorphic typed entity, making the client’s code functional
even with yet to be developed object types.

For instance, developing a graphical application involving operations such as
drawing shapes like rectangles and circles, an object-oriented approach may define the
abstract common behavior of shapes, as well as non-abstract implementations for each
type of shape (figure 1). The program in listing 1 uses encapsulation and dynamic
dispatch to solve the problem of drawing all shapes in an array.

1Named ED-Java (External Dispatch Java).

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 3

abstract Shape

abstract void draw()
void move(int x,int y)

Circle

void draw()

Rectangle

void draw()

Figure 1 – Shape classes for a graphical application.

public void drawAll(Shape[] shapes) {
for(Shape s: shapes)

s.draw();
}

Listing 1 – Draw shapes in array

The simplicity and abstraction of the solution depends on the fact that a proper
implementation of the redefined method (draw in the example given) depends only on
its enclosing, shape subtype, class. Hence, to dynamically select the proper method,
the object’s type suffices. Object-oriented programming is well adapted to such internal
single dispatch patterns.

More serious problems arise if the desired method depends on more than one type,
such as in binary methods [BCC+95]. For example, in a graphical application, an
operation to test the intersection of two shapes requires the knowledge of both shape
types. Detecting the intersection of two circles is trivial, but the intersection of a circle
with a rectangle requires a different, more complex, algorithm. If both shapes are
handled through type Shape entities (such as in listing 1), then other than being a
Shape, there is no static knowledge on what are the types of the objects involved, and
a dynamic dispatch approach is required. Unlike the usual object-oriented internal
single dispatch mechanism, to properly solve this problem we need a dispatch algorithm
involving two object types; i.e. a multiple dispatch mechanism.

3 Representative existing approaches

3.1 Global multi-methods

One possible approach is simply to remove methods from classes, and allow dynamic
dispatch on argument types of global functions (listing 2). That is the solution taken
by CommonLoops [BKK+86], CLOS [Kee89], CECIL [Cha92].

boolean intersect(Circle c1, Circle c2) { · · · }
boolean intersect(Circle c, Rectangle r) { · · · }
· · ·

Listing 2 – Global multi-methods

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

4 · Miguel Oliveira e Silva

public abstract class Shape {
public abstract boolean intersect(Shape other);

}

public class Circle extends Shape {
public boolean intersect(Shape@Circle other) { · · · }
public boolean intersect(Shape@Rectangle other) { · · · }

}

· · ·

Listing 3 – Class multi-methods written in MultiJava

tuple class (Circle c1, Circle c2) {
boolean intersect() { · · · }
int distance() { · · · }

}

tuple class (Circle c, Rectangle r) {
boolean intersect() { · · · }
int distance() { · · · }

}

· · ·

Listing 4 – Tuple multi-methods

This approach is not very object-oriented, because these multi-dispatch methods
are not part of a class/object.

3.2 Class multi-methods

Another possibility is to put methods in the class of one of the dispatch objects.
This is the approach taken by Parasitic Methods [BC97], MultiJava [CLCM00], and
Featherweight Multi Java [BCV07]. Listing 3 shows an example written in MultiJava.

A problem with this approach is that it can represent an overspecification of a
class, because the class might contain a behavior that is also strongly related with
another class. Also, such mixed behavior might reduce the class modularity as it
might strengthen the coupling with other classes (in the example given, knowledge
of rectangles is required within the circle class). As a result, such a class needs to
explicitly support a behavior that should probably be elsewhere.

Another potential problem is the asymmetric treatment that is given to dispatch
objects, that occurs when one is selected as the dispatch target.

Finally, this approach compromises the “open-closed principle” [Mey97]. If a new
intervening dispatch type is added to the program (an ellipse, for example), this
approach requires that existing classes need to be opened and extended with new
dispatch methods.

The open-class approach [CLCM00] alleviates this last problem, and other ap-
proaches exist for symmetric dispatch [CLCM00, Cha92], but neither of them solves
the class’s overspecification problem.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 5

3.3 Tuple multi-methods

Another possibility is to define a new structuring module – a tuple – in which all
these methods are declared and implemented (listing 4), as taken in Tuple [LM98].
The problem with this approach is that tuple multi-methods are not part of an object.
Hence, important features are lost, such as fields, explicit subtyping and inheritance,
and abstract methods.

