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Abstract
In this paper, we address the problem of defining a source-to-source

translation system for reusable software components. We design an inter-
operable language for writing software components, and present a system
to translate components written in the interoperable language to a set
of compatible target languages. We analyze the common features in a
set of popular programming languages to inform the design of our inter-
operable language. We evaluate the utility of our system by using our
source-to-source translator to convert two well-known open source Java
libraries to C++ and Python, and assess the accuracy and performance
of the resulting translation.

Keywords Source-to-Source Translation, Programming Language Design,
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1 Introduction

The software development landscape has changed radically in its relatively short his-
tory. The introduction of portable high-level languages, and in particular, the ascen-
dance of object-oriented technologies, has enabled a degree of software reuse that was
unimaginable to the assembly language programmers of the 1950’s. And yet, solu-
tions to fundamental problems in software engineering reuse and reliability remain
elusive and in many cases unsolved. The proliferation of high-level languages—the
mechanism enabling reuse—has been a significant factor in fueling this growth but
has also increased the scope of the problem, thereby retarding progress in arriving at
solutions.

One approach to interlingual code reuse involves the use of tools that translate the
source code of complete programs or libraries from one language to another. Although
commercial systems are available for this purpose, they generally suffer from a number
of limitations that constrain their usefulness. Terekhov and Verhoef observe that
the problem of completely automated source-to-source translation is a difficult one,
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and that large language conversion efforts are a risky undertaking that have led to
bankruptcies and dismantled departments [TV00]. In this work, we propose solutions
to some of these challenges, and demonstrate their utility through the implementation
and validation of a system that implements these solutions.

Another approach to building a fully automated source-to-source translation sys-
tem involves defining subsets of languages between which programs can be automat-
ically translated [AGG+80, Pla13, AGLM14]. We believe that the definition of such
a subset should be guided by an analysis of a set of popular, high-level languages
that share a significant set of semantically compatible features. We assert that an
interoperable language whose design is constrained by these compatible features will
be rich enough to enable the implementation of useful software components, and
that components written in such a language can be automatically translated to com-
patible languages with good reliability. We acknowledge at the outset that some
aspects of languages are commonly left unspecified in language definitions. When
questions like these are left to the language implementation to resolve, no platform-
and implementation-independent translation system, automated or otherwise, can
hope to achieve complete semantic equivalence. But this limitation should not pre-
clude the exploration of the practical utility of such systems.

Currently, there is no effort described in the literature that facilitates the design
and implementation of a source-to-source translation system for enabling software
component interoperability that is based upon a carefully specified concrete subset of
a high-level language. The existence of such a system would enable the creation of
libraries of components that can be translated for use in any of the supported target
languages.

In this paper, we have created a system for translating components written in an
interoperable language, iJava, into a set of compatible target languages. We demon-
strate the utility of our approach by translating components written in Java to Python
and C++. To facilitate the translation, the system utilizes a graphical representa-
tion of the interoperable component source code. Like the interoperable language,
this representation is language-neutral, devoid of any target-language-specific details.
The generality of this representation enables a modular architectural approach that
facilitates the enhancement of the system to support additional, compatible target
languages. The set of compatible target languages would be those for which iJava
features either map directly to native structures, or can be emulated with native
structures. The use of a graphical representation also enables the use of graphical
transformations to perform the code generation.

Contributions. Our main contributions are as follows:

• An analysis of a set of object-oriented languages identifying common language
features. No comprehensive analyses of this type has been conducted to date.

• A language, and corresponding abstract semantic graph, designed for straight-
forward translation to the analyzed languages.

• The design and implementation of a tool that translates code from Java to C++

and Python based on our approach.

2 Related Work

In this section we survey the field of language interoperability and present alternatives
to source-to-source translation. We then discuss various approaches to source-to-
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source translation systems.

2.1 Language Interoperability

Language interoperability involves the creation of programs that are written in more
than one language. According to Weiser et al. [WDH89], language interoperability
typically involves both low-level infrastructure issues such as the sharing of threads,
I/O, and a common address space by code in multiple languages; as well as higher-
level concerns, such as the ability of languages to invoke each others’ subroutines and
refer to each others’ public identifiers, and the ability to share data representations. A
variety of approaches to language interoperability have been explored in the literature.
In this section, we present a survey of the approaches.

In one approach to language interoperability, clients in language A access com-
ponents in language B via remote procedure calls (RPC). This model enables a dis-
tributed computation, as there is no sharing of address space between the language
environments that comprise the overall program. Weiser et al. argue that this ap-
proach can work well when the language partitioning logically mirrors the client-server
model, although the overhead of remote procedure calls can introduce a significant
cost [WDH89].

Another approach to interoperability involves the use of foreign language inter-
faces, which provide a mapping between the calling conventions of language A and
language B. Such mappings allow programs in language A to invoke subroutines in
language B. This approach is used by tools such as SWIG [Swi15], which automati-
cally generates interfaces for a variety of languages to be able to consume components
written in C and C++. This technology is more efficient than the RPC approach, since
code for both languages typically resides in the same address space, but some over-
head is still to be expected when traversing language boundaries; also, non-idiomatic
interfaces can create a readability problem.

A third interoperability technique involves the use of a common intermediate rep-
resentation. For example, Microsoft’s .NET Framework [Pro02] and the Java Virtual
Machine [LY99] both define an intermediate representation (IR) that supports sev-
eral source languages. However, these approaches do not support all languages. For
example, neither the Microsoft nor the Java IR supports multiple inheritance, thus
excluding languages such as C++ that require it. In a variation of this approach,
Weiser et al. describe a portable common runtime that acts as a layer between the
operating system and language-specific runtime systems, providing features such as
memory management and threading support [WDH89]. This approach imposes fewer
constraints on the interoperating languages than having a common IR, but has not
seen widespread adoption.

Two languages are made interoperable through source-to-source translation when
a module written in Language A is translated to source code in Language B, so that
it can be utilized by a program in Language B. After the module is translated to
Language B, it can be compiled or executed via interpretation in conjunction with
the main program written in Language B.

The source-to-source approach to interoperability offers a number of advantages
over the others we have described. It can offer greater efficiency, since there is no
overhead due to interprocess calls or crossing foreign language interface boundaries,
and no need to create a common intermediate representation that necessarily de-
emphasizes efficiency to achieve interoperability. If the resulting code preserves good
readability, after the component is translated, there is no need to preserve the original

Journal of Object Technology, vol. 15, no. 4, 2016

http://dx.doi.org/10.5381/jot.2016.15.4.a1


4 · Stephen Schaub, Brian A. Malloy

in order to maintain the component, yielding improved maintainability. Also, there
is increased convenience, as there is no need to maintain two language environments
to maintain both the component and the program that uses it.

2.2 Source-to-Source Translation

In this section we review the research that relates to source-to-source translation of
languages for enabling software component interoperability. We first review research
that establishes the usefulness of translating subsets of languages to other languages.
We then review approaches to translating from one language to another language. We
also review the literature that describes research for translating from one language to
multiple languages, and finally we describe an approach to translating from multiple
source languages to multiple target languages.

Source-to-source translation is a well established technique for language interop-
erability and software reuse. Citing Huijsman et al. [HvKPT87], Plaisted observes
that previous work has shown the value of defining translations on subsets of lan-
guages [Pla13]. He argues for the development of abstract languages and subsets of
high-level languages, and the creation of translators from those interoperable lan-
guages to other high-level languages. Rather than applying translation to large,
special-purpose programs, he suggests source-to-source translation is more useful
when applied to reusable algorithms, and urges the development of libraries of al-
gorithms in these language subsets.

Many source-to-source systems have been developed that take a single source lan-
guage as input and translate to a single target language. These translators are special-
purpose conversion efforts that are not extensible to support other sources or targets.
The literature contains numerous examples [HvKPT87, KLV03, MW91, TO98]. Most
of these report challenges in performing a completely automated conversion of the
entire source language. For example, Trudel et al. created a comprehensive Java to
Eiffel translator that successfully ported some large test cases [TOFN11]. However,
they were unable to translate aspects of Java that are unsupported in Eiffel, such as
dynamic loading and weak references.

Relatively few source-to-source systems support multiple output languages gen-
erated from a common intermediate representation. Plaisted presents an abstract
language, PL, that allows the construction of programs and proofs of correctness,
and is designed to support the translation of programs into multiple concrete lan-
guages [Pla05]. However, he does not provide an implementation. Farrow and Yellin
outline an approach for a many-to-many source-to-source translation system, and de-
scribe their experience implementing a bidirectional translation between Pascal and
C [FY86]. Similar to our system, the authors design a common intermediate represen-
tation for the languages among which they wish to translate, guided in their design by
analyzing the similarities and differences in the source and target languages. To per-
form the translation, the authors devise invertible attribute grammars, which allow
them to specify the mapping from Language A to Language B, and then generate the
inverse mapping from Language B to Language A automatically. They acknowledge
that their system is unable to handle constructs that cannot cleanly map between both
languages. They do not evaluate their system as to its completeness or effectiveness.

