
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

MUSE
A Framework for Measuring

Object-Oriented Design Quality
Reinhold Plöscha Johannes Bräuera Christian Körnerb

Matthias Saftb

a. Johannes Kepler University Linz, Department of Software Engineering,
Linz Austria
http://www.se.jku.at

b. Siemens AG, Corporate Technology, Munich, Germany
http://www.siemens.com

Abstract Good object-oriented design facilitates the maintainability of a
software product. While metric-based approaches and the idea of identi-
fying design smells have been established, there still remains the gap of
verifying the compliance of design best practices in source code. Thus,
there is no comprehensive set of metrics or design best practices that
does not only support design measurement and evaluation but can also
guide the improvement process. This paper proposes a novel approach
based on measuring design best practices that closes the gap between
the identification of design flaws and the support for improvements. An
expert group six researchers captured a set of 67 design best practices
that are implemented by the framework MUSE (Muse Understand Script
Engine). For a first validation of MUSE in this paper, its measuring result
is compared with QMOOD, which is an established metric-based approach
for measuring the quality of object-oriented design. The qualitative assess-
ment based on data from six versions of the Java tool jEdit shows that
MUSE is better suited to guide improvements than QMOOD, e.g., for the
design property encapsulation QMOOD indicates no substantial changes
in the design quality while the data provided by MUSE highlights that the
encapsulation property of jEdit became worse over time. These first promis-
ing results of the application of MUSE have to be further validated and
future work will concentrate on measuring object-oriented design principles.

Keywords design best practices, object-oriented design quality, design
quality assurance, design measurement

Reinhold Plösch, Johannes Bräuer, Christian Körner, Matthias Saft. MUSE A Framework for Measuring
Object-Oriented Design Quality. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND
4.0). In Journal of Object Technology, vol. 15, no. 4, 2016, pages 2:1–29.
doi:10.5381/jot.2016.15.4.a2

http://www.jot.fm/
http://www.se.jku.at
http://www.siemens.com
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2016.15.4.a2
http://dx.doi.org/10.5381/jot.2016.15.4.a2

2 · Plöesch, Bräeuer, Körner, Saft

1 Introduction
Software design decisions always lead to inevitable tradeoffs that are necessary to
handle product requirements. Although the nature of object-oriented design already
avoids the introduction of obvious pitfalls, some design decisions are still error prone.
Consequently, developing a product without controlling and assessing the software and
design quality possibly results in a product that implements the functional requirements
but fails to fulfill quality aspects such as maintainability, extensibility, or reliability.

For dealing with the challenges of assessing design quality, fundamental approaches,
e.g., [CK94] and [BD02], proposed metric-based suites for checking object-oriented
design aspects. Typically, such suite consists of a set of metrics that expresses object-
oriented characteristics of the source code by a single value. However, real design
issues often cannot be directly identified when using single metrics and considering
them in isolation [Mar04]. In other words, metrics can raise an alert that the software
quality fails at some points, but software engineers and architects lack specific clues
how to improve the design. Thus, if measurement is not only about the status of a
piece of software with respect to design quality but should also provide better support
for improvements, more advanced approaches are necessary.

In previous work, we have already made good experience and gained knowledge
in assessing source code quality by measuring quality aspects based on violations of
best coding practices as shown in, e.g., [PGH+07], [WGH+12] and [MPS14]. We want
to map this idea to the domain of object-oriented design by identifying violations of
object-oriented design best practices directly from the source code. The application of
this approach presumes tool support for the definition of design best practices and
their automatic identification. Due to the lack of a comprehensive tool that is designed
for this purpose and provides the flexibility for future extensions, we have developed
an analysis framework that fits our needs.

In this paper, we introduce the framework MUSE (MUSE Understand Scripting
Engine). MUSE is a Perl library aimed to measure object-oriented design by iden-
tifying violations of design best practices based on meta-information from source
code. These violations can be visualized in SonarQube1 dashboards for supporting
software developers and software architects in detecting design problems in the source
code. Besides, MUSE provides an explanation and self-explaining name for each
violation in order to best guide software engineers in correcting the design problems
and implementing improvements.

The purpose of this work is to compare the measuring results provided by MUSE
to a well established and documented metric-based assessing approach for object-
oriented design quality. Specifically, the quality model QMOOD (Quality Model for
Object-Oriented Design) [BD02] is selected because it claims to provide a practical
quality assessment approach for a number of design properties as shown in Section 5.
Moreover, QMOOD is relying on a metric suite, which is hierarchically structured and
the starting point for estimating the design quality. In order to compare the result
of MUSE with QMOOD, this paper focuses on a qualitative discussion about the
measuring results of several releases of the open-source Java project jEdit. Finally,
the comparison reveals the benefits and drawbacks of using MUSE combined with its
underlying concept of finding design best practice violations. QMOOD and MUSE
have completely different approaches to measurement; while QMOOD relies on metrics,
MUSE focuses on the violation of design best practices. Nevertheless, both approaches

1https://sonarqube.org

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 3

claim to provide insigths into object-oriented design properties like abstraction or
encapsulation. In this paper we want to show that a best practice based approach like
MUSE is more suitable than a metric-based approach like QMOOD - at least when
we have systematic and sustainable quality as well as design improvement in mind.

The rest of the paper is organized as follows: First, Section 2 shows related work in
this research area and discusses it within the context of this article. Section 3 specifies
requirements for our toolset and Section 4 gives an overview of the architecture and
of selected implementation aspects of MUSE. Section 5 provides insights into the
QMOOD model and describes how QMOOD specifications are adopted to measure Java
projects. Section 6 highlights the results of the validation. Hence, it shows the detailed
result from applying QMOOD and MUSE on six versions of jEdit. The discussion
underlines the usefulness of the data provided by MUSE on a qualitative level and
makes some quantitative comparisons of the measurement result from QMOOD and
MUSE. Finally, Section 7 discusses various threats to validity before Section 8 presents
the conclusions drawn from comparing MUSE with QMOOD including thoughts and
ideas for future work.

2 Related Work
Primarily, related work in this research area comprises approaches and tools that
are used to assess software quality in general. Nevertheless, the discussion in this
section concentrates on those tools and approaches that are applied for assessing and
improving object-oriented design directly from the source code in order to better align
the related work with our MUSE approach.

2.1 Design Measuring Approaches
When investigating the literature of measuring object-oriented design quality, there
are multiple approaches that focus on finding design flaws usually referred to as bad
smells [FBBO99]. One of these approaches for detecting bad smells is based on so
called detection strategies [Mar04]. Such a detection strategy relies on measuring
different object-oriented design metrics and combining them to one metric-based rule.
This allows reaching a higher abstraction level in working with metrics and expressing
design flaws in a quantifiable manner.

As shown by the idea of detection strategies and also considered by the MUSE
framework, it is necessary to investigate multiple problem sources to identify one
design flaw. In knowing the problem sources that are causing a particular design issue,
it is easier to localize the fragments and to refactor the design at this point.

Another and more recently published work in specifying and detecting bad smells is
presented by Moha et al. [MGDLM10]. In this work, the authors introduce DÉCOR a
method that illustrates all necessary steps to define a detection technique. Specifically,
step three of DÉCOR is the translation of a textual bad smell definition into algorithms
that can be applied for detecting it. To validate the method, the authors instantiated
DÉCOR and tested the detection techniques on four bad smells.

The idea behind DÉCOR is similar to our goal of identifying violations of design
best practice in an automatic manner. However, the generated detection algorithm
just supports the investigation of Java source code. The reason is that the algorithm
generator works with templates that are excerpts of Java code and used for replacing
the concrete source code [MGMD08]. Based on the limitation of the programming

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

4 · Plöesch, Bräeuer, Körner, Saft

language and the actual purpose of finding bad smells, we could not build on the
DÉCOR framework.

2.2 Design Measuring Tools
While formal definitions of measuring approaches are important for demonstrating their
concept and ideas, they cannot be applied in a development environment; especially,
without tool support for quality analysis (QA). In order to support software engineers,
there are multiple tools available that can be divided into two categories: QA tools
integrated in IDEs and standalone QA tools.

An example for an IDE integrated QA tool is inCode [MGV10]. InCode aims to
detect design smells based on the detection strategies mentioned before. Thus, it
is obvious that it has been developed by the authors who proposed the concept of
detection strategies. With the intent to transform quality assessment from a one-time
activity to a continuous and development life-cycle integrated task, inCode is designed
as Eclipse plugin [GVM15].

As major benefit, the developers of inCode point out that the tool better guides
refactoring tasks. The reason is that design flaws are immediately reported to the
software engineer who is working on the source code and is familiar with the context
of the design problem. In fact, this is an advantage but results in the compromise
that inCode only supports Java. Since one of our requirements for MUSE demands
support for multiple programming languages, this tradeoff could not be accepted.