4 External dispatch proposal

It is necessary to reconcile two apparently conflicting requirements: dynamic dispatch
using a tuple of objects, and find a target object where dispatched methods are
defined and executed (hence ensuring that objects and classes remain the essential
modular language structures). Existing approaches either do not select a target
object (sections 3.1 and 3.3), or select one of the tuple’s dispatch objects (section 3.2).
However, not only is choosing one of the dispatch objects as target arbitrary (which
one?), but, more important, its class might not be the correct location to place this
joint behavior. In the example given, the intersection behavior of two shapes is not
specific of a single shape type, but to both shape types. Additionally, if a new behavior
specific to intersection shapes, for example define a method to count the number
of collisions, is added to the program, then it makes little sense to place it inside a
circle or any other single shape class. The joint behavior of two or more objects, as
expressed in multiple dispatch applications, should be a type abstraction of its own.
A circle-rectangle intersection, should be placed in a joint circle-rectangle class, not in
the class of either of these two shapes.

This view raises the problem of how to find the proper target object. In the class
multi-methods approach, this problem has a simple solution: the object is one of
the dispatch objects, but if the joint behavior is a separate abstraction then it is
necessary to select an object external to the set of dispatch objects. The solution
proposed is to reuse and generalize the object creation mechanism. The idea is to
perform the dynamic dispatch not directly in method invocation, but in object creation.
Hence, a dynamic dispatch of a method is separated in two phases: (1) instantiate
the correct dispatch target object, and then (2) invoke the method with the common
object-oriented internal dispatch semantics.

In existing object-oriented languages such as Java, the creation expression un-
ambiguously identifies the object’s class. In our proposal, the creation expression is
extended to (optionally) include an object tuple as a prefix argument (see section 4.2)
so that it unambiguously identifies the object’s type, but not its non-abstract class.
It is up to the semantic rules of the mechanism to select the object’s class using a
dynamic external dispatch on the tuple.

When designing this new mechanism, special care was taken so that the syntactic
and semantic use of original language constructs remain the same (meaning that
existing programs in the base language are valid and work as before). Also, we tried to
take advantage of possible interesting synergic behaviors when the new extensions are
used with other existing language constructs (abstract classes and methods, parametric
polymorphism, inheritance, etc.).

Three major extensions to the base language (Java was used as a case study) are
proposed:

1. an extension to class declaration named external dispatch classes (section 4.1);

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

6 · Miguel Oliveira e Silva

normalClassDeclaration:
classModifier∗ ’class’ Identifier typeParameters? externalDispatchArguments?
superclass? superinterfaces? classBody

;

externalDispatchArguments:
’(’ formalParameterList ’)’ |
’(’ ’{’ formalParameterList ’}’ ’)’

;

Listing 5 – Class declaration grammar

2. an extension to the creation expression (section 4.2);

3. a mechanism for singletons (section 5).

First we will informally present the mechanism, leaving a more formal presentation
to section 4.5.

4.1 External dispatch classes

Considering Java’s syntax description in Java Language Specification [GJS+14, page
193], listing 5 presents the new class declaration grammar with additions highlighted
(Java8 grammar expressed in ANTLR).

External dispatch classes are classes with dispatch arguments.2 For example:

public class A<T>(B b,C c) extends D implements E { · · · }

An external dispatch generic class A is defined, with two dispatch arguments of type
B and C, extending a class D and implementing an interface E. The application of
the new extended creation expression (defined in the next section) to class A requires
passing a dispatch object tuple (o1, o2), of type (T1, T2), conforming to the formal
parameter list of the external dispatch arguments, i.e., T1 <: B ∧ T2 <: C, where <:
represents a subtype relation.

Alternatively, the class declaration might prescribe an unordered list of dispatch
arguments:

public class UA<T>({B b,C c}) extends D implements E { · · · }

This class dispatches to both: (T1 <: B ∧ T2 <: C) ∨ (T1 <: C ∧ T2 <: B).

4.2 External dispatch creation expression

The grammar of the extended creation expression (based on [GJS+14, pages 482-483])
is shown in listing 6.

The creation expression is extended with an object tuple prefix (object dispatch
tuple). For example:

B b; C c;
· · ·
A<Integer> a = new (b,c).A<>(); // extended creation expression
· · ·

2Classes in Scala [OMM+04] also have arguments but the semantics is very different.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 7

unqualifiedClassInstanceCreationExpression:
’new’ classOrInterfaceTypeToInstantiate ’(’ argumentList? ’)’ classBody?

;

classOrInterfaceTypeToInstantiate:
annotation∗ dispatchTuple? identifier (’.’ annotation∗ Identifier)∗ typeArgumentsOrDiamond?

;

dispatchTuple:
’(’ argumentList ’)’ ’.’