Albrecht et al. describe a similar effort to translate between subsets of Pascal
and Ada [AGG+80]. The authors performed an analysis of Pascal and Ada, defining
a common subset of both languages using an intersection analysis similar to our
approach. They devised a common tree structure capable of representing programs
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written in the compatible subsets of Pascal and Ada, and a tool set for translating
Pascal and Ada programs into the graphical form, and back to Pascal and Ada. The
authors observed that, even with languages as closely related as Pascal and Ada,
there are subtle semantic differences that create difficulties for defining compatible
sublanguages. We view our work as expanding their approach to a larger set of
languages with a richer set of features.

Arrighi et al. describe a recent effort to produce a many-to-many translation
system, GOOL [AGLM14]. Their system is a source-to-source translator for object-
oriented languages. The translator supports multiple high-level input and output
languages, mapping input programs to an intermediate representation based on an
abstract object-oriented language, GOOL, and generating output to the target high-
level language from that intermediate representation. The GOOL system is designed
to handle a subset of features of its input languages; when it encounters programs that
use unsupported features, it passes through the unsupported fragments as comments
in the output program. Thus, it is intended as a human-assisted translation system,
requiring manual intervention to handle unsupported features, rather than a fully
automated system. No language specification is available for the abstract GOOL
language, so we are unable to evaluate the range of functionality their system can
support. Also, the authors have not published any reports validating their system,
and in our tests, the GOOL system had difficulty handling fundamental constructs
such as basic string operations.

We distinguish our work from GOOL in the following ways. First, although both
systems make use of an intermediate language that represents a subset of functionality
available on popular object-oriented languages, our language provides a specification
that defines the supported features. Second, our system supports the fully automated
translation of programs that use features not directly supported by the intermediate
language, rather than passing them through as comments to be handled by a manual
translation step. Finally, our system explicitly supports the translation of unit tests
to be used in validation of the translated code. We note that GOOL claims to support
multiple high-level input languages, while we are proposing to support only one high-
level input language. However, there is nothing about our approach that prevents us
from supporting multiple high-level input languages.

The rest of this paper is organized as follows. In the next section we describe
the important challenges involved in building a source-to-source translator and an
overview of the solutions that we provide in this paper. In Section 4 we provide an
overview of the design and implementation of our system and, in Section 5, we describe
the design of our intermediate language, iJava, or interoperable Java. In Section 6, we
review the implementation of our translation system for translating from our source
language, Java, to the target languages, C++ and Python. In Section 7, we evaluate
the quality of our translation process and, finally, in Section 8 we summarize our
findings and discuss future work.

3 Challenges

In this section, we discuss source-to-source translation, its challenges, and some pro-
posed solutions.
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3.1 Source-to-Source Challenges

Designers of source-to-source translators have several goals. An effective source-to-
source translator must accurately preserve the semantics of the input program, so
that the translated version produces the same results as the original when executed.
A comprehensive translator will map all constructs in the source language to the tar-
get, yielding a fully automated translation. Efficiency of the generated code is also
an important consideration. Finally, a good translator will produce a translated pro-
gram that is readable, ideally yielding highly maintainable code that is idiomatically
expressed in the target language.

A number of challenges are involved in applying source-to-source translation to the
problem of achieving component interoperability. When source language features are
used in the component that are not present in the target language, those features must
be emulated in the target; depending on the difficulty of the emulation, the readability
and efficiency of the resulting code can suffer greatly. For example, mapping unsafe
type operations in languages like Fortran to strongly typed languages like Ada, which
prohibit such operations, can be done by modeling the entire memory store using a
vector [MW91]—yielding singularly unsatisfying results.

Even when a particular feature is available in both languages, semantic differences
and undefined behaviors can complicate translation. As an example of the difficulties
arising from semantic differences, consider integer overflow. In the C family of lan-
guages, integer overflow results in rollover, a behavior on which some programs rely
for correct operation. However, in In Ada and Visual Basic, integer overflow triggers
an exception. As for undefined behaviors, C and C++ leave numeric data type sizes
as an implementation detail, and do not specify the behavior that occurs when array
bounds are violated. When such issues are left unspecified by a language specification,
producing a reliable translation that is platform- and implementation-independent is
impossible.

Finally, translation of standard library calls poses a significant challenge. Ideally, a
source-to-source translation should map standard library calls for the source language
to the native standard library calls for the target language, rather than introducing an
interoperable library layer. However, since standard libraries differ widely in the range
of features provided, such a mapping is not possible, in general. For example, standard
library facilities used in the source may not be available in the target language, and
even when they are, their semantics may differ substantially. In cases when the library
source code is unavailable, a completely automated source-to-source translation is
impossible.

3.2 Addressing Source-to-Source Challenges

One approach to addressing these issues is to limit the scope of the problem, by
restricting source programs to using a subset of language features that form an inter-
section of the desired target languages. Although this is not a practical solution for
tackling the conversion of much legacy code, there are important software reuse sce-
narios that could be enabled by such a system. As Plaisted observes, general-purpose
algorithms such as those used to process data structures have characteristics that dif-
fer from code found in custom application programs: they contain relatively few calls
to the standard library; tend to be more carefully specified and written; venture less
frequently into corner areas of the language that create difficulties for translation; and
are frequently reused [Pla13]. Plaisted envisions creating libraries of reusable, general-
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Figure 1 – System Overview

purpose software components, written in an interoperable subset language, that are
designed to be automatically translated to compatible target languages. And, as we
demonstrate, such an intersection is rich enough to enable the conversion of legacy
libraries that have few standard library dependencies.

We address the problem of translating features in the source language for which
there are no equivalent features in the target by careful design of the source language.
We restrict the set of features in the source language to those that can be mapped in
a straightforward manner to all of the selected target languages.

To address the problem of semantic differences between languages, we utilize two
strategies. In some cases, we leave some behaviors unspecified in our interoperable
language. For example, since the behavior of integer overflow differs among our lan-
guages, our interoperable language will leave this behavior undefined. In other cases,
we will rely on libraries to bridge the semantic gap. For example, our interoperable
language will specify automatic memory management semantics; in order to translate
programs to target languages that do not support automatic memory management,
we will rely on a garbage collection library to supply the needed functionality.

We address the problem of undefined behaviors by ensuring that any behaviors
not defined in our target languages are also not defined in our source language. This
will ensure that programs cannot rely on a given behavior in the source language that
is undefined in the target.

To handle difficulties arising from standard library incompatibility, we define a
minimal standard library for our interoperable language. We provide support libraries
for our target languages that implement library facilities needed by our test cases that
are not present in the target language.

4 System Overview

In this section, we present an overview of our source-to-source translation system.
Figure 1 depicts a high-level view of the translator, which takes as input components,
programs, and unit tests written in a subset of Java, and translates them to a set of
supported target languages. To allow the validation of our system using test cases
that do not conform to the iJava subset of Java, our translator accepts a subset of
Java larger than iJava, internally transforming program structures not in the iJava
subset into iJava-supported features.

The translator architecture is partitioned into stages to facilitate extensibility to
additional target languages, as shown in Figure 2. The first stage converts the in-
put Java program to an abstract representation of Java: an abstract semantic graph
(ASG). For this stage, we utilize the high-quality Java parser component in the stan-
dard Java compiler, assuring good compatibility with a wide range of Java source
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Figure 2 – Expanded System Overview

programs.
Stage 2 of our system transforms the program encoded in the Java ASG to a

language-independent representation encoded as a iJava ASG. Since iJava is a subset
of Java, this involves a set of graphical transformations, described in section 6. In
particular, program structures utilizing Java features not present in iJava, such as for
loops and anonymous classes, are transformed to structures that utilize iJava features.

In Stage 3 of our system, the iJava ASG is transformed to an ASG in the target
language. This involves construction of a graph that closely mirrors the iJava ASG
structure, but whose nodes contain data and logic needed for the generation of target
code in the final step. The use of a target language ASG permits the use of tree
transformations to implement some of the translation, and simplifies the final code
generation stage.

In the final stage, target code is emitted during a traversal of the target language
ASG. During this stage, we use a template-based code generation strategy.

5 Interoperable Language Design

In this section, we describe the design of our interoperable language, iJava. We
begin in subsection 5.1 with a presentation of our analysis and design methodology.
subsection 5.2 discusses how we selected a set of languages for analysis. Finally, we
present the details of our analysis and language design in subsection 5.3.

5.1 Design Methodology

In order to determine a set of language features useful for defining an interoperable
language, we analyze the intersection of the capabilities of a set of languages. The
features included in this intersection determine the definition of our interoperable
language, yielding features that can be mapped to suitable capabilities in the analyzed
language set.

