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Abstract In software engineering and elsewhere, different people may
work intensively with different, but related, artefacts, e.g. models, docu-
ments, or code. They may use bidirectional transformations (bx) to main-
tain consistency between them. Naturally, they do not want their deliber-
ate decisions disrupted, or their comprehension of their artefact interfered
with, by a bx that makes changes to their artefact beyond the strictly
necessary. This gives rise to a desire for a principle of Least Change,
which has been often alluded to in the field, but seldom addressed head
on. In this paper we present examples, briefly survey what has been said
about least change in the context of bx, and identify relevant notions from
elsewhere that may be applicable. We conclude that we cannot expect a
Principle of Least Change to determine the optimal behaviour of a bx
based on the consistency relation it embodies alone. Any such principle
would bind the hands of the bx developer too tightly: the specification
of how consistency is restored is as important a part of the development
of a bx as the specification of what consistency means. Rather, what is
required is a notion of reasonable behaviour of a bx that captures the
idea that the bx’s consistency restoration does not gratuitously surprise
its user. We suggest considering continuity variants, particularly Hölder
continuity. Such properties are too strong to expect them to hold univer-
sally, so we introduce the idea of a property holding piecewise on an atlas
of subspace pairs.
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1 Introduction

When people engage with complex tasks that involve very large amounts of informa-
tion, such as software development, they can easily become overwhelmed. One way
to manage this information overload is to enable each person to work with only the
information they actually need: that is, to provide an artefact that records, not all
the information that exists, but rather, only the information that a particular person
must read and modify. Whilst this can simplify each person’s task to the point that
it is doable, it introduces a new problem: now, when one artefact is changed, other
artefacts may need to be changed in response, or else the set of information, taken as
a whole, would be inconsistent, stymieing the completion of the whole task.

What are bx? Bidirectional transformations (hereinafter “bx”) restore consistency
between artefacts; this is the primary definition of what it is to be a bx. Defining
a bx includes specifying what consistency should mean in a particular case, though
this may have a fixed, understood definition in the domain; it also involves specifying
how consistency should be restored, where there is a choice. In interesting cases, the
bx does not just regenerate one artefact from another. This is essential in situations
where different people or teams are working on both artefacts, otherwise their work
would be thrown away every time consistency was restored. Formalisms and tools
differ on what information is taken into account: is it just the current states of the
two artefacts (the state-based or relational approach: we will use the latter term in this
paper) or does it also include intensional information about how they have recently
changed, about how parts of them are related, etc.? A motivation for including such
extra information, even at extra cost, is often that it enables bx to be written that
have more intuitively reasonable behaviour. We still lack, however, any bx language in
mainstream industrial use. The reasons for this are complex, but we believe a factor
is that it is not yet known how best to provide reasonable behaviour at reasonable
cost, or even what “reasonable behaviour” should mean.

For already in the relational setting, the best definition of “reasonable behaviour”
is not obvious. Meertens’ seminal but unpublished paper [Mee98] discussed the need
for a Principle of Least Change for constraint maintainers, essentially what we now
call relational bx. His formulation is:

The action taken by the maintainer of a constraint after a violation should
change no more than is needed to restore the constraint.

It turns out, however, that there are devils in the details.

How should a bx restore consistency? Before diving into how it may be au-
tomated, let us consider the motivating model-driven development (MDD) setting
further. We will refer to our artefacts as “models”, using the term inclusively, and
we will use the term “model space” for the collection of possible models, with any
structure (e.g. metric) it may have.

MDD is useful to humans because it separates concerns: each person’s model in-
cludes just what they need, in order to fulfil their specific role. The reason this is
helpful is precisely that it avoids distracting – surprising – people by forcing them to
be aware of information, and especially changes, that do not affect them. The prob-
lem is that the separation between relevant information (should be in the model) and
irrelevant information (should not be in the model) often cannot be made perfectly:
changes to the model are necessitated by changes outside it. This is problematic,
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because such changes are inherently surprising: they are caused by changes to infor-
mation that the user of the model does not have.

Without automated bx, these changes have to be decided on by humans. Imagine
I am a member of a large software development project; I normally work on my
model, but there are other developers who work with different models, and periodically
we must negotiate how our models shall be brought back into a consistent state so
that the eventual software can be correctly modelled by all the models. Suppose I
am at a developers’ meeting focused (solely) on deciding how to restore consistency
by changing my model. The meeting may consider many courses of action. Some,
however, would be considered unreasonable. For example, if I have added a section
to my model which is (agreed to be) irrelevant to the question of whether the models
are consistent, then to delete my new section as part of the consistency restoration
process would plainly be not only suboptimal, but even unreasonable.

Occasionally the meeting’s job will be easy: for example, if there is only one
way to restore consistency, the meeting must pick that way, while if the models
turn out to be consistent already, then nothing should be done. Sometimes there
will be disagreement about what choice is optimal, and even about what choices
are (un)reasonable. There may be discussion, for example, about trade-offs between
keeping the changes small, and keeping them easy to describe, or natural in some
sense, or maintaining good properties of the models. The meeting attempts to ensure
that changes made in order to restore consistency are not more disruptive to the
development process than they need to be. For a given informal idea of the “size” of
a change to a model, it does not necessarily follow that two changes of that size will
be equally disruptive. For example, a change imposed on a part of a model that its
developers had thought they understood well is likely to be more disruptive than a
change imposed on a part that they did not know much about, e.g. a placeholder;
and a change to something the developers felt they owned exclusively is likely to be
felt as more disruptive than a change to something that they felt they shared. We
see the need for something more like “least disruption” or “least surprise” than “least
change”.

Humans agree what is reasonable by a social process. Meetings like the ones we
have imagined are time-consuming and error-prone, but they allow progress to be
made without the need for formalism. If they are to be replaced by the use of a
bx tool, however, then the tool must provide usable, trustworthy guarantees of good
behaviour.

Why formalise properties of bx? We think that making explicit the least change
properties that one might hope to achieve in a bx is a step towards guiding the
design and use of future languages. In the long term, this should support bx being
incorporated into software development in such a way that they do not violate the
“least surprise” rule familiar from HCI: their developers and their users should be able
to rely on bx behaving “reasonably”. If a community could agree on a precise version
of a least change principle that should always be obeyed, we might hope to develop
a bx language in which any legal bx would satisfy that principle (analogous to “well
typed programs don’t go wrong”). If that proves too ambitious – perhaps there is
a precise version of the principle that is agreed to be desirable, but which must on
occasion be disobeyed by a reasonable bx – then a fall-back position would be to
develop analysis tools that would be capable of flagging when a particular bx was
at risk of disobeying the principle. It could then be scrutinised particularly closely
e.g. in testing; or perhaps a bx engine would provide special run-time behaviour in
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situations where it might otherwise surprise its users, e.g. asking the user to make or
confirm the selection of changes, while a “safer” change propagation could be made
without interaction.

A key insight from imagining the developers’ meeting is this: the best way to re-
store consistency depends on the circumstances. We cannot generally expect to syn-
thesise the consistency restoration functions from the consistency relation. Rather,
we need to capture a property of the bx that will rule out consistency restoration func-
tions that are unreasonable, leaving the writer of the bx to choose between multiple
reasonable options for how to program consistency restoration.

1.1 Structure of the paper

Section 2 introduces some terminology and notation that we shall need. Next, in
Section 3 we consider perhaps the purest form of “least change”, based on metrics on
the model spaces. We prove an NP-hardness result for this approach, and discuss
other reasons why we might not wish to adopt it.

In Sections 4 and 5 we address two major dimensions on which possible principles
may vary. The first dimension concerns what structure is relevant to the relative cost
we consider a change to have. This dimension has had considerable attention, but
we think it is worth taking a unified look. The second, concerning whether we offer
guarantees when concurrent editing has taken place, seems to be new, and based on
our investigations we think it may be important.

In Section 6 we consider approaches based on ordering changes themselves, espe-
cially where a change can be identified with sets of parts to be added and removed,
ordered by inclusion.

In Section 7 we consider in some detail an approach based on guaranteeing “rea-
sonably small” changes. We find a promising property, but consider it too strong to
be expected to hold universally. Therefore in Section 8 we introduce the idea of an
atlas of subspace pairs, allowing us to describe bx that have some desirable property
piecewise. We speculate about how this could be embodied in future languages and
tools.

Section 9 briefly considers what might be learned from the field of automated
software repair. Section 10 considers categorical approaches, and Section 11 concludes
and discusses some potentially relevant work that has not otherwise been mentioned.
A major goal of the paper is to inspire future work, though, and we point out areas
that might repay it throughout. We do not have a Related Work section, because
most of the paper is about related work. Our own technical contributions are in
Section 7 and Section 8, along with the NP-hardness result in Section 3. That result
together with the entirely new Sections 8 and 9 are the main discrete additions in this
paper compared with the parent workshop paper [CGMS15]; the rest of the paper has
also been reworked and expanded following helpful discussion at Bx 2015.

Throughout, we give examples to illustrate points we make. Names are those used
in the Bx Examples Repository1 [CMSG14].