;

Listing 6 – Creation expression grammar

ImportDeclaration:
SingleTypeImportDeclaration |
TypeImportOnDemandDeclaration |
SingleStaticImportDeclaration |
StaticImportOnDemandDeclaration |
DispatchImportDeclaration

;

DispatchImportDeclaration:
’import’ ’dispatch’ (’∗’ | TypeName | PackageOrTypeName ’.’ ’∗’) ’;’

;

Listing 7 – Import dispatch grammar

If successfully compiled and run, this expression creates an object with type
T<Integer> subtype of A<Integer>, and T<> is the best conforming type match
for the object types in the dispatch tuple (b, c). Rule 8 in page 12 presents a more
formal definition for this criterion. Static types of the entities in the object dispatch
tuple, must conform to the types of the formal dispatch arguments of the external
dispatch class (rule 9 in page 12).

External dispatch object creation explicitly refers the type of an external dispatch
class (in the example: A<>), but, unlike normal object creation, it can instantiate
an object of a subtype T<> of A<>. The set of possible classes T<> from which the
“best conforming type” is chosen is fixed in compile-time. Also, the set of types that
might be involved in the dispatch argument tuple (in the example, all subtypes of B
and C) may not explicitly appear in the class where the external dispatch object is
created. The matching from all valid combinations of dispatch arguments types to a
non-abstract target external dispatch class is also chosen and fixed at compile-time.
Because some the classes involved might not be explicitly referred in the external
dispatch creation expression, the programmer indicates which classes to consider using
a new kind of dispatch import statement (listing 7).

This new statement allows the programmer to explicitly select the list of classes to
be considered for external dispatch. It includes both external dispatch classes, and
the classes used in dispatch arguments. A new import dispatch * statement was
added to explicitly include all classes of current package. For example:

import dispatch *; // all classes in current package
import dispatch p.B; // class B in package p
import dispatch java.lang.*; // all classes in package java.lang

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

8 · Miguel Oliveira e Silva

abstract TwoShape(Shape s1,Shape s2)

abstract int distance()
boolean intersect()
void testCollision()
int collisions()

TwoCircle(Circle c1,Circle c2)

int distance()
· · ·

CircleRectangle({Circle c,Rectangle r})

int distance()

Figure 2 – External dispatch shape classes.

public abstract class TwoShape(Shape s1,Shape s2) {
public abstract double distance();

public boolean intersect() {
return distance() <= 0;

}

public void testCollision() {
if (intersect())

collisionsDetected++;
}

public int collisions() {
return collisionsDetected;

}

protected int collisionsDetected = 0;
}

Listing 8 – Two shape multiple dispatch class

In short, import dispatch statement creates a dependency between the compilation
unit (i.e. the whole file) and the classes or packages expressed. A change (class added
or removed) will require its recompilation.

4.3 Shape example

Figure 2 and listings 8 and 9 exemplify possible external dispatch classes for a shape
subtype graph presented in figure 1. Class CircleRectangle can dispatch a circle-
rectangle or a rectangle-circle tuple. The external dispatch object creation expression
will ensure that the external dispatch class created will be the best match (discussed
ahead) to the dispatch object tuple.

Listing 10 exemplifies the use of the external dispatch creation expression for the
shapes example (for the exemplified shapes, a successful compilation requires also a
RectangleRectangle external dispatch class).

The inheritance relation of external dispatch classes retains normal inheritance
semantics, with the addition requirement of conformance in homologous dispatch
arguments. Conformance means a non-variant or covariant type change of formal
dispatch arguments in the same position (note that this semantics is not changed by
an unordered dispatch argument declaration).

To ensure that inherited methods work as expected in subclasses, an automatic
renaming of formal dispatch arguments occurs when external dispatch classes are

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 9

public class TwoCircle(Circle c1, Circle c2) extends TwoShape {
public double distance() {

return Math.sqrt((c1.x()-c2.x())*(c1.x()-c2.x()) +
(c1.y()-c2.y())*(c1.y()-c2.y())) -

c1.radius() - c2.radius();
}

}

public class CircleRectangle({Circle c, Rectangle r}) extends TwoShape {
public double distance() {

· · ·
}

}

· · · // other TwoShape external dispatch classes

Listing 9 – Example of non-abstract dispatch classes

// consider all classes from default package for dispatch:
import dispatch *;

public class Test {
public static void main(String[] args) {

Shape s1 = new Rectangle(10,12,20,15);
Shape s2 = new Circle(10,10,5);
· · ·
// Multiple dispatch on all TwoShape descendants
TwoShape tsi = new (s1,s2).TwoShape();
// A CircleRectangle object was created!
System.out.println("distance = "+tsi.distance());

}
}

Listing 10 – Multiple dispatch example

inherited.3 This renaming applies to homologous formal dispatch arguments. In
the example given, formal dispatch arguments s1 and s2 from class TwoShape, and
formal dispatch arguments c1 and c2 from class TwoCircle refer to the same objects.
Hence, all methods implemented in TwoShape behaves as expected within the context
of a TwoCircle object.