We agree with Plaisted’s observation that interoperable component languages
should be imperative languages with side effects, arrays, and records, because of
the need for efficiency and applicability [Pla13]. To select the languages, we use the
TIOBE index [TIO15], a well-known ranking of programming language popularity
based on information provided by web search engines. To increase applicability of
our results, we include both statically and dynamically typed languages. We exclude
special purpose languages such as those designed primarily for database query and
mathematical calculations, because they are not general purpose languages. We also
exclude functional languages because of our focus on imperative language capabilities.
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Finally, since the majority of languages in the top 20 TIOBE include object-oriented
features, and including non-OO languages would necessarily exclude important fea-
tures from our analysis, we narrow our focus to object-oriented languages.

After choosing the languages that we wish to consider, we compare the data types,
operators, statements, and structural features of the languages. For a given language
feature, we determine the intersection of the capabilities of that feature that are
present in each language in our language set. This intersection represents a common
subset of functionality for that feature that is found in all of the languages.

In some cases, an intersection of language features may exclude useful or important
functionality that can easily be emulated in the languages where it is missing. We
adjust the intersection to include the functionality in cases where the emulation does
not significantly compromise the readability of the resulting code. For example, some
languages include both a character sequence type (ex. Java’s String) and a single
character type (ex. Java’s char), while others omit the single character type. A
pure intersection would exclude the single character type, but since having a single
character type is a useful feature, and can be easily emulated with a character sequence
type, we include both types in our intersection.

In other cases, an intersection may yield undefined semantics. For example, the
behavior of division by zero varies among the languages in our set, yielding an empty
intersection. Rather than leaving the behavior of division by zero undefined, we
define it, because the behavior can be easily implemented using a library function
in languages where its behavior is different from our definition. In some situations,
imposing a definition is not practical, and we must leave the semantics undefined.

As an example of our analysis methodology, consider the question of variable
typing. Java’s variables are statically typed; Python’s are dynamically typed. To
resolve this dichotomy, we consider which of these two approaches is more restrictive.
Since statically typed variables are more restrictive than dynamically typed variables,
we determine the intersection in this case to be statically typed variables. We observe
that mapping programs from a statically typed language to a dynamically typed
language requires only the erasure of explicit types from the variable declarations.
Mapping code from a dynamically typed language to a statically typed language is
difficult or impossible in cases where a variable holds more than one type of value
over its lifetime, and, even when possible, leads to obtuse translations.

5.2 Analysis Set Selection

We studied languages in the February 2015 TIOBE top 20 (see Figure 3), and selected
the following five languages for analysis, following the criteria discussed in Section 5.1:

• C++. An important object-oriented systems language. Consistently in the top
5 in the TIOBE index. The referenced language standard is C++14 [Int14].

• Java. A widely used object-oriented systems language. Java and C compete
for the number one spot in TIOBE; both are consistently in the top 2. The
referenced standard is Java 8 [GJS+15].

• Python. A popular object-oriented scripting language. Twice language of the
year in the TIOBE index. The referenced standard is Python 3.4 [pyt15].

• JavaScript. Known best for its use in client-side processing for web appli-
cations, JavaScript is an object-oriented scripting language consistently found
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in the top 15 in the TIOBE index. JavaScript is based on an ECMA stan-
dard language named ECMAScript; the referenced standard is ECMAScript
5.1 [ECM15].

• Object Pascal. An object-oriented extension to Pascal, one of the most in-
fluential academic procedural languages of the late twentieth century. Object
Pascal is consistently in the top 20 in the TIOBE index and one of the few that
is not in the C family. In contrast to the other languages, there is no official
language standard. This research is based on the language implementation Free
Pascal, version 2.6.4 [pas15].

We selected these five languages in preference to others in the TIOBE top 20 be-
cause, within our overall target focus of general-purpose, imperative, object-oriented
languages, we wanted a reasonably diverse mix of syntax, semantics, and execution
model. The more diverse the set, the more tightly focused the intersection of language
features, thereby increasing the size of the set of languages that would be potentially
compatible with our interoperable language. These factors led us to exclude C, due
to its lack of object-oriented features. Also, to increase diversity, we included Object
Pascal and Python in preference to other curly-brace languages that were nearer the
top of the list.

5.3 Language Analysis and Design

Rather than design a completely new language, we chose a subset of an existing
language, Java, as the basis for our interoperable language. As our analysis shows,
in most cases, a subset of Java’s features often falls neatly into the intersection of
our selected languages’ features. This makes it a natural candidate for being the
foundation of an interoperable language. Using a subset of an existing language has
the practical benefit of eliminating the need for developers to learn a new language.

For our interoperable component language, we therefore define a subset of Java
dubbed iJava: interoperable Java. A detailed language specification is available for
Java, and its syntax and semantics are familiar to a large portion of the community.
Rather than present a formal language specification for iJava, we define iJava in terms
of how it departs from Java. Unless otherwise stated, iJava’s features share Java’s
syntax and semantics.

The following subsections discuss iJava’s data types, expressions and operations,
statements, subroutines, organizational structures, exception processing, and stan-
dard libraries.

5.3.1 Data Types and Variables

In this section, we define iJava’s features related to data types and variable definitions,
and discuss related concerns. Table 1 presents a summary of the relevant language
features in each of our surveyed languages, and shows which we chose to include in
iJava.

Static vs. Dynamic Typing: As discussed in Section 5.1, iJava uses static
typing.

Boolean type: Like all of our surveyed languages, iJava includes a special-
purpose boolean type and associated logical and bitwise operations and, or, and not.
(Although Object Pascal omits the logical boolean operators, its bitwise boolean op-
erations act as logical operations when applied to boolean operands.) All of our
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Figure 3 – TIOBE Index [TIO15]

languages perform conditional evaluation by default on logical boolean operations, so
iJava adopts this behavior.

Numeric types: Our language analysis identified a common subset of numeric
types including signed integers with storage sizes up to 64-bits, and a double-precision
floating point type. (JavaScript has only a 64-bit floating point type, but available
libraries can represent signed 64-bit integers using this type.) iJava adopts Java’s
byte, short, int, long, and double types.

Character and String types: iJava adopts Java’s char and String types, follow-
ing the logic discussed in Section 5.1.

Array types: iJava adopts Java’s array functionality, including both single- and
multi-dimension structures. This represents the results of our language intersection
analysis that evaluated the diverse characteristics exhibited by the expandable and
flexible Python list and JavaScript array, as well as the traditional statically typed
arrays of Java, C++, and Object Pascal. Java’s array semantics can be efficiently
implemented in all of our surveyed languages.

Function Types: All of the analyzed languages allow functions (or pointers to
functions) to be stored in variables and passed to and from subroutines. However,
Java does not provide a special purpose function type, instead using interfaces to
achieve an effective superset of this capability. Because Java provides no special
purpose function type, we choose not to include one in iJava.

Reference and value types: As in Java, iJava’s primitive types are value types,
while its class and array types are reference types. This is compatible with Python and
JavaScript, since the numeric and boolean values in these reference-type languages
are immutable. It is also compatible with translation to C++ and Object Pascal.

Memory Management: Related to the issue of reference and value types is
the question of memory management. All of our survey languages except C++ can
track references to allocated memory and automatically deallocate values that become
inaccessible. Since garbage collection libraries are available for C++, we choose to
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C++ Java Object Pascal Python JavaScript iJava

Typing
Static vs. Dynamic Static Static Static Dynamic Dynamic Static
Explicit vs. Implicit Explicit, Implicit Explicit Explicit N/A N/A Explicit

Numeric Types
Integer Precision 8–64 bit 8–64 bit 8–64 bit arbitrary N/A 8–64 bit
Unsigned Ints Y N Y N N N
Floating Point single, double single, double single, double double double double

Character Type Y Y Y N N Y
String Type

Longest String undefined 231 − 1 unbounded undefined undefined undefined
Mutable? Y N Y N N N

Boolean Type Y Y Y Y Y Y
Arrays

Memory Alloc Static, Dynamic Dynamic Static, Dynamic Dynamic Dynamic Dynamic
Lower Bound Implicit Implicit Explicit Implicit Implicit Implicit

Records Y Y (class) Y N N Y
Reference / Value Types

Primitives Ref, Value Value Ref, Value Value Value Value
Arrays Ref Ref Ref, Value Ref Ref Ref
Classes Ref, Value Ref Ref, Value Ref Ref Ref

Function Types Y N Y Y Y N
Garbage Collection Library Y Y (COM based) Y Y Y
Class Constants Static, Instance Static, Instance Static N N Static
Enumerations Y Y Y N N N

Table 1 – Data Type Analysis

include garbage collection in our subset of common features.
Variable declaration: Although Python has no variable declaration statement,

and JavaScript’s var statement is optional in some cases, a variable declaration state-
ment is required by all statically typed languages and must therefore be included in
our language subset. Of our statically typed languages, only C++ allows implicitly
typed variable declarations; Java and Object Pascal both require the variable type to
be specified in the declaration, so iJava requires explicitly typed variable declarations.