2 Background

Bx basics When talking about state-based relational bx we use the now-standard
(see e.g. [Ste13]) notation R : M ↔ N for a bx comprising consistency relation R and

1http://bx-community.wikidot.com/examples:home
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restorers −→R : M ×N → N , ←−R : M ×N →M . Throughout this paper such bx will be
assumed to have the two most important properties, correctness and hippocraticness:

Definition A bx R : M ↔ N is correct if the consistency restorers do restore con-
sistency: that is, for all m ∈M , n ∈ N , we have R(m,

−→
R (m,n)), and dually.

Definition A bx R : M ↔ N is hippocratic if the consistency restorers make no
change to an already-consistent pair of models: that is, for all m ∈ M , n ∈ N , we
have R(m,n)⇒ −→R (m,n) = n, and dually.

Hippocraticness is the simplest least change property: if nothing needs to be changed,
change nothing.

For a correct and hippocratic bx, the consistency relation can be recovered from
either consistency restorer, because R(m,n) holds iff −→R (m,n) = n, iff ←−R (m,n) = m.

A pair of properties of bx that we shall refer to later is undoability and history
ignorance.

Definition A bx R : M ↔ N is undoable if for all m,m′ ∈ M , n ∈ N , we have
R(m,n)⇒ −→R (m,

−→
R (m′, n)) = n, and dually.

Definition A bx R : M ↔ N is history ignorant or strongly undoable if for all
m,m′ ∈M , n ∈ N , we have −→R (m,

−→
R (m′, n)) =

−→
R (m,n), and dually.

This last property was named history ignorance in [Dis08], but here the alter-
native name “strong undoability” (see [Ste12] for terminological discussion) usefully
illustrates a pattern that will recur later. The difference between (weak) and strong
undoability is simply the domain of quantification: for strong undoability, (m,n) may
be any pair of models, while for (weak) undoability, it must be a pair of consistent
models.

Bx formalisms We will mention, and give an example using, the OMG bidirec-
tional transformation language QVT-R [OMG15]. For purposes of this paper what
the reader needs to know is that a QVT-R transformation encodes, in one artefact,
a consistency relation and forward and backward restorers. The model sets on which
such a transformation operates are defined using metamodels in MOF. A transfor-
mation is structured as a number of relations, which may be related using when and
where clauses. A relation may be thought of as capturing consistency in a certain local
sense, while combining relations with when and where clauses allows the expression
of global constraints.

Triple Graph Grammars, or TGGs, are another way to express bx, this time on
typed attributed graphs. A TGG is a collection of rules; each rule captures consis-
tency in a certain local sense, while the way in which the rules combine allows the
expression of global consistency properties. A triple is a pair of (typed attributed)
graphs, together with a correspondence graph which links elements of the two graphs.
An integrated triple is such a triple that can be derived using the rules of the TGG.
A pair of graphs is consistent according to a TGG if there exists an integrated triple
comprising that pair of graphs, together with some correspondence graph. To re-
store consistency, say by replacing model n in an inconsistent pair (m,n) by n+ that
should be consistent with m, the tool essentially constructs a derivation tree that,
starting from an initial state or axiom, first derives an integrated triple m− ← t→ n
for some hypothetical model m− (typically a submodel of m) and correspondence
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graph t, then goes on, by applying further TGG rules, to reach an integrated triple
m ← t+ → n+ (where t+, n+ typically have t, n as submodels). In practice, unique
parse constraints are usually imposed on the TGG so that this process is feasible, and
the correspondence graphs are used to guide it.

Each of these formalisms is too complex for a complete explanation to be given
here. We refer readers wishing to know more to [OMG15, SK08].

Analysis We will use a few basic notions of mathematical analysis (see e.g. [Sut75]),
such as

Definition A metric on a set X is a function d : X × X → R such that for all
x, y, z ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, y) + d(y, z) ≥ d(x, z)

Further definitions will be given at the point of use for ease of reference.

3 A first attempt: measuring changes

In this section we will formally define one approach which is natural, particularly in
the pure state-based setting, and explain why we think it is does not, alone, solve the
problem.

3.1 Definition of metric least change

Assume we are given a metric on each model space. Suppose a consistency restorer is
replacing an old model n by a new model, −→R (m,n) (taking m into account, as usual).
Let us require that the distance between n and the chosen −→R (m,n) is minimal among
all distances between n and any possible n′ that restores consistency. That is, ensure
that the effect on the model is as small as it can possibly be, given that consistency
must be restored: if this is the case, one argues, it is pointless to insist on more.
However, the approach has some limitations, such as failure to compose (essentially
because not all triangles are degenerate).

Formally, for relational bx we may define:

Definition A bx R : M ↔ N is metric-least, with respect to given metrics dM , dN
on M and N , if for all m ∈M and for all n, n′ ∈ N , we have

R(m,n′) ⇒ dN (n, n′) ≥ dN (n,
−→
R (m,n))

and dually.

An instance of this approach has been explored and implemented by Macedo and
Cunha [MC16]. They take as given a pair of models and a QVT-R transformation; the
QVT-R transformation is used only to specify consistency, the metric-based consis-
tency restoration explored here being used as a drop-in replacement for the standard
QVT-R consistency restoration. The models and consistency relation are translated
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into Alloy, and the tool searches for the nearest consistent model. Their metric is
“graph edit distance”; they also briefly considered allowing the user to define their
own notion of edits (“operation-based distance”), which amounts to defining their
own metric on the space of models.

3.2 Problem: lack of canonical metric

This approach is, of course, very sensitive to the specific metric chosen2, and, because
it operates after a model has been translated, the graph edit distance used in [MC16] is
not a particularly good match for any user’s intuitive idea of distance. There may not
be a canonical choice, because different tools for editing models in the same modelling
language provide different capabilities. We illustrate this with a simple example.

Example 3.1 (notQuiteTrivial) Let M = B and N = B× B be related by saying
that m ∈ M is consistent with n = (s, t) ∈ N iff m = s. Otherwise, to restore
consistency by changing n, we must flip its first component. We have a choice about
whether or not also to flip its second component.

Expressed like that, the example suggests that flipping the second component
as well as the first will violate any reasonable Least Change Principle. But this is
because the wording has suggested that flipping both components is a larger change
than flipping just one. It is possible to imagine situations in which this might not be
the case. If n represents the presence or absence of a pebble in each of two pots, and
it is possible to create or destroy pebbles, then moving a pebble from one pot to the
other might be considered a small change, while creating/destroying a pebble might
be considered a large change. In that case, with m = > and n = (⊥,>), modifying n
to (>,⊥) might indeed be considered better than modifying it to (>,>). This could
be captured in a variety of ways, e.g. by a suitable choice of metric on N .

If my tool provides a simple menu item to make a change that, in your tool,
requires many manual steps (e.g. mine has a menu of complex refactorings), is that
change small or large? Relative to a specific tool, one can imagine defining a metric
by something like “minimal number of clicks and keystrokes to achieve the change”,
but this is not satisfying when models are likely to be UML models or programs,
with hundreds of different available editors. If we must settle on a metric that should
be intuitive, perhaps symmetric difference on the sets of model elements will prove
better.

3.3 Problem: metric least change is too constrained

Metric-leastness is a property which a given bx may or may not satisfy: it does
not generally give enough information to define deterministic consistency restoration
behaviour, because of the possibility that there may be many models at equal distance.
Nevertheless, it is a very constraining property. Once the metrics are fixed, the bx
developer has no power to define preferred behaviour of the consistency restorers,
other than this choice of how to resolve non-deterministic choices between equidistant
consistent models.

Here is an MDD-inspired example illustrating that we may not always want the
consistent model which is intuitively closest.

2intuitively, more so than the continuity-based approach we shall see shortly, because there is less
scope for varying the metric itself and the behaviour of the bx separately
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Example 3.2 (ModelTests) Suppose bx R relates UML model m with test suite n,
saying that they are consistent provided that every class inm stereotyped 〈〈persistent〉〉
has a test class of the same name in n, containing an appropriate (in some specified
sense) set of tests for each public operation, but n may also contain other tests. You
modify the test class for a 〈〈persistent〉〉 class C, to reflect changes made in the code
to the signatures of C’s methods, e.g., say int has changed to long throughout.
R now propagates necessary changes to the model m. You probably expect R to
perform appropriate changes to the detail of persistent class C in the model, changing
int to long in the signatures of its operations. However, a different way to restore
consistency would be to remove the stereotype from C, so that there would no longer
be any consistency requirements relating to C; this probably involves a shorter edit
distance, but is not what is wanted.

We think that for a metric-based bx to give comprehensible results, it must use
metrics that are close to the developer’s intuitions concerning how close together
models are; although one can attempt to get round problems like this by defining
special metrics on the model spaces that give the desired results, this does not seem
promising.

As remarked, one still needs a way to resolve non-determinism; it is unlikely that
there will be a unique closest consistent model. In [MC16], the tool offered to the user
all consistent models found at the same minimum distance from the current model.
In any practical version of such an approach, it would have to be possible for the bx
programmer to define the choice of models if they wished, for usability reasons. The
implementation is very resource intensive and not practical for non-toy cases (even,
we understand, when there is only one choice of closest consistent model), because of
the need to consider all models at a given distance from the current one.

3.4 Problem: complexity of metric-least least change

We might reasonably wonder whether the impracticality of this approach might be
illusory; the implementation described in [MC16] was after all a research prototype,
not the result of careful performance investigations. However, we can show NP-
hardness of a reasonable formalisation of a subproblem of the one we would have to
be addressing to use this approach in general, which is cause for pessimism (although
of course, one must remember that the practical performance of tools depends on
more than worst-case complexity).