Another restriction that applies to external dispatch classes is the “inheritance”
of constructor methods. An external dispatch class Y that extends another external
dispatch class X containing constructors with arguments is required to override those
constructors, otherwise, a “method not found” error could arise at runtime. The
exception is the default constructor that is always defined in classes without constructor
declarations.

4.4 Modularity

The external dispatch mechanism is modular because the addition of a new class that
is a subclass of a dispatch argument (for instance, a square or a polygon shape) has
no impact to existing classes. Eventually, new external dispatch classes might be
necessary to ensure a complete instantiation (see rule 7 in page 11).

3This behavior differs from Java normal semantics.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

10 · Miguel Oliveira e Silva

4.5 Static rules

To enforce the static safety of the external dispatch mechanism, the compiler verifies
the rules presented in this section.

Consider the following external dispatch classes: class C with n ≥ 1 dispatch
arguments c1, . . . , cn, of types C1, . . . , Cn; class D with m ≥ 1 dispatch arguments
d1, . . . , dm, of types D1, . . . , Dm; and class E with l ≥ 1 dispatch arguments e1, . . . , el,
of types E1, . . . , El.4

We use the notation X E Y to express that X is directly, or indirectly, a subclass
of Y (note also that X EX). Also, we define the set inst(A) of all non-abstract classes
that are subclasses of A:

inst(A) = {X | X E A ∧ X is not abstract}.

Finally, we define the set inst(C, i) applicable to the external dispatch class C and
to integer i, that contains all the non-abstract classes that can be used as the ith
dispatch argument (1 ≤ i ≤ n). This set contains inst(Ci) and, for all subclasses D of
C that have unordered dispatch arguments, also {X | ∀i ∈ {1, . . . , n}, X = Di}.

4.5.1 External dispatch classes rules

External dispatch classes behave like normal classes except for the restrictions imposed
by the rules presented in this section.

Rule 1 Conforming dispatch arguments: The subclass relation between external
dispatch classes requires conforming dispatch arguments.

∀D,C : D E C =⇒ (m = n) ∧ (∀i ∈ {1, . . . , n}, Di <: Ci)

This rule is required to ensure that the subclass relation between two external dispatch
classes represents also a safe subtype relation; i.e. any instance of a subclass D can be
used in expressions of type C.

Rule 2 Non-conflicting subclasses 1: Different external dispatch classes that are
subclasses of a common external dispatch class, must differ in at least one dispatch
argument type.

∀C,D,E : D E C ∧ E E C ∧ D 6= E =⇒ ∃i ∈ {1, . . . , n}, Di 6= Ei

Note that because of rule 1, m = l = n.

Rule 3 Non-conflicting subclasses 2: For an external dispatch class with un-
ordered dispatch arguments, the verification of the previous rule must apply to all
permutations of dispatch arguments.

If E has unordered dispatch arguments, and Pj is one of the possible n! permutations
of numbers 1, . . . , n, then:

∀C,D,E : D E C ∧ E E C ∧ D 6= E =⇒
∀j ∈ {1, . . . , n!} ∃i ∈ {1, . . . , n}, Di 6= EPj(i)

In short, for the external dispatch to work, it is necessary that a class is unambigu-
ously identifiable within the set of all subclasses of C.

4The place of dispatch arguments is the declared one, regardless of being an ordered or unordered
list.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 11

Rule 4 Class formal dispatch arguments with final semantics: Restrictions
applicable to keyword this ([GJS+14, page 480]) are extended to all formal dispatch
arguments (in class C the restrictions apply to formals: c1, . . . , cn).

The binding to formal dispatch arguments occurs when the object is created (as
happens with this keyword), and remains the same while the object is alive.

Rule 5 Overriding of constructors: All subclasses of an external dispatch class C,
must implement constructors with argument type lists equal to those in the constructors
of C except when class C has no declared constructors.

Since the external creation expression instantiates a subclass of C, all possible
subclasses must implement at least the constructors present in C, otherwise a creation
error could arise at runtime.

Rule 6 Formal dispatch arguments renaming: The code of an external dispatch
class is inherited as if its formal dispatch arguments are the homologous dispatch
arguments of the subclass.