Constants: All of our statically typed languages provide mechanisms to define
named constants in the context of a class definition. C++ and Java allow both static
and instance constant members, while Object Pascal allows only static constants.
Even though JavaScript and Python do not provide mechanisms to define constants,
since this is an important feature in static languages, and constants can be emulated
using variables and conventions, we choose to support static class constants in iJava.

Enumerated types: All of our statically typed languages provide a mechanism
to define an enumerated data type, while our dynamically typed languages do not
provide such a mechanism. We exclude enumerated types from iJava.

5.3.2 Operators and Expressions

In this section, we explore issues involving operators and expression evaluation.
Numeric operations: As shown in Table 2, iJava’s numeric operations include

the standard addition, subtraction, multiplication, division, and modulus operators;
numeric cast conversion operators; bit shift; and comparison operators, all using stan-
dard Java semantics. This represents the broad consensus exhibited by our language
set in this area. There is some variation in the precise semantics of the bit shift
operators, but we choose Java semantics for iJava and handle semantic differences in
other languages by the use of library routines.

Java specifies the behavior of arithmetic operations that result in numeric overflow
and underflow, but iJava leaves these behaviors undefined, since there is variation
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among the surveyed languages in how these errors are handled. In the case of floating-
point division by zero, where there is also disagreement among our surveyed languages,
we choose Java semantics for iJava, because its behavior can be easily emulated in
languages which handle this situation differently from Java.

String operations: iJava’s string operations are provided by the java.lang.String
class in its standard library, which includes a subset of the Java String methods, as
described in Section 5.3.8. Also, Java’s overloaded use of the + operator to perform
string concatenation is supported in iJava.

Pointer expressions: C++ and Object Pascal permit the use of pointer arith-
metic to allow a program to address arbitrary memory locations, provide an operation
to take the address of arbitrary variables, and allow conversions between pointers and
integers. Java, Python, and JavaScript do not provide such operations. Thus, the
only pointer-related operations in iJava include the dereference operator, and equali-
ty/inequality comparison. We note in passing that because the result of dereferencing
a null reference is undefined in C++, this operation is undefined in iJava.

Array expressions: We consider two array operations supported by all of our
languages: length determination and indexing. All of our languages except C++ pro-
vide an operation to obtain the length of a dynamically constructed array. Since C++

provides array-like containers in its standard library that do provide this operation,
we include this capability in iJava.

Array index bounds are checked in Java, JavaScript, Python, and optionally, in
Object Pascal (using a compiler switch). Out-of-bounds accesses either trigger a
runtime exception, or in the case of JavaScript, the value undefined. C++ does not
perform bounds checking on its native arrays, but its standard library includes array-
like containers that provide this functionality. Therefore, iJava implements bounds
checking.

Expression evaluation order: A common source of difficulty in program port-
ing efforts is the issue of expression evaluation order. Subexpressions that cause side
effects can effect the evaluation of other parts of the same expression. If the order of
evaluation of expressions is undefined, programs containing expressions with side ef-
fects cannot be reliably ported to other language implementations. Python evaluates
expressions left-to-right, as does Java and JavaScript. However, C++ and Object Pas-
cal do not define the order of expression evaluation. We leave the order of expression
evaluation unspecified in iJava, a departure from Java semantics.

Expressions with side-effects: Java, C++, and JavaScript include several op-
erators, such as the assignment operator, which can be used to modify the values of
variables used in expressions. Python and Object Pascal do not include such capabil-
ities, so iJava does not allow the use of such operations in expressions.

Table 2 summarizes the expressions and operations discussed in this section.

5.3.3 Statements

In this section, we discuss the statements found in iJava.
Assignment: Like all of our surveyed languages, iJava includes an assignment op-

erator. Java’s assignment compatibility rules are the most restrictive of our languages,
and we therefore adopt them for iJava. Further, Java requires that local variables be
explicitly initialized before first use, so iJava enforces this requirement.

All languages except Object Pascal support a form of the assignment operator
called augmented assignment, which combines a binary operator with assignment
(ex. a += b). Although Object Pascal does not support augmented assignment, since
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C++ Java Object Pascal Python JavaScript iJava

Operators
Arithmetic +−×÷ mod +−×÷ mod +−×÷ mod +−×÷ mod xy +−×÷ mod +−×÷ mod
Logical ∧ ∨ ¬ ∧ ∨ ¬ ∧ ∨ ¬ ∧ ∨ ¬ ⊕ ∧ ∨ ¬ ∧ ∨ ¬
Bitwise Logical ¬ ∧ ∨ ⊕ same same same same same
Bit shift logical, arithmetic logical, arithmetic logical arithmetic logical, arithmetic logical, arithmetic
Relational = 6= > ≥ same same same same same

< ≤
Evaluation Order Undefined Left-Right Undefined Left-Right Left-Right Undefined
Array Operations

Length check Y Y Y Y Y Y
Bounds check Y Y Y Y Y Y

Pointer Operations
Dereference Y Y Y Y Y Y
Compare Y Y Y Y Y Y
Address-of Y N Y N N N
Arithmetic Y N Y N N N

Table 2 – Operator and Expression Analysis

C++ Java Object Pascal Python JavaScript iJava

Augmented Assignment Y Y N Y Y Y
Branch Statements

if Y Y Y Y Y Y
switch Y Y N Y N N
break/continue basic labeled basic basic labeled basic
goto Y N Y N N N

Loop Statements
pre-test (while) Y Y Y Y Y Y
post-test Y Y Y N Y N
for (counting) N N Y N N N
for (C style) Y Y N N Y N
for (enumerating) Y Y Y Y partial N

Table 3 – Statement Analysis

it can be mapped to Object Pascal in a straightforward way, we support it in iJava.
Control statements: iJava includes if/else and while constructs, the only selec-

tion and looping statements found universally in our language set. Like Java, iJava
requires that if conditions and while conditions be boolean-typed.

All of our surveyed languages also include simple, unlabeled break and continue
statements used to terminate loops or skip portions of loop iterations, so iJava includes
these as well.

See Table 3 for a summary of the analysis in this section.

5.3.4 Subroutines

In this section, we consider subroutine-related issues including recursion, nested sub-
routines, scoping, parameter passing modes, and method overloading.

Recursion: iJava supports recursion, as do all of our languages.
Scoping: Object Pascal, Python, and JavaScript support nested subroutines, but

C++ and Java do not (although they do support classes nested inside subroutines), so
nested subroutines are excluded from our subset. Statically allocated and initialized
local variables, a feature of C++, are not supported in the other languages, and are
thus excluded. All of the surveyed languages utilize ALGOL-style static scoping,
where every occurrence of a variable is statically associated with its definition by
lexical analysis of the enclosing block structure, rather than being resolved at runtime
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C++ Java Object Pascal Python JavaScript iJava

Nested Subroutines N N Y Y Y N
Global Subs/Variables Y N Y Y Y N
Scope Resolution static static static static static static
Parameter Modes value, ref value value, ref value value value
Array Parameters ref ref ref (dynamic arrays) ref ref ref
Method Overloading Y Y Y N N Y
Recursion Y Y Y Y Y Y

Table 4 – Subroutine Feature Analysis

through dynamic lookup in the runtime stack.
Python, JavaScript, Object Pascal, and C++ permit globally scoped top-level vari-

ables and subroutines that are defined outside a class. Java requires all variables
and subroutines to be encapsulated inside a class, so iJava does not support top-level
variables and subroutines. We note that global access to variables and subroutines
can be achieved in iJava through the use of public static declarations in classes.

Parameter passing modes: All of the languages support some combination of
by-value and by-reference parameter passing. Java, JavaScript, and Python support
only by-value parameters, but regularly achieve a form of by-reference semantics by
passing references as values. iJava adopts the model employed by Java and JavaScript,
in which primitives are passed by value, and values such as objects and arrays are
passed by reference. This represents a reasonable intersection of the parameter passing
capabilities of our language set.

Method overloading: Method overloading, a feature allowing several subrou-
tines to use the same name, being distinguished by the number and types of their
parameters, is supported in Java, Object Pascal, and C++, but not JavaScript or
Python. Since method overloading can be emulated in a straightforward manner
using name mangling in the latter languages, we choose to include it in iJava.

Table 4 summarizes our discussion of subroutine capabilities.

5.3.5 Object Oriented Features

All of our analyzed languages include object-oriented features, including encapsula-
tion, inheritance, and dynamic binding. In this section, we analyze specific features
in this category.