To do this we apply a result from Buneman, Khanna and Tan’s seminal pa-
per [BKT02] addressing the closely-related minimal view update problem in databases.
They showed a number of NP-hardness results even in very restricted settings. For
example, where S is a database and Q(S) a view of it defined by a query (even a
project-join query of constant size involving only two relations), they showed that it
is NP-hard to decide, given a tuple t ∈ Q(S), whether there exists a set T ⊆ S of
tuples such that Q(S \ T ) = Q(S) \ {t}. Their result that is useful to us here is a
slight variant: they also showed that it is NP-hard to determine the smallest T such
that Q(S \ T ) ⊆ Q(S) \ {t} (strictly speaking, of course, the decision form of the
problem is whether there exists a T below a certain size). We reduce the problem of
finding metric-least consistency restoration functions to this problem. First let’s be
clear what we’re proving the non-existence of.

A good algorithm for embedding in a tool based on the metric-least approach to
least change would be an algorithm which we could instantiate at a pair of model
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sets M and N with their metrics dM and dN , and at a fixed consistency relation
R ⊆ M × N . The instantiated algorithm would take models m ∈ M and n ∈ N ,
and a boolean to say which should be modified, and would work in time polynomial
in the sizes of m and n to find an m′ such that R(m′, n) (or dually, an n′ such that
R(m,n′), depending on the boolean). It would thus act as the pair of consistency
restoration functions completing a correct and hippocratic bx between M and N . It
would offer the least-change guarantee, i.e. that no m′′ exists, satisfying R(m′′, n),
that is closer to m than the m′ it computes (and dually). Of course the permissible
kinds of models, metrics and consistency relations that the tool could handle are
variable, and the more flexibility offered here the more valuable the tool would be.

Suppose we had such an algorithm, whose scope included at least model sets such
that models are sets of tuples, with the standard metric given by the size of the
symmetric difference of these sets, d(m,m′) = ‖m4m′‖, and consistency relations
that can be defined using project-join SQL queries, e.g. RQ(m,n) should hold iff
Q(m) ⊆ n. A key property of this class of SQL queries is that they are monotonic:
S′ ⊆ S ⇒ Q(S′) ⊆ Q(S).

Given an instance of the minimal source deletion problem defined by Q,S and
t ∈ Q(S), define RQ(m,n) to hold iff Q(m) ⊆ n, and apply our hypothetical least-
change algorithm to evaluate ←−RQ(S,Q(S) \ {t}), finding (by definition of RQ) an S′
such that Q(S′) ⊆ Q(S) \ {t}. Now, this S′ is by hypothesis closer (in the symmetric
difference metric) to S than any other S′′ with that property. Take T = S \ S′, so
‖T‖ ≤ d(S, S′) and S \ T ⊆ S′ (even though equality might not hold, because our
least-change algorithm might in fact have “cunningly” added things to S to get S′,
not just deleted things as we rather expect). So since the query Q is monotonic,
Q(S \ T ) ⊆ Q(S′) and by correctness of our algorithm Q(S′) ⊆ Q(S) \ {t}. Thus
T is a candidate solution to the minimal update problem. Is it a minimal solution?
Yes: for if T ′ were smaller, then S′′ = S \ T ′ would be strictly closer to S than S′ is
(d(S, S′′) = ‖T ′‖ < ‖T‖ ≤ d(S, S′)), and would also be consistent with Q(S) \ {t}, so
our hypothetical polynomial least-change algorithm would not have erroneously given
us S′ as the least-change restoration. This reduction combines with the NP hardness
result Theorem 2.5 of [BKT02] to show that this hypothetical algorithm cannot exist.
We note also that [BKT02] also rules out efficiently approximating solutions to the
problem, though it is unclear that approximate solutions would be of interest in the
bx setting anyway.

Referring to the above discussion for the expressivity assumptions in force, we
may summarise

Theorem 3.3 Computing metric-least consistency restoration is NP-hard.

4 Beyond changes to models: structure to which disruption
might matter

How should one change to a model be judged larger than another? Typically it is
not hard to come up with a naive notion based on the presentation of the model,
but this can mislead. We can sometimes explain the phenomenon that “similarly
sized” changes to a model are not equally disruptive, by identifying (making explicit
in our formalism) auxiliary structure which changes more in one case than the other:
the reason one change feels more disruptive than another is because it disrupts the

Journal of Object Technology, vol. 16, no. 1, 2011

http://dx.doi.org/10.5381/jot.2017.16.1.a3


10 · Cheney et al.

auxiliary structure more, even if the disruption to the actual model is no larger. In the
database setting, Hegner’s information ordering [Heg11] makes explicit what is true
about a value. A change to a model which changes the truth value of more propositions
is considered larger. Hegner’s auxiliary structure does not actually add information:
it can be calculated from the model. However, his setting had an established notion
of change to a model (sets of tuples added and dropped, with supersets being larger
changes). Thus, although we might wonder about redefining the “size” of changes so
that changes that changed more truth values would be considered larger, that would
not have been an attractive option in his setting. In MDD the idea of preferring
changes that make less difference to what the developer thinks they know is attractive,
but things are (as always!) more blurred: what is known, let alone knowable, about
part of a model may not be deducible from the model, and there is no commonly
agreed notion of change. Perhaps future bx language developers should explore, for
example, weighting classes by how often their names appear in documentation, and/or
allowing the bx user to assign weights, and using the weights in deciding on changes.

Witness structures Another major class of auxiliary structure to which disruption
may matter, which definitely does involve information outside the model itself, is
witness structures: structures whose intention is to capture something about the
relationship between the models being kept consistent. A witness structure witnessing
the consistency of two models m and n is an auxiliary structure that may help to
demonstrate that consistency. In the simplest setting of relational bx, the unique
witness structure relating m and n is just a point, and the witness structure in fact
carries no extra information beyond the consistency relation itself (“they’re consistent
because I say so”). In TGGs, the derivation tree, or the correspondence graph, may
be seen as witness structures (“they’re consistent because this derivation shows how
they are built up together using the TGG rules”). In an MDD setting, a witness
structure may be a set of traceability links that helps demonstrate the consistency
by identifying parts of one model that go with parts of another (“they’re consistent
because this part of this links to that part of that”). In [Ste13] some subtle issues
were discussed concerning whether the links that demonstrate consistency embodied
in QVT transformations should be followable in only one direction or both, and the
paper also presented a game whose winning strategies can be seen as richer witness
structures (“they’re consistent because here’s how Verifier wins a consistency game on
them”). A witness structure could even be a proof (“they’re consistent because Coq
gave me this proof that they are”).

The uses to which witness structures are put varies between different settings.
They may or may not be used to guide consistency restoration, for example, by spec-
ifying alignment. Sometimes they are seen as explanatory devices, as in traditional
traceability; sometimes they are seen just as a means to optimise the performance
of repeated transformation application by avoiding recomputation. In QVT-R, for
example, trace links are assumed to exist but their presence has no influence on the
semantics of the language. See [WvP10] for a discussion of the ways in which traceabil-
ity links are used in model-driven development, and [DEPC16] for a recent example
of their use to guide consistency restoration in bx. We think this topic will be of
increasing importance in bx.

Thus many types of witness structures can exist, and even within a type, different
witness structures might witness the consistency of the same pair of models. (A
dependently typed treatment is outside the scope of this paper, but is work in progress
[McK16].) The extent to which the witness structure is explicit in the minds of the
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developers who work with the models probably varies greatly – indeed, future bx
language designers should consider the implications of this (compare: considering the
user’s mental model, in UI design). Care will be needed to ensure practical usability
of change size comparisons based on witness structures, but at least there is some
hope that we can do better with than without them.

Fortunately, for our purposes, it suffices to observe that much of what we say in a
relational setting can be “lifted” to a setting with auxiliary structures; the developer’s
modification is still to a model, but the bx may in response modify not just the other
model but also the auxiliary structure, and when we compare or measure changes we
may be taking into account the changes to the auxiliary structure. We leave the rest
of this fascinating topic for future work.

5 Beyond least change: weak and strong least surprise

In this section we consider more carefully the way in which varying the domain of
quantification tunes properties of bx from strong to weak versions, touched on in
Section 2. This turns out to be important for least surprise principles – particularly,
but not only, those we shall consider in Section 7.

Properties of bx, such as the strong and weak undoability properties that we met
earlier, typically involve predicates on model pairs (m,n) that are defined in terms of
the components of the bx R. Formally, such properties involve families of predicates
that are defined uniformly for all bx between given model spaces, and moreover in
dual pairs, one version for −→R , one for ←−R . We stay relatively informal here.

We may ask whether such predicates hold of all the pairs (m,n) in some interesting
subset of M ×N , such as the whole set or the set of consistent pairs.

Definition Let P be a family {PR | R : M ↔ N} of predicates on pairs (m,n) of
models, defined (uniformly) in the components of bx R, including −→R . Then for a
particular bx R, we say −→R is strongly P if for all m ∈ M , n ∈ N we have PR(m,n).
It is weakly P if for all m ∈M , n ∈ N we have R(m,n)⇒ PR(m,n).