∀D,C : D E C ∧ D 6= C =⇒ ∀ i ∈ {1, . . . , n} ci = di ∧ ci is hidden inD

This means two things. First, the superclass formals cannot be used in the
context of the subclass (they were renamed). Second, a subclass is assured that
inherited methods behave as if the class’s dispatch arguments were used in place of
the homologous superclass dispatch arguments. In the presented shape interaction
example, if formals s1 and s2 were used in a method, then this method would word as
expected in subclasses of TwoShape as if the subclasses dispatch arguments formals
were in that superclass.

Rule 7 Complete instantiation: The set of all non-abstract subclasses of any
external dispatch class, should be enough to ensure the dispatch of all possible dispatch
tuple non-abstract types.

Formally, considering a tuple T = (R1, . . . , Rn) such that Ri ∈ inst(C, i), and a
non-abstract external dispatch class D. Then, for an external dispatch class C:

∀R1 ∈ inst(C, 1) . . . ∀Rn ∈ inst(C, n) ∃D : D ∈ inst(C) ∧
(R1 <: D1 ∧ . . . ∧ Rn <: Dn)

If we define the set inst(C, T), as the set of non-abstract subclasses of external
dispatch class C that are possible targets of tuple T , then this rule states that for all
possible tuples T , inst(C, T) in not an empty set.

This rule serves the purpose of assuring that all possible valid combinations of the
non-abstract types of the dispatch arguments of an external dispatch class, conform
to a valid dispatch argument type tuple of at least one instantiable external dispatch
subclass. A sufficient condition for this rule, is a non-abstract class C.

Type distance: Consider dist(A,B) to be an integer function that returns the
distance between the class A and the class B. The distance between two classes is the
minimum number of edges in the subclass directed graph from A to B. The subclass
directed graph is defined by considering classes to be its nodes, and the subclass
relation its edges (directed from the subclass to the parent class). This function is not
defined if no path exists from A to B (i.e. if A is not a subclass of B); and is zero
if A = B. In the subtype graph in figure 3, the distance between types Square and
Shape is two, and dist(Rectangle,Circle) is not defined.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

12 · Miguel Oliveira e Silva

Shape

Rectangle

Square

Circle Polygon

Figure 3 – Subclass directed graph for some shapes.

Rule 8 Unambiguous instantiation: The set of all non-abstract subclasses of
an external dispatch class C should be no less, and no more, than the necessary to
ensure that for inst(C, T), there is no ambiguity in the selection of a single best-match
non-abstract target external dispatch class.

Formally, considering a tuple T as defined in rule 7, the integer function:

dist-tuple(T,C) =

n∑
i=1

dist(Ri, Ci),

and function min(C, T) that contains the non-abstract subclasses of C with minimum
distance to dispatch tuple T, i.e.:

min(C, T) = {M | M ∈ inst(C) ∧
(∀D : D ∈ inst(C), dist-tuple(T,M) ≤ dist-tuple(T,D))}

then, for all possible tuples T , min(C, T) is composed of a single target external dispatch
class (named best match).

Single and multiple inheritance: The unambiguous instantiation rule is more
difficult to ensure in languages that do not support multiple inheritance (such as
Java). Consider the subtype graph in figure 4a. The graph in figure 4b is the result
of all combinations of pairs of these two classes. In single inheritance languages such
diamond shape inheritance graph is not possible to implement, so some of its natural
subtype relations cannot be expressed. Clearly if all classes are not abstract, and class
BB is not implemented, a compiler error occurs. A possible solution is to implement
BB arbitrarily extending one of the AB, or BA classes. A better solution is to use a
single external dispatch class with unordered dispatch arguments AB (figure 4c).

4.5.2 Dispatch creation expression rules

Consider the following dispatch tuple: X = (x1, . . . , xk), in which xi are valid expres-
sions of type Xi, and the creation expression: new(x1, . . . , xk).C(OptArgumentList).
Functions ord(C) and unord(C) indicate if the external dispatch class C has ordered
or unordered dispatch arguments. Consider also permutation function P defined in
rule 3.

Rule 9 Conforming dispatch tuple: In an external dispatch creation expression,
the dispatch tuple X must conform with the homologous types of the dispatch arguments
of the external dispatch class C, or with a permutation of those arguments if C has
unordered dispatch arguments.

(k = n) ∧ (ord(C) =⇒ (∀i ∈ {1, . . . , n}, Xi <: Ci)) ∧
(unord(C) =⇒ (∀i ∈ {1, . . . , n} ∃j ∈ {1, . . . , n!}, Xi <: CPj(i)))

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 13

A

B

(a) Example subtype graph.

AA(A,A)

AB(A,B) BA(B,A)

BB(B,B)

(b) Ordered combinations.

