
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

A Methodology for Verifying
Refinements of Partial Models

Rick Salaya Marsha Chechika Michalis Famelisa Jan Gorznyb

a. Department of Computer Science, University of Toronto, Toronto,
Canada

b. Department of Mathematics and Statistics, University of Victoria, Vic-
toria, Canada

Abstract Models are typically used for expressing information that is
known at a particular stage in the software development process. Yet,
it is also important to express what information a modeler is still un-
certain about and to ensure that model refinements actually reduce this
uncertainty. Furthermore, when a refining transformation is applied to
a model containing uncertainty, it is natural to consider the effect that
the transformation has on the level of uncertainty, e.g., whether it always
reduces it. In our previous work, we have presented a general approach for
precisely expressing uncertainty within models. In this paper, we use these
foundations and define formal conditions for uncertainty reducing refine-
ment between individual models and within model transformations. We
describe tooling for automating the verification of these conditions within
transformations and describe its application to example transformations.

Keywords Partial Models, Uncertainty, Refinement, Model Transforma-
tion.

1 Introduction

Transformations used in MDE can either be horizontal or vertical. Examples of the
former include refactorings, translation and normalization, and are applied to models
to change the form of their content without changing the level of abstraction. In
contrast, the latter preserve relevant properties of a model while changing the level
of abstraction. Vertical transformations that add detail are called refining transfor-
mations.

Such vertical transformations can be seen as resolving uncertainty within a model.
For example, a vertical transformation that generates Java code from a UML model
must preserve the behavioural properties of the design while resolving the uncertainty
about which container classes to use to implement associations with upper multiplicity
“*”. In this case, the uncertainty is implicit to the modeling scenario since the choice of

Rick Salay, Marsha Chechik, Michalis Famelis, Jan Gorzny. A Methodology for Verifying Refinements
of Partial Models. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In
Journal of Object Technology, vol. 14, no. 3, 2015, pages 3:1–31. doi:10.5381/jot.2015.14.1.a3

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2015.14.1.a3
http://dx.doi.org/10.5381/jot.2015.14.1.a3

2 · R. Salay, et al.

<<singleton>>

HeatingController

<<singleton>>

ConservationManager

<<singleton>>

SafetyController

isLockedOut

KNOWN: has
ops for "eco
control"
UNKNOWN:
what they are

KNOWN: has ops
for unauthorized
user "lock out"
UNKNOWN: what
they are

KNOWN: has
ops for "temp
control"
UNKNOWN:
what they are

KNOWN: there are ops for "gas disablement" when
access is unauthorized.
UNKNOWN: what the ops are and whether they should
be in an existing or a new class - if a new class then it
could be part of HeatingController or SafetyController

Figure 1 – Class diagram for HVAC example showing ad hoc expressions of uncertainty.

container class can be left underspecified in the design but is required to be decided
in the implementation. In other cases, explicit uncertainty can be stated within a
model. For example, a modeler’s uncertainty about behaviour can be expressed in a
state machine by allowing non-deterministic transitions between states, and can later
be resolved (manually or by a transformation) by refining the model to a deterministic
state machine.

Explicit uncertainty in a model can come from many sources, including but not
limited to incomplete requirements [EDM05], presence of alternative design deci-
sions [vL09], disagreements among stakeholders [SNCE10], etc. Yet existing mod-
eling methodologies, languages and tools rarely provide adequate support for it, and
uncertainty is typically expressed in an ad hoc or informal manner.

To help address this gap, we have proposed several types of partiality annota-
tions with formal semantics that could be used to augment any modeling language
with the means to accurately express explicit uncertainty [SFC12]. We call the re-
sulting models partial. Partial models can be analyzed and manipulated just like
conventional models, and in previous work we have explored issues such as property
checking [FCS12], change propagation [SGC13], and transformations [FSDSC13]. As
more information becomes available, it can be incorporated into the partial model to
reduce its degree of uncertainty. This is done in a systematic way that constitutes a
metamodel-independent form of refinement [SFC12].

The use of verifiable refinement steps as part of the development process has
a long tradition in software engineering [Wir71, Hoa69]. Several systematic ap-
proaches to facilitate the formal refinement of software models have been proposed
(e.g., [dW98, BS03]). More recently, with the emergence of MDE, attention has
turned to verifying the correctness of model transformations, including refining trans-
formations (e.g., [LAD+14, CCGDL10, NK08]). In this paper, we continue this line
of research and focus on the problem of verifying correctness of both manual refine-
ments and automated refinement transformations that resolve explicit uncertainty
within partial models.

Motivating example. Consider the scenario, depicted in Fig. 1, where a modeler
is facing uncertainty regarding a fragment of a UML class diagram in a hypothetical
HVAC (Heating, Ventilation, A/C) controller for a building. The HeatingController
has operations to regulate the building’s temperature and ConservationManager

has operations to monitor consumption and conserving energy. A separate class
SafetyController interfaces with the Security subsystem of the building, and so
has operations to detect HVAC-specific malicious intrusions. The modeler also knows
that there should exist operations for disabling the gas supply for the building (e.g.,
in case of a fire or a leak, etc.) but is not sure whether they should be in a separate

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 3

class, etc.
The textual notes in the diagram represent the modeler’s uncertainty by stating

specific information that is known and unknown about the model. Resolving uncer-
tainty within the model requires making decisions such as what operations will be
used for disabling gas, etc. All of this information is specified ad hoc, using natural
language, since there is no notational mechanism in the class diagram language for
expressing uncertainty. Furthermore, the lack of formal semantics for these notes
prevents the creation of vertical transformations to automatically resolve uncertainty.

Model P1 in Fig. 2 shows the use of partiality annotations, introduced in [SFC12],
to express the uncertainty in Fig. 1. Note that although we use a simplified version
of UML class diagrams here, the partial modeling approach can be applied to any
modeling language, including behavioural modeling languages (e.g., UML state ma-
chines), goal modeling languages (e.g., i* [Yu97]), etc. Each annotation is given in
brackets as a prefix to the element’s name. For example, the s annotation on the
operation ecoControlOps (in class ConservationManager) means that it represents
a (as yet unknown) set of operations. This captures the same information as in the
note attached to ConservationManager in Fig. 1 – i.e., that it contains operations
for energy conservation but it is still unknown what they are. The v annotation on
the GasDisabler class means that it is a “variable” class and that it is still unknown
whether it is assigned to a new class or to one of the existing classes; however, re-
gardless of how it gets assigned, it must contain a set of gasDisablerOps operations.
Furthermore, the m-annotated composition associations say that if GasDisabler is
assigned to a new class then it may have a composition relationship either to the
HeatingController class or the SafetyController class. Yet it cannot have this
relationship to both classes simultaneously since the well-formedness rules for class
diagrams prohibit this.

As more information becomes available, the modeler can resolve some of these
uncertainties by constructing a partial model refinement of the original model. For
example, Fig. 2 shows a partial model refinement of the partial class diagram P1.
The refinement represents the way in which the elements in the two models are
mapped to each other and captures the uncertainty resolution decisions made. To
avoid visual clutter, we show only the non-obvious parts of the mapping: (1) the
s-annotated operation ecoControlOps() is refined to a set of particular operations
{ecoOff(), setEcoLevel()}, (2) a decision is made to put the functionality to disable
the gas supply into the HeatingController class by assigning the v-annotated class
GasDisabler to it, and (3) the m-annotated composition relations are eliminated.

Uncertainty can be resolved by eliminating partiality annotations from the model
altogether, or by changing them such that the new model has a refinement relation-
ship with the original. This notion of refinement is defined formally in Section 2.
Because refinement can happen in various ways, it is necessary to verify refining
transformations.

Fig. 2 shows a refinement application to a specific model. In contrast, Fig. 3
gives a refining partial model transformation that can be used to generate a refine-
ment application when applied to an arbitrary model. We defer the explanation of
the transformation rule syntax to Section 4 and only give the intuition behind the
rule here. Syntactically, ReduceAbs converts all occurrences of s annotations on ele-
ments to p annotations. Semantically, a p annotation means that these now represent
particular elements (i.e., p for “particular”) rather than an arbitrary set of elements.
Intuitively, this transformation reduces uncertainty about these elements and thus is

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

4 · R. Salay, et al.

<<singleton>>

SafetyController

isLockedOut

[S]lockOutOps()

<<singleton>>

GasDisabler

isGasEnabled

[S]gasDisablerOps()

<<singleton>>

ConservationManager

[S]ecoControlOps()

[V]

<<singleton>>

HeatingController

[S]tempControlOps()

[M][M]

1

1

1

1

<<singleton>>

SafetyController

isLockedOut

[S]lockOutOps()

<<singleton>>

ConservationManager

ecoOff()
setEcoLevel()

<<singleton>>

HeatingController

isGasEnabled

[S]gasDisablerOps()
[S]tempControlOps()

P1 P2

R

Figure 2 – Example refinement of the partial model P1.

an uncertainty-reducing transformation. But can we prove this formally?

Contributions of this paper. In this paper, we look at the problem of checking the
correctness of both uncertainty-reducing refinements of particular models and partial
model refinement transformations.

Specifically, we make the following contributions:

1. We develop a method for verifying partial model refinements applied to a par-
ticular model. As an illustration, we use it to show that Fig. 2 represents a valid
refinement.

2. We define the formal correctness conditions for a partial model refinement trans-
formation.

3. We develop a method for verifying partial model refinement rewrite rules and
the corresponding refinement transformations constructed using such rules. I.e.,
given a set of rules defining a transformation such as in Fig. 3, our method can
be used to show that applying them to any model yields an uncertainty-reducing
refinement.

4. We describe prototype tool support to help automate the transformation ver-
ification method and to use the generated counterexamples in order to repair
faulty rules.

5. We apply the method to the verification of three specific transformations.

A workshop version of this paper [SCG12] introduced the method for verifying re-
finements of particular models (item 1) and preliminarily explored the issues regarding
the verification of refinement transformations. In this paper, we give the definitive
version of these results and then use these foundations to give a fully automated
approach to the verification of refinement transformations, including a proof of cor-
rectness and results from the implementation of the approach. Specifically, Section 3
is an improved and expanded version of the central result in [SCG12] and Sections 4-5
with the proofs in the Appendix are new. This paper also significantly extends the
results of [SFC12] which introduced the concept of partial model refinement at a high
level and illustrated tool support for refinement verification on an example. Specif-
ically, we contribute the theoretical details of verifying partial model refinements of
particular models (item 2) and the approach for verifying refining transformations
(items 3-5).

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 5

(?) (?)
(?S?)E:Element (?P?)E:Element

Figure 3 – A rule defining transformation ReduceAbs.

The rest of the paper is organized as follows. In Section 2, we review the concept
of model partiality as introduced in [SFC12]. In Section 3, we present a method for
verifying partial model refinement when applied to particular models. In Section 4,
we extend this to a method for verifying refinement transformations and describe the
automation of this method. In Section 5, we apply the method to several example
transformations. In Section 6, we discuss related work. Finally, in Section 7, we
summarize the paper and discuss potential future research directions.

2 Background

In this section, we briefly review the concepts of language-independent partial mod-
eling introduced in [SFC12].

2.1 Models and metamodels

A metamodel represents a set of models and can be expressed as a First Order Logic
(FOL) theory. A model is taken to be a finite first order structure satisfying such a
theory.