Where the dual property (involving ←−R ) also holds on M × N (rsp. on {(m,n) :
R(m,n)}), we will say the bx R is strongly (rsp. weakly) P .

The reader may like to try this with properties they know already. For example,
“weak correctness” turns out to be vacuously true, while “weak hippocraticness” is
the same as (strong) hippocraticness. We have already discussed weak and strong
undoability. The property of being metric-least, defined in Section 3, also fits this
scheme. We most naturally cast it as a strong property (note that although there is a
consistency check to the left of an implication, it is a check that R(m,n′) holds, rather
than that R(m,n) does). Then the weak variant of metric leastness holds vacuously,
because if R(m,n) then the second application of the distance function yields 0 by
hippocraticness.

We illustrate the practical scenarios in which this distinction is important by
using a class of least surprise principle that we shall be considering more formally in
Section 7. Here PR(m,n) means −→R (_, n) is continuous at m; but we will explain it
informally.

Suppose there are two users, Anne working with models from set A and Bob
working with model set B. Suppose Anne has made a change she regards as small.
We would like to be able to guarantee, by restricting to bx with a certain good
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property, that the difference this change makes to Bob is small. The intuition is that
Anne is likely to consider a large change much more carefully than a small change.
We do not wish a not-very-considered choice by Anne (e.g. adding a comment) to
have a large unintended consequence for Bob. (If Bob changes his model and Anne’s
must be modified to restore consistency, everything is dual.)

Weak least surprise guarantees that the change from b to b′ =
−→
R (a′, b) is small,

provided that a and b are consistent and that the change from a to a′ is small. That
is, it supports the following scenario:

• models a and b are currently consistent

• now Anne modifies her model, a, by a small change, giving a′

• then we restore consistency, taking Anne’s model as authoritative; that is, we
calculate b′ =

−→
R (a′, b) and hand it to Bob to replace his current model, b

• Bob’s model has suffered a small change, from b to b′.

That is, the guarantee we offer operates under the assumption that Bob’s model
hasn’t changed, since it was last consistent with Anne’s, until we change it. If Bob
continues to work on it in the meantime, all bets are off. We guarantee nothing if the
two models have been edited concurrently.

Strong least surprise imposes a more stringent condition on the bx and offers a
correspondingly stronger guarantee to the bx users. It allows that Bob may be working
concurrently with Anne; his current model, b, might, therefore, not be consistent with
Anne’s current model a. Here the guarantee we want is that, provided the change
Anne makes from a to a′ is small, the choice of whether to restore consistency before
or after making this small change will make only a small difference to Bob, regardless
of what state his model is in at the time. It supports the scenario:

• we don’t know what state Bob’s model is in with respect to Anne’s – both may
be changing simultaneously

• Anne thinks about changing hers a little, and isn’t sure whether or not to do so
(e.g., she dithers between a and a′ which are separated by a small change)

• the difference between

– the effect on Bob’s model if Anne does decide to make her small change
and

– the effect on Bob’s model if she doesn’t,

is small, regardless of what state Bob’s model is in when we do restore consis-
tency. In the state-based relational setting, this amounts to saying that for any
b the change from −→R (a, b) to −→R (a′, b) can be guaranteed to be small, provided
the change from a to a′ is small. Note that both −→R (a, b) and −→R (a′, b) might be
a “large change” from b; to demand otherwise would be unreasonable, as a and
b, being arbitrary, might be very seriously inconsistent. We can ask only that
these results are a small change from one another.

Weak least surprise is a weakening of strong least surprise because by hippocrat-
icness, if R(a, b) then −→R (a, b) = b so we get the weak definition by instantiating the
strong definition only at models b that are consistent with a.
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Figure 1 – (a) Model space M , (b) model space N for Example 5.1

Strong and weak least change vary in the condition that is placed on the initial
state of the world, before we will know that a small change on one side will cause only
a small change on the other: does the condition hold for all (a, b) ∈ A × B, or only
for (a, b) ∈ C ⊆ A×B? In the weak variant C is the consistent pairs. Alternatively,
we could take C = {(a, b) : b ∈ N(a)} where for any a, N(a) is the models that
are, maybe not consistent with, but at least reasonably sensible with respect to, a.
Another promising option is C = M×N for a subspace pair [Ste14] (M,N) in (A,B).
A subspace pair is a place where the developers working with both models can, jointly,
agree to stay, in the sense that if they do not move their model outside the subspace
pair, the bx will not do so when it restores consistency. Imposing least surprise would
guarantee, additionally, that small changes on one side lead to small changes on the
other. These variants should repay further study, particularly in that identifying
“good” parts of the pair of model spaces might be possible even if inevitably the bx
must have bad behaviour elsewhere. We finish this section with an example which
illustrates this. We shall return to the topic of “good” subspace pairs in Section 8.

Example 5.1 (weakVsStrongContinuity) Let M = R ∪ {CM} and N = (B ×
R) ∪ {CN}. We use the consistency relation: R(CM , CN ) and R(m, (_,m)) for all
m 6= CM . Figure 1 illustrates. We give M the metric generated by dM (CM ,m) =
1 + |m| for all m ∈ R, together with the usual metric dM (m,m′) = |m −m′| on R.
Give N the metric generated by the usual metric on both copies of R, together with:
dN (CN , (_, n)) = 1 + |n| for all n ∈ R, and dN ((>, n1), (⊥, n2)) = 2 + |n1|+ |n2|.

Now, because there is a unique element of M consistent with any given element
n ∈ N , there is no choice for ←−R (m,n) given that this must be correct: it must ignore
m and return that unique consistent choice. Let us consider the choices we have for
the behaviour of −→R (m,n), and the extent to which each is reasonable from a least
change point of view.

• If m is CM , there is no choice: we must return CN to be correct.

• If m = xm and n = (b, xn) are both drawn from the copies of R, we must
return (b′, xm) for some b′ ∈ B. If in fact xm = xn, hippocraticness tells us
we must return exactly n. Otherwise, we could legally return a result which is
on the other branch from n, that is, flip the boolean as well as changing the
real number. It is easy to argue, though, that to do so violates any reasonable
least change principle, since the boolean-flipping choice gives us a change in the
model which is larger by our chosen metric, with no obvious prospect for any
compensating advantage. Let us suppose we agree not to do so.
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• The interesting case is −→R (xm, CN ) for real xm. We must return either (>, xm) or
(⊥, xm); neither correctness nor hippocraticness place any further restrictions,
and when we look at one restoration scenario in isolation, our metric does not
help us make the choice, either. We could, for example:

1. pick a boolean value and always use that, e.g. −→R (xm, CN ) = (>, xm) for
all xm ∈ R;

2. return (>, xm) if xm ≥ 0, (⊥, xm) otherwise; or we could even go for bizarre
behaviour such as

3. return (>, xm) if xm is rational, (⊥, xm) otherwise.

All of these options for −→R (xm, CN ) will turn R into a correct and hippocratic
bx. It seems intuitive that these are in decreasing order of merit from a strong least
surprise point of view. Imagine that the developers on the M side were not quite
sure whether they wanted to put one real number, or another very close to it. The
danger that their choice on this matter has determined which branch the N model
ends up on, “merely because” the state of the N model at the moment they chose to
synchronise “happened” to be CN , increases as we go down the list of options.

From the point of view of weak least surprise, however, there is no difference
between the options, at least for a sufficiently small notion of “small change”. For, if
R(m,n) holds, and then m is changed to m′ by a change that has size greater than
0 but less than 1, it follows that neither m nor n can be the special points CM and
CN : there are no other models close to CM , so m has to be one of the real number
points, say xm ∈ R, m′ has to be a nearby real number xm′ , and from consistency it
follows that n must be (b, xm) for some b. We have already agreed that the result of
−→
R (m′, n) should be (b, xm′).

The key point here is that only in the first option is −→R (_, CN ) : M → N a
continuous function in the usual sense of mathematics; in the middle option this
function has a discontinuity, while in the final option it is discontinuous everywhere
except CM . This motivates our considerations of continuity in Section 7. Note that
not only is ({CM}, {CN}) a subspace pair on which any of these variants is continuous
(trivially, any pair of consistent states always forms a subspace pair), so is (M \
{CM}, N \ {CN}). This illustrates the potential for a future bx tool to use subspace
pairs to warn developers of discontinuous behaviour.

6 Ordering changes

If we wish to identify changes that are defensibly “least”, the most basic thing we can
do is to identify the possible changes that could restore consistency, place a partial
order on these changes, and insist that the chosen change be minimal. Of course this
does not solve anything, and any solution to our problem can be cast in this setting.

Meertens [Mee98] requires structure stronger than this, but weaker than a metric
on the model sets. For any model m ∈M he assumes given a reflexive and transitive
relation onM , notated x vm y and read “x is at least as close to m as y is”, satisfying
the property that m vm x for any m,x. If M is a metric space of course we derive
this relation from the metric; most of Meertens’ examples do actually use a metric,
typically size of symmetric difference of sets. He takes it as axiomatic that consistency
restoration should give a closest consistent model (according to the preorder), and
that it should do so deterministically; much of his paper is devoted to showing how
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to calculate systematically a biased selector that does this job. Here is an example
which illustrates this, adapted from Example 5.2d of [Mee98].