Next to inCode, there are additional Eclipse plugins like Checkstyle2. This plugin
can be triggered by the build process of the project and detects code-style violations.
Due to its purpose of checking coding standards, Checkstyle is not applicable for
measuring object-oriented design properties as intended by MUSE.

In contrast to IDE integrations, there exist (open-source) quality assessment tools
such as PMD3 and Findbugs4. Both are static code analyzers that work on a rule
base and identify programming flaws like empty catch blocks and unused variables.
Compared to Findbugs, which can analyze Java source code only, PMD supports
multiple programming languages except of C++ and C#. Consequently, this was one
reason why these tools did not meet our requirements too. Furthermore, PMD and
Findbugs also concentrate on code quality with just a few rules for object-oriented
design.

2.3 Problem Statement
As shown by the related work above, the research community in the field of object-
oriented software design assessment has no tool available that (1) supports the analysis
of multiple programming languages, (2) can be extended by self-developed design rules,
(3) and can be integrated into a source code analysis environment such as ConQAT5

or SonarQube.
2http://checkstyle.sourceforge.net/
3https://pmd.github.io/
4http://findbugs.sourceforge.net/
5https://www.conqat.org/

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 5

3 Requirements for MUSE
In order to address the problem statement mentioned above, this section describes
the requirements that had been specified beforehand and taken into consideration
while MUSE has been developed. For the specification of these requirements it was
important to stress the framework character of MUSE to support customization and
extensability.

3.1 Capture essential object-oriented Design Properties
As the most important functional requirement, MUSE should help to check object-
oriented design best practices automatically. Relevant best practices were identified
by a literature review in the fields of object-oriented design smells (e.g., [FBBO99]
and [Rie96]) and object-oriented design principles (e.g., [Lis87] and [Doo11]). The
selection and specification of design best practices was carried out based on the results
found from studying the literature by up to six researchers. Each decision, i.e., which
best practice to include in MUSE, was at least discussed by a team of four researchers.
As a result, MUSE currently provides 67 design best practices. We did not - at any
time in the development process - look at metric-based approaches like QMOOD.

Tables 1 - 4 show a subset of the 67 rules selected for the programming language
Java and for the design properties abstraction, coupling, encapsulation and inheritance.
Consequently, 21 design best practices are listed here while the rest is shown in
the appendix. Intentionally, we concentrate on these 21 design best practices as
they naturally fit in with the selection of design properties covered by the QMOOD
approach, which is then used for the validation of our MUSE approach (see Section 5).

Table 1 – Abstraction-related design best practices

Design Best Practice Definition
AvoidPartiallyUsed-
MethodInterfaces

A class should be used as a whole and not only partially, i.e.,
for each client class we find out the set of used methods. The
more client-classes use the entirety of the provided methods
of a class, the better.

AvoidSimilarAbstractions Different types should not represent a similar structure or
behavior. Two classes have a similar structure if the attributes
with same type and a similar name (word stem) overlap by a
particular percentage. Two classes have a similar behavior if
methods with the same return and parameter types as well as
similar name (word stem) overlap by a particular percentage.

AvoidSimilarNamesOn-
DifferentAbstractionLevels

Types, such as classes, interfaces, or packages, on different
abstraction levels should not have similar names.

AvoidSimilarNamesOn-
SameAbstractionLevel

Types, such as classes, interfaces, or packages, on the same
abstraction level should not have similar names.

ProvideInterfaceForClass A public class has to implement an interface. Classes that
provide only access to static members are excluded by this
rule.

UseInterfaceIfPossible Use the interface of a class for variable declarations, parameter
definitions, or return types instead of the public class when
the interface provides all operations that are needed. If
there exists more than one interface, it has to be checked
whether one of the available interfaces provides the required
operations.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

6 · Plöesch, Bräeuer, Körner, Saft

Table 2 – Coupling-related design best practices

Design Best Practice Definition
AvoidMultipleImplemen-
tationInstantiations

The instantiation of a class by other classes should be as
restricted as much as possible - with exception of factory
classes.

AvoidStronglyCoupled-
PackageImplementation

A package should not heavily rely on other packages. There-
fore, the dependencies between classes, which can be either
an implementation, use, call of a class or an interface, are
aggregated to package level for expressing the relatedness to
other packages.

CheckExistenceImplemen-
tationClassesAsString

A class should not be instantiated by its class name stored
as string value.

DontInstantiateImplemen-
tationsInClient

A class should not be instantiated by a client that is not
within the same package.

PackageShouldUseMore-
StablePackages

A package should use more stable packages, i.e., the stability
of a package defines the minimum stability of its dependent
packages.

Table 3 – Encapsulation-related design best practices

Design Best Practice Definition
AvoidExcessiveUseOf-
Getters

The ratio between getter methods and the total number of
non-const attributes should not exceed a certain threshold.

AvoidExcessiveUseOf-
Setters

The ratio between setter methods and the total number of
non-const attributes should not exceed a certain threshold.

AvoidProtectedInstance-
Variables

A class should avoid having protected attributes.

AvoidPublicInstance-
Variables

A class should avoid having public attributes.

AvoidPublicStaticVariables Global variables, i.e., public static attributes of a class, should
be avoided.

AvoidSettersForHeavily-
UsedAttributes

There should not exist setter methods for a private class
attribute that is heavily used. An attribute is heavily used
if it is read or written in more than five methods including
accessor methods.

CheckParametersOfSetters Class attributes should only be set by method parameters that
are checked before. This can be verified by checking whether
setting the attribute by a parameter of a (set)-method is
always (or at least often) guarded by checks.

UseInterfaceAsReturnType If the return type of a method is not a base data type, it
should be the interface of the class. If a class that is used
as return type inherits from an abstract class, this abstract
class should at least be used as return type.

3.2 Support for multiple Programming Languages
Another important requirement is that MUSE must support the object-oriented
programming languages Java, C++, and C#6. This requires that MUSE has to be

6The definitions given in Tables 1 - 4 are valid for Java since the validation shown in this work
relies on the open-source Java project jEdit. We also provide implementations for C++ and C# with
slightly adopted definitions depending on language particularities (see Appendix).

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 7

Table 4 – Inheritance-related design best practices

Design Best Practice Definition
CheckUnusedSupertypes If clients (not subclasses!) of a class use only the public

interface (methods) of the current subtype and do not use
any methods of a supertype, then there is not a true is-a
relationship between the class (subtype) and its supertype.

UseCompositionNot-
Inheritance

A class should use composition instead of inheritance when
the class accesses only public members (methods or attributes)
from the particular superclass. Interfaces and abstract classes
are excluded by this rule.

implemented as stand-alone framework and not as plugin or extension for an Integrated
Development Environment (IDE) even if the IDE would have been programming
language independent.

3.3 Extensibility
MUSE has to be designed as framework to support adding new design best practices
when necessary. This feature is required because new design best practices can arise
according to design discussions, and it allows quality experts to add new measurable
design aspects according to their needs. The implementation of this plugin mechanism
must be usable without touching core elements of the framework. Within the framework,
design best practices are depicted by so called rules, i.e., a rule is the implementation
of a single design best practice.

3.4 Integration into Dashboards
The measurement output of MUSE, basically a list of rule violations, has to be
represented in a generic format. Hence, it can be displayed by different dashboards
of the source code analysis environment SonarQube. SonarQube is chosen as target
environment since it is open-source and has some additional features for quality related
tasks. Next to the centralized reporting mechanism provided by this source code
analysis environment, it can be easily integrated in the build process of a software
product. This feature is crucial for the application of MUSE because it drives the idea
of a continuous design quality assessment and supports software engineers in dealing
with improvements of design flaws.

3.5 Configurability
MUSE must support configurability on different levels. First, rules may require
settings that cannot be hard coded within the scripts. Thus, it is necessary to offer an
option that allows configuring rules. Second, projects typically have different project
characteristics that require adjusting MUSE according to these needs. In other words,
the framework must be configurable on project level as well.

4 MUSE Architecture and Implementation
This section shows the architecture and implementation details that address the
requirements mentioned above.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

8 · Plöesch, Bräeuer, Körner, Saft

4.1 Architecture
Figure 1 provides a high level overview of MUSE from a usage perspective. Starting at
bottom left, it shows that source files are the input of the commercial tool Understand7.
After setting up an Understand project and specifying the source files of a project,
including its dependencies to external libraries, Understand extracts meta-information
from the source code files and stores this information in a database. The meta-
information comprises, e.g., type definitions, class relations, or method definitions.
For using Understand, a graphical user interface as well as a command line interface
is provided. Latter facilitates the integration of Understand in an automated build
environment when a project team plans to use MUSE as part of their software
development cycle. After successfully extracting the required information, MUSE
uses the Perl API of Understand to query the information that is required to execute
the implemented design best practices. Besides, size entities of the project can be
calculated which are used for normalizing measuring results. Finally, MUSE generates
two output files that represent the rule violations and size characteristics of the project.