Definition 1 (Metamodel). A metamodel is an FOL theory T = 〈Σ,Φ〉, where Σ is
the signature with sorts and predicates representing the element types, and Φ is a set
of sentences representing the well-formedness constraints. The models that conform
to T , denoted by Mod(T), are the finite FO Σ-structures that satisfy Φ according to
the usual FO satisfaction relation.

The simple class diagram metamodel shown graphically in Fig. 4 fits this definition
if we interpret boxes as sorts and edges as predicates comprising ΣCD (where CD stands
for “class diagram”) and take the multiplicity constraints (translated to FOL) and the
additional constraint (1) as comprising ΦCD. Fig. 5 shows this metamodel as an FO
theory.

Sometimes it is convenient to think of a model as a typed graph where the elements
are the nodes typed by sorts in the metamodel and the relation instances are edges
typed by the predicates in the metamodel. We use the term atom to mean either an
element or a relation instance.

2.2 MAVO partial models

When a model contains partiality information, we call it a partial model. Semanti-
cally, a partial model represents the set of different possible concrete (i.e., non-partial)
models that would resolve the uncertainty represented by the partiality. More for-
mally:

Definition 2 (Partial model). A partial model P over a metamodel T = 〈Σ,Φ〉
consists of a base model, denoted bs(P), and a set of annotations. The metamodel of
bs(P) is 〈Σ, ∅〉. [P] denotes the set of T models called the concretizations of P . P is
called consistent iff [P] 6= ∅.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

6 · R. Salay, et al.

Additional constraints:

(1) A singleton class cannot be composed in more than one class.

Class

isSingleton : bool

Property

Operation

ownedAttribute
*

1

ownedOperation

*
1

composedIn

*

*

Figure 4 – An adapted and simplified metamodel of the UML class diagram language
shown graphically.

ΣCD

Sorts: Class, Operation, Property
Predicates: composedIn(Class, Class), ownedOperation(Class, Operation),

ownedAttribute(Class, Property), isSingleton(Class)
ΦCD

(1) ∀c, c1, c2 : Class · isSingleton(c) ∧ composedIn(c, c1) ∧ composedIn(c, c2)⇒ c1 = c2
(2) ∀c, c′ : Class, o : Operation · ownedOperation(c, o) ∧ ownedOperation(c′, o)⇒ c = c′

(3) ∀c, c′ : Class, p : Property · ownedAttribute(c, p) ∧ ownedAttribute(c′, p)⇒ c = c′

Figure 5 – The metamodel of class diagram in Fig. 4 as an FO theory.

The base model is the underlying model in which the annotations are stripped
away. Note that the base model does not necessarily need to be a well-formed T
model since it conforms to the metamodel 〈Σ, ∅〉 (i.e., T with the well-formedness con-
straints removed). In fact, the base model of P1 in Fig. 2 violates the well-formedness
rule that a singleton class cannot be composed into two different classes. This shows
that expressing some cases of uncertainty requires non-well-formed base models. A
concretization is a well-formed model that satisfies the constraints given by the anno-
tations. For example, one concretization of P1 is obtained by removing all annotations
and removing the composition relation from GasDisabler to SafetyController. P1
has an infinite number of concretizations since each of the s-annotated operations
can be replaced by any set of particular operations. Thus, although bs(P1) is not
well-formed, P1 is still consistent since it has concretizations.

We use four types of partiality annotations, each adding support for a different
type of uncertainty in a model:

May partiality allows us to express the level of certainty we have about the presence
of a particular atom in a model by annotating it with either m, to indicate that it
“may exist” or e, to indicate that it “exists”. A May annotation is refined by changing
an m to e or eliminating the atom altogether. The ground annotation e is the default
if an annotation is omitted.

Abs partiality allows a modeler to express uncertainty about the number of atoms
in the model by letting her annotate atoms as p, representing a “particular”, or s,
representing a “set”. A refinement of an Abs annotation elaborates the content of s
atoms by replacing them with a set of s and p atoms. The ground annotation p is
the default if an annotation is omitted.

Var partiality allows a modeler to express uncertainty about distinctness of indi-
vidual atoms in the model by annotating an atom to indicate whether it is a “constant”

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 7

Partiality Type Target Non-ground Ground
annotation annotation (default)

May atom m (may exist) e (exists)
Abs atom s (set) p (particular)
Var atom v (variable) c (constant)
OW model inc (incomplete) comp (complete)

Table 1 – Summary of MAVO annotations. May, Abs and Var annotations apply to each
atom while OW annotations apply to the entire model.

(c) or a “variable” (v). A refinement of a Var annotation involves reducing the set of
variables by merging them with constants or other variables. The ground annotation
c is the default if an annotation is omitted.

OW partiality allows a modeler to explicitly state whether her model is incomplete
(i.e., can be extended) (inc) or complete (comp). In contrast to the other types of
partiality, here the annotation is at the level of the entire model rather than at the
level of individual atoms. The ground annotation comp is the default if an annotation
is omitted.

The annotations are summarized in Table 1. When these four types of partiality
annotations are used together, we refer to them as MAVO partiality.

Definition 3. The set of all MAVO partial models over models with metamodel T is
denoted MAVO(T).

We state the following important proposition about the consistency of MAVO
models (the proof is in the Appendix).

Proposition 1. Given a MAVO model P ∈MAVO(T), if bs(P) is well-formed w.r.t.
T , then bs(P) is a concretization of P and thus, P is consistent.

2.3 Formalizing MAVO partiality

Like a metamodel, a partial model also represents a set of models and thus can also
be expressed as an FOL theory. Specifically, for a partial model P , we construct a
theory FO(P) s.t. Mod(FO(P)) = [P]. We proceed as follows.

1) Let M = bs(P) be the base model of a partial model P over metamodel T . We
define a new partial model PM which hasM as its base model and its only possible
concretization, i.e., bs(PM) = M and [PM] = {M} ifM is well-formed and [PM] =
∅ otherwise. We call PM the ground model of P .

2) To construct the FOL encoding of PM , FO(PM), we extend T by adding a unary
predicate for each element in M and a binary predicate for each relation instance
between elements in M . Then, we add constraints to ensure that the only first
order structure that could satisfy the resulting theory isM itself. We refer to these
additions as MAVO predicates and constraints, respectively.

3) We construct FO(P) from FO(PM) by removing constraints corresponding to the
annotations in P . This constraint relaxation allows more concretizations and so
represents increasing uncertainty. For example, if an atom a in P is annotated with
m then the constraint that enforces the occurrence of a in every concretization is
removed.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

8 · R. Salay, et al.

ΣM1 has unary predicates CM(Class), ECOps(Operation)), . . . ,
and binary predicates CMownsECOps(Class, Operation), . . .

ΦM1 contains the following sentences:
(Complete) (∀x : Class · CM(x) ∨ HC(x) ∨ SC(x) ∨ GD(x)) ∧ . . .∧

(∀x : Class, y : Operation · ownedOperation(x, y)
⇒ (CMownsECOps(x, y) ∨ . . .)) ∧ . . .

CM:
(ExistsCM) ∃x : Class · CM(x)
(UniqueCM) ∀x, x′ : Class · CM(x) ∧ CM(x′)⇒ x = x′ ECOps = ecoControlOps
(DistinctCM−HC) ∀x : Class · CM(x)⇒ ¬HC(x) CM = ConservationManager
(DistinctCM−SC) ∀x : Class · CM(x)⇒ ¬SC(x) HC = HeatingController
(DistinctCM−GD) ∀x : Class · CM(x)⇒ ¬GD(x) SC = SafetyController

similarly for all other element and relation predicates GD = GasDisabler

Figure 6 – The FO encoding of PM1.

We illustrate the above construction using the partial class diagram P1 in Fig. 2.
For a description of the general case, please see [SFC12].

1) Let M1 = bs(P1) be its base model and PM1 be the corresponding ground partial
model.

2) We have:
FO(PM1) = 〈ΣCD ∪ ΣM1,ΦCD ∪ ΦM1〉 (1)

(see Def. 1), where ΣM1 and ΦM1 are the MAVO predicates and constraints, de-
fined in Fig. 6. They extend the signature and constraints for CD models de-
scribed in Fig. 4. For conciseness, we abbreviate element names in Fig. 6, e.g.,
ConservationManager becomes CM, etc.

Since FO(PM1) extends CD, the FO structures that satisfy FO(PM1) are the class
diagrams that satisfy the constraint set ΦM1 in Fig. 6. Assume N is such a class
diagram. The MAVO constraint Complete ensures that N contains no more el-
ements or relation instances than M1. Now consider the class CM in M1. ExistsCM
says that N contains at least one class called CM, UniqueCM – that it contains no
more than one class called CM, and the clauses DistinctCM−∗ – that the class called
CM is different from all the other classes. Similar MAVO constraints are given
for all other elements and relation instances in M1. These constraints ensure that
FO(PM1) has at most one concretization – in this case, it has none since M1 is not
well-formed.

3) Relaxing the MAVO constraints ΦM1 allows additional concretizations and repre-
sents a type of uncertainty indicated by a partiality annotation. For example, if
we use the inc annotation to indicate that M1 is incomplete, we can express this
by removing the Complete clause from ΦM1 and thereby allow concretizations to
be class diagrams that extend M1. Similarly, expressing the effect of the m, s and
v annotations for an element E correspond to relaxing ΦM1 by removing ExistsE ,
UniqueE and DistinctE−∗ clauses, respectively. For example, removing the Dis-
tinctGD−∗ clauses is equivalent to marking the class GD with v (i.e., GasDisabler
may or may not be distinct from another class). Thus, ΦP1 is constructed from
ΦM1 by relaxing the MAVO constraints corresponding to the annotations in Fig. 2.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 9

The FO formalization of a MAVO model can be used for reasoning with mod-
els containing uncertainty. This includes property checking and consistency check-
ing [SFC12], change propagation [SGC13] as well as verifying refinement, as we discuss
in this paper. In addition, the FO formalization provides a way to augment a MAVO
model with sentences to allow more precise expressions of uncertainty than are pos-
sible using annotations only. For example, the m annotations in Fig. 2 indicate that
GasDisabler can be composed in either HeatingController or SafetyController
but it can also be in neither. Assume we determine that it must be in one or the
other. There is no way to express this constraint using annotations alone, however,
adding the sentence ExistsGDinHC∨ExistsGDinSC to ΦP1 allows this to be expressed.

2.4 Mappings

Refinement requires a mapping which maps the atoms of the two models (e.g., Fig. 2).
Thus, we define the notion of a mapping between MAVO models.

Definition 4 (MAVO Mapping). Given MAVO models P and P ′, based on the same
metamodel, a MAVO mapping R(P, P ′) is a relation R ⊆ atoms(P) × atoms(P ′),
where atoms(P) and atoms(P ′) are the sets of atoms in P and P ′, respectively, and
the following conditions hold:

• for all 〈a, a′〉 ∈ R, a′ and a have the same type in the metamodel, and,

• for all relation instances r(e, e1) and r′(e′, e′1), 〈r, r′〉 ∈ R ⇒ (〈e, e′〉 ∈ R ∧
〈e1, e′1〉 ∈ R)

The composition (R′◦R)(P, P ′′) of two mappings R(P, P ′) and R′(P ′, P ′′) is the usual
composition of binary relations. The set of all possible MAVO between MAVO(T)
models is denoted Map(T).

We now define a notion of a simple extension of a MAVO mapping:

Definition 5 (Simple extension). A MAVO mapping R1(P1, P
′
1) is a simple exten-

sion of a mapping R(P, P ′) iff R1(P1, P
′
1) is constructed by adding the same set of

annotated atoms to both P and P ′ to form P1 and P ′1, respectively, and adding the
corresponding identity mappings to R to form R1.