Example 6.1 (meertensIntersect) Let M = P(N)×P(N), let N = P(N), and let
m = (s, t) be consistent with n iff s ∩ t = n. Of course −→R ((s, t), n) has no choice; it
must ignore n and return s ∩ t. ←−R ((s, t), n) must:

1. add to both s and t any element of n that is not already present;

2. preserve in both s and t any element of n that is already present;

3. delete from at least one of s and t any element of their intersection that is not
in n.

As far as correctness goes, it is also at liberty to add any element that is not in n
to just one of s, t, provided it is not already present in the other. But intuitively
this would be unnecessarily disruptive (in the extreme case where the arguments are
already consistent it will violate hippocraticness).

If we take as distance between (s, t) and (s′, t′) the sum of the sizes of the sym-
metric differences of the components, we have the language in which to express that
that behaviour would give a larger change than necessary. Similarly, we justify that
in case 3 above, the offending element should be removed from just one set, not both.
The choice is arbitrary; Meertens uses the concept of bias to explain how it is resolved
by the bx language or programmer. Given one choice of resolution, his calculations
produce the result that ←−R ((s, t), n) = (n ∪ (s \ t), n ∪ t).

Using a similar structure, Macedo et al. [MPCO13] address the tricky question
of when it is possible to compose bx that satisfy such a least change condition. As
might be expected, they have to abandon determinacy (so that the composition can
choose “the right path” through the middle model), and impose stringent additional
conditions; fundamentally, there is no reason why we would expect bx that satisfy
this kind of least change principle to compose.

6.1 Changes as sets of small changes

A preorder on changes is useful where changes are identified with sets of discrete
elements to be added to/deleted from a structure; this is usually taken to be the case
for databases. We generate a preorder on changes from the inclusion ordering on
sets. This lets us prefer changes that do not add or delete elements unnecessarily. A
drawback is that if an element is modified, even very slightly, we must model this as
a deletion of one thing and an addition of something very similar. Then this change
appears bigger than it “really” is.

Here are two examples. Example 6.2 is adapted from [Heg11], where it is presented
in a database context. It demonstrates that it is not obvious whether to consider it
more disruptive to reuse an existing element of a model, or to introduce a new “freely
added” element. Example 6.3 is a cautionary tale on how modelling modifications as
deletions followed by additions can produce poor results, where models are structured
collections of elements, not just sets.

Example 6.2 (hegnerInformationOrdering) Let M = P(A × B × C) for some
sets A,B,C, and let N = P(A×B), with the consistency relation that m ∈M is only
consistent with its projection. For example, m = {(a0, b0, c0), (a1, b1, c1)} is consistent
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with n = {(a0, b0), (a1, b1)}, but not with n′ = {(a0, b0), (a1, b1), (a2, b2)}. If m is to
be altered so as to restore consistency with n′, (at least) some triple (a2, b2, c) must
be added. But what should the value of c be? One may argue that it is better to
reuse an already-present element of C, adding (a2, b2, c0) or (a2, b2, c1); or one may
argue as Hegner does in [Heg11] that it is better to use a previously unseen element
c2.

It is reasonably intuitive that just one triple should be added (for example, we
should not take advantage of the licence to change m in order to add the legal but
unhelpful triple (a0, b0, c)); but in certain circumstances, considerations such as those
in Example 3.1 may bring even this into doubt.

The same issue arises in our next example, which is adapted from [BS12]; it
also illustrates the current behaviour of QVT-R in the OMG standard semantics.
Interestingly in this case the strategy of creating new elements rather than reusing
old ones is far less convincing.

Example 6.3 (qvtrPreferringCreationToReuse) LetM andN be identical model
sets, comprising models that contain two kinds of elements Parent and Child. Both
kinds have a string attribute name; Parent elements can also be linked to children
which are of type Child. We represent such models in the obvious way as forests, and
notate them using the names of elements, e.g. {p → {c1, c2, c2}} represents a model
containing one element of type Parent with name p, having three children of type
Child whose names are c1,c2,c2. Notice that we do not forbid two model elements
having the same name.

The consistency relation between m ∈ M and n ∈ N we consider is given by a
pair of unidirectional checks. m and n are consistent “in the direction of n” iff for any
Parent element in m, say with name t, linked to a child having name c, there exists
a(t least one) Parent element with name t in n, also linked to a child with name c.
The check in the direction of m is dual.

This is expressed in QVT-R as follows (the “enforce” specifications will allow us
later to use the same transformation to enforce consistency, but any QVT-R transfor-
mation can be run in “check only mode” to check whether given models are consistent):

transformation T (m : M ; n : N) {
top relation R {

s : String;
firstchild : M::Child;
secondchild : N::Child;
enforce domain m me1:Parent {name = s, child = firstchild};
enforce domain n me2:Parent {name = s, child = secondchild};
where { S(firstchild,secondchild); }}

relation S {
s : String;
enforce domain m me1:Child {name = s};
enforce domain n me2:Child {name = s};}}

Suppose that (for some strings p,c1,c2,c3) we take m = {p→ {c1, c2, c3}}, and for
n we take the empty model. When we restore consistency by modifying n, what are
reasonable results, from the point of view of least change and considering only the
consistency specification?
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We might certainly argue that n should be replaced by a copy of m; intuitively, m
is a good candidate for the least complex thing that is consistent with m in this case.
What the QVT-R specification, and its most faithful implementation, ModelMorf,
actually produces is {p→ {c1}, p→ {c2}, p→ {c3}}.

We refer the reader to [BS12] for details of the semantics that gives these results,
but in brief: QVT-R only changes model elements when it is forced to do so by “key”
constraints. That is, when a certain kind of element is required, and one exists but
with the wrong properties, and more than one is not allowed, then QVT-R changes
the element’s properties. Otherwise, QVT-R modifies a model in two phases. First
it adds model elements that are required for consistency to hold. Because it does not
change properties of model elements, which include their links (Parent to Child in
our case), it takes an “all or nothing” view of whether an entire valid binding, that is,
configuration of model elements that is needed according to a relation, exists. If not,
it creates elements for the whole configuration.

So here, the transformation might first discover that it needs a Parent named p
linked to a Child named c1; since there isn’t such a configuration, it creates both
elements. Next, it discovers that it needs a Parent named p linked to a Child named
c2; since such a configuration does not exist, it creates both a new Parent and a
new Child. (We could have written the QVT-R transformation differently, e.g. used
a “key” constraint on Parent, but this would have other effects that might not be
desired.) Similarly for c3.

Next, with the same m and a further string x, consider n = {p → {c1, c2, x}}.
Intuitively, the name of the third Child is wrong: it is x and should be changed to c3.
In fact, QVT-R and ModelMorf, using the same transformation as before, actually
produce {p→ {c1, c2}, p→ {c3}}. As in the previous example, rather than modify an
existing Child, a whole new binding {p→ {c3}} has been created to be the match to
the otherwise unmatchable binding involving c3 in m. In the second phase, the Child
with name x has been deleted, as otherwise the check in the direction of m could not
have succeeded.

A final example in [BS12], omitted here, demonstrates that the question of pre-
cisely when elements need to be deleted is problematic. Altogether, modelling modifi-
cations as additions and deletions is delicate. Even if the end result of a modification
is the same as the end result of deleting one thing and adding another, it is simply
not the case that modifying an element is typically more surprising than deleting it,
as suggested by that representation of what happens.

A similar approach is used by TGGs when used in an incremental change scenario;
[LAS+14] explains and compares several TGG tools from the point of view of various
properties including “least change”. In the context of a set of triple graph grammar
rules, we suppose given: a derivation of an integrated triple MS ← MC → MT ; that
is, a pair of consistent models MS and MT together with a correspondence graph
MC ; a change ∆S to MS . The task is to produce a corresponding change ∆T to
MT , updating the auxiliary structures appropriately. What the deltas can be is not
formally defined in [LAS+14] but their property (p7)

Least change (F4): An incremental update must choose a ∆T to restore
consistency such that there is no subset of ∆T that would also restore con-
sistency, i.e., the computed ∆T does not contain redundant modifications.

makes the assumption clear. Notice that this property is formulated in a weak version:
the model to be changed is assumed consistent with a previous version of the model
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that has been changed. The issues of handling changes other than as additions plus
deletions (mentioned above) and of avoiding creating new elements where old ones
could instead be reused (cf Example 6.3 and Example 6.2), are mentioned. Two tools
(MoTE and TGG Interpreter) are said to “provide a sufficient means to attain [least
change] in practical scenarios” but we are aware of no formal guarantee.

7 Continuity and other forms of structure preservation

In the metric-least least change approach, the only “lever” to pull (apart from how to
resolve the choice between equally close consistent models) was the choice of metric;
committing to that approach tends to require, as discussed, that a tool allow its users
to define the metrics that should be in use, perhaps even on a per-bx basis. Although
this does give some extra expressivity, it is not very satisfactory, as we discussed. The
notions we discuss in this section still rely on a choice of metric, but because, even
for fixed metrics, bx developers will have more freedom of choice in how to define the
consistency restoration without losing the properties we discuss, we will not expect
them to need to define their own metrics in order to get the bx behaviour they want.
We would rather expect that a sensible metric for a given kind of model (e.g., the size
of the symmetric difference between sets of model elements) would be fixed.