Class definition: All of our languages except JavaScript utilize a class-based
approach for defining objects. In contrast, JavaScript uses a prototype approach.
Since a class-based approach is inherently more restrictive than a prototype-based
approach, our interoperable intersection as embodied in iJava utilizes a static, class-
based approach.

Class initialization: All of our languages provide a constructor mechanism to
define a block of code that executes when a class is instantiated, to initialize instance
variables. iJava also supports the initialization of instance variables at the point of
declaration, since this feature can be emulated using constructors in languages such
as Object Pascal that do not support this feature. iJava allows the initialization of
static class variables at the point of declaration, since all languages include features
that can support this.

Inheritance: All of our languages support an inheritance mechanism that sup-
ports method overriding and dynamic binding. Java, JavaScript, and Object Pascal
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permit a class to have at most one immediate ancestor (single inheritance), while
Python and C++ allow a class to have multiple immediate ancestors (multiple inheri-
tance). Because single inheritance is more restrictive than multiple inheritance, iJava
is restricted to single inheritance.

C++ and Object Pascal provide a way to define both virtual and non-virtual meth-
ods; virtual methods support overriding and dynamic binding, while non-virtual meth-
ods do not. Java, Python, and JavaScript support only virtual methods; therefore,
our iJava includes only virtual methods.

Java, JavaScript, Object Pascal, and Python all utilize a unified class hierarchy,
in which there exists an ultimate ancestor base class from which all other classes
ultimately derive. C++ does not require a single base class, thus allowing multiple
class hierarchies. In our intersection, we restrict iJava to a single class hierarchy with
a common ancestor.

All of our surveyed statically typed languages have operators to perform checked
downcasts. C++ and Object Pascal also provide operators to perform unsafe unchecked
downcasts, but Java does not, so we exclude an unchecked downcast operation from
iJava. Dynamically typed languages, by definition, do not require a downcast opera-
tor, but its behavior can be supplied via a library function.

C++ and Java both support covariant return types for overriding methods, but
require invariant parameter types. Object Pascal, in addition to requiring invariant
parameter types, also requires invariant return types. iJava therefore requires invari-
ant return types as well as invariant parameter types for overriding methods.

Abstract Classes and Interfaces: Statically typed object-oriented languages
use abstract classes and interfaces to enable modular development. Java, Object
Pascal, and C++ all provide mechanisms to omit implementations for abstract methods
in a class. Java and Object Pascal also provide a specialized form of abstract class
called an interface that contains only abstract methods. Both Java and Object Pascal
allow interfaces to form an inheritance hierarchy, and for classes to implement multiple
interfaces, thereby obtaining some of the benefits of multiple inheritance. C++, which
supports multiple inheritance, needs no special interface mechanism, since it can
encode interfaces using pure abstract classes. These features are not provided (or
needed) in Python or JavaScript, but can be emulated in these languages via library
support, so we include them in our intersection. iJava supports both abstract classes
and interfaces.

Information hiding: C++, Object Pascal, and Java provide enforced informa-
tion hiding mechanisms for class members, using visibility modifier keywords. All
three languages support the public, protected, and private keywords, with the usual
semantics. Java and Object Pascal allow classes within the same namespace to freely
access each others’ members, in effect bypassing the visibility modifiers; in a similar
vein, C++ provides a friend mechanism to bypass the access controls. For a clean,
simple intersection, we adopt the C++ visibility modifier keywords public, protected,
and private, and their C++ semantics, for iJava’s information hiding mechanism.

Scripting languages typically do not provide an enforced information hiding fea-
ture: JavaScript lacks it entirely, and Python provides naming conventions for infor-
mation hiding which can be circumvented. Since information hiding is an important
language feature that can be viewed as enforcing a restriction on the set of legal
programs, we consider it to be in the intersection of our language set, and support
information hiding in iJava.

Table 5 summarizes our discussion of object-oriented features.
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C++ Java Object Pascal Python JavaScript iJava

Class vs Proto Class Class Class Class Proto Class
Inheritance Multiple Single Single Multiple Single Single
Interfaces N Y Y N/A N/A Y
Info Hiding Y Y Y Partial N Y
Class Hierarchy Multiple Single Single Single Single Single
Downcast Safe, Unsafe Safe Safe, Unsafe N/A N/A Safe
Methods Virtual, Nonvirtual Virtual Virtual, Nonvirtual Virtual Virtual Virtual
Abstract Methods Y Y Y N/A N/A Y

Table 5 – Object Oriented Feature Analysis

5.3.6 Exception Processing

All of our surveyed languages provide an exception mechanism to report and handle
errors. In this section, we discuss the exception processing features of the languages
in our set.

All of the languages use the termination model, rather than the resumption model,
for exception processing: when an exception is raised, further processing in the method
is terminated and a search is made for an exception handler.

Java classifies exceptions into two categories: checked exceptions thrown by a
method must be explicitly handled by the caller, either by a try-catch statement or
by an advertised exception propagation using a throws clause in the method interface;
unchecked exceptions do not need to be explicitly handled. The other languages do not
include checked exceptions, and iJava therefore includes only unchecked exceptions.

Java and Python allow only instances of a class in an Exception class hierarchy to
be thrown as exceptions; C++ and JavaScript allow values of any type to be thrown;
Object Pascal allows any object type to be thrown. iJava thus restricts throwable
values to instances of a class in an Exception class hierarchy.

C++ and Java allow a subroutine to advertise the types of exceptions it may throw
via an exception specification clause (although this feature is deprecated in recent
versions of the C++ standard); the other languages do not. We therefore exclude this
feature from iJava.

All of our analyzed languages include a statement to raise an exception (ex. throw
in Java), as well as a statement to handle exceptions (ex. try-catch in Java). JavaScript
allows only one catch block in its try-catch, while the other languages allow multiple
catch blocks to provide exception-specific handling. Since multiple catch blocks are
useful and can be easily emulated in JavaScript with a sequence of if-else tests that
check the type of exception that was thrown, iJava allows multiple catch blocks. All of
the languages that support multiple catch blocks have identical semantics regarding
the resolution of matches for a given exception: the first matching catch block applies.
Finally, all languages allow an exception parameter in a catch block to receive the
specific exception instance that was thrown, so that it can be inspected.

All of our languages except C++ allow the try-catch construct to contain a finaliza-
tion block, which executes whether or not an exception is raised. Because C++ omits
this feature, we exclude it from iJava.

Table 6 summarizes the issues surrounding exceptions.

5.3.7 Other Language Features

In this section, we discuss additional language features that we considered in our
analysis.
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C++ Java Object Pascal Python JavaScript iJava

Checked N Y N N N N
Throwable Anything Exception only Any Object Exception only Anything Exception only
Exception Specs Y (deprecated) Y N N N N
Multiple Catch Y Y Y Y N Y
Finally N Y Y Y Y N

Table 6 – Exception Feature Analysis

C++ Java Object Pascal Python JavaScript iJava

Generics Y Y Classes only N/A N/A Classes only
Parameter Constraints N Y N N/A N/A N

Exception Specs Y (deprecated) Y N N N N
Instance Of Operator Y Y Y Y Y Y
Namespaces Y Y Y Y N Y
Operator Overload Y N Y Y N N
Threads Y Y Y Y N N

Table 7 – Miscellaneous Feature Analysis

Generics: The languages in our set take a variety of approaches to generic algo-
rithms and data structures. C++, Java, and Object Pascal provide a template facility
designed to facilitate generic programming, although the implementation details and
capabilities differ considerably. Python and JavaScript provide generic functionality
by definition, via their status as dynamically typed languages.

Object Pascal, Java, and C++ all allow classes to be defined using one or more
generic type parameters, which can be used to specify types for both member vari-
ables as well as parameter and return types for member operations. Java allows
constraints on type parameters to be specified, but Object Pascal and C++ do not
provide a constraint mechanism. Java and C++ allow subroutines to define generic
type parameters, but Object Pascal does not. Therefore, iJava allows generic classes
only, with no constraints on generic parameters.

Namespaces: Many languages have structural features to prevent naming con-
flicts and to group code into hierarchically structured logical units. All of the surveyed
languages except JavaScript provide a namespace capability. Since namespaces are
regularly implemented in JavaScript programs using a variety of closure-based modu-
lar coding patterns, we support namespaces in iJava.

Introspection: The dynamic inspection of data structures is supported to varying
degrees in all of our surveyed languages. All of the languages provide a mechanism
to query the type of an object to determine whether it is a subclass of a specified
type; examples of this operator include dynamic_cast in C++, instanceof in Java, and
isinstance() in Python. Therefore, we include that operation in our subset. Other in-
trospection features, such as dynamically discovering the fields and methods available
in a given object, are not available in C++ and Object Pascal, so we exclude such
functionality from iJava.