3 Verifying Individual Refinements

Intuitively, refinement of aMAVO model should not increase the set of concretizations
it has (a proper refinement reduces this), while making sure at least one concretization
remains. In Section 2, we formally characterized the set of concretizations of a partial
model using an FOL encoding. In this section, we formalize the intuition of refinement
in terms of this encoding.

Definition 6 (MAVO Refinement). Let R(P, P ′) be a MAVO mapping where we have
encodings FO(P ′) = 〈ΣP ′ ,ΦP ′〉 and FO(P) = 〈ΣP ,ΦP 〉. P ′ refines P with mapping
R iff the following conditions hold:

(Ref1) ΦP ′ is satisfiable

(Ref2) ΦP ′ ⇒ R(ΦP)

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

10 · R. Salay, et al.

R is then called a refinement mapping.

Here, R(ΦP) denotes a translation (discussed below) of the MAVO constraints
of P according to the mapping R. Condition Ref1 ensures that P ′ has at least one
concretization (see Def. 2). Recall from formula (1) that ΦP ′ consists of both the
MAVO sentences and the well-formedness rules for the modeling language, and so
these must be jointly satisfiable for this condition to hold. Condition Ref2 captures
our intuition about refinement by ensuring that P has all concretizations of P ′. We
state this property formally, with the proof appearing in the Appendix.

Proposition 2. For each MAVO mapping R(P, P ′) such that condition Ref2 from
Defn. 6 holds,

∀M ·M ∈ [P ′]⇒M ∈ [P]

Ref1 and Ref2 are proof obligations required to be met in order to demonstrate
the validity of the refinement.

To help illustrate the importance of these two conditions, consider the two invalid
refinements shown in Fig. 7. Model P3 is identical to P1 except that the m annotations
on the composedIn instances are removed. This means that both these associations
must appear in every concretization of P3. However, since this violates the well-
formedness condition (1) in Fig. 4 and all concretizations must be well-formed (see
Def. 2), this means that P3 has no concretizations. Thus, P3 does not satisfy condition
Ref1 . Condition Ref2 is satisfied since the set of concretizations of P3 (i.e., the empty
set) is a subset of the set of concretizations of P1.

Model P4 is the same as model P2 in Fig. 2 except that the ConservationManager
class has been removed. This satisfies Ref1 since P4 has concretizations, e.g., its base
model is a concretization. However, it does not satisfy Ref2 . This can be seen by ob-
serving that every concretization of P1 must contain the class ConservationManager
whereas no concretization of P4 contains it. Thus, the concretizations of P4 are not
concretizations of P1.

In the special case that P and P ′ have the same base models (i.e., ΣP ′ = ΣP)
and the mapping is the identity, Ref2 reduces to the condition that ΦP ′ ⇒ ΦP holds.
Candidate refinement P3 in Fig. 7 is an example where the base model does not change.
When the base models are different or the mapping is not the identity, we cannot use
this simple scheme because the sentences are not directly comparable. For example,
the base models differ for the refinement shown in Fig. 2. The classic solution to this
kind of problem is to use a theory interpretation to translate the sentences of FO(P)
to equivalent sentences in terms of the signature ΣP ′ of FO(P ′) so that the sentences
are comparable (e.g., see [Mai97]).

The rules for defining the translation R() for a mapping R(P, P ′) are given in
Fig. 8. The top part of the figure shows the different cases that can occur in mapping
R between the base models of P and P ′, and the bottom defines the corresponding
translation to be applied to the occurrences of the MAVO predicates in the sentences
of ΦP . For simplicity, we only show the translation for the MAVO element predicates
but the relation predicates are similar. We apply the translation to each element in
P . Case (1) occurs when the element in P is refined to at least one element in P ′.
The corresponding translation converts the MAVO predicate for the element into a
disjunction of the MAVO predicates for the refined elements. This case applies when
the element is s-annotated and splits into multiple elements; when it is merged with
other elements due to v annotations, when it has no m annotation and when it has a
m but is not removed. Case (2) occurs when a m-annotated element in P is removed

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 11

<<singleton>>

SafetyController

isLockedOut

[S]lockOutOps()

<<singleton>>

GasDisabler

isGasEnabled

[S]gasDisablerOps()

<<singleton>>

ConservationManager

[S]ecoControlOps()

[V]

<<singleton>>

HeatingController

[S]tempControlOps()

[M][M]

1

1

1

1

P1 P3

R3
<<singleton>>

SafetyController

isLockedOut

[S]lockOutOps()

<<singleton>>

ConservationManager

[S]ecoControlOps()

<<singleton>>

GasDisabler

isGasEnabled

[S]gasDisablerOps()

[V]

<<singleton>>

HeatingController

[S]tempControlOps()

1

1

1

1

<<singleton>>

SafetyController

isLockedOut

[S]lockOutOps()

<<singleton>>

GasDisabler

isGasEnabled

[S]gasDisablerOps()

<<singleton>>

ConservationManager

[S]ecoControlOps()

[V]

<<singleton>>

HeatingController

[S]tempControlOps()

[M][M]

1

1

1

1

<<singleton>>

SafetyController

isLockedOut

[S]lockOutOps()

<<singleton>>

ConservationManager

ecoOff()
setEcoLevel()

<<singleton>>

HeatingController

isGasEnabled

[S]gasDisablerOps()
[S]tempControlOps()

P1 P4

R4

Figure 7 – Examples of invalid refinements of the partial model P1. All mappings are iden-
tity unless indicated otherwise.

in P ′; thus, the MAVO predicate is converted to the predicate false() that always
evaluates to false.

A methodology for verifying a refinement based on the above discussion is given
in Fig. 9.

Finally, we state a proposition that says that mapping composition preserves re-
finement, the proof of which is given in the Appendix.

Proposition 3. Let R(P, P ′) and R′(P ′, P ′′) be two mappings that are valid refine-
ments according to Def. 6. Then the composition (R′ ◦ R)(P, P ′′) is also a valid
refinement.

3.1 Illustration

In this section, we apply the refinement verification methodology in Fig. 9 to show
that the refinement in Fig. 2 is correct. Since a contribution of the current paper is
to give a formal exposition of uncertainty reducing refinement, we illustrate each step
of Fig. 9. Of course, we do not expect modeling practioners to perform these steps
manually. See [SFC12] for a discussion of tool support for verifying correctness of
refinement.

We address each of the four steps of the methodology as follows.

1. Fig. 6 shows the signature for FO(P1) with all possible MAVO constraints.
Based on its annotations, the set ΦP1 has all the MAVO constraints except Ex-
istsGDinHC, ExistsGDinSC, UniqueGDOps,UniqueTCOps, UniqueECOps, UniqueLOOps, Dis-
tinctGD−HC, DistinctGD−CM, DistinctGD−SC. FO(P2) is not shown but it is encoded

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

12 · R. Salay, et al.

 𝑅()

 𝑃′

 𝑃 𝑎

𝑎1
′ 𝑎𝑛

′

…

𝑎(𝑥) ↦ 𝑎1
′ (𝑥) ∨ … ∨ 𝑎𝑛

′ (𝑥)

𝑎

𝑎(𝑥) ↦ 𝑓𝑎𝑙𝑠𝑒(𝑥)

(1) (2)

Figure 8 – Rules for element MAVO predicate occurrences used to translate sentences of
ΦP into sentences of ΦP ′ .

Given mapping R(P, P ′) of MAVO models P , P ′, the following steps verify that R
is a valid refinement mapping and P ′ is a refinement of P .

1. Determine first-order encodings FO(P) = 〈ΣP ,ΦP 〉 and
FO(P ′) = 〈ΣP ′ ,ΦP ′〉.

2. Prove that ΦP ′ is satisfiable (proof obligation Ref1).

3. Determine the sentence translation function R() based on Fig. 8.

4. Prove that ΦP ′ ⇒ R(ΦP) (proof obligation Ref2).

Figure 9 – A method for verifying a MAVO refinement.

in a similar way. Based on its annotations, the set ΦP2 contains all MAVO
constraints except UniqueGDOps, UniqueTCOps, and UniqueLOOps.

2. To prove the satisfiability of ΦP2, we note that the base model of P2 (i.e., the class
diagram with all annotations removed) is well-formed and, by Proposition 1, a
well-formed base model is always a concretization. Thus, [P2] 6= ∅ and so ΦP2 is
satisfiable.

3. The mapping translation function R() is shown in Fig. 10.

4. To prove that ΦP2 ⇒ R(ΦP1), it is sufficient to show that Φ ⇒ R(φP1) for each
sentence φP1 ∈ ΦP1 for some Φ ⊆ ΦP2. The proof is given below.

Proof. We proceed with a proof by cases of MAVO constraints in ΦP1. The first four
cases examine the places where P1 and P2 differ while the fifth one covers all places
where they are the same.
Case 1 (Complete): Let φ1 ∈ ΦP1 and φ2 ∈ ΦP2 be the Complete constraints for P1
and P2, respectively. Now note that R(φ1) is identical to φ2 everywhere except for
the clause for the composedIn elements. In that case, the clause in φ1 is ∀x, x′ :

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 13

R() is defined as:
ECOps(x) 7→ EO′(x) ∨ SEL′(x)
GD(x) 7→ HC′(x)
for all remaining elements e,
e(x) 7→ e′(x)

GDinHC(x, x′) 7→ false(x)
GDinSC(x, x′) 7→ false(x)
for all remaining relation instances r,
r(x1, x2) 7→ r′(x1, x2)

ECOps = ecoControlOps
EO = ecoOff
SEL = setEcoLevel
SC = SafetyController
HC = HeatingController
GD = GasDisabler

Figure 10 – The definition of translation R() for mapping R in Fig. 2.. The elements of ΣP2

are “primed” to avoid name clashes.

Class · composedIn(x, x′) ⇒ (GDinHC(x, x′) ∨ GDinSC(x, x′)) and the translation in
R(φ1) is ∀x, x′ : Class · composedIn(x, x′) ⇒ (false(x) ∨ false(x)) whereas the clause
in φ2 is ∀x, x′ : Class ·composedIn(x, x′)⇒ (false(x)). These are clearly semantically
equivalent and so φ2 ⇒ R(φ1).
Case 2 (ECOps): ΦP1 contains the Exists constraints for operation ECOps:

R(ExistsECOps) = ∃x : Operation · EO′(x) ∨ SEL′(x)

which clearly follows from the constraint ExistsEO′ in ΦP2. ΦP1 also contains the
Distinct constraint for ECOps:

R(DistinctECOps−e) = ∀x : Operation · (EO′(x) ∨ SEL′(x))⇒ ¬e(x) , and
R(Distincte−ECOps) = ∀x : Operation · e(x))⇒ ¬((EO′(x) ∨ SEL′(x))

for each operation e ∈ {TCOps, LOOps, GDOps}. Both of these follow from
{DistinctEO′−e′ ,DistinctSEL′−e′} ⊆ ΦP2.

Case 3 (GDinHC, GDinSC): ΦP1 contains the Unique and Distinct constraints for com-
position associations GDinHC and GDinSC.

R(UniqueGDinHC) = ∀x, x′, y, y′ : Class · (false(x) ∧ false(x))⇒ (x = x′ ∧ y = y′) , and
R(UniqueGDinSC) = ∀x, x′, y, y′ : Class · (false(x) ∧ false(x))⇒ (x = x′ ∧ y = y′) , and
R(DistinctGDinHC−GDinSC) = R(DistinctGDinSC−GDinHC) = ∀x, x′ : Class · false(x)⇒ ¬false(x)

These are always true.
Case 4 (GD): ΦP1 contains the Exists and Unique constraints for class GD.