The most basic idea, and the most natural way to move on from the metrics-based
approach, is continuity, in the following metric-based formulation. (The other setting
in which continuity appears in undergraduate mathematics, namely topology, we leave
as future work.) Informally, a map is continuous (at a source point) if, however close
you want to get to your target, you can ensure you get that close by starting within
a certain distance of your source. Formally

Definition f : S → T is continuous at s iff

∀ε > 0 .∃δ > 0 .∀s′ . dS(s, s′) < δ ⇒ dT (f(s), f(s′)) < ε

We say just “f is continuous” if it is continuous at all s.

Standard results [Sut75] apply: the identity function, and constant functions, are
continuous (everywhere), the composition of continuous functions is continuous (at
the appropriate points) etc.

To see how to adapt these notions to bx it will help to be more precise. In
particular, metric-based continuity of a map is defined at a point: the idea that a
map is continuous overall is a derived notion, defined by saying that it is continuous
if it is continuous at every point. For us, the points are clearly going to be pairs of
models. Supposing that we have metrics dM , dN on the model spaces M , N related
by a relational bx R:

Definition −→R is continuous at (m,n) iff

∀ε > 0 .∃δ > 0 .∀m′ . dM (m,m′) < δ ⇒ dN (
−→
R (m,n),

−→
R (m′, n)) < ε

This is nothing other than the standard metrics-based continuity of −→R (_, n) : M → N

at m. Dually, ←−R is continuous at (m,n) iff ←−R (m,_) : N →M is continuous at n.

Definition −→R is strongly continuous if it is continuous at all (m,n); that is, for every
n, −→R (_, n) is a continuous function. The definition for ←−R is dual. We say a bx R is
strongly continuous if its restorers −→R , ←−R are so.
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The terminology “strongly continuous” is justified with respect to our earlier dis-
cussion of strong versus weak least surprise, because of the insistence that −→R (_, n) is
continuous at all m, regardless of whether m and n are consistent.

Definition −→R is weakly continuous if it is continuous at all consistent (m,n); that
is, for every n, −→R (_, n) is continuous at all points m such that R(m,n) holds. The
definition for ←−R is dual. We say a bx R is weakly continuous if its restorers −→R , ←−R
are so.

Just as discussed in Section 5, one could consider further variants in which −→R (_, n) is
required to be continuous at points m where (m,n) is in some other subset ofM ×N .

Example 5.1 shows that weakly continuous really is weaker than strongly con-
tinuous. While all three of the options we considered for −→R (m,CN ) yield a weakly
continuous −→R , only the first gives strong continuity. However, history ignorance –
that is, the property that −→R (m,

−→
R (m′, n)) =

−→
R (m,n), and dually, for all values of

m,m′, n, generalising PutPut for lenses – makes weak and strong continuity coincide.

Lemma 7.1 If R : M ↔ N is history ignorant as well as correct and hippocratic,
then −→R is strongly continuous if and only if it is weakly continuous. Dually this holds
for ←−R and hence for R.

Proof Suppose R is weakly continuous and consider (m,n) not necessarily consistent.
We are given ε and must find δ > 0 such that

∀m′ . dM (m,m′) < δ ⇒ dN (
−→
R (m,n),

−→
R (m′, n)) < ε

Using the same ε, we apply weak continuity at (m,
−→
R (m,n)) to find δ′ such that

∀m′ . dM (m,m′) < δ′ ⇒ dN (
−→
R (m,

−→
R (m,n)),

−→
R (m′,

−→
R (m,n))) < ε

Applying history ignorance, this implies the condition we had to satisfy, so we take
δ = δ′.

In contrast to the properties we have considered so far, which fail to compose, it
is straightforward to prove:

Theorem 7.2 Let R : M ↔ N and S : N ↔ P be strongly (respectively weakly)
continuous bx which, as usual, are correct and hippocratic. Suppose further that R is
lens-like, i.e., −→R ignores its second argument; we write −→R (m). It follows that −→R (m)
is the unique n ∈ N such that R(m,n). Define the composition R;S : M ↔ P as
usual for lenses: (R;S)(m, p) holds iff there exists n ∈ N such that R(m,n) and
S(n, p); −−→R;S(m, p) =

−→
S (
−→
R (m), p); ←−−R;S(m, p) =

←−
R (m,

←−
S (
−→
R (m), p)). Then R;S is

also correct, hippocratic and strongly (respectively weakly) continuous.

Less positively, continuity is not useful in discrete model spaces, such as those that
arise in (non-idealised) model-driven development, because:

Lemma 7.3 Suppose m ∈ M is an isolated point, in the sense that for some real
number ∆ > 0 there is no m′ 6= m ∈M such that dM (m,m′) < ∆. Then with respect
to dM , any −→R is continuous at (m,n), for every n ∈ N .
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This holds just because for any ε one may pick δ < ∆ and then the continuity condition
holds vacuously.

As we would expect, metric-leastness is incomparable with continuity: they offer
different kinds of guarantee. All three options in Example 5.1 are metric-least, so
metric-leastness does not imply strong continuity. In fact it does not even imply
weak continuity; the following example transformation is metric-least, but not weakly
continuous at (0,+).

Example 7.4 (plusMinus) Let M be the interval [−1,+1] ⊆ R, and let N =
{+,−}. We say m ∈ M is consistent with + if m ≥ 0, and consistent with − if
m ≤ 0. That is, the bx relates a real number with a record of whether it is (weakly)
positive or negative.

Suppose m < 0. We have no choice to make about the behaviour of −→R (m,+): to
be correct it must return −. On the other hand, ←−R (m,+) could correctly return any
non-negative m′. Based on the usual measurement of distance in M , and an intuitive
idea of least change, it seems natural to suggest 0 as the choice of m′, because it is
closer to m than any other correct choice. Dual statements apply for m > 0 and −.

Two variants are of interest:

1. We change the consistency condition so that m ∈ M is consistent with + if
m ≥ 0, and consistent with − if m < 0 (strictly). This gives a problem in
deciding what the result of ←−R (m,−) should be when m > 0, because 0 is no
longer a correct result, and for any value returned, a “better” one could be found.

Observing that this is the result of the model space being non-discrete, we may also
consider a second variant:

2. we replace M by a discrete set, say {x/100 : x ∈ Z,−100 ≤ x ≤ 100}.

Conversely, Lemma 7.3 shows that even strong continuity does not imply metric-
leastness; apply discrete metrics to M and N in Example 3.1, so that by Lemma 7.3
any variant of the bx discussed there is strongly continuous, and pick a variant that
is not metric-least by the chosen metric.

7.1 Stronger variants of metric-based continuity

Given that continuity is unsatisfactory because in many of the cases we wish to cover
it holds vacuously, a reasonable next step is to consider the standard panoply of
strengthened variants of continuity. (Standardly, these definitions do imply continu-
ity.) Will any of them be better for our purposes? Let S and T be metric spaces as
before.

Definition f : S → T is uniformly continuous iff

∀ε > 0 .∃δ > 0 .∀s, s′ . dS(s, s′) < δ ⇒ dT (f(s), f(s′)) < ε

That is, in contrast to the standard continuity definition, δ depends only on ε, not on
s.

This, adapted to bx, will obviously also be vacuous on discrete model spaces, so let
us not pursue it.

Next we consider strengthening continuity by systematically bounding the amount
of change in the result of a function, in terms of the amount of change in the argument
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to the function. That is the motivation for Hölder continuity, which is stronger than
the variants we have considered so far, but not as strong as differentiability.

Definition Given non-negative real constants C,α, we say f : S → T is Hölder
continuous (with respect to C,α) at s iff

∀s′ . dT (f(s), f(s′)) ≤ CdS(s, s′)α

We say that f is Hölder continuous if it is so at all s. The special case where α = 1
is known as Lipschitz continuity.

Note that, to be congruent with our other definitions and for ease of adaptation, we
have defined Hölder continuity first at a point, and then of a function. Since the
definition is symmetric in s and s′, it is not often presented that way. Adapting to
bx as before by considering the Hölder continuity of −→R (_, n) : M → N at m, we get

Definition −→R is Hölder continuous (with respect to C,α) at (m,n) iff

∀m′ . dN (
−→
R (m,n),

−→
R (m′, n)) ≤ CdM (m,m′)α

Then as before, we may say that R is strongly (C,α)-Hölder continuous if it is so at
all (m,n), weakly (C,α)-Hölder continuous if it is so at consistent (m,n), and we may
consider intermediate notions if we wish.

The fact that the adaptation to bx is symmetric in m and m′ raises the question
of whether strong Hölder continuity is actually stronger than weak Hölder continuity,
however. In fact Example 5.1 was designed to demonstrate this: for example, variant
2 is easily seen to be weakly (1,1)-Hölder continuous, but is not strongly (1,1)-Hölder
continuous because we can pick n = CN and m,m′ to be real numbers which are
arbitrarily close but on opposite sides of 0.

We get again the analogue of Lemma 7.1, by the same argument.

Lemma 7.5 If R : M ↔ N is history ignorant as well as correct and hippocratic,
then R is strongly (C,α)-Hölder continuous if and only if it is weakly (C,α)-Hölder
continuous.