Operator overloading: Operator overloading is supported in Object Pascal,
Python and C++, but not in Java or JavaScript. It is thus excluded from iJava.

Threads: All of the analyzed languages except JavaScript provide capabilities for
starting and manipulating independent threads. Because JavaScript lacks support, we
exclude threads from iJava.

Table 7 summarizes the discussion in this section.
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5.3.8 Standard Library

We have purposefully kept the iJava standard library small in scope, to avoid limiting
the potential set of compatible target languages. It includes a minimal subset of
classes from the Java standard library that are needed for basic language support. It
includes partial implementations of the Java wrapper classes Boolean, Character, Byte,
Short, Integer, Long, and Double, which are needed to wrap primitives into objects. A
subset of the java.lang.String class contains the following methods: equals, compareTo,
length, substring, indexOf, and charAt, as well as the overloads of valueOf that convert
from the supported primitive types to String. Finally, it includes the RuntimeException
class used to report exceptions.

6 The Translation System

In this section, we discuss details concerning our translation system introduced in
Section 4. Our translation system targets two of the languages in our analyzed set:
Python and C++. We believe that these two languages present a reasonably repre-
sentative subset of our language set, in terms of syntax, semantics, and language
execution model. Targeting additional languages is part of our future work. We be-
gin in Section 6.1 with a discussion of the mapping of Java features to iJava. Then,
Section 6.2 presents the translation of iJava features to Python and C++.

6.1 Mapping Java to iJava

As we discuss in Section 7, we evaluate our system using Java test cases. These test
cases use Java features which are excluded from iJava as the result of design choices
imposed by our methodology described in Section 5.1. Our translation system trans-
forms these constructs to iJava features before translating them to Python or C++. In
this section, we discuss the mapping of these Java features to iJava structures. It is
not our purpose to establish a complete mapping from Java to iJava; since iJava, by
design, omits key primitives such as synchronization and support for multithreading,
we observe that such a mapping is not possible.

6.1.1 Pre/Post Increment Expressions

iJava excludes expressions with side effects, for example the pre- and post- increment
and decrement operators (ex. ++x, –x, x++, x–). In cases where they occur in a
statement by themselves, our translator transforms these operators to augmented
assignment operations (ex. x++ is transformed to x += 1). Our test cases did not
make use of these operators in compound expressions.

6.1.2 Loops

iJava provides a while loop, but not Java’s for, do-while, or enumerating for loop.
Since our test cases made use of these loops, we transformed each of these into while
loops. For example, consider a do-while loop having the structure shown in Listing 1.
The translator transforms it to a iJava while loop, adding a locally defined flag variable
unique to the loop (named here firstTime) that ensures that the loop body will execute
at least once. iJava’s short-circuiting rules ensure that the loop condition is not
evaluated upon initial entry into the loop, but rather is evaluated at the end of
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each loop iteration that terminates normally. This transformation thus preserves the
semantics of Java’s do-while loop.

do {
loop-body

} while ( condition );

Listing 1 – Java Do-while example

1 boolean firstTime = true;
2 while (firstTime || condition) {
3 firstTime = false;
4 loop-body
5 }

Listing 2 – iJava translation

6.1.3 Nested and Anonymous Classes

Our test cases contained nested and anonymous classes. Our translator converted
these to standalone classes in iJava, handling the scoping issues that occur when the
code in the inner class referenced members in the outer class, as is shown in Listing 3,
where innermethod() accesses c, a member of Outer. Listing 4 demonstrates the
transformation, in which the Inner class becomes a top-level class, Outer_Inner, that
holds a reference to Outer, outer. This reference enables the refactored innermethod()
to access c in Outer.

class Outer {

int c;

public void useInner() {
Inner cl =

new Inner();
cl.innermethod();

}

class Inner {
public void innermethod() {
c = 5;

}
}

}

Listing 3 – Java inner class example

1 class Outer {
2
3 int c;
4
5 public void useInner() {
6 Outer_Inner cl =
7 new Outer_Inner(this);
8 cl.innermethod();
9 }
10 }
11
12 class Outer_Inner {
13
14 Outer outer;
15
16 public Inner(Outer outer) {
17 this.outer = outer;
18 }
19
20 public void innermethod() {
21 this.outer.c = 5;
22 }
23 }

Listing 4 – iJava translation

6.2 Mapping iJava to Python and C++

In this section, we discuss the mapping of iJava features to Python and C++.
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iJava C++ Python

byte int8_t int
short int16_t int
int int32_t int
long int64_t int
double double float
char char16_t str
boolean bool bool
String java_lang_String* jcl_String

Figure 4 – Mapping of iJava types to C++ and Python

6.2.1 Classes and Interfaces

The translator maps each iJava class and interface to a class in the target language.
Each member method and instance variable is mapped to a corresponding method
and variable in the target class. This mapping is straightforward for C++; for Python,
which does not support method overloading, name mangling is used to implement
the method overloading. Additional work is required to support the mapping of
overloaded constructors to Python: since a Python class may contain only a single
constructor, we map iJava constructors to static factory methods in the target Python
class. For an example of this mapping to static factory methods, see Line 9 of Listing 7,
which shows the instantiation of an exception in a fragment of the Apache Math
Commons library, and its translation on Line 12 of Listing 8, which invokes the
factory method constructor_R to instantiate the translated exception class.

Information hiding: Our translator does not implement information hiding.
However, we observe that, given iJava’s information hiding semantics, the mapping
of the visibility modifiers from iJava to C++ is straightforward. A mapping to Python
would involve using Python’s naming conventions for protected and private visibility—
prefixing member variable names with one or two underscores, respectively.

Interfaces: Neither Python nor C++ have an interface mechanism, so we emulate
the feature in both languages. For C++, iJava interfaces map to classes containing only
pure virtual methods. Interface implementation is modeled using virtual inheritance.
For Python, we utilize the Python Abstract Base Class module, generating classes
containing methods defined with the @abstractmethod decorator.

6.2.2 Data Types and Variables

Figure 4 shows how iJava’s basic types map to C++ and Python. We use a custom
support library class to represent strings in both C++ and Python. In both cases, this
class implements the Java string methods used in our test cases.

iJava arrays are mapped to C++ using a custom support library wrapper class,
which handles the bounds checking. For Python, iJava arrays are modeled as standard
Python lists. As an example of the way our translator handles arrays in the mapping
to Python, see Listing 7, which presents a fragment of the Apache Commons Math
library, and its translation to Python in Listing 8. Note how the length check on Lines
2 and 3 of Listing 7 maps to Python’s len() function on Lines 3 and 5 of Listing 8.
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1 for( int i=0; i<observers.length; i++ )
2 {
3 IObserver observer = (IObserver)observers[i];
4 observer.notifyObserver(note);
5 }

Listing 5 – Java dynamic cast example

1 int32_t i_= 0;
2 while ((i_ < (observers_)−>length()))
3 {
4 org_puremvc_java_interfaces_IObserver∗ observer_=
5 jcl_dynamicCast<org_puremvc_java_interfaces_IObserver∗>(
6 observers_−>AT(i_));
7 (observer_)−>notifyObserver(note_);
8 i_ += 1;
9 }

Listing 6 – C++ cast translation

6.2.3 Expressions and Statements

Expressions in iJava map in a straightforward fashion to C++ and Python. Some
operators are implemented using library functions, in order to achieve semantic parity.
For example, Line 3 of Listing 5 shows a dynamic cast that occurs in a fragment of
the PureMVC library. In the translation to C++ shown in Listing 6, the dynamic cast
has been mapped to an invocation of the jcl_dynamicCast library function in Line 5.
All iJava statements map cleanly to their counterparts in C++ and Python.

6.2.4 Memory Management

The issue of garbage management can be addressed for C++ through the use of a
garbage collection library, such as the well-known Boehm-Demers-Weiser library [BW88].
We chose not to implement it in our system; this is an area for future work.

6.2.5 Generics

iJava generics are implemented in C++ using templates, with a straightforward map-
ping. For Python, which needs no generic features due to its dynamic type system,
generic parameters are simply removed in translation.

6.2.6 Exception Handling

iJava’s exception handling constructs map in a straightforward way to Python and
C++. In some cases, it is necessary to map a Java exception type to a corresponding
type in the target language standard library. For example, Listing 7 shows a frag-
ment of code from the Apache Math Commons library that handles a possible out of
bounds array access in the catch block on Line 8. In the translation to Python, de-
picted in Listing 8, the translator mapped the ArrayIndexOutOfBoundsException type
to Python’s IndexError type on Line 11.
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7 Evaluation

In this section, we present an evaluation of our system using two open source Java
libraries as test cases for our system. In Section 7.1 we introduce the two libraries, or
test cases, and in Section 7.2, we describe our approach to evaluating the test cases
and preparing them for translation into Python and C++. In Section 7.3 we describe
our use of the expected output of the test cases together with execution traces to
evaluate the reliability of the generated Python and C++ code, and in Section 7.4
we describe our use of software metrics to evaluate the quality of the generated code.
Finally, we conclude this section with some results that describe the performance of
the generated code with respect to execution speed.