R(ExistsGD) = ExistsHC′ , and
R(UniqueGD) = UniqueHC′

Both of these HC′ constraints occur in ΦP2.
Case 5: Every other element or relationship instance a in P1 is mapped to its equiva-
lent a′ in P2. Thus, if the MAVO constraint φa ∈ ΦP1 holds, then the corresponding
constraint φa′ ∈ ΦP2 holds as well. Furthermore, R(φa) = φa′ and so φa′ ⇒ R(φa).

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

14 · R. Salay, et al.

 𝑃’

 𝑃 𝑎

𝑎1
′ 𝑎𝑛

′

…

𝑬(𝑎) ⇒ ∃𝑖 ⋅ 𝑬(𝑎𝑖
′)

𝑷(𝑎) ⇒ (𝑛 = 1) ∧ 𝑷(𝑎1
′)

𝑪(𝑎) ⇒ 𝑪(𝑎1
′) ∧ …∧ 𝑪(𝑎𝑛

′)

𝑎′

𝑎1 𝑎𝑛

…

∀𝑖, 𝑗 ⋅ 𝑖 ≠ 𝑗 ⇒ 𝑽(𝑎𝑖) ∨ 𝑽(𝑎𝑗)

𝑎

𝑎′

𝑴(𝑎) 𝑰𝒏𝒄(𝑃)

(1) (2) (3) (4) (0)

𝑪𝒐𝒎𝒑(𝑃)

⇒ 𝑪𝒐𝒎𝒑(𝑃′)

Figure 11 – Summary of the constraints on annotations of model atoms across a MAVO
refinement mapping.

3.2 Annotation-only case for Ref2

The verification method given in Fig. 9 is general enough that it can be used even
with MAVO models that are augmented with arbitrary FO constraints for expressing
detailed cases of uncertainty, as discussed in Section 2.3. When we limit ourselves
to just using MAVO annotations, we can simplify checking the refinement condition
Ref2 by defining syntactic constraints (i.e., sufficient conditions) on the annotations.

Fig. 11 summarizes these constraints, first introduced in [SCH12], which we refer
to as MAVO syntactic refinement conditions. Each of the five columns indicates a dif-
ferent case (case number is on the top) in the refinement mapping, and the sentences
in the lower part of each case give the constraints on the MAVO annotations for the
atoms of that case. A valid refinement must satisfy all of these constraints. The
sentences refer to the full set of MAVO annotations (m/e; s/p; v/c; inc/comp), in-
cluding those assumed by default when the annotation for a partiality type is omitted.
Furthermore, we use the annotations as predicates in these sentences. For example,
e(a) is true iff atom a is annotated with e, and inc(P) is true iff model P is annotated
with inc.

Case (0) says that if P is complete then P ′ must be as well. In case (1), when an
atom a of model P is refined to a set of atoms a1, ..., an of P ′, the first sentence says
that if a is annotated with e (i.e, it is not m), then at least one of the atoms ai must
also be annotated with e. Thus, if a exists and it is refined to the set of ais then at
least one of these should exist. The second sentence says that if a is a particular (i.e.,
not a set) then there can only be one ai and it too must be a particular. The third
sentence says that if a is a constant and thus it can’t merge with any other atom then
neither can any of the ais it refines to and so they too must be constants. Case (2)
says that if a is not propagated into the new model, then it must have been annotated
with m. Case (3) states that if multiple ais in P are mapped into a single a′ in P ′,
then at most one of the ais could be a constant. Finally, if a new atom, not mapped
to anything in P , appears in P ′ (case (4)), then P must be incomplete. For example,
using this method it is clear that the refinement in Fig. 2 satisfies Ref2 .

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 15

4 Verifying Refining Transformations

Def. 6 in Section 2 defined conditions for verifying a single application of partial model
refinement. In this section, we present a method for verifying that every input/output
pair of a partial model transformation is a valid refinement application (i.e., satisfies
Def. 6). We call such a transformation refining. We assume that the partial models are
specified using MAVO annotations described in Section 2 and express the conditions
for a refining MAVO transformation as follows:

Definition 7 (Refining MAVO Transformation). A refining MAVO transformation
is a transformation F : MAVO(T) → MAVO(T) ×Map(T) such that for all P ∈
MAVO(T) where F (P) = 〈P ′, RPP ′〉, FO(P) = 〈ΣP ,ΦP 〉, FO(P ′) = 〈ΣP ′ ,ΦP ′〉,
RPP ′ is the refinement mapping from P to P ′ and RPP ′() is the corresponding trans-
lation function defined in Fig. 8, the following conditions hold:

(TRef1) ΦP is satisfiable ⇒ ΦP ′ is satisfiable

(TRef2) ΦP ′ ⇒ RPP ′(ΦP)

These conditions mirror those in Def. 6. Thus, the objective of the method we
describe below is to determine whether a given MAVO transformation F is a refining
transformation. Def. 6 for MAVO refinement assumes that both P and P ′ are over
the same metamodel and we use the same restriction for the MAVO transformations
we consider.

4.1 Transformations using rewrite rules

In this section, we consider the case that the candidate refining transformation F is
implemented as the set {ρ1, ..., ρn} of confluent and terminating refinement rewrite
rules. A refinement rewrite rule is a variant of a graph rewrite rule [EEPT06] defined
as follows.

Definition 8 (MAVO refinement rewrite rule). A refinement rewrite rule ρ on a
MAVO(T) model consists of a MAVO mapping Rρ(LHS,RHS) s.t. LHS and RHS
are MAVO(T) models and the pair 〈LHS,RHS〉 is the underlying graph rewrite rule.
Rule ρ is applied to a MAVO(T) model P by applying the underlying graph rewrite
rule at a matching site of the LHS to produce P ′. The resulting refinement mapping
between P ′ and P produced by this rule application consists of Rρ at the site of the
rule application and the identity mapping everywhere else.

In a MAVO rewrite rule, all default annotations must be specified explicitly (i.e,
defaulting is not used) and the wildcard placeholder “?” is used when either anno-
tation for a given annotation type can match. Thus, the LHS and RHS each have
an annotation from the set {inc,comp, ?} and each atom of the LHS and RHS has
an annotation of form 〈αmay, αabs, αvar〉 where αmay ∈ {m,e, ?}, αabs ∈ {s,p, ?} and
αvar ∈ {v,c, ?}. Furthermore, if “?” is used in the same position on the RHS then it
must represent the same value as the instantiation on the LHS. For example, in the
rule for ReduceAbs (Fig. 3), the element E on the LHS can match an element with
any annotation as long as it includes s and then the RHS converts this to p leaving
the other annotations unchanged. Thus, if the element E on the LHS matches an
element annotated with 〈m, s,c〉, then the RHS would be instantiated as 〈m,p,c〉 for
that element.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

16 · R. Salay, et al.

The underlying rule is applied by finding a matching site for the LHS of the rule
and then applying the changes according to the RHS: annotations can be changed;
atoms on the RHS that are not on the LHS are added, and atoms matched on the
LHS that are not on RHS are deleted. Matching of the LHS is subject to the following
constraint: any element that is deleted by the RHS can only have edges incident to it
that are also matched by the LHS. Thus, MAVO rewrite rule applications never change
edges that are incident to, but not included in, the matching site. For example, in
rule R2 of CompReduce in Fig. 12, the LHS class C2 is deleted, and thus it cannot
match classes that have other relationships beyond the two composedIn relationships
indicated.

Applying a transformation F to a model consists of a sequence of rule applications
until no more rules can be applied. Since we assume that the set of rules is termi-
nating, this sequence is finite, and because it is confluent, the same result is obtained
regardless of the order of rule applications. The refinement mapping produced by F
is obtained by composing the refinement mappings produced by each individual rule
application.

In order to verify that a MAVO transformation is refining, we must prove that
properties TRef1 and TRef2 in Def. 7 hold. To simplify this process, we note that
each rule application is actually a transformation and the sequence of rule applications
computing F is a composition of these rule application transformations. Further,
note that transformation composition preserves refinement: if F ′ and F ′′ are refining
transformations, then F ′′ ◦F ′ must be as well since refinement mapping composition
preserves refinement by Prop. 3. Thus, to verify each property it is sufficient just to
check that it holds on a single arbitrary rule application for each rewrite rule of the
transformation. Note that while sufficient, this is not a necessary condition: even if
verification of a particular rule application verification fails, the combined action of
multiple rule applications may still be a valid refinement.

According to Def. 8, each application of a rule ρ is a simple extension of Rρ as
specified in Def. 5. Thus, to check that TRef1 and TRef2 hold for an arbitrary appli-
cation of ρ we must show that Ref1 and Ref2 hold for every simple extension of Rρ.
The challenge in this “reduction” of the problem is that there are an infinite number
of simple extensions of Rρ and we tackle this challenge separately for TRef1 and
TRef2 below.

We summarize the verification method as follows: Given a MAVO transformation
F implemented as a set {ρ1, ..., ρn} of MAVO refinement rewrite rules, for each rule
ρi ∈ {ρ1, ..., ρn}, we must check that it satisfies TRef1 and TRef2 . If these conditions
hold for all rules ρi then F is a refining transformation. In the next two sections we
present the method for checking TRef1 and TRef2 on a rule ρi by checking every
simple extension R(PLHS , PRHS) of ρi.

4.2 Checking Property TRef1

To prove that TRef1 holds for a rule ρ requires showing that Ref1 holds for each simple
extension R(PLHS , PRHS) of Rρ - i.e., if FO(PLHS) is satisfiable then FO(PRHS) is
satisfiable as well. The proof of this property is dependent both on the metamodel
constraints and the MAVO constraints. Our method requires the use of tool support
for this step.

Specifically, we have developed tooling that, given ρ, produces an Alloy mod-
ule [Jac06] that checks TRef1 in a bounded way by checking Ref1 on all simple
extensions R(PLHS , PLHS) of Rρ up to a given scope. Here, a scope n means that

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 17

Rρ is extended by up to n atoms for each atom type defined by the metamodel. In
addition, we exploit the following optimization: we can limit our search to those sim-
ple extensions in which bs(PRHS) is not well-formed since, due to Prop. 1, if it is
well-formed then PRHS is consistent and so Ref1 necessarily holds.

If Alloy finds that TRef1 does not hold for ρ, the counterexample it produces
provides a way to “repair” the rule by adding a guard (e.g., a negative application
condition [HHT96]) that will prevent it from being applied in the bad cases. Note
that, even if Alloy reaches the scope without finding a counterexample, we have only
shown that TRef1 holds up to the scope and it still may not hold for larger scopes.
Thus, this approach can only be used to provide evidence that TRef1 may hold.
Note that any method for proving that TRef1 holds is inherently limited because of
the undecidability of first order logic. The bounded approach has been shown to be
effective in practice for finding errors and providing some assurance about correctness
(e.g., see [MRR11]).

Our tool accepts a rule expressed in Ecore [SBPM07] as its input. The rule is then
translated, using TXL [Cor06], into an Alloy encoding, which includes all of the rule’s
MAVO annotations, and is combined with our encoding of the Ecore metamodel. To
this, we add Alloy predicates that allow us to create arbitrary simple extensions (see
Definition 5) for the LHS and the RHS of the rule, as described in Section 4. The
description corresponding to the extensions of the LHS of the rule was encoded using
Alloy’s facts, whereas that for the RHS – with Alloy’s predicates. This allowed us
to only take into account well-formed LHS extensions, and to create instances of RHS
extensions that are not well-formed, using Alloy’s assertions. Running the generated
Alloy encoding enumerates all RHS MAVO models (i.e., the RHS of the MAVO rule
and its simple extensions) with base models that are not well-formed, up to a given
scope.