The next interesting question is whether Hölder continuity might avoid the prob-
lem we noted for continuity, viz. that it is trivially satisfied at isolated points. The
answer is that it does. Here is an example to illustrate.

Example 7.6 (continuousNotHolderContinuous) Our model spaces are subsets
of real space with the standard metric. Let M ⊆ R2 comprise the origin, which we
label CM , together with the unit circle centred on the origin, parameterised by θ
running over the half-open interval (0, 1]. Let N ⊆ R be {0} ∪ [1,+∞). We say that
the origin CM is consistent only with 0, while the point on the unit circle at parameter
θ is consistent only with 1/θ.

Note that this example is boring from the point of view of consistency restoration,
as consistency is a bijective relation here so there is no choice about how to restore
consistency. The interest is the technical point: although −→R is continuous at every
(m,n), it is not (C,α)-Hölder continuous at (CM , n) for any n ∈ N because, while
the distance between CM and any other m′ is 1, the distance between −→R (CM , n) = 0

and −→R (m′, n) can be made arbitrarily large by judicious choice of m′.
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7.2 Choice of constants

Hölder continuity, unlike basic continuity and some other variants, is defined relative
to constants (C,α). We have not yet discussed the implications of this; for example,
should the same constants apply to −→R and to ←−R? Not necessarily: for example, if
the metrics on M and N are intuitively “not on the same scale” we might well want
different constants in the two directions.

It may already be interesting to say that there exists some (C,α) such that R is
Hölder continuous with respect to those constants, but in some cases that will not
be informative: if the model spaces are discrete and bounded in the sense that the
distances between distinct models are bounded both below (by something > 0) and
above, then there will always be some choice of (C,α) that will do the job. Even
then, though, it might be interesting to know whether Hölder continuity held for
some particular pair of constants, e.g. to judge how much work on one model should
be allowed to happen before the task of a human validating consistency restoration
becomes infeasible.

Thus it is possible that Hölder continuity might turn out to be a useful least change
principle. We remark, though, that continuity is already a strong condition, Hölder
continuity much stronger, so we should not usually expect it to hold globally. In the
next section we explore how to combine the advantages of such a strong condition
with the flexibility needed in practice. We will use Hölder continuity in our example,
but future work might consider e.g. locally Lipschitz functions, or in a sufficiently
special space, continuously differentiable functions, etc.

8 Atlases of subspace pairs: piecewise good behaviour

In this section we formalise the idea that a bx might have good, unsurprising behaviour
on straightforward parts of the model spaces, while unavoidably causing surprise under
well-defined circumstances. We give an example and discuss how usable tools might
incorporate such ideas.

First let us recall the precise definition of a subspace pair.

Definition Let R : M ↔ N be a correct and hippocratic bx, and suppose M1 ⊆ M
and N1 ⊆ N . Then (M1, N1) is a subspace pair in (M,N), with respect to R, if
−→
R (M1, N1) ⊆ N1 (that is, for any m1 ∈ M1 and n1 ∈ N1 we have −→R (m1, n1) ∈ N1)
and dually ←−R (M1, N1) ⊆M1.

That is, the bx’s consistency restoration functions will never be responsible for moving
a pair of models outside the subspace pair. If the current pair of models (m,n) is in
a certain subspace pair before consistency restoration (in either direction), it will still
be in that subspace pair afterwards. This is the sense in which the developers working
with the models can jointly agree to stay within the subspace pair. This also means
that the restriction of the bx to the subspace pair is itself a well-defined, correct and
hippocratic bx.

Now, as mentioned in [Ste14], by hippocraticness any consistent pair (m,n) forms
a one-point subspace pair {(m,n)}; moreover, (M,N) itself is always a subspace pair.
Thus any bx gives rise to various “atlases” of subspace pairs, in the following sense:

Definition Let R be as before. A collection {(Mi, Ni) : i ∈ I} of subspace pairs in
(M,N) is an atlas if ∪i∈IMi = M and ∪i∈INi = N .
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We may partially order atlases by saying A1 ≤ A2 (read “A2 dominates A1”) iff
for any subspace pair (M1, N1) ∈ A1 there exists a subspace pair (M2, N2) ∈ A2 with
M1 ⊆M2 and N1 ⊆ N2.

If the bx is well behaved3 on individual subspace pairs, we may think of it as being
piecewise well behaved; we have a chance of characterising under what circumstances
it may be ill behaved. This works for almost any property of bx we might want to
consider.

Definition Let P be a property of bx. A correct and hippocratic bx R : M ↔ N
has P with respect to an atlas A if P holds on the restriction of R to each subspace
pair in A. If the atlas is understood, we may simply say the bx is piecewise P.

Generally speaking, the larger the subspace pairs in the chosen atlas, the more strin-
gent this condition is; typically it is trivial for the trivial atlas comprising all one-point
subspace pairs of consistent pairs of models. We might like to have a notion of coars-
est atlas on which a given property held, but unfortunately the pointwise union of
subspace pairs is not a subspace pair so this is not achievable. We can use the partial
order on atlases given above to identify, possibly multiple, dominant atlases for a
given property.

8.1 Language and tool implications

It is not our intention in this paper to propose a new bx language to take advantage
of these ideas! But intuitively it is easy to see that some constructs in a language
will, when exercised, give rise to well-behaved, e.g. Hölder continuous, bx while others
will not. Projecting away certain information while leaving independent information
untouched, for example, will formalise to being continuous provided that the cho-
sen metrics on the two model spaces are appropriately related. On the other hand,
if-then-else statements and similar notoriously have properties that will be for-
malisable as a failure of continuity; most recently this was explored, although not
in those terms, in [HBTM15]. Effectful bx that use interaction with a user to re-
solve the choice of consistent model [ASCG+15] will provide another important class
of non-continuous bx. One can certainly envisage future bx languages having their
definitions annotated to indicate to the bx writer which constructs are “safe” from
the point of view of a desirable property such as Hölder continuity, perhaps under
assumptions concerning the metrics to be used.

Suppose that, by judicious instrumenting of a bx and the models on which it works
(perhaps augmented by witness structure information, depending on the formalism),
we can make the bx engine aware of an atlas with respect to which the bx has a good
property. The “tool that goes beep” then operates as follows: at any moment, it knows
which subspace pair(s) the last-synchronised pair of models was in. When it is asked
to restore consistency between the current pair, it checks whether this pair is still in
at least one of the same subspace pairs. If so, it restores consistency without beeping,
because it knows that only an acceptable amount of surprise will be caused by what
it does. If not, it beeps, because the good property can no longer be guaranteed
and the user’s attention may be required. There is a spectrum of possible behaviour,
from automated restoration that simply needs to be validated by human attention,
through effectful restoration that might require human confirmation before changes
are made, through no automation at all: perhaps in this case the tool declines to

3NB “well behaved” is here used informally, not in the technical sense of the lens literature
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restore consistency and just beeps to tell the users they must do so. Regardless, we
think this is a promising avenue that may enable users to trust the bx’s automated
consistency restoration when it is trustworthy, reserving their attention for when it is
not, and reducing the unpleasant surprises that unexpected behaviour of a bx might
otherwise lead to.

8.2 Atlas examples

Looking at our technical examples, the most interesting case is Example 5.1. As
remarked there, both ({CM}, {CN}) and (M \ {CM}, N \ {CN}) are subspace pairs;
it is easy to see that they comprise an atlas on which any of the variants of the bx we
considered there are piecewise strongly (1, 1)-Hölder continuous. A tool, like the one
we have been discussing, that is aware of this property with respect to this atlas, would
beep only in the difficult cases such when computing −→R (xm, CN ), because (xm, CN )
is not in any subspace pair of the atlas.

For a more naturalistic, informally expressed example, we return to the setting
of Example 3.2, which we previously used to show that metric-least bx might not
always behave as expected. Intuitively the problem in this example is that changing
the set of classes stereotyped 〈〈persistent〉〉 is a change of a different kind from making
changes to the signatures of individual methods or the code of tests. Keeping the same
notion of consistency, let S be a bx with “better” consistency restorers than the R we
considered previously. Specifically, ←−S never touches a 〈〈persistent〉〉 stereotype if it
can restore consistency without doing so: if necessary, it will modify the operations in
a 〈〈persistent〉〉 class to bring them into consistency with the test suite. If the relevant
classes are deleted from a test suite, so that there is no way for←−S to restore consistency
without touching a 〈〈persistent〉〉 stereotype, then it will remove the stereotype. −→S
has an easier job because tests are allowed that do not correspond to anything in
the model; it simply has to change tests to match changes in the operation signatures
within 〈〈persistent〉〉 classes if necessary, and generate default tests for any classes that
are newly stereotyped 〈〈persistent〉〉.

For this S, the interesting subspace pairs may be identified with the sets of classes
that are stereotyped 〈〈persistent〉〉. For a set P of classes, let MP comprise all models
in which precisely the classes of P are stereotyped 〈〈persistent〉〉, and let NP comprise
all test suites in which at least the classes in P have appropriately named test classes.
Then each of the pairs (MP , NP ) is a subspace pair, and the (infinite) collection of
them is an atlas. On each subspace pair, the behaviour of S is very simple: subject
to making it precise we expect it to be Hölder continuous (the constants depending
on details such as the languages used, which we have not specified). Indeed, we also
expect it to be metric-least. For once the bx is restricted to a given subspace pair,
the “cheating” way to get a closer consistent model by deleting a stereotype is not
available.