Figure 1 – High level overview of MUSE execution

MUSE represents the novel part of the tool chain that is used to measure object-
oriented design. Figure 2 provides a deeper insight and shows the layered architecture.
Although Figure 2 gives the impression that the elements of the gray rectangles
represent directories. By logically separating the Perl scripts into directories, the
framework becomes more structured and easier to understand.

Figure 2 – The layered architecture of MUSE

At the bottom end of the architecture of MUSE there is the library directory
lib. This directory contains Perl scripts that implement basic utility functions used
by layers above. For instance, these functions handle the communication with the
Understand database, write the result files and provide general sub routines used by
many rules, e.g., a sub routine for retrieving all public classes of a project. Actually,
this lib directory comprises 20 scripts.

7https://scitools.com/

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 9

On the next higher layer, the core functionality of MUSE is implemented. This
layer contains the rules for measuring object-oriented design as well as rule sets. Rule
sets allow the flexible and simple combination of individual rules to themes, e.g., all
rules related to the theme abstraction. Each rule is implemented as a self-standing
Perl module and represents a single file in the rules directory. Since coding practices
of Perl define that a module name must match with the file name, each file is named
after the rule name. This facilitates the handling of rules; especially, when searching a
particular one. All in all, the current version of MUSE consists of 67 rules for checking
object-oriented design best practices.

In parallel to the rules directory, the t directory contains at least one unit test for
each rule. These unit tests verify the correct implementation of the rules and ensure
that violations are detected. Moreover, they are used to avoid side effects caused by
changes to rule modules. Next to these unit tests, the t directory contains additional
basic unit tests to verify the correctness of the library modules (contained in the lib
directory) as well as the communication to the Understand database.

An additional directory with Perl scripts is the sizes directory. The sizes directory
contains scripts used for calculating size entities of projects written in Java, C++ and
C#. The last element in the core layer is the rulesets directory. In this directory proven
combinations of rules can be specified as a rule set. This facilitates the application of
MUSE.

Lastly, the topmost layer of the entire layer stack contains the scripts muse.pl and
sizes.pl. The main purpose of these scripts is the management of the rule execution
including the handling of configuration and result files. Similar to the muse.pl script,
the size.pl script manages the execution of the scripts for calculating the size entities
of projects. Therefore, it uses the scripts in the sizes directory as depicted in Figure 2.
All scripts can be called by the command line and they support different command
line options for a customized execution.

4.2 Implementation
Under the hood, MUSE encompasses implementations that are necessary to address
the requirements defined in Section 3. Some of them are discussed next in order to
better illustrate the functioning of the framework.

Anatomy of a rule implementation: As previously mentioned, muse.pl triggers the
execution of a rule check, e.g., the rule AvoidPublicInstanceVariables. In other words,
the script loads the particular rule module and calls its main function with handing
over the database connection and the configuration file. Afterwards, the rule module is
working autonomously and first checks whether it supports the programming language
of the project stored in the Understand database. In case the programming language
is supported, it continues with running the rule check. Therefore, the Understand Perl
API becomes important because it is required to query the meta-information that is
needed to conduct the rule check. For instance, the code snippet shown in Listing 1
- taken from the rule AvoidPublicInstanceVariables - shows the query to gather all
public members that do not have a static or final visibility.

Depending on the intention of the rule and the design aspect that need to be
measured, more advanced and cascaded queries are required. This may result in
complex rule structures which cover sophisticated design knowledge. Nevertheless,
each rule implementation comes to a conclusion whether the rule is violated or not. If
a violation has occurred, a finding will be written to the result file. After checking all

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

10 · Plöesch, Bräeuer, Körner, Saft

entities for their rule compliance, the rule implementation returns back to the muse.pl
script, which continues to trigger the next rule check.

In case two or more rules report a violation for the same element, e.g., class,
interface, or method, all identified problems are reported. Currently, there is no
aggregation function available to emphasize that this element might need special
attention because of multiple rule violations.

Parallel execution of rules: Since rules are self-standing Perl modules they can
be executed in parallel supported by MUSE. This functionality is available in Unix
environments only because Windows follows a different process management model
that prohibits the instantiation of additional child processes. This is the reason why
muse.pl comes with two versions; one that works on both Unix and Windows and
one that can be used on Unix exclusively. The number of processes that are used for
parallel computing is defined by a command line option of muse_ux.pl, but limited to
the total number of processors that are available on the CPU. This feature decreases
the execution time of MUSE.

sub checkInstanceVariables {
my $db = shift;
my $checkedEntities = ’Public Variable Member ~Static ~Final’;

foreach my $ent ($db->ents($checkedEntities)) {
print $ent->name()."\n";
// rule logic

}
}

Listing 1 – Structure of a typical rule implementation

Bundling of rules: Next to the parallel execution of modules, one module can
measure two or more rules. This occurs when two rules are very similar in their
core logic, but one is just more specific than the other or there is just a slight
difference between them. For example, the rules AvoidPublicInstanceVariables and
AvoidProtectedInstanceVariables share the same core logic but differ in their query
definition. In order to reduce execution time and to avoid multiple executions of the
same implementation, which mostly includes complex algorithms, similar rules are
measured at the same time, but only specified ones are reported to the result file.

Dynamic loading: The execution of MUSE is context and project dependent since
software design analysts may be interested in different design issues. Besides, it is
unlikely that an analyst wants to get informed about all rule violations. Consequently,
MUSE offers the functionality to select desired rules and to load those libraries - Perl
modules - that are required therefor. The feature of dynamically loading the necessary
libraries keeps MUSE lightweight and reduces the amount of allocated memory.

Muse configuration file: A muse configuration file can be defined for a project
on which MUSE will be executed. This file stores the entire configuration that is
project-specific and required by MUSE.

Test utilities: As briefly mentioned in the previous section, the MUSE core includes
a test set. Each implemented rule is accompanied by a unit test and some more unit
tests are available for the base libraries. Besides ensuring the functional correctness

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 11

of the implemented rules, the tests guarantee that the external dependencies to the
Understand API remain valid.

Restricting the analysis: Running MUSE on a huge project can be tedious and
might produce too many findings in which design analysts are not interested. Conse-
quently, MUSE provides the functionality to narrow down the execution to package
and component level. This allows to targetedly conduct the object-oriented design
measurement and to gather the portion of information that is most valuable for
analyzing the design.

5 Comparing MUSE with metric-based Approaches
There exist a number of metric-based approaches for measuring the object-oriented
design of software. According to Olague et al. [OEGQ07] and also according to our
understanding the three most important metrics suites are the CK metrics [CK94],
MOOD [BeAM96] and QMOOD [BD02]. Importance is defined here by the number of
references to the respective papers as well as their usage in studies and experiments.
Olague et al. [OEGQ07] compare the above mentioned metric suites and come to
the conclusion that the CK metric suite and QMOOD are the best metric-based
approaches to be used for the measurement of object-oriented design quality.

As MUSE does not only try to give measures for object-oriented design in general
but also for object-oriented design properties such as abstraction or encapsulation,
we choose QMOOD for our study because it provides aggregation and evaluation
functions for a number of object-oriented design properties. MUSE provides rules for
the design properties abstraction, coupling, encapsulation, and inheritance next to
rules listed in the appendix.

5.1 System for Study
For comparing the MUSE approach with QMOOD, six major releases of the open
source project jEdit have been selected as shown in Table 5. This selection is based
on the criteria that it is a mid-sized project with approximately 112 KLLOC and it is
implemented in Java. Additionally, we choose jEdit as it is an open source project with
a long tradition, with a large number of installations and with an assumed interest
in good (design) quality as the size and therefore functionality of jEdit considerably
evolved over time, e.g., from ~65 KLOC in release 4.1 to ~112 KLLOC in the current
release 5.3. Furthermore, the domain of (text) editors is well suited for exploring
object-oriented design aspects since editors still are valuable sources for discussing
object-oriented design.

Table 5 – Overview of jEdit releases

Release # of
Files

of
Classes

of Logical
Lines of Code

Release Date

4.1 300 567 65,861 2003-05-24
4.2 355 701 81,754 2004-12-01
4.3 495 958 101,940 2009-12-23
4.5 528 1,186 104,410 2012-01-31
5.0 550 1,244 109,942 2012-11-22
5.3 553 1,263 112,474 2016-03-21

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

12 · Plöesch, Bräeuer, Körner, Saft

5.2 Measuring object-oriented Design with QMOOD
After selecting the project for study, we began to measure the object-oriented design
of each release with both the QMOOD and MUSE approach. However, before
explaining the way of measuring object-oriented design based on the concept of
QMOOD, an overview of the hierarchal quality model is given. Afterwards, the
technical implementation of metrics is explained.