AA(A,A)

AB({A,B})

BB(B,B)

(c) Unordered combinations.

Figure 4 – Multiple inheritance problem: combination of classes.

Rule 10 Constructor rule: Class C must contain a constructor applicable to
OptArgumentList.

Rule 11 No null references in dispatch tuple: The dispatch tuble cannot contain
a null reference.

∀i ∈ {1, . . . , n}, xi 6= null

Rule 11 is the exception to all presented rules, because it is enforced only at runtime.

4.6 External dispatch classes versus normal classes

Since the behavior of external dispatch classes retains the usual semantics of normal
classes (except on creation), we could consider normal classes a special case of a zero
external dispatch class (there is no problem in allowing an empty dispatch tuple in
the creation expression). However, in this article we consider external dispatch classes
as classes with at least one dispatch argument.

4.7 Current implementation

For this proposal a compiler extending Java8 is being developed in ANTLR-v4 [Par13].
A proof of concept for automatic code generation was implemented using Java reflection
library for object instantiation, and an associative array for implementing the dispatch
matching (all possible dispatch combinations are mapped to non-abstract external
dispatch classes).

5 Singletons

So far, the external dispatch mechanism creates a new object in each external dispatch
creation expression. However, sometimes we would like to reuse the same target object
in several dispatch operations. In particular, if there are fields declared within the
external dispatch class, we might want to ensure that the same object is the target of
several external dispatch operations.

On the other hand, the necessity for types with single instances also occurs in
normal object-oriented programming. A design pattern that approaches such a goal
is the singleton [GHJV95]. However, due to its implementation, the singleton design
pattern ensures only that a class has a single instance, which is not necessarily the same
thing as a single instance per type. The problem here is the negative interference with
inheritance and generic class type language mechanisms. A dynamically dispatched
singleton for each class in a subclass hierarchy is difficult to implement. In the case of

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

14 · Miguel Oliveira e Silva

public singleton class TwoCircle(Circle c1, Circle c2) extends TwoShape {
public double distance() {

...
}

}

public singleton class CircleRectangle({Circle c, Rectangle r}) extends TwoShape {
public double distance() {

...
}

}

Listing 11 – Example of singleton dispatch classes

generic types, it is not taken into consideration that a generic class is a type constructor
(i.e. different types for different generic type instantiations). For all these reasons a
language supported mechanism for type singletons is desirable.

5.1 Our proposal

Syntactically, our proposal simply adds a new class modifier keyword: singleton.
Semantically, a singleton class ensures a single object per type (instead of a single
object per class). When applied to external dispatch classes, this mechanism ensures
a singleton per dispatch tuple object combination. In short, it ensures a singleton for
each combination of object self-reference this and, if any, all objects referred by the
class’s dispatch arguments formals.

The application of the creation expression to a singleton class always returns the
same object reference (the instantiation occurs only in the first creation attempt).
To avoid undesirable side-effects, singleton classes can only declare the argument-
less constructor. Also, “dead” singleton objects cannot be garbage-collected (or else,
multiple versions of a singleton could arise during program execution).5

The reason for this mechanism to select a single object tuple combination, instead
of a single object type tuple combination, lies in the semantics of the formal dispatch
argument entities: Formal dispatch arguments possess similar semantics to the this
keyword (rule 4). If the singleton semantics were related to the tuple object types,
formals binding to objects would only occur in the first creation attempt, resulting
in an erroneous behavior when different objects of the same types was used in later
external creation expressions. Hence, a saner behavior is to consider that the singleton
targets not only a single this reference, but also a single object dispatch tuple.

In this article we will exemplify the mechanism in the context of external dispatch
(though its semantics for normal classes is not hard to foresee).

Getting back to our shape intersection example, consider the convenience to count
the number of collisions between two specific shapes. The usage of singleton external
dispatch types ensures a correct count (see listing 11).6

6 Other applications

Multiple dispatch problems, such as the shape interaction example, are natural
applications of the external dispatch mechanism (in fact, our proposal was the result

5A more complete semantics should also ensure thread-safe single instantiation.
6The TwoShape class is abstract, thus it is irrelevant to annotate it as a singleton.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 15

public abstract class ExtendedShape(Shape s) extends Shape {
public abstract boolean isConvex();

@Override public void draw() {
s.draw();

}

@Override public void move(int x, int y) {
s.move(x,y);

}
}

public class ExtendedCircle(Circle c) extends ExtendedShape {
public boolean isConvex() {

return true;
}

}

public class ExtendedRectangle(Rectangle r) extends ExtendedShape {
public boolean isConvex() { // applies also to Square

return true;
}

}

public class ExtendedPolygon(Polygon p) extends ExtendedShape {
public boolean isConvex() {

