
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Foundational MDA Patterns for
Service-Oriented Computing

Colin Atkinsona Philipp Bostana Dirk Draheimb

a. Software Engineering Group, University of Mannheim, Germany

b. Data Center, University of Innsbruck, Austria

Abstract As the foundation of EDI, B2C and B2B, distributed comput-
ing is a key enabler for today’s enterprises and will become even more
important with the advent of cloud computing on the one hand and an
ever more agile work organization on the other hand. Whilst the rapid
evolution of distributed computing technologies in the last three decades
has delivered a rich set of platforms and paradigms for building robust
enterprise systems, it has also left a legacy of unresolved problems includ-
ing fundamental inconsistencies between the concepts of the two leading
distributed computing paradigms, i.e., distributed object computing and
service-oriented architecture. Equally important, there is a growing need
to lower the complexities and barriers involved in developing client appli-
cations, which range from large scale business applications and business
processes to laptop programs and small apps on mobile devices. In this
article, we present a unified conceptual framework for service-oriented
computing based on the proven MDA (Model Driven Architecture) ter-
minology stack. With the conceptual framework we consolidate, and give
semantics to, core concepts of service-oriented computing and provide a
set of foundational model transformation patterns that map between the
presented concepts and further clarify practical service-oriented comput-
ing scenarios. Finally, we show how the developed framework perfectly
fits to the OSM (Orthographical Software Modeling) approach.

Keywords distributed computing, model-driven development, service-oriented
architectures

1 Introduction

Distributed computing technologies are today key enablers for enterprise computing.
Distributed computing is the basis by which IT (information technology) is able to
go beyond the confines of single data centers and support general ICT (information
and communication technology). Crucial ICT paradigms like EDI (electronic data
interchange) [Emm93], B2C (business to customer) and B2B (business to business)

Colin Atkinson, Philipp Bostan, Dirk Draheim. Foundational MDA Patterns for Service-Oriented
Computing. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In Journal
of Object Technology, vol. 14, no. 1, 2015, pages 1–30. doi:10.5381/jot.2015.14.1.a2

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2015.14.1.a2
http://dx.doi.org/10.5381/jot.2015.14.1.a2
http://dx.doi.org/10.5381/jot.2015.14.1.a2

2 · C. Atkinson, P. Bostan, D. Draheim

that changed the way we do business are all in the realm of distributed computing.
And again, the emerging technological paradigms of ubiquitous computing [Wei91],
cloud computing as well as smart manufacturing [Coa11] heavily rely on distributed
computing technology. Similarly, BYOD (bring your own device) is not merely a
buzzword. Superficially, it is about bringing gadgets to your staff; however, what
we actually currently observe in enterprises is a fundamental transformation of work
organization resulting into ever more agile work models and work forces. In the long
run, we cannot ignore the demands of generation Y. All this makes us sure that
distributed computing is becoming ever more important and pervasive.

Historically, distributed computing technologies became viable, scalable solutions
no earlier than in the 1980s. Basically, we have seen four major waves of distributed
computing technologies, i.e., client/server computing, distributed object computing,
service-oriented architecture and cloud computing. The first wave, i.e., client/server
computing, emphasized the separation of GUI, application logic and data persistence
concerns. Key technologies of the client/server computing wave were transaction
monitors [GR92] and message-oriented middleware (MOM) [Ber96]. The second wave,
i.e., distributed object computing, established the use of object-oriented abstractions
in the construction of distributed systems. Key technologies supporting this approach
include CORBA (Common Object Request Broker Architecture) [Gro06] and J2EE
(Java 2 Enterprise Edition) [KtET00]. The third and still current wave, i.e., SOA
(Service-Oriented Architecture), focuses on the Internet as the underlying distribution
platform. Key SOA technologies are therefore Web Services and the recent REST
(Representational State Transfer) services paradigm [FT02].