5.2.1 Overview of the QMOOD Quality Model
The quality model of QMOOD is structured into four levels as shown in Figure 3. On
the first level, the model consists of six design quality attributes that are derived from
the ISO 9126 standard [iso01] and shown in Table 6. As mentioned by Bansiya and
Davis [BD02], these attributes are not directly observable and there is no approach
for their operationalization. Consequently, the authors introduced an additional layer
of object-oriented design properties. In total, eleven design properties are defined that
express object-oriented design characteristics such as the relationships of objects; the
visibility of attributes, methods and classes; or the complexity and inheritance tree of
classes. These eleven properties are depicted in the formulas of Table 6 and each is
measured by one metric.

We concentrate on the design properties abstraction, coupling, encapsulation, and
inheritance (see Table 1 - 4), as MUSE provides a substantially different view on how to
measure these design properties. For the QMOOD properties design size, hierarchies,
and messaging the definition of these properties is narrow and hardly allows a different
selection of measures as those proposed by QMOOD. Furthermore, for the QMOOD
design properties cohesion, complexity, composition, and polymorphism we agree with
the measures suggested by QMOOD and have no further suggestions here. Nevertheless,
MUSE itself covers additional design properties like design documentation and cyclic
references that are not covered at all by QMOOD (see appendix). As we choose to
validate MUSE with established design quality models, we can only directly compare
a subset of MUSE with QMOOD. In future work we will try to validate MUSE in its
entirety, but this needs other scientific methods, as according to our analysis, no other
comparable design quality model known from the literature can be used for a direct
and reasonable comparison.

Figure 3 – Four levels of the QMOOD quality model

For linking the first and the second level of the QMOOD quality model, computation
formulas for quality attributes are defined that weight and combine design quality
properties to one single quality attribute as shown in Table 6. We provide this overview
table for sake of completeness; nevertheless, it does not play any role for the validation,
as the validation concentrate on the level of object-oriented design properties for
comparing QMOOD and MUSE.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 13

Table 6 – QMOOD quality attributes

Quality Attributes Calculation
Effectiveness 0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition +

0.2 * Inheritance + 0.2 * Polymorphism
Extendibility 0.5 * Abstraction - 0.5 * Coupling + 0.5 * Inheritance + 0.5 *

Polymorphism
Flexibility 0.25 * Encapsulation - 0.25 * Coupling + 0.5 * Composition +

0.5 * Polymorphism
Functionality 0.12 * Cohesion + 0.22 * Polymorphism + 0.22 * Messaging +

0.22 * Design Size + 0.22 * Hierarchies
Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 *

Design Size
Understandability -0.33 * Abstraction + 0.33 * Encapsulation - 0.33 * Coupling

+ 0.33 * Cohesion - 0.33 * Polymorphism - 0.33 * Complexity -
0.33 * Design Size

At this point it is important to mention that the quality model of QMOOD was
designed for the programming language C++. This means that language specifics
such as multiple inheritance or the virtual visibility of methods are influencing the
metric definitions. For the sake of completeness, the fourth and last layer of QMOOD
represents the object-oriented design components that are objects, classes and the
relationships between these elements. Those measures that are relevant for us in this
validation, i.e., for the design properties abstraction, coupling, encapsulation, and
inheritance, are described in Table 7. All other QMOOD metrics are intentionally not
described or discussed in order to keep the focus on the selected design properties and
their design metrics.

Table 7 – QMOOD design properties and metric defintions

Design Property
(Design Metric)

Definition

Abstraction
(ANA)

A measure to show the degree of generalization-specialization
within a design. ANA (Average Number of Ancestors) represents
the average of super classes from which a class inherits behavior.
It considers both direct and indirect inheritance.

Cohesion (CAM) This property shows the togetherness of methods and attributes
in a class.

Complexity (NOM) This property deals with the understandability and comprehen-
sibility of the internal and external structure of classes.

Composition (MOA) A measure to express the “part-of", “has", or “consists-of" rela-
tionships between classes of the design.

Coupling (DCC) This property shows the closeness of objects to each other. An
object is close to another object, when it offers functionality
that is required by the other object to function correctly. DCC
(Direct Class Coupling) represents the average of classes that are
referenced by one class. A class is referenced by another class
when it is used as declaration for a class member declaration or
method parameter. In this case, Java standard libraries are taken
into consideration too. When the number of class declarations
or method parameter declarations is computed, an interface is
considered as class.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

14 · Plöesch, Bräeuer, Körner, Saft

Design Size (DSC) The size of the design expressed by the number of classes.
Encapsulation
(DAM)

The enclosing of data and behavior within a single construct
expressed by the visibility characteristics of variables. DAM
(Data Access Metric) is the ratio of all variables with private,
protected and package visibility to the total number of variables.

Hierarchies (NOH) The number of non-inherited classes that inherit behavior to sub
classes. In other words, the number of classes that act as root
within an inheritance tree.

Inheritance
(MFA)

A measure to express the “is-a” relationship between classes of
the design. MFA (Measure of Functional Abstraction) is the
ratio of the number of methods inherited by a class to the total
number of methods available (inherited or defined) to that class.

Messaging (CIS) A measure to shows the number of services provided by a class.
A service is defined as public method that can be accessed from
external.

Polymorphism
(NOP)

The ability to substitute an object with another object at run-
time.

5.2.2 Technical Implementation of QMOOD Metrics
In [GRI+14] the authors selected QMOOD for the validation of their research questions
and also faced the challenge of finding an appropriate way for measuring these metrics.
To calculate the metric values, they used the tool Understand and implemented the
metrics by querying the Phyton API, which is available next to the Perl API. Since
we are very familiar with Understand due to its essential role in the MUSE framework,
we wrote our own Perl scripts that implement the eleven metrics. Despite a solid
knowledge in developing the scripts, there is still the problem that the QMOOD
quality model was originally designed for C++ and does not consider Java-specific
requirements [GJ14]. Besides, the definitions of some metrics are vague and require an
own interpretation [OC06]. Consequently, we used the work of O’Keeffe and Cinnéide
[OC06] as basis and defined assumptions for measuring Java source code. Specifically,
the language feature of interfaces was determining some assumptions because it is not
considered in QMOOD. As a result, Table 7 describes the assumptions we made. For
those metrics needed for the validation, their name is highlighted in bold and a more
detailed assumption is provided.

5.3 Measuring object-oriented Design with MUSE
In order to compare the MUSE approach with the metric-based approach of QMOOD,
it is necessary to specify the design best practices that violate one of the four design
properties. Therefore, we selected rules from the rule pool of MUSE based on
a previously conducted and QMOOD independent grouping of them. As already
mentioned, the design best practices were deductively derived from the literature
of design principles in software engineering and the six researches assigned them to
design properties (as well as design principles which are on a lower aggregation level).
Table 1 - 4 describe the design best practices derived for this validation. For the sake
of completeness, only rules for Java source code are chosen. As already mentioned,
the identification of relevant design best practices was done via identification of best
practices from literature and the selection and specification of the rules was carried
out by at least four researchers.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 15

6 Results and Discussion
This section presents and discusses the results from calculating the QMOOD metrics
and executing the MUSE framework for the four selected design properties. The
discussion part of this section compares QMOOD with MUSE on each particular
design property. Therefore, it must be considered that both approaches focus on
operationalizing the same design property but with a different perception; on the one
hand with a single metric, on the other hand with a elaborated view based on multiple
design best practices.

Table 8 shows the measuring result of the four QMOOD metrics used in this
validation study. Since this metrics are mapped to design properties according to the
QMOOD model, the validation concentrates on level 2 - the design property level - of
Figure 3. Level 1 could not be used for comparision because MUSE does not provide
an aggregation function that would combine multiple design properties to quality
attributes as QMOOD does.

Besides, the other design properties are not presented in Table 8 to keep the focus
on abstraction, coupling, encapsulation and inheritance. According to the last column
in Table 8 there are trends indicating the change of design properties over time. While
there is a mild negative trend for abstraction and inheritance, the QMOOD measures
show a slight increase for coupling and encapsulation. Nevertheless, this is just an
aggregated quantitative value that gives no guidance for improvement at all, i.e., which
specific actions to approach.