What about the behaviour of S on the whole of (M,N)? This will not, as pre-
viously discussed, be metric-least. Without further restrictions it will not be Hölder
continuous either, since if a class can have arbitrarily many methods then the constant-
sized change of adding a stereotype could lead to an arbitrarily-sized change to a test
suite. In practice it is likely to be possible to impose some limit, so that the whole of
S will be Hölder continuous, albeit with respect to laxer constants than the restriction
to a subspace pair.
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9 Automated software repair

Automated software repair is a diverse field with some clear connections to bx that
have, as yet, been little explored. It concerns transforming code to make it better
with respect to some criterion. The connection to bx is most obvious in test-suite
based repair, as most famously implemented in the Genprog tool [LNFW12]. Such
tools take a program and a test suite, such that the program fails at least one test,
and attempt to create a patch that, when applied to the program, makes it pass
all the tests. In our terminology, the program is consistent with the test suite if it
passes all the tests, and automated software repair attempts to restore consistency
(by modifying the program).

Typically, the challenge addressed by this work is restoring consistency at all:
success is often measured by the increase in the number of passing tests, as causing
all tests to pass may be too hard. In bx, this idea has been explored in [Ste14].
We can allow the consistency of a pair of models to be described using an element
from an arbitrary partial order, rather than just a boolean value, and then we can
consider bx that might not succeed in restoring consistency completely, but which
do a worthwhile partial job. In the case of test-suite based repair, consistency could
be described using the number (or alternatively the set) of passing test cases. Then
a bx would be improving if it never decreased the number of passing test cases (or
alternatively, if it never caused an individual test to fail that previously passed). In
the partial setting, these basic properties have a Least Surprise flavour. However, this
is off the main track of our concerns in this paper.

Setting the partiality concern aside, there may be a choice of ways to achieve the
same degree of improvement. There are a few papers in the automatic software repair
literature that consider the choice of repair, preferring “simpler” repairs, and these
give us a direct connection with Least Surprise. In [TR15] Tan and Roychoudhury
present their tool relifix and examine it against criteria that include “C1. Introduces
small changes” and “C5. Only change if no regression will be introduced”. In the
same year, an overlapping set of authors present DirectFix [MYR15], an approach for
generating “simple” patches. Interestingly, the principal simplicity criterion they use
is preservation of the structure of a program. However, regressions may be introduced.

For further discussion of automated software repair we refer the interested reader
to [Mon15].

10 Category theory

As previously discussed in Section 6, various authors have investigated least change
in a partially (or even pre-) ordered setting. A natural generalisation of such work
is to move from posets to categories. In particular, a number of people (notably
Diskin et al. [DXC11a], Johnson, Rosebrugh et al. [JRW12, JR13, among others])
have considered generalisations of very well-behaved (a)symmetric lenses from the
category of Sets to more general settings, notably Cat itself, the category of small
categories.

The basic idea underlying these approaches is to go beyond the basic set-theoretic
(state-based, whole-update) approach of lenses in order to incorporate additional in-
formation about the updates themselves, modelled as arrows. Rather than consider
models, database states, as elements of an unstructured set (corresponding to a dis-
crete category), they are taken as objects of a category S. Arrows γ : S −→ S′
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correspond to updates, from old state S to new state S′. Arrows from a given S carry
a natural preorder structure induced by post-composition, generalising the order in-
duced by multiplication in a monoid:

γ : S −→ S′ ≤ γ′ : S −→ S′′ iff ∃δ : S′ −→ S′′.γ′ = γ; δ

Johnson, Rosebrugh and Wood introduced the idea of a c-lens [JRW12] as the ap-
propriate categorical generalisation of very-well-behaved asymmetric lens: given by a
functor G : S −→ V specifying a view of S, together with data defining the analogues
of Put, satisfying appropriate analogues of the GetPut, PutGet and PutPut laws (we
omit the details, which are spelt out very clearly, if compactly, in their subsequent pa-
per [JR13]). They make explicit the connection with, and generalisation of, Hegner’s
earlier work characterising least-change update strategies on databases [Heg04]; in the
categorical setting, database instances are models of a sketch defining an underlying
database schema or entity-relationship model.

The crucial detail is that the ‘Put’ functor then operates not on pairs of states
and views alone (that is, objects of S × V), but on updates from the image of some
state S under G to a new view V , that is, on pairs consisting of an S-state S and a
V-arrow α : GS −→ V , returning a new S-arrow γ : S −→ S′ such that Gγ = α. In
other words, Put not only returns a new updated state S′ on the basis of a updated
view V , but also an update from S to S′ that is correlated with the view update α.
Notice that, because we have an update to a source S correlated with an update to a
view GS which is consistent with the source, we are in the weak least surprise setting
– but since very-well-behavedness in their framework is history-ignorance, the notions
of weak and strong least surprise coincide.

They then show that the laws for Put establish that such an update γ is in fact
least (indeed, unique) up to the ≤ ordering, namely as an op-cartesian lifting of
α. Thus very-well-behaved asymmetric c-lenses do enjoy a Principle of Least Change.
Extending this analysis, which applies to insert updates, with deletes being considered
dually via a cartesian lifting condition on arrows α : V −→ GS, to the symmetric
case is the object of ongoing study in terms of spans of c-lenses.

Johnson and Roseburgh further showed that Diskin et al.’s delta lenses [DXC11a]
generalise the c-lens definition; in particular, every c-lens gives rise to an associated
d-lens. However, such d-lenses do not enjoy the unique arrow-lifting property, so there
is some outstanding issue about the generality of the d-lens definition. In subsequent
work [DXC+11b], Diskin et al. have given a definition of symmetric d-lenses. It
remains to be seen what least-change properties such structures might enjoy, on their
own, or by reference to spans of c-lenses.

11 Conclusions and future work

The vision of bx in MDD is that developers should be able to work on essentially
arbitrary models, which capture just what is relevant to them, supported by languages
and tools which make it straightforward to define consistency and restore consistency
between their model and others being used elsewhere. Clearly, if anything like this
is to be achieved, there is vastly more work to be done on all fronts. Although there
are some islands of impressive theoretical results (e.g. in category theory) and some
pragmatically useful tools (e.g. based on TGGs), the theory currently works only in
very idealised settings and the tools offer inadequate guarantees while still lacking
flexibility. For software development, this situation limits productivity.
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We understand enough already to be sure that we will never achieve behaviour
guarantees as strong as we would ideally like within the flexible tools we need: his-
tory ignorance is a long-understood example of a desirable, but usually unobtainable,
property. In this paper we have begun to speculate about what might be achieved
by using strong properties such as Hölder continuity, by identifying “good” parts of
the model spaces where such guarantees can be offered, and by developing tools that
warn their users when these guarantees do not apply, so that they can spend their
attention where it is most needed. We have discussed how a bx might offer a strong
behaviour guarantee but only piecewise, with respect to an atlas of subspace pairs.
All this needs to be pursued and validated in practical tools and languages. Many
questions remain open.

If we decide, despite its disadvantages, to use the metric-least approach (perhaps
only piecewise) and need information from users to define domain-specific (or even bx-
specific) metrics, how can we elicit this information without unacceptably burdening
users? Besides the metric-least approach, are there other ways of inferring optimal
consistency restoration behaviour from the consistency relation alone? Or are we
correct in thinking that we should rather focus on reasonable behaviour? Can we
glean any further inspiration from the Principle of Least Surprise (or Astonishment)
in HCI (itself really about reasonable behaviour, despite the name: interface users
might not know precisely what to expect, but when they see what happens, they
should not be surprised)? How can a bx language best be designed to allow the bx
developer to express what they mean, and to support the bx user in their work?

There are other possible approaches to the Least Surprise problem that we have not
yet covered. We have hardly mentioned topology, although we have touched on both
metric spaces (a specialisation) and category theory (a generalisation). Perhaps the
language of topology, or even algebraic topology, might help us to make progress. Even
more speculatively, as type theory, especially dependent type theory, is a language we
work in elsewhere, it is natural to wonder whether at some point spatial aspects of
types such as for example homotopy type theory will have a role.

We have not attempted to analyse which properties any of the existing formalisms
provide, or could provide with feasible instrumentation or modification. Do any of the
many existing bx formalisms that we have not mentioned, each thoughtfully designed
in an attempt to “do the right thing”, satisfy any of the properties discussed here –
and if not, why not? Under what circumstances do only global optima exist, so that
guaranteeing reasonable behaviour would automatically guarantee optimal behaviour?
Would identifying such circumstances help to resolve the tension between wanting
optimality and wanting composition? Is there any mileage in applying the kind of
guarantees of reasonable behaviour considered here to partial bx in the sense of [Ste14],
which do not necessarily restore consistency but, in an appropriate sense, at least
improve it (perhaps making use of ideas from automatic software repair)? Could one
make use of insights from Lagrangian and Hamiltonian mechanics? Or from simulated
annealing?

Nailing our colours to the mast, we think: change to witness structures is im-
portant; pursuing reasonable behaviour will be more fruitful than pursuing optimal
behaviour; identifying “good” subspace pairs will help tools in practice; and weak least
surprise is not enough. But there is plenty of room for other opinions.
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