· · · // algorithm to verify the convexity of polygon p
}

}

// necessary to observe complete instantiation rule (rule 7)
public class ExtendedExtendedShape(ExtendedShape es) extends ExtendedShape {

public boolean isConvex() { // applies to all ExtendedShape
return es.isConvex();

}
}

public void doSomething(Shape[] shapes) { // extended shape usage:
for(Shape s: shapes)

if (new (s).ExtendedShape().isConvex()) { // external dispatch to proper isConvex
· · ·

}
}

Listing 12 – Extended shape example

of a long time quest for an object-oriented solution to such problems). However, this
mechanism can give elegant solutions to other important applications.

6.1 Extending classes and class hierarchies with new behavior

To extend a class with new functionalities (e.g. new methods), subclassing is a natural
choice. However, there are some limitations in its applicability. In particular, the new
subclass is strongly coupled with its specific parent class, making it harder to apply
such an extension to a group of classes. Decorators [GHJV95] and mixins [BC90]
are possible solutions. However, mixins (or abstract subclasses) are not currently
supported in Java (a class cannot extend a type parameter), and neither mixins nor
decorators are able to replicate an important mechanism of a hierarchy of subtype
related classes: the possibility in any class to override methods to a more specific or

Journal of Object Technology, vol. 16, no. 2, 2017

http://dx.doi.org/10.5381/jot.2017.16.2.a1

16 · Miguel Oliveira e Silva

efficient behavior.
To make this point clearer, consider the problem of extending shape classes (figure 3

in page 12) with a new test for convexity. For the sake of the argument, consider also
that it was not possible to modify those classes. Clearly, the implementation of this
new behavior depends on the specific shape: circles, rectangles and squares are always
convex, but polygons might not be. So not only a mechanism is required that allows
overriding methods to implement the correct algorithm, but also dynamic binding
should be applicable (as in the original shape classes). Mixins or decorators are not a
solution to this problem.

A single external dispatch provides a complete solution to the problem, with
minimum extra code. Listing 12 shows a possible implementation.

A new ExtendedShape is created, as a subtype of Shape (hence, usable as a
Shape). In this class, the overridden methods of Shape are implemented through
delegation to the dispatch object. Also, we could have opted to give a default
implementation to isConvex method in class ExtendedShape (for instance, re-
turning true). In that case, we only need to redefine ExtendedShape descendants
in which such property did not hold (in the example: ExtendedPolygon and
ExtendedExtendedShape).

6.2 Creation design patterns

Creational patterns [GHJV95] allows the delegation of some responsibility on the type
of the created object (or groups of objects), away from the creation request. For
instance, abstract factories and factory method design patterns are characterized for
abstracting away from the client, the concrete classes to be instantiated.

The external dispatch mechanism can provide the same behavior, requiring only a
different dispatch argument type to enable the selection of external dispatch classes
(where, under a common superclass, we can create the desired objects).

7 Final remarks

This article presents a new object-oriented external dispatch mechanism. Although
carefully thought of, our proposal is still a work in progress. Syntactic and semantic
changes may arise as a result of deeper formal analysis, compiler building, and testing.

References

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Pro-
ceedings of the European Conference on Object-oriented Programming
on Object-oriented Programming Systems, Languages, and Applica-
tions, OOPSLA/ECOOP ’90, pages 303–311, New York, NY, USA,
1990. ACM. URL: http://doi.acm.org/10.1145/97945.97982,
doi:10.1145/97945.97982.

[BC97] John Boyland and Giuseppe Castagna. Parasitic methods: an imple-
mentation of multi-methods for Java. In OOPSLA ’97: Proceedings of
the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 66–76. ACM Press, 1997.
doi:http://doi.acm.org/10.1145/263698.263721.

Journal of Object Technology, vol. 16, no. 2, 2017

http://doi.acm.org/10.1145/97945.97982
http://dx.doi.org/10.1145/97945.97982
http://dx.doi.org/http://doi.acm.org/10.1145/263698.263721
http://dx.doi.org/10.5381/jot.2017.16.2.a1

Object-Oriented External Dispatch · 17

[BCC+95] Kim Bruce, Luca Cardelli, Giuseppe Castagna, Gary T. Leavens, and
Benjamin Pierce. On Binary Methods. Theor. Pract. Object Syst.,
1(3):221–242, December 1995. URL: http://dl.acm.org/citation.
cfm?id=230849.230854.