Table 8 – Result of QMOOD metric execution

Design Properties 4.1 4.2 4.3 4.5 5.0 5.3 % Change
4.1 - 5.3

Abstraction (ANA) 2.43 2.34 2.28 2.27 2.28 2.29 -6%
Coupling (DCC) 5.24 5.40 5.47 5.44 5.46 5.55 +6%
Encapsulation (DAM) 0.82 0.80 0.82 0.84 0.84 0.84 +2%
Inheritance (MFA) 0.77 0.76 0.76 0.76 0.76 0.75 -2%

6.1 Abstraction
By calculating the average number of ancestors, QMOOD tries to estimate the degree
of generalization and specialization applied within the software design. However, by
just using ANA for expressing this design aspect, other abstraction related issues
are ignored. Table 9 lists the results provided by MUSE for the design property
abstraction. Here we can, e.g., see that the number of classes with similar names on
the same abstraction level - see AvoidSimilarNamesOnSameAbstractionLevels - has
risen from 18 to 54 and drop to 24 rule violations for the current version. This can
indicate a design problem because classes with the same word stem may implement
similar behavior and the design fails in applying appropriate generalizations.

In the context of the prior mentioned rule AvoidSimilarNamesOnSameAbstraction-
Level MUSE identifies the problem, but cannot propose a solution for fixing it. The
reason is that the software engineer or architect has to verify whether the concept
of abstraction is broken or just the naming of the class is misleading. Nevertheless,
MUSE points at least to the questionable classes or interfaces. In contrast, there
are other rules for which MUSE can offer a recommendation for improvements. An
example is the rule AvoidPartiallyUsedMethodInterfaces that checks into how many
parts a class could be split up by identifying sets of public methods that are jointly

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

16 · Plöesch, Bräeuer, Körner, Saft

Table 9 – Violations of abstraction realted MUSE rules

4.1 4.2 4.3 4.5 5.0 5.3 % Change
4.1 - 5.3

AvoidPartiallyUsed-
MethodInterfaces

78 87 109 20 20 18 -77%
1.18 1.06 1.07 0.19 0.18 0.16 -86%

AvoidSimilarAbstraction 2 14 12 10 24 32 +1500%
0.03 0.17 0.12 0.10 0.22 0.28 +837%

AvoidSimilarNamesOn-
DifferentAbstractionL.

8 8 12 6 6 6 -25%
0.12 0.10 0.12 0.06 0.05 0.05 -56%

AvoidSimilarNamesOn-
SameAbstractionLevel

18 54 54 20 22 24 +33%
0.27 0.66 0.53 0.19 0.20 0.21 -22%

ProvideInterfaceForClass 34 50 62 64 67 66 +94%
0.52 0.61 0.61 0.61 0.61 0.59 +14%

UseInterfaceIfPossible 446 445 569 655 665 686 +54%
6.77 5.44 5.58 6.27 6.05 6.10 -10%

Total 586 658 818 775 804 832 +42%
8.90 8.05 8.02 7.42 7.31 7.40 -17%

used by other client classes. These sets of methods are then presented to the design
analyst who can split up the overloaded class according to the suggestions.

From a quantitative perspective, Table 9 shows a decrease in quality for the two
design best practices AvoidSimilarAbstraction and ProvideInterfaceForClass on the
one hand. On the other hand, the definition of methods for classes measured by
AvoidPartiallyUsedMethodInterfaces was considerably enhanced. In total and without
specific weighting of the design best practices, we see an overall increase in quality
(with respect to abstraction) of 17%. Thus, the positive trend indicated by QMOOD
can be confirmed by the MUSE rules but with much more detailed information for
improvements.

6.2 Coupling
The QMOOD model measures the design property of coupling by counting references
to other classes. A class is referenced by another class when it is used as declaration
for a member or method parameter. As shown in Table 8, this metric slightly increased
from 5.24 to 5.55 over the six releases. In fact, we specified no MUSE rule that exactly
implements the same concept of DCC, however, the rules AvoidMultipleImplemen-
tationInstantiations and DontInstantiateImplementationsInClient do have a similar
intent. Thus, AvoidMultipleImpelementationInstantiations is based on the idea that
classes should not instantiate implementation classes (except for factories). Therefore,
the rule checks that classes are created from other classes as restricted as possible
and the rule fires a violation when the number of instantiations exceeds a defined
threshold. Compared to DCC, the rule DontInstantiateImplementationsInClient does
only count instantiations of those classes that are not defined within the same package.
This concept is based on the idea that it is accepted to couple classes from the same
package, but it is an issue when class coupling crosses package boundaries. In order
to fix this design issue, the MUSE rule recommends to specify an interface for classes
which are defined in another package.

As briefly highlighted in the previous discussion, MUSE rules also consider the use
of the package construct, which is an important technique for structuring software

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 17

Table 10 – Violations of coupling realted MUSE rules

4.1 4.2 4.3 4.5 5.0 5.3 % Change
4.1 - 5.3

AvoidMultipleImplemen-
tationInstantiations

42 56 69 69 70 70 +67%
0.64 0.68 0.68 0.66 0.64 0.62 -2%

AvoidStronglyCoupled-
PackageImplementations

13 15 21 23 25 27 +108%
0.20 0.18 0.21 0.22 0.23 0.24 +22%

CheckExistenceImple-
mentationClassesAsString

51 19 18 18 18 18 -65%
0.77 0.23 0.18 0.17 0.16 0.16 -79%

DontInstantiateImple-
mentationsInClient

242 283 337 347 365 374 +55%
3.67 3.46 3.31 3.32 3.32 3.33 -10%

PackageShouldUseMore-
StablePackages

7 8 13 13 15 15 +114%
0.11 0.10 0.13 0.12 0.14 0.13 +25%

Total 433 577 764 758 812 827 +91%
6.57 7.06 7.49 7.26 7.39 7.35 +12%

design. More specifically, the rules AvoidStronglyCoupledPackageImplementation and
PackageShouldUseMoreStablePackages check the appropriate application of packages
and fire a violation when packages are relying on each other or one package refers to
another package that is less stable.

The fifth MUSE rule for measuring coupling is CheckExistenceImplementation-
ClassesAsString. This rule may indicate the most problematic way of coupling classes
because it checks for each string value whether it matches to a fully qualified type
name, which could be used for dynamic instantiations of this type. While the dynamic
instantiation takes place at run-time and not at compile-time, this issue can cause
unexpected side effects. As shown in Table 10, the number of violations regarding this
bad design practice decreased from 51 to 18 what makes the current version of jEdit
less vulnerable to unverified instantiation of classes.

All in all, this comparison of applying QMOOD and MUSE for measuring coupling
shows that MUSE follows a more comprehensive approach and tries to identify
additional aspects that threaten this design property. Especially, the consideration of
packages is important when measuring design. The reason therefore is that classes
within the same package mostly share communalities resulting in a strong coupling.
However, by just providing a metric value as done by QMOOD approach, the engineer
or architect remains clueless whether the value expresses class coupling within packages
(that is more accepted) or class coupling across package boundaries. MUSE provides
multiple indicators that may show the problem of this design flaw.

From a quantitative perspective, a deterioration of package stability can be identi-
fied as shown by the increase of rule violations for AvoidStronglyCoupledPackageIm-
plementation and PackageShouldUseMoreStablePackages. In contrast, a decrease of
rule violations can be seen for AvoidMultipleImplementationInstantiations, DontIn-
stantiateImplementationsInClient, and CheckExistenceImplementationClassesAsString.
Although the relative decrease of rule violations for CheckExistenceImplementation-
ClassesAsString is high with 79%, this does not signficantly influence the total quality
assessment of coupling due to the low absolute number of violations. In other words,
the quality decrease of 12% results from equal weights for all five design best practices.
Interestingly, QMOOD also shows a decrease in the quality of coupling what matches
the MUSE assessment.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

18 · Plöesch, Bräeuer, Körner, Saft

6.3 Encapsulation
According to Table 8, the value of the DAM metric to measure encapsulation has
slightly changed over the six releases although the size of the project grew by 47
KLLOC. Thus, this discussion tries to identify whether MUSE can reveal a difference
between the six releases or can show that design practices of engineers did not change.

Table 11 gives an overview of the MUSE findings in this regard. Obviously, The
development team did a good job in checking parameters of setters and in using
interfaces as the rule violations for AvoidSettersForHeavilyUsedAttributes, and UseIn-
terfaceAsReturnType decreased over time. However, there is quite an increase of
public and protected instance variables (AvoidPublicInstanceVariables, AvoidProtecte-
dInstanceVariables) as well as of public static variables (AvoidPublicStaticVariables).
Merely taking this into account, these findings already justify the overall normalized
decrease in quality of 12%. Since public, protected and static instance variables can
be seen as the most contradicted aspect of encapsulation, the relative increase of 12%
can be viewed as a considerable decrease in quality - an aspect that is not reflected by
QMOOD, where the overall quality remains unchanged.