4.3 Checking Property TRef2

In Sec. 3.2, we discussed syntactic sufficient conditions for showing that a candidate
refinement mapping satisfies property Ref2 . This method is applicable only when the
MAVO models on either side of the mapping use only annotations and no additional
FO constraints. Fortunately, for a refinement rewrite rule ρ = Rρ(LHS,RHS), this
is the case. The syntactic refinement conditions also have the desirable “locality”
characteristic given by the following proposition (the proof is in the Appendix).

Proposition 4. Given a refinement rewrite rule ρ = Rρ(LHS,RHS), if ρ satisfies
the syntactic refinement conditions in Fig. 11, then every simple extension R(PLHS ,
PRHS) of Rρ satisfies these conditions.

Thus, we can reduce the problem of checking condition TRef2 to simply checking
the syntactic refinement conditions on the LHS and RHS of the rule – i.e., we have
reduced the problem of checking the proof obligation TRef2 to the much simpler
problem of checking the syntactic refinement conditions given in Fig. 11. Note how-
ever, that since this is only a sufficient condition, ρ may fail this test and still satisfy
TRef2 .

For a given refinement rewrite rule, these conditions can be easily checked with
existing tools. In particular, checking TRef2 involves (a) expressing the constraints
shown in Fig. 11 as OCL constraints over the Ecore representation of the rule, and
(b) using an off-the-shelf OCL constraint checker, such as DresdenOCL [HDF00].

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

18 · R. Salay, et al.

(?)

(?)(?)
(?)(?)

(?) (?) (?)

(?P?)C2:Class

(E??)C1:Class

(?P?)C2:Class

(?P?)C1:Class

(??C)C2:Class

(?P?)C1:Class

(E??)C2:Class

(??C)C1:Class

(???)C2:Class

(???)C1:Class

(??C)C2:Class

(??C)C1:Class

(???)C1:Class (???)C3:Class

(?S?)C2:Class

isSingleton = true

(???)C3:Class(???)C1:Class

(?S?)C1C2:Class

isSingleton = true

(?S?)C3C2:Class

isSingleton = true

(E??)(E??) (E?C) (E?C)

(???)(?P?)(???)

(E?C) (E?C)

(??C)

composedIncomposedIn

composedIncomposedIncomposedIn

composedIncomposedIn

composedIn

composedIn composedIn

R1 R2

R3 R4

(EPC)
(EPC)

(EPC) (EPC)

(?) (?)(EPC)X:Class

(EPC)Y:Property (EPC)Y:Property

(EPC)X:Class
(EPC)getY:Operation

(EPC)setY:Operation

ownedAttribute

ownedOperation

ownedOperation
ownedAttribute

a)GetSet

b)CompReduce

Figure 12 – The rules defining transformations GetSet and CompReduce.

5 Applying the Transformation Verification Method

We now illustrate the transformation verification method on three confluent and ter-
minating transformations of MAVO partial models defined by rewrite rules. In all
cases, the transformation is obtained by applying the corresponding rule(s) repeatedly
until it can no longer be applied. We show how results of the analysis can either give
evidence of correctness of each transformation or help repair it.

Example Transformation Rules. The first example is the language-independent
transformation ReduceAbs discussed in Section 1 with the rule shown in Fig. 3. The
second is GetSet with the rule shown in Fig. 12(a). GetSet is a simple detail-adding
refinement transformation for class diagrams that we “lift” so that it can be applied to
MAVO class diagrams. Our objective here is to examine the common situation where
partiality-reducing refinements are interleaved with detail-adding ones. ReduceAbs
and GetSet are toy transformations and are considered here because they have been
analyzed manually in [SCG12], whereas here we show how our method can automate
the verification.

The third example is CompReduce, shown in Fig. 12(b). It consists of four
rules. This transformation has pragmatic utility: there are cases in MAVO mod-
els when a refinement can be implied by the interaction between annotations and
well-formedness rules, and CompReduce constructs these implied refinements for in-
stances of the composedIn association. Rule (R1) encodes the fact that if an instance
of the composedIn relation exists (i.e., is e-annotated) between two classes then the
classes must exist as well, since an association cannot exist without its endpoints. Rule
(R2) is due to the the well-formedness constraint in Fig. 4 that forbids a singleton
class from being composed in two classes simultaneously. The rule says that the s-
annotated class C2 on the LHS can be split since it has two ec-annotated composedIn

associations and thus any concretization of the LHS must have at least two classes
corresponding to C2. Rule (R3) says that the composedIn association between two
p-annotated classes can only be particular (i.e., there cannot be a set of them) and
so it should be p-annotated as well. Finally, rule (R4) is similar to (R3) but for
c-annotated classes.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 19

(EPC)(EPC)(EPC) (EPC)

(EPC)C2:Class

isSingleton = true

(ESC)C2:Class

isSingleton = true

(EPC)C3:Class(EPC)C3:Class (EPC)C1:Class(EPC)C1:Class

composedIncomposedIncomposedIncomposedIn

Figure 13 – An example of ReduceAbs producing an inconsistent model.

Verifying the transformations. Table 2 shows the results of applying the method
to the six rules of the three example transformations. The experiments were run on
a laptop with an Intel Core i7 processor and 8 GB of RAM using Alloy 4.2. For each
rule, we report the result of checking TRef1 for scopes 3 and 7 (using the Alloy-based
tool described in Sec. 4.2) and the result for TRef2 . Recall that checking TRef1 on
a rule for a scope n means that Ref1 is checked for all simple extensions of the rule
containing up to n additional atoms for each atom type.

TRef2 holds for ReduceAbs but TRef1 fails (at scope 3) to hold and a counterex-
ample is shown in Fig. 13. The LHS is a model with an s-annotated singleton class
C2 that has two composedIn associations to different classes. The RHS changes C2 to
being p-annotated by applying ReduceAbs. The LHS has concretizations but the RHS
does not because of well-formedness constraint (1) in Fig. 4 that forbids a singleton
class from being composed into two classes simultaneously.

One way to repair this rule is to restrict it by adding a negative application
condition (NAC) [HHT96] that guards the rule application from such situations. The
NAC is created by encoding the relevant slice of the discovered counterexample. In
the case of ReduceAbs, the repair involves constructing a NAC from the LHS of Fig. 13
in order to prevent the rule from being applied to singleton classes that are composed
in more than one class. The resulting fixed rule satisfies both TRef1 (at least up to
scope 7) and TRef2 , as shown in the second row of Table 2.

Another interesting way to repair ReduceAbs is to restrict it to apply only after
the CompReduce transformation, to “normalize” the input model. In this case, rule
(R2) of CompReduce would split the problematic case into two s-annotated singleton
classes and then ReduceAbs could be applied. Note that these two possible repairs
yield different results.

TRef1 holds for scope 7 for the transformation GetSet, but TRef2 fails. The
counterexample here occurs when the RHS model is comp-annotated since the ele-
ments getY : Operation, setY : Operation and the corresponding ownedOperation

relations are added to the LHS but case (4) in Fig. 11 says that such additions can only
occur in a refinement if the model is inc-annotated (i.e., incomplete). Thus, we repair
this rule by refining the OW annotation from ? to inc. The resulting transformation
satisfies both properties. For the four rules of the transformation CompReduce, both
TRef2 and TRef1 are satisfied and thus we have evidence that this transformation is
valid refinement.

As this is prototype tooling, we did not focus on optimizing its performance. Even
with an unoptimized tool, the results indicate that all scope 3 checks finish quickly
(< 1s). Scope 7 checks take on the order of minutes, with the longest taking just over
10 (CompReduce (R4)). Such runtimes can still be reasonable since transformation
verification needs to be done only once when the transformation implementation is
changed. We leave the problem of determine the reasonable scope for a given rule for

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

20 · R. Salay, et al.

Rule TRef1 Time(ms)
Scope 3

Time(ms)
Scope 7

TRef2

ReduceAbs fail 562 N/A pass
ReduceAbs(repaired) pass 733 313166 pass

GetSet pass 636 4770 fail
GetSet (repaired) pass 668 226128 pass
CompReduce (R1) pass 645 350476 pass
CompReduce (R2) pass 224 127505 pass
CompReduce (R3) pass 256 114916 pass
CompReduce (R4) pass 689 623241 pass

Table 2 – Results of applying the verification method to the six rules and their counter-
example-based repairs.

future work.

6 Related Work

Refinement of specifications. The uncertainty-reducing refinements that we stud-
ied in this paper are closely related to refinement of partial behavioral models. Well
known examples of such formalisms include Modal Transition Systems (MTSs) [LT88]
and Featured Transition Systems (FTSs) [CHS+10]. The concretizations of MTSs and
FTSs are Labeled Transition Systems (LTSs).

In MTSs, uncertainty is captured using maybe-annotated transitions. Existing
methods of checking MTS refinement, e.g., [Lar91, FBD+11], verify that it holds for
specific pairs of models. We also show how to verify that a transformation is refining
regardless of particular input and output models.

Featured Transition Systems (FTSs) [CHS+10] are precise representations of sets
of models, used in the area of Software Product Line (SPL) engineering [PBVDL05]
to capture the variability in the behavior of products in a product family. An FTS
encodes a set of LTSs using annotations that associate each of its transitions with
specific features from a feature diagram. FTS refinement is studied in [CCS+12] for
the case where new features are added to the SPL, by classifying the new features
with respect to whether they add or remove new behavior. MAVO partiality can
express more nuanced kinds of variability than the m-like variability in FTSs. Cordy
et al. [CSHL13] integrated the FTS formalism with the Textual Variability Langage
(TVL) [CBH11] which offers some advanced language constructs, such as s-like multi-
features and v-like numerical attributes. These constructs are still less expressive than
theirMAVO counterparts and have not been studied in the context of FTS refinement.

The concept of refinement is central to formal software engineering methodolo-
gies and is supported by Z [WD96], B [AA05], Abstract State Machines [BS03],
OBJ [GWM+00], algebraic specifications [Mai97], etc. In this paper we showed that
refinement supported by MAVO is correct w.r.t. its language semantics. While it is
the closest to the approach used in algebraic specifications [Mai97], it differs from this
and all of the abovementioned languages in several important ways. First, MAVO is
not designed for software specification, but rather for expressing the uncertainty of
a modeler. This means that it provides mechanisms for explicitly specifying what
is unknown rather than expressing this only implicitly via omitted information (i.e.,

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 21

under-specification). Second, MAVO is a meta-language that can be used to augment
any modeling language defined using a metamodel in order to allow uncertainty speci-
fication. Thus, MAVO can be used with existing formal software modeling languages,
non-formal software modeling languages (e.g., i* [Yu97]) and even non-software mod-
eling languages (e.g., chemical structure models [ACH+97]), etc. MAVO achieves
this language independence because it is based only on the syntax of the modeling
language while ignoring its semantics – see [SFC12] for a more detailed discussion
– and thus MAVO refinement described in this paper is independent of the languge
semantics as well.

Set-reducing operations. Uncertainty-reducing transformations are a special case
of a wider class of operations that, given an artifact that abstracts a set of models,
produce a new artifact abstracting a subset of the original. Such operations can be
found in domains such as product line engineering, megamodeling and metamodeling.