[BCV07] Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Featherweight
java with multi-methods. In Proceedings of the 5th International
Symposium on Principles and Practice of Programming in Java,
PPPJ ’07, pages 83–92, New York, NY, USA, 2007. ACM. URL:
http://doi.acm.org/10.1145/1294325.1294337, doi:10.
1145/1294325.1294337.

[BKK+86] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter,
Mark Stefik, and Frank Zdybel. CommonLoops: merging Lisp and
object-oriented programming. In OOPLSA ’86: Conference proceedings
on Object-oriented programming systems, languages and applications,
pages 17–29. ACM Press, 1986. doi:http://doi.acm.org/10.
1145/28697.28700.

[Bru02] Kim B. Bruce. Foundations of Object-Oriented Languages: Types and
Semantics. MIT Press, Cambridge, MA, USA, 2002.

[Cha92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In
O. Lehrmann Madsen, editor, Proceedings ECOOP’92, LNCS 615,
pages 33–56, Utrecht, The Netherlands, Jun 1992. Springer-Verlag.

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: modular open classes and symmetric multiple dispatch
for Java. In Proceedings of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 130–145. ACM Press, 2000. doi:http://doi.acm.org/10.
1145/353171.353181.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[GJS+14] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 8 Edition. Addison-Wesley
Professional, 1st edition, 2014.

[Kee89] Sonya E. Keene. Object-Oriented Programming in COMMON LISP.
Addison-Wesley, 1989. A Programmer’s Guide to CLOS.

[KRLS13] Jieung Kim, Sukyoung Ryu, Victor Luchangco, and Guy L. Steele. Fine-
Grained Function Visibility for Multiple Dispatch with Multiple Inheri-
tance, pages 156–171. Springer International Publishing, Cham, 2013.
URL: http://dx.doi.org/10.1007/978-3-319-03542-0_11,
doi:10.1007/978-3-319-03542-0_11.

[LM98] Gary T. Leavens and Todd D. Millstein. Multiple dispatch as dispatch
on Tuples. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 374–387. ACM Press, 1998. doi:http://doi.acm.org/10.
1145/286936.286977.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
2nd edition, 1997.

Journal of Object Technology, vol. 16, no. 2, 2017

http://dl.acm.org/citation.cfm?id=230849.230854
http://dl.acm.org/citation.cfm?id=230849.230854
http://doi.acm.org/10.1145/1294325.1294337
http://dx.doi.org/10.1145/1294325.1294337
http://dx.doi.org/10.1145/1294325.1294337
http://dx.doi.org/http://doi.acm.org/10.1145/28697.28700
http://dx.doi.org/http://doi.acm.org/10.1145/28697.28700
http://dx.doi.org/http://doi.acm.org/10.1145/353171.353181
http://dx.doi.org/http://doi.acm.org/10.1145/353171.353181
http://dx.doi.org/10.1007/978-3-319-03542-0_11
http://dx.doi.org/10.1007/978-3-319-03542-0_11
http://dx.doi.org/http://doi.acm.org/10.1145/286936.286977
http://dx.doi.org/http://doi.acm.org/10.1145/286936.286977
http://dx.doi.org/10.5381/jot.2017.16.2.a1

18 · Miguel Oliveira e Silva

[OMM+04] Martin Odersky, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, Matthias Zenger, and et al. An overview of the scala
programming language. Technical report, 2004.

[Par13] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2nd edition, 2013.

[Ste90] Guy L. Steele, Jr. Common LISP: The Language (2nd ed.). Digital
Press, Newton, MA, USA, 1990.

About the author

Miguel Oliveira e Silva is an assistant professor and researcher
at University of Aveiro in Portugal. Contact him at mos@ua.pt,
or visit sweet.ua.pt/mos.

Acknowledgments The writing of this article has benefited immensely from the
critics of the anonymous reviewers, João Rodrigues, and Tomás Oliveira e Silva. Sup-
ported by Portuguese Foundation for Science and Technology (UID/CEC/00127/2013,
Incentivo/EEI/UI0127/2014)

Journal of Object Technology, vol. 16, no. 2, 2017

mailto:mos@ua.pt
sweet.ua.pt/mos
http://dx.doi.org/10.5381/jot.2017.16.2.a1

	Introduction
	Motivation
	Representative existing approaches
	Global multi-methods
	Class multi-methods
	Tuple multi-methods

	External dispatch proposal
	External dispatch classes
	External dispatch creation expression
	Shape example
	Modularity
	Static rules
	External dispatch classes rules
	Dispatch creation expression rules

	External dispatch classes versus normal classes
	Current implementation

	Singletons
	Our proposal

	Other applications
	Extending classes and class hierarchies with new behavior
	Creation design patterns

	Final remarks
	Bibliography
	About the author