Table 11 – Violations of encapsulation realted MUSE rules

4.1 4.2 4.3 4.5 5.0 5.3 % Change
4.1 - 5.3

AvoidExcessiveUseOf-
Getters

9 7 9 12 16 17 +89%
0.14 0.09 0.09 0.11 0.15 0.15 +11%

AvoidExcessiveUseOf-
Setters

4 4 10 9 12 13 +225%
0.06 0.05 0.10 0.09 0.11 0.12 +90%

AvoidPublicStatic-
Variables

15 49 47 43 43 43 +187%
0.23 0.60 0.46 0.41 0.39 0.38 +68%

AvoidProtectedInstance-
Variables

32 52 109 114 116 115 +259%
0.49 0.64 1.07 1.09 1.06 1.02 +110%

AvoidPublicInstance-
Variables

90 159 191 171 175 176 +96%
1.37 1.94 1.87 1.64 1.59 1.56 +15%

AvoidSettersForHeavily-
UsedAttributes

38 34 34 16 16 16 -58%
0.58 0.42 0.33 0.15 0.15 0.14 -75%

CheckParametersOfSetters 57 56 74 95 131 132 +132%
0.87 0.68 0.73 0.91 1.19 1.17 +36%

UseInterfaceAsReturn-
Type

188 216 290 298 303 315 +68%
2.85 2.64 2.84 2.85 2.76 2.80 -2%

Total 433 577 764 758 812 827 +91%
6.57 7.06 7.49 7.26 7.39 7.35 +12%

Comparing QMOOD with MUSE in a quantitativ manner is difficult because only
QMOOD specifies a desirable target value for DAM. Since DAM ranges from 0 to
1, a value close to 1 is an indicator for good encapsulation [BD02]. In contrast, the
number of findings that is calculated by MUSE stands freely in the room when no
context for interpretation is provided. Thus, it is unclear if 433 rule violations for
version 4.1 of jEdit are an indicator for bad design quality or other similar projects do
even worse in encapsulation.

When discussing the number of violations per classes, it can be pointed out
that an average class in version 4.2 had more violations compared to the five other
versions. The same effect can be seen by the interpretation of the DAM metric since it
decreased in version 4.2 resulting in a bad design according to [BD02]. Nevertheless,

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 19

the normalization by using KLLOC cannot indicate any quality switch between
versions, but rather shows that the number of violations increased by approximately
0.5 violations per KLLOC.

6.4 Inheritance
At several points in this paper, it has already been mentioned that metric values
indicate a design problem, but let the engineer or architect in doubt about the
original issue. For illustrating the benefit of locating the source of a design flaw, the
following discussion uses the MFA metric and compares it with the MUSE approach
for measuring inheritance related design aspects. The idea behind the MFA metric is
to express the is-a relationship between classes of the design. Therefore, it calculates
the ratio of the number of methods inherited by a class to the total number of methods
available (inherited or defined) to that class. Finally, all ratios are accumulated to
project level and to a single number, e.g., 0.77 for jEdit 4.1 as shown in Table 8.

Table 12 – Violations of inheritance realted MUSE rules

4.1 4.2 4.3 4.5 5.0 5.3 % Change
4.1 - 5.3

CheckUnusedSupertypes 34 42 55 60 61 64 +88%
0.52 0.51 0.54 0.57 0.55 0.57 +10%

UseCompositionNot-
Inheritance

38 42 53 56 57 55 +45%
0.58 0.51 0.52 0.54 0.52 0.49 -15%

Total 72 84 108 116 118 119 +65%
1.09 1.03 1.06 1.11 1.07 1.06 -3%

In contrast to QMOOD, MUSE knows the classes that fail the inheritance concept.
For instance and shown in Table 12, jEdit version 4.3 contains 240 situations where an
instantiation of a class uses only the public interface (methods) of the current subtype
and do not use any methods of a supertype. This is an indicator that there is not
a true is-a relationship between the class (subtype) and its base class (supertype).
Such a subtype is a candidate to reuse the code by means of delegation. However,
for refactoring this class and excluding it from the inheritance tree, the class must
be identified. MUSE supports this task because the results can be uploaded to a
SonarQube instance. Next to some useful features for managing code quality, our
MUSE plugin for SonarQube provides the functionality to drill down into the source
code and to locate the violations of, e.g., the rule CheckUnusedSupertypes.

A screenshot of this drill down mechanism is shown in Figure 4. There it can be
seen that also a recommendation for the improvement and a description of the rule are
displayed. All in all, this perfectly supports refactoring because the software engineer
can understand the design flaw and start fixing the rule violation. This feature is of
course not only available for the discussed rule CheckUnusedSupertypes but for all
MUSE rules.

7 Threats to Validity
This section discusses potential threats to validity in context of the QMOOD and
MUSE comparison. Specifically, it focuses on threats to internal, external, and
construct validity [WRH+12].

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

20 · Plöesch, Bräeuer, Körner, Saft

Figure 4 – MUSE plugin for SonarQube

7.1 Internal Validity
Threats to internal validity concern our selection of the project, tools, and the analysis
method that may introduce confounding variables. Thus, the choice of the system of
study poses a threat. In this paper we chose jEdit with six selected releases as object for
investigation. Despite a significant increase of LLOC from release 4.1 to 5.3, no design
improvements could be observed that would have influenced the QMOOD metrics
as shown in Table 8. Except of DSC and NOH, which naturally rise with additional
LLOC, the other metrics do not show a switch in design decisions. Consequently, the
comparison of QMOOD with MUSE would have benefited from investigating releases
with more significant design improvements. The selection of the QMOOD quality
model and the tool Understand is discussed as threat to construct validity although
they represent a threat to internal validity too.

7.2 External Validity
Threats to external validity affect the possibility of generalizing the results. Regarding
this aspect it must be noticed that the validation is comparing only six versions of one
project. This project has its specific architecture and is developed by a team which
may have its specific design rules. Thus, we cannot - and do not want to - claim that
this proposed approach of measuring design best practices fits for every project. In
order to generalize results, further work must consider different systems, with different
teams, sizes, and application domains. However, we know that MUSE supports the
assessment of various projects since it can be customized and extended based on its
framework character.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 21

7.3 Construct Validity
Construct validity refers to the meaningfulness of measurements and in the context
of this paper the measuring of the quality properties. The choice of the QMOOD
model rather than another assessment approach represents a threat to this validity
concern. The reason is that it has not been evaluated whether the metrics of QMOOD
are appropriate for the measurement of the quality properties. Instead, they are
used in this paper as they are defined without questioning their intent. Nevertheless,
[OEGQ07] consider QMOOD to be a good choice for measuring object-oriented design
as pointed out earlier.

Another threat is that the QMOOD quality model was originally designed for
the C++ programming language; however, we used a project written in Java. Thus
we had to interpret the defined metric definitions. As mentioned by [GRI+14] and
[OC06], the QMOOD model lacks unambiguous metric descriptions so that a threat
stems from an inaccurate interpretation of the metrics.

Lastly, the choice of using the tool Understand for both the implementation of
QMOOD metrics and the extraction of meta-information for MUSE poses an additional
threat. Thus, the classification of objects such as classes, methods or attributes is
complex and the query to get these objects may not reflect the set intended by the
QMOOD metric definition. This may result in minor deviations from the original
QMOOD metrics. In regard to the extraction of meta-information for MUSE, the rule
implementations have to address language specific features independently. This is a
tradeoff we have to accept for supporting multiple languages.

8 Conclusion and Future Work
There exist a number of metric-based approaches for measuring the object-oriented
design quality of software as discussed in this paper. One major contribution of this
paper is the availability of a framework for measuring object-oriented design based
on best practices together with a simple yet powerful and comprehensible evaluation
model. This approach leaves the established path of measuring design quality by
means of metrics, but concentrates on good design best practices:

• MUSE tooling. MUSE currently implements 67 design best practices and is
therefore a quite comprehensive suite for analyzing Java, C++, and C# projects.
This is a contribution by itself, as we are not aware of any other object-oriented
design measuring tool that provides such a variety of measurable rules. Most
of the more comprehensive approaches either rely on metric metrics like the
CK-metrics suite, the QMOOD model or similar approaches.

• Design properties and rules. The MUSE model does not only provide a set
of configurable rules, but also associates the rules to design properties like
abstraction, encapsulation, etc. Having this explicit relation at hand is a good
starting point for identifying blind spots for measurement, but also for reasoning
about the importance of individual rules. This identification of white spots is
future work to be done.

Furthermore, we could show in our validation that using our design best practice
based MUSE approach has major advantages compared to metric based approaches:

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

22 · Plöesch, Bräeuer, Körner, Saft

• The qualitative discussion of the individual results shows the advantage of rule-
based approaches over metric-based approaches in general - at least when the
purpose of measurement also has improvements or refactoring in mind. The
analysis given in this paper shows that improvement actions can be better
planned and executed, as we do exactly know which pieces of code have to be
improved.