7.1 Test Cases

In this section, we introduce the two libraries that we used as test cases to evalu-
ate our translation system: PureMVC, a Model-View-Controller (MVC) framework,
and Apache Commons Math, a collection of mathematical algorithms. Both libraries
include an extensive suite of unit tests implemented in the JUnit unit testing frame-
work.

7.1.1 PureMVC

The PureMVC framework facilitates writing applications based upon the Model-View-
Controller architectural pattern [Pur16]. It implements several design patterns defined
by Gamma et al. [GHJV95], including Facade, Command, Mediator, Observer, and
Proxy. Versions of the framework are available for multiple languages, including
Java, C++, and Python. Our tool translated the entirety of version 1.1 of the Java
implementation to Python and C++. In addition to its focus on design patterns,
PureMVC also makes liberal use of template features.

7.1.2 Apache Commons Math

Apache Commons Math is a Java library of mathematical and statistical algorithms
[Apa16]. This test case makes greater use of the Java standard library than PureMVC,
including APIs such as file I/O, serialization, reflection, cryptography, and text format-
ting. We implemented many of these APIs in our Python and C++ support libraries
to enable the conversion and testing of the majority of version 1.0 of the library in
our tests.

1 try {
2 for (int i = 0; i < selectedRows.length; i++) {
3 for (int j = 0; j < selectedColumns.length; j++) {
4 subMatrixData[i][j] = data[selectedRows[i]][selectedColumns[j]];
5 }
6 }
7 }
8 catch (ArrayIndexOutOfBoundsException e) {
9 throw new MatrixIndexException("matrix␣dimension␣mismatch");

10 }

Listing 7 – Java try-catch example
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1 try:
2 i = 0
3 while (i < len(selectedRows)):
4 j = 0
5 while (j < len(selectedColumns)):
6 subMatrixData[i][j] = self.data[selectedRows[i]][selectedColumns[j]]
7 j += 1
8
9 i += 1

10
11 except IndexError as e:
12 raise org_apache_commons_math_linear_MatrixIndexException.constructor_R(
13 jcl_String("matrix␣dimension␣mismatch"), None)

Listing 8 – Python try-except translation

PureMVC Apache Commons Math

Lines of Code 1,456 15,566
Modules 51 195
Test Points 100 3,027

Table 8 – Test Cases

7.1.3 Test Case Metrics

Table 8 presents metrics about the test cases. Lines of Code is defined as nonblank,
noncomment lines of code, and includes both library code as well as the accompanying
unit test code. The Modules count refers to individual Java source files. We use the
term Test Point to refer to a single assertion in a unit test.

7.2 Test Case Evaluation and Preparation

In this section, we introduce the procedure that we used to evaluate and prepare the
target applications that we translated using our system. This evaluation included the
identification of third party libraries used by the two test cases. These third party
library dependencies included Application Programmer Interfaces (APIs) supplied
by the Java Standard Library and the JUnit Testing Framework. To facilitate our
translation, we implemented some of these third party libraries and included the
translations in our Python and C++ runtime support systems.

After implementing the required dependencies, we made minor modifications to
the test cases, detailed in the next section. Finally, we used our translation system
to translate the modified test case code to C++ and Python.

7.2.1 Modifications to PureMVC

We made a single modification to the PureMVC code to facilitate the translation to
C++, which involved marking a class as implementing an interface. This omission in
the original test case was an oversight in the PureMVC code, and the test case has
been updated as a patch to the PureMVC library.
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Figure 5 – Apache Commons Math Classes Translated

7.2.2 Modifications to Aapache Commons Math

In this section, we describe the modifications to the Apache Commons Math test case
to facilitate our tests. Figure 5 lists the number of modules in Apache Commons
Math that our tool translated in whole or in part. Our tool translated 89% of the
lines of code, representing a complete or partial translation of 93% of the modules.

The 13 modules that we did not translate relied on Java APIs that we did not port
to the Python and C++ runtime systems, including I/O, formatting, and reflection
features. An automated translation of these APIs is part of our future work. We
removed code from 15 other modules for three reasons:

1. Some code utilized Java APIs that we did not port to the Python and C++

runtime libraries, including facilities such as serialization, cryptography, and
I/O.

2. A portion of the code defined two overloaded methods: one performed a compu-
tation on a float-type parameter, and the other performed an identical compu-
tation on a double-type parameter. iJava supports doubles but not floats, and
our translator maps the float type to double in its translation process. This
resulted in a duplicate method conflict in the translated module. We removed
the float overload as superfluous in this case. If the overloads had performed
different processing, and removal was not an appropriate action, a more sophisti-
cated overload resolution strategy could have been implemented with additional
effort.

3. Finally, some of the Apache Commons test code attempts to catch Null pointer
exceptions. Since the behavior of null pointer dereferences is undefined in iJava,
we removed those checks. An alternative approach, requiring additional en-
gineering effort, would involve suppressing these checks automatically during
translation, and this effort is part of our ongoing work.
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7.3 Reliability Tests and Execution Traces

In this section, we describe the approach we used to evaluate the reliability of the
Python and C++ applications automatically generated by our translation system.

The two test cases, PureMVC and Apache Commons Math, both include extensive
unit tests written using the widely known JUnit Framework [JUn16]. Our basic
approach to evaluating the reliability of our translation is to convert both the libraries
and their accompanying unit tests to the target languages, and then to execute the
translated unit tests and compare the results. A key aspect of our analysis involves
collecting a test trace of the execution of each unit test, which consists of a log of the
assertions performed by the unit test as it executes.

Section 7.3.1 describes the procedure we use to capture a trace of execution of
the unit tests of the source Java test cases. Section 7.3.2 describes our methodology
for executing the translated tests and capturing a test trace. Finally, Section 7.3.3
describes the approach we used to compare and evaluate the test traces.

7.3.1 Execution of Original Unit Tests

To provide a baseline for evaluating the reliability of our translator, we execute the
original unit tests that are included in both of our test cases. In addition to noting
the individual pass/fail results, we capture a trace of the checks performed during the
execution of the unit tests. This trace contains the arguments passed to each JUnit
assertion check, generally containing both expected and actual values, and shows the
sequence in which the unit tests are executed by the JUnit test framework. Since
JUnit has no built-in facility for capturing a trace of its unit tests, we developed
a custom tool using BTrace [btr16], a JVM instrumentation facility, to capture the
trace data.

7.3.2 Execution of Translated Unit Tests

After translating the test cases to the target languages, we execute the translated unit
tests in order to exercise the translated library code. During the execution of the unit
tests, our implementation of the JUnit Testing Framework in the Python and C++

runtime support libraries records a trace of the unit test assertions.

7.3.3 Comparison of Test Traces

After generating the three sets of test traces for both the original library and its trans-
lation to C++ and Python, we compare the test traces and analyze any differences.
To compare a test trace from a translated unit test with a test trace from its corre-
sponding original unit test, we developed a tool that filters out differences due to the
way our test traces are captured and recorded in JUnit and in the test frameworks in
C++ and Python.

In our comparison of the test traces, we compare each test point in the original
trace with the corresponding test point in the target trace. This allows us to detect
scenarios where the test framework indicates that a given test passed, but the test
point values indicate that there was a difference in the expected and/or actual values
for one or more assertions within the test.

As an illustration of the data captured in the test traces, Listings 9 and 10 present
a portion of the trace from the Apache Commons Math original unit test and the trans-
lated Python unit test, respectively. The traces show the execution of two unit test
methods: testSinZero in BisectionSolverTest, and testQuinticZero in BrentSolverTest.
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1 ...
2 org.apache.commons.math.analysis.BisectionSolverTest.testSinZero
3 assertEquals:null‘3.141592502593994E+00‘3.141592653589793E+00‘1.000000000000000E−06
4 assertEquals:null‘3.141592621803284E+00‘3.141592653589793E+00‘1.000000000000000E−06
5 org.apache.commons.math.analysis.BrentSolverTest.testQuinticZero
6 assertEquals:null‘2.775557561562891E−17‘0.000000000000000E+00‘1.000000000000000E−06
7 assertTrue:null‘true
8 assertEquals:null‘−7.811562634330656E−11‘0.000000000000000E+00‘1.000000000000000E−06
9 ...