In product line engineering, staged configuration [CHE04] is a method for incre-
mentally making choices about which features to include in a product. This is achieved
by stepwise reducing the set of possible configurations of the input feature model. To
guarantee this correctness conditions, six allowable specialization steps are provided,
each one representing a possible way to remove a configuration choice. These steps
are formalized using context-free grammars [CHU05] and are implemented in the
FeaturePlugin tool for the Eclipse platform [AC04].

Metamodels can also be understood as abstractions of sets of (instance) models,
since “a modeling language can be seen as delimiting all possible specifications which
can be constructed using that language” [Gui07]. A method typically used to reduce
the set of admissible instances of a metamodel is the addition of constraints [KNLS00],
often in a language such as the Object Constraint Language (OCL) [Obj06]. A dif-
ferent approach is to enable the creation of metamodel sub-types. There are vari-
ous approaches for creating model subtypes [GCD+12], mainly focusing on achieving
model substitutability, especially in the context of model transformations. Metamodel
pruning is a dual to subtyping, aiming to create metamodel super-types [SMBJ09].

Megamodels are used to model the macroscopic view of software development.
The elements of a megamodel are themselves models, interconnected with various
macro-relations [FN05, SME09]. In that sense, it is an abstraction of a set of models.
Reducing this set (in order to, for example, create task-specific views) can be accom-
plished with model slicing [BCE+06]. Since megamodels are themselves models, it is
possible to use submodel extraction techniques [CVC13].

Verifying model transformations. More broadly, our work is related to a num-
ber of approaches for verifying properties of model transformations. Some of them
employ theorem proving [GGL+06, Sch10], whereas others do some form of model
checking [Hec98, BHM09]. Like our approach to proving TRef1 , many use Alloy.
For example, Baresi et al. [BS06] represent subsequent applications of rules to an in-
put model as a state-space, similarly to the standard method for representing traces
with Alloy [JSS01]. This allows property checking for graph transformation systems,
similar to bounded model checking. Anastasakis et al. [ABK07] take a similar ap-
proach, using Alloy to verify ATL-like transformations [JABK08]. They create the
Alloy encoding of the transformation and its source and target metamodels and run
the tool to produce instances of transformed models, trying to verify that, given
well-formed inputs, the rule produces well-formed outputs. However, neither of the
above approaches proposes a systematic method to repair the transformation in case

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

22 · R. Salay, et al.

counter-examples are produced. Sen et al. [SMTC12] use Alloy to create complete
versions of partially defined models to use for testing model transformations. This
process is reminiscent of the way we use Alloy to generate all extensions of the graph
rewrite rule, even though the eventual goal is different.

7 Conclusion and Future Work

In this paper, we described an approach for verifying uncertainty reducing refinements
of partial models. In particular, we defined a method for verifying refinements ap-
plied to particular models and then extended this to verify refining transformations
of partial models. In both cases, the verification depends on satisfying two proof obli-
gations and can be automated. For transformation verification, we then showed that
the first condition (TRef1) can be checked by a special-purpose tool built on top of
Alloy, and the second condition (TRef2) – by a standard OCL checker using a set of
syntactic conditions on the transformation. Applying the method on several examples
showed that it is effective for debugging transformations and gathering evidence of
their correctness.

Our approach has a number of limitations which we intend to address in follow-on
work. Specifically, we are interested in investigating ways to prove the transforma-
tion condition TRef1 , instead of collecting evidence for it using Alloy. In some
cases, this can be done by calculating the maximum scope under which an absence
of a counterexample guarantees correctness. This notion is similar to computing a
problem diameter [BCCZ99]. We also plan to study the more general problem of
verifying uncertainty-reducing refining transformations that also involve metamodel
translations.

References

[AA05] J.-R. Abrial and J.-R. Abrial. The B-book: Assigning Programs
to Meanings. Cambridge University Press, 2005. doi:10.1017/
CBO9780511624162.

[ABK07] K. Anastasakis, B. Bordbar, and J. Küster. Analysis of Model Trans-
formations via Alloy. In Proc. of MoDeVVa’07, 2007.

[AC04] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature Model-
ing Plug-in for Eclipse. In Proc. of the 2004 OOPSLA Workshop
on Eclipse Technology eXchange, pages 67–72, 2004. doi:10.1145/
1066129.1066143.

[ACH+97] Sh. Ash, M. Cline, R. W. Homer, T. Hurst, and G. Smith. SYBYL
Line Notation (SLN): A Versatile Language for Chemical Structure
Representation. J. of Chemical Information and Computer Sciences,
37(1):71–79, 1997. doi:10.1021/ci960109j.

[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proc. of TACAS’99, volume 1579 of
LNCS, 1999. doi:10.1007/3-540-49059-0_14.

[BCE+06] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sa-
betzadeh. A Manifesto for Model Merging. In Proc. of the 2006
International Workshop on Global Integrated Model Management
(GaMMa’06), pages 5–12, 2006. doi:10.1145/1138304.1138307.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.1017/CBO9780511624162
http://dx.doi.org/10.1017/CBO9780511624162
http://dx.doi.org/10.1145/1066129.1066143
http://dx.doi.org/10.1145/1066129.1066143
http://dx.doi.org/10.1021/ci960109j
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1145/1138304.1138307
http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 23

[BHM09] A. Boronat, R. Heckel, and J. Meseguer. Rewriting Logic Semantics
and Verification of Model Transformations. In Proc. of FASE’09, vol-
ume 5503 of LNCS, 2009. doi:10.1007/978-3-642-00593-0_2.

[BS03] E. Börger and R. Stärk. Abstract State Machines: A Method for High-
level System Design and Analysis. Springer, 2003. doi:10.1007/
978-1-84882-736-3_3.

[BS06] L. Baresi and P. Spoletini. On the Use of Alloy to Analyze Graph
Transformation Systems. In Proc. of ICGT’06, pages 306–320, 2006.
doi:10.1007/11841883_22.

[CBH11] A. Classen, Q. Boucher, and P. Heymans. A Text-based Approach to
Feature Modelling: Syntax and Semantics of TVL. Science of Com-
puter Programming, 76(12):1130–1143, 2011. doi:10.1016/j.scico.
2010.10.005.

[CCGDL10] J. Cabot, R. Clarisó, E. Guerra, and J. De Lara. Verification and
Validation of Declarative Model-to-Model Transformations through
Invariants. J. of Systems and Software, 83(2):283–302, 2010. doi:
10.1016/j.jss.2009.08.012.

[CCS+12] M. Cordy, A. Classen, P.Y. Schobbens, P. Heymans, and A. Legay.
Managing Evolution in Software Product Lines: a Model-checking
Perspective. In Proc. of VaMoS’12, pages 183–191, 2012. doi:
10.1145/2110147.2110168.

[CHE04] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration us-
ing Feature Models. In Proc. of SPLC’04, pages 162–164. Springer,
2004. doi:10.1007/978-3-540-28630-1_17.

[CHS+10] A. Classen, P. Heymans, P.Y. Schobbens, A. Legay, and J.F. Raskin.
Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines. In Proc. of ICSE’10, pages 335–
344, 2010. doi:10.1145/1806799.1806850.

[CHU05] K. Czarnecki, S. Helsen, and E. Ulrich. Formalizing Cardinality-Based
Feature Models and Their Specialization. Software Process: Improve-
ment and Practice, 10(1):7 – 29, 2005. doi:10.1002/spip.213.

[Cor06] J. Cordy. The TXL Source Transformation Language. Science of
Computer Programming, 61(3):190–210, 2006. doi:10.1016/j.scico.
2006.04.002.

[CSHL13] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Beyond
Boolean Product-line Model Checking: Dealing with Feature At-
tributes and Multi-features. In Proc. of ICSE’13, pages 472–481, 2013.
doi:10.1109/ICSE.2013.6606593.

[CVC13] B. Carré, G. Vanwormhoudt, and O. Caron. From Subsets of Model
Elements to Submodels. Software & Systems Modeling, pages 1–27,
2013. doi:10.1007/s10270-013-0340-x.

[dW98] D. d’Souza and A. Wills. Catalysis: Objects, Components, and Frame-
works with UML, volume 223. Object Technology Series. Addison-
Wesley, 1998.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/978-1-84882-736-3_3
http://dx.doi.org/10.1007/978-1-84882-736-3_3
http://dx.doi.org/10.1007/11841883_22
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1145/2110147.2110168
http://dx.doi.org/10.1145/2110147.2110168
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://dx.doi.org/10.1145/1806799.1806850
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1016/j.scico.2006.04.002
http://dx.doi.org/10.1016/j.scico.2006.04.002
http://dx.doi.org/10.1109/ICSE.2013.6606593
http://dx.doi.org/10.1007/s10270-013-0340-x
http://dx.doi.org/10.5381/jot.2015.14.1.a3

24 · R. Salay, et al.

[EDM05] C. Ebert and J. De Man. Requirements Uncertainty: Influencing Fac-
tors and Concrete Improvements. In Proc. of ICSE ’05, pages 553–560,
2005. doi:10.1109/ICSE.2005.1553601.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals
of Algebraic Graph Transformation, volume 373. Springer, 2006.
doi:10.1007/3-540-31188-2.

[FBD+11] D. Fischbein, G. Brunet, N. D’Ippolito, M. Chechik, and S. Uchitel.
Weak Alphabet Merging of Partial Behaviour Models. ACM TOSEM,
21(2):1–49, 2011. doi:10.1145/2089116.2089119.

[FCS12] M. Famelis, M. Chechik, and R. Salay. Partial Models: Towards Mod-
eling and Reasoning with Uncertainty. In Proc. of ICSE’12, pages 573–
583, 2012. doi:10.1109/ICSE.2012.6227159.

[FN05] J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software
Evolution Through Transformations. Electronic Notes in Theoretical
Computer Science, 127(3):59 – 74, 2005. doi:10.1016/j.entcs.2004.
08.034.

[FSDSC13] M. Famelis, R. Salay, A. Di Sandro, and M. Chechik. Transformation
of Models Containing Uncertainty. In Proc. of MODELS’13, pages
673–689, 2013. doi:10.1007/978-3-642-41533-3_41.

[GCD+12] C. Guy, B. Combemale, S. Derrien, J. Steel, and J.-M. Jézéquel. On
Model Subtyping. In Proc. of ECMFA’12, volume 7349 of LNCS, pages
400–415, 2012. doi:10.1007/978-3-642-31491-9_30.

[GGL+06] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner. Towards
Verified Model Transformations. In Proc. of MoDeVVa’06, pages 78–
93, 2006.

[Gui07] G. Guizzardi. On Ontology, Ontologies, Conceptualizations, Modeling
Languages and (Meta)Models. In Frontiers in Artificial Intelligence
and Applications, Databases and Information Systems IV, 2007.

[GWM+00] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouan-
naud. Introducing OBJ. Springer, 2000. doi:10.1007/
978-1-4757-6541-0_1.

[HDF00] H. Hussmann, B. Demuth, and F. Finger. Modular Architecture for a
Toolset Supporting OCL. In Proc. of UML’00, volume 1939 of LNCS,
2000. doi:10.1007/3-540-40011-7_20.

[Hec98] R. Heckel. Compositional Verification of Reactive Systems Specified
by Graph Transformation. In Proc. of FASE’98, pages 138–153, 1998.
doi:10.1007/BFb0053588.

[HHT96] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative
Application Conditions. Fundamenta Informaticae, 26(3):287–313,
1996.