The fourth major wave, i.e., cloud computing, is just starting to achieve its full po-
tential. Although cloud computing already creates concrete, new end-user experiences
with online storage services by several vendors, it has not take off as a widespread
enterprise computing paradigm. Nevertheless, organization-level cloud computing is
already reality, as proven by the UK government cloud G-Cloud. Other recent initia-
tives like the Deutsche Börse Cloud Exchange promise a yet unforeseen potential of
cloud computing as an enterprise computing paradigm. The Deutsche Börse Cloud
Exchange is a stock exchange market place for IT services that has been launched
in June 2013, technologically, it is an IT services broker plus provisioning services.
Cloud computing introduces the elastic and site-transparent distribution of computing
platforms and applications over outsourced data center infrastructures. Important IT
vendors have positioned themselves strategically with concrete products: the Google
Cloud, the Microsoft Cloud, Amazon Web Services. Also, the on-demand data centers
recently built by companies like IBM and HP must be considered as a form of cloud
computing.

The rapid evolution of distributed computing technologies has no doubt provided
a rich set of platforms and paradigms for building robust enterprise systems. Un-
fortunately, this rapid technological evolution has also left us with a large number of
unresolved problems. The first is a trail of confusion and inconsistency in the concepts
used to build distributed systems. Even within individual paradigms there are incon-
sistent interpretations of some of the most basic concepts, such as whether services
are, or should be, stateless. Furthermore, between the different paradigms there is
little consensus about the core ingredients of distributed systems; for example, what
are the differences and relationships between components, services and objects.

Yet another problem is that the evolution of the different distributed system tech-
nologies has been overwhelmingly driven by the server-side. As a result, developers of

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 3

regular client applications, business processes or mobile applications such as Android
and iPhone “apps” typically have to access server-side assets via low-level, platform-
specific abstractions optimized for solving server-side problems rather than via ab-
stractions that fit their needs. It is crucial to understand that this problem, which we
would like to call a service consumability problem, forms a real hurdle for scalable,
next-generation distributed software development. The importance of addressing this
problem has grown as client applications have become more visible and as they have
started to play a major role in the perceived usability of service-based systems. Fur-
thermore, in large enterprise system landscapes [AHVE07] services are often clients
of each other. The experience has shown that the most successful enterprises have
paid particularly attention to the infrastructure features needed to support flexible
service usage [Haa05, Dra10]. To date, however, driven by legacy system integration
challenges, SOA best practices have primarily focused on only one aspect of usability,
i.e., the straightforward and rapid integration of diverse technologies and platforms
at the server-side. Unfortunately, this ease-of integration at the server side has come
at the price of lower flexibility and ease-of-use of distributed software assets at the
client side in client application development.

To address the problems of service consumability and to reduce the artificial com-
plexity involved in building client applications there is a general need for a unified
conceptual model of service-oriented computing. Such conceptual model should sup-
port the needs of client developers as well as service providers. Our premise is that
such a conceptual model should be independent of, and implementable on top of,
the several different service-oriented computed paradigms discussed above. Such a
conceptual model should also be compatible with the different implementation tech-
nologies and modeling languages used to realize client applications today, such as
high-level programming languages or business process modeling languages. Just as
high-level programming languages are optimized for human programmers rather than
realization platforms, we believe that the features of such a conceptual model should
be determined by what is best for client developers rather than by the idiosyncrasies
of individual implementation platforms. Using the terminology of the model-driven
development we refer to this as a client-oriented platform independent model (CPIM).
Although the approach focuses on traditional client/server systems where an object
plays only one role, i.e., either client or server, the approach is also applicable in more
general situations in which servers are also clients of other servers. In short, any ob-
ject acting as a client benefits from the client-oriented view of their servers afforded
by the approach.

In this article, we present a concrete set of metamodels for the various views
and abstraction levels involved in a service-oriented computing landscape and posi-
tion them within a single unified framework. There are two key difference between
our framework and other more general conceptual models for distributed comput-
ing like RM-ODP [LMTV11], Service Component Architecture (SCA) [Edw14]or the
CORBA Component Model (CCM). First, our framework focuses on service-oriented
computing, and aims to accommodate the mainstream service-oriented computing
platforms and paradigms as special cases of a more general, but nevertheless still
service-oriented, modeling approach. Second, our framework emphasizes the needs
of client-developers rather than the traditional server-side concerns that dominate
distributed computing platforms, i.e., persistency, integration, interoperability, trans-
actions, robustness, etc.. For client developers, these concerns in general manifest
themselves as non-functional properties that are part of service-level agreements, i.e.,

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

4 · C. Atkinson, P. Bostan, D. Draheim

Computation-Independent Model
(CIM)