Listing 9 – Trace of JUnit Test

1 ...
2 org.apache.commons.math.analysis.BisectionSolverTest.testSinZero
3 assertEquals:null‘3.141592502593994E+00‘3.141592653589793E+00‘1.000000000000000E−06
4 assertEquals:null‘3.141592621803284E+00‘3.141592653589793E+00‘1.000000000000000E−06
5 org.apache.commons.math.analysis.BrentSolverTest.testQuinticZero
6 assertEquals:null‘2.775557561562891E−17‘0‘1.000000000000000E−06
7 assertTrue:null‘true
8 assertEquals:null‘−7.811562634330656E−11‘0‘1.000000000000000E−06
9 ...

Listing 10 – Trace of Unit Test (Python Translation)

The lines that begin with assertEquals show the arguments passed to a given invoca-
tion of the JUnit assertEquals method during the unit test, containing the expected
value, the actual value computed by the function under test, and the error tolerance
allowed for the comparison. The test comparison tool reports a complete match for
this fragment, even though lines 6 and 8 have minor differences between the two traces
due to the way the number 0 is recorded in the trace file in our JUnit trace capture
and the way it is recorded in our Python trace capture file.

7.3.4 Reliability Test Results

In Table 9, we summarize the results of our reliability tests. The Java entry shows that
the original unit tests included with the source Java code bases all passed. The C++

and Python results show what percentage of the test traces captured from executing
the translated C++ and Python unit tests matched the corresponding test points in
the test traces captured from executing the source Java unit tests.

In our PureMVC tests, our analysis of the Python traces showed that all test
points matched. For C++, all of the tests that used language features defined in iJava
matched. Two of the test points were generated by code that used a language feature
not defined in iJava, and as expected, since our C++ compiler handled this feature
differently than Java and Python, those did not match.

In our Apache Commons Math tests, our analysis of the test point value differences
revealed a variety of causes for failure to match test values in the source Java unit
test traces. We noted differences due to the following factors:

• Undefined behavior: The translated code invoked behaviors that are un-
defined in iJava. Examples of this include numeric overflow handling, numeric
formatting, parameter evaluation order, and circular dependencies between mod-
ules.
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PureMVC Apache Commons Math
Tests Passed Tests Passed

Java 100% 100%
C++ 98% 99%
Python 100% 96%

Table 9 – Reliability Test Results

• Standard library facilities: The implementation of our standard library fa-
cilities for Python differed from or omitted features present in the Java standard
library.

• Random number tests: Some unit tests had behavior which was determined
by the generation of random numbers, and thus produced different traces each
time the unit tests were run. This meant that portions of the traces from two
separate executions of the original Java unit tests did not match each other,
and it follows that the corresponding test points in the Python and C++ unit
test traces did not match those from the original Java tests. However, these
translated unit tests passed their internal assertions, and manual inspection of
the traces revealed their behavior was as expected.

7.4 Quality Tests

In this section, we discuss the approach we use to validate the quality of the translation
generated by our implementation.

7.4.1 Quality Metrics

To evaluate the size and complexity of the translated code, we use two well-established
measures: Lines of Code and McCabe Cyclomatic Complexity [McC76]. In order to
obtain these measures using a consistent definition, we compute the metrics for the
source test cases and the Python and C++ translations using metrics [pyt16], a tool
that computes metrics for several languages. We validate the computation of the
Cyclomatic Complexity metric using a tool we developed [SM14] using libclang, an
interface to the Clang compiler API.

To demonstrate that the generated code preserves the class structure of the origi-
nal, we compute the number of classes using information produced by Doxygen [Dox16],
a documentation tool which supports our source and target languages.

7.4.2 Quality Test Results

Table 10 and Table 11 present the results of our quality metrics analysis for PureMVC
and Apache Math Commons, respectively. Here, we discuss those results.

In both cases, the number of classes increased during the translation to C++ and
Python. The difference is due to the handling of anonymous inner classes during trans-
lation. The metrics tool did not detect anonymous inner classes in the Java source,
and those were not included in the count. During translation, the anonymous inner
classes were converted to regular classes in C++ and Python, and were subsequently
detected by the metrics tool and included in the count.
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Classes / McCabe LOC
Interfaces

Java 52 37 1,456
C++ 54 37 2,477
Python 54 83 1,650

Table 10 – Quality Test Results: PureMVC

Classes / McCabe LOC
Interfaces

Java 185 904 13,892
C++ 193 904 21,397
Python 193 1,111 13,732

Table 11 – Quality Test Results: Apache Math Commons

The increase in McCabe complexity for Python in both cases is due to the trans-
lation of overloaded constructors for Python. A selection statement increased the
complexity metric by 1 for each constructor, which accounts for the increase in the
metric. Our Clang-based analysis tool reproduced the results produced by the Python
tool.

The LOC metric for Python is very close to the Java count, but a word about
the increase in the C++ LOC is in order. C++ programs split the definition of a class
between .h and .cpp files, and the syntactic duplication introduced by this organization
tends to increase the LOC counts for C++ programs, as compared to languages such as
Java in which a class definition is contained in a single file. This duplication accounts
for the larger LOC counts we observed.

7.5 Performance Tests

In this section, we discuss the performance tests we conducted on the code generated
by our translator.

7.6 Performance Test Methodology

The execution performance of a program on a given language implementation is in-
fluenced by a number of factors, including the quality of the runtime library, the
overhead imposed by the language’s memory management, and most importantly,
where the language execution model falls on the spectrum between dynamically in-
terpreted and statically compiled systems. Therefore, evaluating the quality of a
program translation from one language to another by the use of performance metrics
has limited value. For example, our three languages include dynamically interpreted
Python, statically compiled (C++), and Java, a hybrid; a carefully hand-tuned imple-
mentation of a given algorithm in each of these languages could be expected to have
widely varying performance characteristics, due to the factors discussed above. Thus,
we include performance test results here for general informational purposes, rather
than for use in evaluating translation quality.
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Java C++ Python

PureMVC 0.8 0.2 1.7
Apache Commons Math
Linear 2.7 4.2 20.0
Analysis & Complex 3.1 0.6 5.4
Distribution 7.2 10.8 223.0
Statistics 22.9 43.5 475.0
Misc 3.6 0.5 6.2
Total Commons Math 39.5 59.6 729.6

Table 12 – Performance Test Results. All times are in seconds.

We evaluate the performance of our translations by timing the execution of the
translated unit tests. Our platform is a Dell Latitude laptop with a 1.7 GHz Intel
i3 processor and 8 MB RAM, running Windows 10 Professional. For the cplusplus
tests, we use the Visual Studio 2013 compiler with Release configuration settings.
For the Python tests, we use the standard CPython interpreter, version 3.4.2. As a
baseline for comparison, we time the original Java unit tests running on the Oracle
Java Virtual Machine, version 1.8.0.

In all cases, our timings exclude the initial test program load time, and include
only the time to execute the unit tests. We do not take steps to exclude the warmup
of the Java JIT. We measure wall clock time and average several timings to arrive at
each result, excluding outlier timings from the average.

7.6.1 Performance Test Results

In this section, we present results of our performance tests.
Table 12 shows timings for the PureMVC and Apache Math Commons test cases.

The numbers represent the time required to execute 500 iterations of the unit tests,
in seconds. For the Math Commons test case, the times are broken down by module,
for further granularity.

The PureMVC results are unsurprising. This is a relatively simple library; its
operations involve basic manipulations of lists and maps. The unit tests themselves
do not involve large amounts of data, and in such a scenario, we would expect the
timings to favor C++, a statically compiled language. The numbers bear that out.

The Apache Math Commons results have Java the clear winner over C++ and
Python, although the breakdown shows that C++ wins significantly over Java in two
of the modules. The Statistics module makes heavy use of the Java TreeMap data
structure, which is not available in Python or C++. Our implementation of TreeMap in
C++ and Python is a list structure with linear lookup performance characteristics, and
our profiling analysis indicates that the relatively poor performance numbers for that
module for C++ and Python can be attributed to that data structure implementation.

8 Summary and Future Work

In this paper, we presented an interoperable object-oriented language for defining
reusable software components, together with a source-to-source translation system
for converting components written in this language to Python and C++. Our goal
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was to demonstrate that a language designed through an intersection-based analysis
of a set of popular object-oriented languages is rich enough to express useful compo-
nents. As our evaluation and results demonstrate, our system is capable of translating
substantial test cases with good reliability and efficiency.

There are several possibilities for future work, including extending our translator
to support additional target languages; handling unimplemented iJava language fea-
tures; translating Java runtime support library dependencies to target languages; and
integrating a garbage collection library for C++. Also, although this work focused on
object-oriented languages, similar work remains to be done in the functional language
space.

Source-to-source translation has long been an underutilized tool in the language in-
teroperability chest. We believe that the problems confronting comprehensive source-
to-source translators have discouraged research in this area, and trust this work has
demonstrated the potential usefulness of source-to-source technology in the develop-
ment of reusable software libraries.

Our system is available for download at https://github.com/sschaub/ijava.
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