[Hoa69] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Com-
munications of the ACM, 12(10):576–580, 1969. doi:10.1145/363235.
363259.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model
Transformation Tool. Science of Computer Programming, 72(1):31–
39, 2008. doi:10.1016/j.scico.2007.08.002.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.1109/ICSE.2005.1553601
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1145/2089116.2089119
http://dx.doi.org/10.1109/ICSE.2012.6227159
http://dx.doi.org/10.1016/j.entcs.2004.08.034
http://dx.doi.org/10.1016/j.entcs.2004.08.034
http://dx.doi.org/10.1007/978-3-642-41533-3_41
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://dx.doi.org/10.1007/978-1-4757-6541-0_1
http://dx.doi.org/10.1007/978-1-4757-6541-0_1
http://dx.doi.org/10.1007/3-540-40011-7_20
http://dx.doi.org/10.1007/BFb0053588
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 25

[Jac06] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2006.

[JSS01] D. Jackson, I. Shlyakhter, and M. Sridharan. A Micromodularity
Mechanism. In Proc. of FSE’01, pages 62–73, 2001. doi:10.1145/
503218.503219.

[KNLS00] G. Karsai, G. Nordstrom, A. Ledeczi, and J. Sztipanovits. Specifying
Graphical Modeling Systems Using Constraint-based Meta Models. In
Proc. of CACSD’00, pages 89–94, 2000. doi:10.1109/CACSD.2000.
900192.

[LAD+14] L. Lucio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim,
E. Syriani, and M. Wimmer. Model Transformation Intents and
Their Properties. J. Softw. & Systems Modeling, pages 1–38, 2014.
doi:10.1007/s10270-014-0429-x.

[Lar91] P. Larsen. The Expressive Power of Implicit Specifications. In Proc. of
ICALP’91, volume 510 of LNCS, pages 204–216, 1991. doi:10.1007/
3-540-54233-7_135.

[LT88] K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proc. of
LICS’88, 1988. doi:10.1109/LICS.1988.5119.

[Mai97] T. Maibaum. Conservative Extensions, Interpretations between The-
ories and All That! In Proc. of TAPSOFT’97, pages 40–66. Springer,
1997. doi:10.1007/BFb0030588.

[MRR11] Sh. Maoz, J. O. Ringert, and B. Rumpe. CD2Alloy: Class Diagrams
Analysis Using Alloy Revisited. In Proc. of MODELS’11, pages 592–
607. Springer, 2011. doi:10.1007/978-3-642-24485-8_44.

[NK08] A. Narayanan and G. Karsai. Towards Verifying Model Transfor-
mations. In Proc. of GT-VMT’06, pages 191 – 200, 2008. doi:
10.1016/j.entcs.2008.04.041.

[Obj06] Object Management Group. Object Constraint Language OMG Avail-
able Specification Version 2.0, 2006. URL: http://www.omg.org/
cgi-bin/doc?formal/2006-05-01.

[PBVDL05] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer-Verlag
New York Inc, 2005.

[SBPM07] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:
Eclipse Modeling Framework. Addison Wesley, 2007.

[SCG12] R. Salay, M. Chechik, and J. Gorzny. Towards a Methodology for Ver-
ifying Partial Model Refinements. In Proc. of ICST’12, pages 938–945,
2012. doi:10.1109/ICST.2012.199.

[Sch10] B. Schätz. Verification of Model Transformations. ECEASST, 29, 2010.

[SCH12] R. Salay, M. Chechik, and J. Horkoff. Managing Requirements Un-
certainty with Partial Models. In Proc. of RE’12, pages 1–10, 2012.
doi:10.1109/RE.2012.6345804.

[SFC12] R. Salay, M. Famelis, and M. Chechik. Language Independent Refine-
ment Using Partial Modeling. In Proc. of FASE’12, volume 7212 of
LNCS, 2012. doi:10.1007/978-3-642-28872-2_16.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.1145/503218.503219
http://dx.doi.org/10.1145/503218.503219
http://dx.doi.org/10.1109/CACSD.2000.900192
http://dx.doi.org/10.1109/CACSD.2000.900192
http://dx.doi.org/10.1007/s10270-014-0429-x
http://dx.doi.org/10.1007/3-540-54233-7_135
http://dx.doi.org/10.1007/3-540-54233-7_135
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1007/BFb0030588
http://dx.doi.org/10.1007/978-3-642-24485-8_44
http://dx.doi.org/10.1016/j.entcs.2008.04.041
http://dx.doi.org/10.1016/j.entcs.2008.04.041
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://dx.doi.org/10.1109/ICST.2012.199
http://dx.doi.org/10.1109/RE.2012.6345804
http://dx.doi.org/10.1007/978-3-642-28872-2_16
http://dx.doi.org/10.5381/jot.2015.14.1.a3

26 · R. Salay, et al.

[SGC13] R. Salay, J. Gorzny, and M. Chechik. Change Propagation due to Un-
certainty Change. In Proc. of FASE ’13, pages 21–36. Springer, 2013.
doi:10.1007/978-3-642-37057-1_3.

[SMBJ09] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model Pruning.
In Proc. of MODELS’09, volume 5795 of LNCS, pages 32–46, 2009.
doi:10.1007/978-3-642-04425-0_4.

[SME09] R. Salay, J. Mylopoulos, and S. Easterbrook. Using Macromodels to
Manage Collections of Related Models. In Proc. of CaiSE’09, pages
141–155. Springer, 2009. doi:10.1007/978-3-642-02144-2_15.

[SMTC12] S. Sen, J.M. Mottu, M. Tisi, and J. Cabot. Using Models of Partial
Knowledge to Test Model Transformations. In Proc. of ICMT’12’,
2012. doi:10.1007/978-3-642-30476-7_2.

[SNCE10] M. Sabetzadeh, S. Nejati, M. Chechik, and S. Easterbrook. Reasoning
about Consistency in Model Merging. In Proc. of LWI’10, 2010.

[vL09] A. van Lamsweerde. Requirements Engineering - From System Goals
to UML Models to Software Specifications. Wiley, 2009.

[WD96] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and
Proof. Prentice-Hall, Inc., 1996.

[Wir71] N. Wirth. Program Development by Stepwise Refinement. Commu-
nications of the ACM, 14(4):221–227, 1971. doi:10.1145/362575.
362577.

[Yu97] E. Yu. Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering. In Proc. of RE’97, pages 226–235, 1997.
doi:10.1109/ISRE.1997.566873.

A Proofs

A.1 Proof of Prop. 1

By Def. 2, P is consistent iff it contains at least one concretization. Let P ′ be
the refinement of P obtained by making all annotations default (i.e., removing any
explicit annotations). Clearly P ′ has at most one concretization: if bs(P ′) is well-
formed, then this is the sole concretization; otherwise, it has no concretizations. But,
bs(P) = bs(P ′) since we are just changing the annotations. Therefore, since all
concretizations of P ′ are also concretizations of P , this means that when bs(P) is
well-formed, it is a concretization of P and P is consistent.

A.2 Proof of Prop. 2

We wish to show that if Ref2 holds then every concretization of P ′ is also a con-
cretization of P . When P and P ′ have the same base model, R() is the identity,
and the proposition clearly holds. When P ′ and P have different base models, then
concretizations are not directly comparable since Mod(FO(P ′)) and Mod(FO(P))
are based on different signatures. To address this, we work with a representation of a
concretization that is not dependent on the signature. Specifically, we note that ev-
ery concretization of a MAVO model can also be viewed as its refinement – a ground
MAVO model containing no annotations. Furthermore, the corresponding MAVO

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.1007/978-3-642-37057-1_3
http://dx.doi.org/10.1007/978-3-642-04425-0_4
http://dx.doi.org/10.1007/978-3-642-02144-2_15
http://dx.doi.org/10.1007/978-3-642-30476-7_2
http://dx.doi.org/10.1145/362575.362577
http://dx.doi.org/10.1145/362575.362577
http://dx.doi.org/10.1109/ISRE.1997.566873
http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 27

mapping for this refinement is easy to obtain from the FOL structure representation
of the concretization.

Definition 9. Given a MAVO model P with FO(P) = 〈ΣP ,ΦP 〉, let M ∈ [P]
be a concretization and FO(M) be its representation as a FOL structure satisfying
ΦP . Let M ! be the MAVO model with base model M and with no annotations. We
define the MAVO mapping RM between M ! and P using the following condition:
∀a ∈ atoms(M !), a′ ∈ atoms(P) · 〈a, a′〉 ∈ RM iff in FO(M), the MAVO predicate
for a′ holds for a.

For simplicity, in the following proof of Prop. 2, we use M to denote either a
concretization as a model, its FOL representation FO(M) or its corresponding ground
MAVO model M !, and our usage should be clear from context. Furthermore, for
any MAVO model P with FO(P) = 〈ΣP ,ΦP 〉, there is a one-to-one correspondence
between the atoms of P and the MAVO predicates in ΣP and we will rely on this to
switch between the different usages.

Assume that the condition Ref2 holds and let M be a model s.t. M ∈ [P ′], with
RM being the mapping between M and P ′. Without loss of generality, we assume
that the metamodel of M consists of a single element type and relation type. Thus,
we will omit the typing of variables where its meaning is clear. Since Ref2 holds, we
know that (ΦP ′ ⇒ R(ΦP)), and since M |= ΦP ′ , therefore, M |= R(ΦP). We now
show that this also means that M |= ΦP when we consider the mapping between M
and P to be R ◦ RM . It is sufficient to show for each sentence φ ∈ ΦP that M |= φ.
We proceed by cases considering each type of MAVO constraint in ΦP . Our strategy
in each case is to consider the different possible sentence translations R() of φ defined
by Fig. 8. For each possible translation, we show that M |= φ using the mapping
R ◦RM .

Case 1 (Complete): If P has the inc annotation then it has no Complete constraint;
thus we only need to consider when it is missing this annotation. The Complete
constraint consists of a conjunction of clauses. We prove that M satisfies the clause
for model elements; the proof for model relations is similar. The clause corresponding
to model elements is the disjunction ∀x · a1(x) ∨ . . . ∨ am(x) containing every MAVO
element predicate ai(.) of ΣP . Let φ1 denote this clause. Each ai(x) can fall into
case (1) or (2) in the sentence translation R() defined in Fig. 8. If case (1) applies,
then ai(x) is replaced by the disjunction a′i1(x) ∨ . . . ∨ a′im(x). If case (2) applies, it
is replaced by false(x) Thus, R(φ1) is a disjunction of a subset of MAVO element
predicates of ΣP ′ . But since M |= R(φ1), every element of M must be mapped by
RM to an element of this subset. Thus, R ◦ RM maps every element of M to an
element of P which must occur as a disjunct in φ1. Therefore, M |= φ1.

Case 2 (Exists): For each clause Existsa in ΦP for an atom a ∈ atoms(P) , we consider
the translation cases in Fig. 8 that can apply to R():

• If case (1) applies, R(Existsa) = ∃x ·a′1(x)∨ . . .∨a′n(x) . SinceM |= R(Existsa),
it must be that 〈a′′, a′i〉 ∈ RM for some i and a′′ ∈ atoms(M). But 〈a′i, a〉 ∈ R
for all i ∈ {1, . . . , n}. Therefore, 〈a′′, a〉 ∈ R ◦RM and thus M |= Existsa.

• We show that case (2) cannot occur. If case (2) applies, R(Existsa) = ∃x ·
false(x). This is always false and so R(ΦP) = false. But M |= R(Φ) and so
M |= false which is a contradiction because false is unsatisfiable. Therefore,
this case cannot occur.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

28 · R. Salay, et al.