Platform-Independent Model
(PIM)

Platform-Specific Model
(PSM)

Implementation

m
od

el
 tr

an
sf

or
m

at
io

n

business
models

analysis and design
models

detailed design
models

implementation models
runtime models

Figure 1 – The abstraction levels of the OMG MDA terminology.

performance, reliability etc.
Section 2 presents the overall structure of the framework. In Sect. 3, we present the

core metamodel. In Sect. 4, we present the metamodels for the platform-independent
views of a service-oriented system. In Sect. 5 we describe five key PIM-level realiza-
tion patterns that define bi-directional transformations of client-side abstractions into
server-side abstractions. In Sect. 6 we explain the relevance of the introduced founda-
tional patterns to the OSM (Orthographic Software Modeling) approach. Section 7
serves as a proof of concept by showing how the model can be applied to particular
realization platforms, i.e., Java for the client-side and Web Services for the server-side.
In Sect. 8 we present a domain-specific example scenario from the banking domain.
We discuss related work in Sect. 9. Then, finally, we give a conclusion and final
remarks in Sect. 10.

2 Structure of the Conceptual Model

The basic goal behind the unified conceptual model is to provide a framework in which
the concerns and viewpoints relevant for building client applications using distributed
services can be expressed and related to one another [BAD11]. The two basic concerns
that are used to structure the framework are the level of abstraction at which a system
is represented and the roles from which the components of a system are viewed.

2.1 Abstraction Levels and Roles

Figure 1 shows the levels of abstraction recognized in the model-driven architecture
(MDA) approach popularized by the OMG [Sol03]. The most abstract level at the
top is the Computation-Independent Model (CIM) in which models of the business
processes to be automated or the environment to be enhanced are described indepen-
dently of the envisaged IT-based solution. On the next level, a Platform-Independent
Model (PIM) describes the key ingredients and the behavior of the envisaged system
independently of the idiosyncrasies of specific platforms. It is the responsibility of a
Platform-Specific Model (PSM) to consider these idiosyncrasies. A PSM describes the

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 5

Web
Service A

Web
Service B

Web
Service C

Enterprise Service Infrastructure
ESI

Client
Developer

A Client
Developer

B

Service Provider

Enterprise System Boundary

business
processes

client
applications

Figure 2 – An example distributed application development scenario.

system in terms of the concepts supported by a specific platform, but not necessarily
in a way that is directly executable. The lowest level in the MDA is the implementa-
tion which can be executed without further mapping into more concrete forms. Our
approach adopts the basic MDA abstraction levels and the associated terminology.
However, we focus only on the two central levels since this is where the key separation
of concerns and identification of common abstractions takes place. The CIM is not
relevant since the client/server distinction does not appear until the PSM level. To
the extent that they appear at all in CIMs, computer-based systems always appear
as unified black boxes. The implementation level is not relevant either, since it is
already well populated with a large range of implementation technologies and it is
not the intention of this article to introduce more.

As the different technologies of distributed computing have evolved from basic
client/server approaches to service-oriented architectures the differences between the
concerns of client developers and the concerns of service providers have grown. More-
over, these are set to increase even further as distributed computing evolves further
into cloud computing. The two fundamental roles of concern are therefore the client
developer and the service provider. Figure 2 shows an enterprise service infrastructure
(ESI), implemented and maintained by one service provider and used by two different
client developers. A fundamental premise of our approach is that there is a clear
boundary to the enterprise system for each stakeholder. The different stakeholders do
not necessarily need to agree on the boundary, but they must each have a clear notion
of the boundary of the system. In Fig. 2, the services in the ESI are implemented
and maintained by one service provider but are used by two distinct client developers.
One of them, client developer A, actually belongs to the organization owning the ESI,
and thus is represented as being inside the enterprise system boundary, while the
other, client developer B, is completely outside the enterprise boundary and uses the
services as a customer.