• We can also conclude that the quantitative results given by MUSE are comparable
to the results given by QMOOD. For the design property encapsulation we could
even show (see Section 6.3) that the quantitative results provided by QMOOD
neglect a major increase of bad practices that corrupt the encapsulation design
property. This is the case, although we know, that our current simplistic
evaluation method could be exchanged by a more comprehensive evaluation model.
In the context of code quality we already developed an elaborate evaluation
model [WGH+15] that will be applied to all rules provided by MUSE in the
future.

Apart from future work discussed above, we will comprehensively pilot MUSE
for a number of software projects in industry. First yet unsystematic feedback from
industry indicates that MUSE is of value for the development organizations, as it helps
to uncover design flaws directly from the source code.

As a second major task for the future we will investigate whether well-known
object-oriented design principles (e.g., Open-Closed Principle, Single Responsibility
Principle) can be measured by using our MUSE tool. We are currently working on
an underlying design quality model based on design principles. The quality model
in work follows the Quamoco approach [WGH+15] and assigns design best practices
to design principles. In order to understand the usefulness of each best practices as
well as the coverage of design principles by their assigned best practices, we plan to
validate this in a systematic and scientific manner.

References
[BD02] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-

oriented design quality assessment. IEEE Transactions on Software
Engineering, 28(1):4–17, 2002. doi:10.1109/32.979986.

[BeAM96] Fernando Brito e Abreu and Walcélio Melo. Evaluating the impact
of object-oriented design on software quality. In Proceedings of the
3rd International Software Metrics Symposium, pages 90–99, 1996.
doi:10.1109/METRIC.1996.492446.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering, 20(6):476–
493, 1994. doi:10.1109/32.295895.

[Doo11] John Dooley. Object-Oriented Design Principles. In Software De-
velopment and Professional Practice, pages 115–136. Apress, 2011.
doi:10.1007/978-1-4302-3802-7_10.

[FBBO99] Martin Fowler, Kent Beck, John Brant, and William Opdyke. Refactor-
ing: Improving the Design of Existing Code. Addison Wesley, Reading,
MA, 1999.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/METRIC.1996.492446
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1007/978-1-4302-3802-7_10
http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 23

[GJ14] Puneet K. Goyal and Gamini Joshi. QMOOD metric sets to assess
quality of Java program. In International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT 2014), pages
520–533, 2014. doi:10.1109/ICICICT.2014.6781337.

[GRI+14] Isaac Griffith, Derek Reimanis, Clemente Izurieta, Zadia Codabux,
Ankita Deo, and Barry Williams. The Correspondence Between Soft-
ware Quality Models and Technical Debt Estimation Approaches. In
Sixth International Workshop on Managing Technical Debt (MTD
2014), pages 19–26, 2014. doi:10.1109/MTD.2014.13.

[GVM15] George Ganea, Ioana Verebi, and Radu Marinescu. Continuous quality
assessment with inCode. Science of Computer Programming, 2015.
doi:10.1016/j.scico.2015.02.007.

[iso01] ISO/IEC 9126-1:2001 - Software engineering – Product quality – Part
1: Quality model. ISO/IEC 9126:2001, ISO/IEC, 2001. URL: http:
//www.iso.org/iso/catalogue_detail.htm?csnumber=22749.

[Lis87] Barbara Liskov. Keynote Address - Data Abstraction and Hierarchy.
In Addendum to the Proceedings on Object-oriented Programming
Systems, Languages and Applications (Addendum), OOPSLA ’87,
pages 17–34, New York, NY, USA, 1987. doi:10.1145/62138.62141.

[Mar04] Radu Marinescu. Detection strategies: metrics-based rules for detecting
design flaws. In Proceedings of the 20th IEEE International Conference
on Software Maintenance, pages 350–359. IEEE, 2004. doi:10.1109/
ICSM.2004.1357820.

[MGDLM10] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-
Francoise Le Meur. DECOR: A Method for the Specification and
Detection of Code and Design Smells. IEEE Transactions on Software
Engineering, 36(1):20–36, 2010. doi:10.1109/TSE.2009.50.

[MGMD08] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Francoise Le Meur, and
Laurence Duchien. A Domain Analysis to Specify Design Defects
and Generate Detection Algorithms. In José Luiz Fiadeiro and Paola
Inverardi, editors, Fundamental Approaches to Software Engineering,
number 4961 in Lecture Notes in Computer Science, pages 276–291.
Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-78743-3_
20.

[MGV10] Radu Marinescu, George Ganea, and Ioana Verebi. InCode: Contin-
uous Quality Assessment and Improvement. In 14th European Con-
ference on Software Maintenance and Reengineering (CSMR 2010),
pages 274–275, 2010. doi:10.1109/CSMR.2010.44.

[MPS14] Alois Mayr, Reinhold Plösch, and Matthias Saft. Objective Safety
Compliance Checks for Source Code. In Proceedings of the 36th
International Conference on Software Engineering (ICSE 2014),
ICSE Companion 2014, pages 115–124, New York, NY, USA, 2014.
doi:10.1145/2591062.2591178.

[OC06] Mark O’Keeffe and Mel Ó. Cinnéide. Search-based software mainte-
nance. In Proceedings of the 10th European Conference on Software
Maintenance and Reengineering (CSMR 2006), pages 249–260, 2006.
doi:10.1109/CSMR.2006.49.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.1109/ICICICT.2014.6781337
http://dx.doi.org/10.1109/MTD.2014.13
http://dx.doi.org/10.1016/j.scico.2015.02.007
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
http://dx.doi.org/10.1145/62138.62141
http://dx.doi.org/10.1109/ICSM.2004.1357820
http://dx.doi.org/10.1109/ICSM.2004.1357820
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1007/978-3-540-78743-3_20
http://dx.doi.org/10.1007/978-3-540-78743-3_20
http://dx.doi.org/10.1109/CSMR.2010.44
http://dx.doi.org/10.1145/2591062.2591178
http://dx.doi.org/10.1109/CSMR.2006.49
http://dx.doi.org/10.5381/jot.2016.15.4.a2

24 · Plöesch, Bräeuer, Körner, Saft

[OEGQ07] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and
Stephen Quattlebaum. Empirical Validation of Three Software Metrics
Suites to Predict Fault-Proneness of Object-Oriented Classes Devel-
oped Using Highly Iterative or Agile Software Development Processes.
IEEE Transactions on Software Engineering, 33(6):402–419, 2007.
doi:10.1109/TSE.2007.1015.

[PGH+07] Reinhold Plösch, Harald Gruber, Anja Hentschel, Christian Koerner,
Gustav Pomberger, Stefan Schiffer, Matthias Saft, and Stephan
Storck. The EMISQ Method - Expert Based Evaluation of Inter-
nal Software Quality. In Proceedings of the 31st Annual IEEE Software
Engineering Workshop (SEW 2007), pages 99–108, Columbia, USA,
2007. doi:10.1109/SEW.2007.71.

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1996.

[WGH+12] Stefan Wagner, Andreas Goeb, Lars Heinemann, Michael Kläs, Klaus
Lochmann, Reinhold Plösch, Andreas Seidl, Jonathan Streit, and
Adam Trendowicz. The Quamoco product quality modelling and as-
sessment approach. In Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012), pages 1133–1142, Zurich, 2012.
doi:10.1109/ICSE.2012.6227106.

[WGH+15] Stefan Wagner, Andreas Goeb, Lars Heinemann, Michael Kläs, Con-
stanza Lampasona, Klaus Lochmann, Alois Mayr, Reinhold Plösch,
Andreas Seidl, Jonathan Streit, and Adam Trendowicz. Opera-
tionalised product quality models and assessment: The Quamoco
approach. Information and Software Technology, 62:101–123, 2015.
doi:10.1016/j.infsof.2015.02.009.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineering.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/
978-3-642-29044-2.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.1109/TSE.2007.1015
http://dx.doi.org/10.1109/SEW.2007.71
http://dx.doi.org/10.1109/ICSE.2012.6227106
http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 25

Appendix
Remaining Design Best Practices
Table 13 lists 30 additional rules that are not used in this work but can be applied
for measuring the compliance of design best practices in Java, C#, and C++. Since
these rules are valid for three different programming languages, their descriptions are
defined in a generic manner. Nevertheless, this is not possible for all descriptions why
some terms must be exchanged to match with the naming convention and language
features of a particular programming language. More specifically, the term interface
referes to a pure virtual abstract class in sense of C++ and the term package refers to
namespace in sense of C++ or C#.

Table 13 – Design best practices for Java, C#, and C++

Name Description
AbstractPackagesShouldNot-
RelyOnOtherPackages

A package containing a high number of abstractions
should not rely on other packages.

AlwaysUseInterfaces Use interfaces for variable declarations, parameter defi-
nitions, or return types instead of public classes. System
library classes are excluded if no interface is available.

AvoidAbstractClassesWith-
OneExtension

An abstract class must have more than one subclass.