Case 3 (Unique): For each clause Uniquea in ΦP for an atom a ∈ atoms(P), we
consider the translation cases in Fig. 8 that can apply for R():

• If case (1) applies, it must be that n = 1 since Uniquea means that there
is at most one a in a concretization. Thus, R(Uniquea) = Uniquea′1 . Since
M |= R(Uniquea), it must be that either 〈a′′, a′1〉 ∈ RM for exactly one a′′ ∈
atoms(M) or there is no such a′′. In the first case, this means that 〈a′′, a〉 ∈
R ◦ RM and thus M |= Uniquea. In the second case, RM maps nothing in M
to a′1 and so R ◦RM maps nothing in M to a. Thus, M |= Uniquea.

• If case (2) applies, R maps nothing in P ′ to a and so R ◦RM maps nothing in
M to a. Thus, M |= Uniquea.

Case 4 (Distinct): For each clause Distincta−b in ΦP for atoms a, b ∈ atoms(P),
we consider the translation cases in Fig. 8 that can apply for R(). There are four
possibilities since case (1) or (2) could apply to either a or b.

• If case (1) applies to both a and b, then R(Distincta−b) = ∀x · (a′1(x) ∨ . . . ∨
a′n(x)) ⇒ ¬(b′1(x) ∨ . . . ∨ b′m(x)). Note that a′i 6= b′j for all (i, j) since Dis-
tincta−b means that a and b cannot overlap in a concretization. Since M |=
R(Distincta−b), it must be the case that the set of atoms in M that RM maps
to, {a′1, . . . , a′n}, is disjoint from the set that RM maps to, {b′1, . . . , b′m}. Thus,
the set of atoms in M that R ◦RM maps to a is disjoint from the set of atoms
in M that R ◦RM maps to b. Therefore, M |= R(Distincta−b).

• If case (1) applies to a and case (2) to b, then R(Distincta−b) = ∀x · (a′1(x) ∨
. . . ∨ a′n(x)) ⇒ ¬false(x). Thus, R(Distincta−b) is always true and M |=
R(Distincta−b) trivially.

• If case (2) applies to a and case (1) to b, then R(Distincta−b) = ∀x · false(x)⇒
¬(b′1(x)∨. . .∨b′m(x)). Thus, R(Distincta−b) is always true andM |= R(Distincta−b)
trivially.

• If case (3) applies to both a and b, then R(Distincta−b) = ∀x · false(x) ⇒
¬false(x). Thus, R(Distincta−b) is always true and M |= R(Distincta−b) triv-
ially.

Since all the cases have been considered, M |= ΦP and therefore, M ∈ [P].

A.3 Proof of Prop. 3

Let R(P, P ′) and R′(P ′, P ′′) be two MAVO mappings that are valid refinements. Let
FO(P) = 〈ΣP ,ΦP 〉, FO(P ′) = 〈ΣP ′ ,ΦP ′′〉 and FO(P ′′) = 〈ΣP ′′ ,ΦP ′′〉 be the FO
encodings as defined in Section 2. We show that conditions Ref1 and Ref2 hold for
the composed mapping R′ ◦R.

Ref1 : Since R′ is a valid refinement, it satisfies Ref1 and P ′′ is satisfiable. Thus,
R′ ◦R also satisfies Ref1 .

Ref2 : Since R and R′ are valid refinements, Ref2 holds,

ΦP ′ ⇒ R(ΦP) (2)
ΦP ′′ ⇒ R′(ΦP ′) (3)

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 29

Applying to R′() to (2) yields R′(ΦP ′ ⇒ R(ΦP)) which is equivalent to R′(ΦP ′)⇒
R′(R(ΦP)) since the mapping translation only affects predicate symbols (See Fig. 8).
Combining this with (3) yields ΦP ′′ ⇒ R′(R(ΦP)). Therefore, Ref2 holds for R′ ◦R.

Since both conditions Ref1 and Ref2 hold for R′ ◦R, it is a valid refinement.

A.4 Proof of Prop. 4

The proof is by induction on the number of atoms in the simple extension R(PLHS ,
PRHS) of ρ. The base case is ρ itself and it satisfies the syntactic refinement con-
ditions by assumption. For the inductive step, we show that if the simple extension
R(PLHS , PRHS) of ρ satisfies the syntactic refinement conditions then so does the
simple extension R#(P#

LHS , P
#
RHS) that is minimally larger. We construct R#(P#

LHS ,

P#
RHS) by choosing an atom α, α /∈ PLHS , α /∈ PRHS and define P#

LHS = PLHS∪{α},
P#
RHS = PRHS ∪ {α} and R# = R ∪ {〈α, α〉}. R#(P#

LHS , P
#
RHS) is the unique (up

to isomorphism) simple extension of R(PLHS , PRHS) with the least additional atoms.
Although the atom α can have any annotation, we will initially consider the case that
it is annotated with epc in both P#

LHS and P#
RHS .

To check whether R#(P#
LHS , P

#
RHS) satisfies the syntactic refinement conditions,

first note that since case (0) is not dependent on atoms, it must be satisfied by
R#(P#

LHS , P
#
RHS) since, by assumption, R(PLHS , PRHS) satisfies it. Next we must

check the constraints in cases (1) and (2) for each atom a in P#
LHS . First consider the

atom a = α in P#
LHS . It is mapped to a single atom α in P#

RHS and so only case (1)
applies and all the constraints are clearly met. Every other atom a 6= α in P#

LHS is
also in PLHS and so, by the inductive assumption and the fact that α is not mapped
to any of these, we can conclude that cases (1) and (2) are satisfied for these. We can
argue similarly, for the atoms of P#

RHS and show that all the constraints for cases (3)
and (4) are met.

Therefore, when α is annotated with epc, R#(P#
LHS , P

#
RHS) satisfies all the syn-

tactic refinement conditions. Now, if any of these annotations are weakened the result
is that fewer syntactic refinement conditions are applicable but this does not change
the fact that they are all satisfied. For example, if α in P#

LHS is annotated with mpc,
then it must have the same annotation in P#

RHS (by definition of a simple extension),
and the first constraint in cases (1) and (3) no longer applies.

Therefore, for any annotation on α, R#(P#
LHS , P

#
RHS) satisfies all the syntactic

refinement conditions and Ref1 holds.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

30 · R. Salay, et al.

About the authors

Rick Salay is currently a NECSIS Research Associate in the De-
partment of Computer Science at the University of Toronto. He
received a B.A.Sc. and M.A.Sc. in Systems Design Engineer-
ing from University of Waterloo (1991) and a Ph.D. in Com-
puter Science from the University of Toronto (2010). His re-
search focus is on developing formal theories about non-formal
concepts such as modeler intent and modeler uncertainty in or-
der to provide a foundation for tool support that will help soft-
ware engineering practioners. He regularly serves on programme
committees for software engineering conferences and workshops.
Prior to his Ph.D., he had a 15 year career in advanced software
product development holding various senior software design roles,
most recently as chief architect at InSystems Technologies Inc.
(now Oracle). Contact him at rsalay@cs.toronto.edu, or visit
http://www.cs.toronto.edu/~rsalay/.

Marsha Chechik is currently Professor and Bell University Labs
Chair in Software Engineering in the Department of Computer
Science at the University of Toronto. She is also Vice Chair of
the Department. She received her Ph.D. from the University of
Maryland in 1996. Prof. Chechik’s research interests are in the
application of formal methods to improve the quality of software.
She has authored over 100 papers in formal methods, software
specification and verification, computer security and requirements
engineering. In 2002-2003, Prof. Chechik was a visiting scientist
at Lucent Technologies in Murray Hill, NY and at Imperial Col-
lege, London UK, and in 2013 – at Stonybrook University. She is
a member of IFIP WG 2.9 on Requirements Engineering and an
Associate Editor of Journal on Software and Systems Modeling.
She is has been an associate editor of IEEE Transactions on Soft-
ware Engineering 2003-2007, 2010-2013. She regularly serves on
program committees of international conferences in the areas of
software engineering and automated verification. Marsha Chechik
is a Program Committee Co-Chair of TACAS’16. She has been a
PC Co-Chair of the 2014 International Conference on Automated
Software Engineering (ASE), Co-Chair of the 2008 International
Conference on Concurrency Theory (CONCUR), PC Co-Chair of
the 2008 International Conference on Computer Science and Soft-
ware Engineering (CASCON), and PC Co-Chair of the 2009 Inter-
national Conference on Formal Aspects of Software Engineering
(FASE). She is a Member of ACM SIGSOFT and the IEEE Com-
puter Society. Contact her at chechik@cs.toronto.edu, or visit
http://www.cs.toronto.edu/~chechik/.

Journal of Object Technology, vol. 14, no. 3, 2015

mailto:rsalay@cs.toronto.edu
http://www.cs.toronto.edu/~rsalay/
mailto:chechik@cs.toronto.edu
http://www.cs.toronto.edu/~chechik/
http://dx.doi.org/10.5381/jot.2015.14.1.a3

Verifying Partial Model Refinements · 31

Michalis Famelis has been a graduate student in the Depart-
ment of Computer Science at the University of Toronto since 2008,
working on his PhD thesis since 2010. He has been continuously
involved in software modeling research since his undergraduate
diploma thesis, in the National Technical University of Athens
in 2007. In his current work, Michalis is studying the manage-
ment of design uncertainty in software models, via the use of par-
tial modeling techniques. He has served as co-chair and program
committee member of the workshop on Model Driven Engineering
Verification and Validation (MoDeVVa) since 2012 and has been
a program committee member of the 2013 Doctoral Symposium
at the conference on Model Driven Engineering Languages and
Systems (MODELS) and the 2013 Workshop on Domain-Specific
Modeling (DSM). Contact him at famelis@cs.toronto.edu, or
visit http://www.cs.toronto.edu/~famelis/.

Jan Gorzny received his bachelor’s degree in computer science
and combinatorics from the University of Waterloo in 2011, and a
M.Sc. in computer science from the University of Toronto in 2013.
He is currently pursuing a M.Sc. in algorithmic graph theory at
the University of Victoria. His research interests include formal
methods and model-driven engineering, as well as graph theory
and discrete mathematics. Contact him at jgorzny@uvic.ca, or
visit http://www.math.uvic.ca/~jgorzny/.

Acknowledgments We thank reviewers of this paper for their thoughtful feedback.
We are also grateful to the reviewers of our original VOLT’12 submission as well as the
attendees of the VOLT’12 workshop for discussions and suggestions for improvement
of this work.

Journal of Object Technology, vol. 14, no. 3, 2015

mailto:famelis@cs.toronto.edu
http://www.cs.toronto.edu/~famelis/
mailto:jgorzny@uvic.ca
http://www.math.uvic.ca/~jgorzny/
http://dx.doi.org/10.5381/jot.2015.14.1.a3

	Introduction
	Background
	Models and metamodels
	MAVO partial models
	Formalizing MAVO partiality
	Mappings

	Verifying Individual Refinements
	Illustration
	Annotation-only case for Ref2

	Verifying Refining Transformations
	Transformations using rewrite rules
	Checking Property TRef1
	Checking Property TRef2

	Applying the Transformation Verification Method
	Related Work
	Conclusion and Future Work
	Bibliography
	Proofs
	Proof of Prop. 1
	Proof of Prop. 2
	Proof of Prop. 3
	Proof of Prop. 4

	About the authors