AvoidCommandsInQuery-
Methods

A public method identified as query method should
not change the state of the object and can only call
query methods of the same class. A public method is
identified as query method when its name starts with a
defined prefix such as get, has, or is.

AvoidDiamondInheritance-
StructuresInterfaces

An inheritance structure cannot result in a diamond
structure in which a class implements an interface by
two direct or indirect ways.

AvoidDuplicates There should not be duplicates in the source code.
AvoidHighNumberOf-
Subpackages

A package should not contain many direct sub-packages.

AvoidLongMethods Long public methods should be avoided.
AvoidLongParameterLists A method should not have long parameter lists.
AvoidManyTinyMethods Short public methods - ignoring getter and setter meth-

ods - should be avoided.
AvoidMassiveCommentsIn-
Code

A method should not have too many comment lines in
code. The method documentation (API-documentation)
as well as blank lines are not considered.

AvoidNonCohesive-
Implementation

A class should not have methods sets that are not
related to each other. Related means that they
use/change the same set of instance variables or are
connected by method calls.

AvoidNonCohesivePackage-
Implementation

A package should be as cohesive as possible. Therefore,
the number of parts, in which a package can be divided
with respect to the cohesion of its classes, expresses the
cohesiveness. A value greater than 1 indicates that the
implementation of a package is not cohesive.

AvoidRepetitionOfPackage-
NamesOnAPath

A package path of a package hierarchy should not con-
tain repetitions, i.e., the relative name (non-fully quali-
fied name) of a package should not be used twice.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

26 · Plöesch, Bräeuer, Körner, Saft

AvoidReturningDataFrom-
Commands

A method identified as command method should not
return any kind of data regardless whether the data is
related to the internal state of the object or not.

AvoidRuntimeType-
Identification

Type checks of objects, i.e., use of instanceof operator in
Java or the typed operator as well as the dynamic_cast
operator in C++, should be avoided.

AvoidUndocumentedInterfaces An interface must have an API-documentation for the
interface declaration and each method signature.

AvoidUnimplementedInterfaces An interface must be implemented by at least one class
or used as super-type for another interface. An abstract
class must be extended by at least one class.

AvoidUnusedClasses A class must be used, i.e., it must be either instantiated,
must have at least one subtype, or must provide public
static members or methods used by a client.

AvoidUsingSubtypesIn-
Supertypes

A class must not know anything about its direct and
indirect subtypes.

CheckDegradedDecomposition-
OfPackages

The decomposition of the package structure in a system
should be balanced.

CheckSameTermsOnDifferent-
PackageLevels

A relative package name (non- fully qualified name)
should be used only on the same package hierarchy
level across the system.

ConcretePackagesAreNotUsed-
FromOtherPackages

A concrete package containing a high number of con-
crete classes needs to be used from other packages.

DocumentYourPackages A package must have an API-documentation that can
be either plain comments for C#,C++ or Doxygen
comments for Java.

DocumentYourPublicClasses A public class and public struct (i.e., classes and structs
as well as typedefs in C++ header files) must have an
API-documentation, i.e., comments above the declara-
tion or the definition of the particular entity.

DocumentYourPublicMethods A public method within a public class must have an API-
documentation, i.e., comments above the declaration
or the definition of the particular entity.

DontReturnUninvolvedData-
FromCommands

A command method that changes the state of the object
or class cannot return data that is not related to the
change.

PackageCycle This measure calculates all minimal cycles between
packages whereas each cycle is evaluated by the number
of packages involved.

UseAbstraction A package should provide a sufficient number of abstract
classes and interfaces - expressed by the ratio between
abstract and concrete types.

UseInterfaceIfAvailable Use the interface of a class for variable declarations,
parameter definitions, or return types instead of the
public class. If there exists more than one interface,
one of the available interfaces should be taken.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 27

Table 14 shows an additional rule that can be applied for Java.

Table 14 – Design best practices for Java

Name Description
DontReturnCollectionsOrArrays If the return type of a method is an array or an instance

of a collection type, then the returned value should be
immutable or cloned before.

Table 15 shows an additional rule that can be applied for C#.

Table 15 – Design best practices for C#

Name Description
AvoidExcessiveUseOfProperties The ratio between properties and the total number

of non-const attributes should not exceed a certain
threshold.

Table 16 lists 14 rules that can be applied for C++ only due to additional or
different language features. Examples for such language features are templates, macros,
or the const declaration.

Table 16 – Design best practices for C++

Name Description
AvoidDiamondInheritance-
StructuresImplementation

An inheritance structure cannot result in a diamond
structure in which two base classes directly or indirectly
extend a common base class.

AvoidExcessiveUseOfLarge-
Macros

A large macro should be used as limited as possible.

AvoidFriends There should not exist friend classes or friend meth-
ods that have access to the internal state of an object.
However, friend functions to implemented operators are
always allowed.

AvoidGlobalVariables Global variables, i.e., non-const variables declared or
defined in a C/C++ header file, should be avoided.

AvoidInlineForPublicMethods Declaring a public method as inline should be restricted
to class-internal usage. This includes C functions that
are declared in a header file.

AvoidLargeMacros A functional macro should not exceed a defined length.
AvoidMultipleImplementation-
Inheritance

A class must not inherit from more than one base class
except pure abstract classes.

CheckIdenticalTemplate-
Instantiations

Templates should not be repeatedly instantiated with
identical parameters.

DontExposePointersAsReturn-
Values

A method should not return the address of an internal
class attribute. Thus, it is not allowed to directly
return an attribute that is a pointer, or the address of
an attribute. It is only allowed to return the address
of a single class object; except of class types that are
collection classes (e.g. map, list or vector).

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

28 · Plöesch, Bräeuer, Körner, Saft

MakeAbstractClassesPure A public abstract class with little implementation
should be proposed to be made pure abstract, i.e., to
have only pure virtual functions.

UseConstForMethodsWhen-
Possible

A method should be marked as const when it does not
change any class attribute.

UseConstForQueryMethods A method indicated as query method should express
this behavior by using const. A query method does
not modify or set members of the class (directly or
indirectly via other function calls).

UseMutableWithConstMethods A const method may not modify class attributes by
using const_cast or similar workarounds. However, it
is allowed to use mutable attributes.

UseVirtualMethods A certain number of public methods should be set to
virtual since they are non-virtual by default; otherwise
the class is too closed for extension.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

MUSE - A Framework for Measuring Object-Oriented Design Quality · 29

About the authors

Reinhold Plösch is associate professor for Software Engineering
at the Department of Business Informatics - Software Engineer-
ing at the Johannes Kepler University Linz. He is interested in
source code quality - ranging from basic code quality to quality
of embedded and safety critical systems. He is also interested in
automatically measuring the object-oriented design quality based
on design principles.

Johannes Bräuer is PhD student and employed at the Depart-
ment of Business Informatics - Software Engineering at the Jo-
hannes Kepler Universitiy Linz. His PhD thesis concentrates on
measuring and assessing software design based on fundamental
design principles. Therefore, cooperations with communities of
open-source projects and industrial partners are addressed for
getting answers to research questions in this area.

Christian Körner is Senior Key Engineer at Siemens Corporate
Technology in Munich. Professional interests are in the area of
technical and management methods for Development Efficiency.
Projects focus in the recent years was on developing and applying
artefact based assessment methods for development organisations
and automatic evaluation of software (design) quality. Projects
range from small project interventions to large research collabora-
tions with international partners.

Matthias Saft is working at Siemens Corporate Technology on
software development related topics. His focus is code and de-
sign quality, its measurement, visualization and improvement. A
corresponding architectural foundation is obligatory, and likewise
considered. Additionally, he is interested in large scale lean and
agile development methodologies, and their application in an in-
dustrial context.

Acknowledgments MUSE has grown successively and is based on many construc-
tive discussions about measuring object oriented design, the development team is not
limited to the authors of this paper. Initial work on the MUSE library was carried
out by A. Dautovic, H. Gruber, and A. Mayr. J. Bräuer is currently working on some
additional features and integrating rules developed by graduate students.

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a2

	Introduction
	Related Work
	Design Measuring Approaches
	Design Measuring Tools
	Problem Statement

	Requirements for MUSE
	Capture essential object-oriented Design Properties
	Support for multiple Programming Languages
	Extensibility
	Integration into Dashboards
	Configurability

	MUSE Architecture and Implementation
	Architecture
	Implementation

	Comparing MUSE with metric-based Approaches
	System for Study
	Measuring object-oriented Design with QMOOD
	Overview of the QMOOD Quality Model
	Technical Implementation of QMOOD Metrics

	Measuring object-oriented Design with MUSE

	Results and Discussion
	Abstraction
	Coupling
	Encapsulation
	Inheritance

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion and Future Work
	Bibliography
	About the authors