2.2 Abstraction Levels vs. Client-and Service-Oriented Views

The overall structure of the unified conceptual model is derived by regarding the
abstraction level dichotomy (PIM/PSM) and the dichotomy of the presented roles as

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

6 · C. Atkinson, P. Bostan, D. Draheim

Client-Oriented PIM
CPIM

Service-Oriented PIM
SPIM

Client-Oriented PSM
CPSM

Service-Oriented PSM
SPSM

PIM
abstraction level

PSM
abstraction level

client-oriented view service-oriented view

Figure 3 – Two-dimensional model space of the unified conceptual framework.

distinct, orthogonal dimensions. The basic goal is to address the concerns of both of
the roles at the two abstraction levels as illustrated in Fig. 3 resulting in four different
models that will be explained in the following.

The role of a service-oriented PIM (SPIM) is to provide a platform-independent
view of a service landscape from the point of view of a service provider. There is
therefore no notion of, or support for, clients in the SPIM. The abstractions used in an
SPIM are service-oriented, but transcend particular realization technologies. If there
are numerous service providers supporting different parts of a single overall landscape,
they will have SPIMs tailored to their own particular view of the landscape. The role
of a client-oriented PIM (CPIM) is to provide a platform-independent view of a service
landscape tailored to the needs of a particular client developer. A CPIM therefore
includes the notion of, and support for, clients. However, it also includes abstractions
of server-side software entities that a client type wishes to use and access. As with an
SPIM, a CPIM transcends particular realization technologies and represents remote
software entities independently of their realization.

A service-oriented PSM (SPSM) provides a platform-specific representation of
the service landscape from the point of view of a service provider. In terms of the
traditional MDA paradigm it extends and refines the SPIM using platform-specific
abstractions. A client-oriented PSM (CPSM) has the same relationship to a CPIM
as an SPSM to an SPIM, representing a refinement of a platform-independent model
that adds detail through platform-specific abstractions. Ideally, this platform-specific
detail will only relate to the client-side because the server-side abstractions should be
accessible exclusively through PIM level abstractions.

The two-dimensional modeling framework as presented in Fig. 3 provides four
different views each tailored to the respective role and level of abstraction involved.
However, not all views are of interest to all the roles. Each stakeholder has a particular
constellation of views that reflect his particular concerns depending on the role that
he plays, as illustrated in the example in Fig. 4, which is related to the example
scenario in Fig. 2. Figure 4 shows four kinds of models used by the different kinds
of stakeholders. These models are not independent, of course, but are related to
one another in carefully defined ways. In fact, we believe that one of the main
contributions of the unified conceptual framework is to capture the commonalities
and differences between these models. A service provider is usually only interested in
the server-side abstractions, and since in our example depicted in Fig. 2 there is only
one service provider responsible for the whole ESI, all services are included in this
service provider’s SPIM and SPSM views. The SPSM views of the service provider

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 7

A

B

C

SPIM

A

B

C

SPIM

WS SPSM

REST
SPSM

Service Provider

B

C

CPIM

B

C

CPSM

BPEL
CPSM

Client Developer A

A

B

A

B

CPSM

Java
CPSM

Client Developer B

PIM
abstraction level

PSM
abstraction level

client-oriented view service-oriented view

CPIM

BPEL
CPIM

Java
CPIM

WS SPIM

REST
SPIM

Figure 4 – An example of concrete view types.

are a Web Services technology view and a REST technology view in this example.
Client developer A on the other hand, is only interested in his own client-oriented
view of the ESI. This is reflected in his CPIM and CPSM models which only contain
abstractions of the services he uses - services B and C, which belong to a BPEL
(Business Process Execution Language) view in this case. Similarly, client developer
B needs client-oriented views tailored to his concerns. His CPIM and CPSM models
therefore only contain abstractions of services A and B, which belong to a Java view
in our example.

3 The Core Metamodel

The Core Metamodel (CM) provides the abstractions that span the main roles and
abstractions levels in service-oriented computing identified in Sect. 2. All of the other
metamodels inherit directly or indirectly from the CM. At its heart, therefore, are
the basic ingredients of 3GL programming languages (third generation programming
languages), i.e., data types, processes and objects. The history of software system
descriptions, in general, and the the history of programming languages in particular
[Par85], can in fact be characterized in terms of the evolution in the way that these
ingredients have been interwoven. In the early days of computing up to the late 70’s
and 80’s, programs and systems were primarily described in a function-oriented way.
This was based on the principle of strictly separating the functions in a program
from the data types that they manipulated, and using the relationships between the
former to define the architecture of the system. From the late 70’s, the wisdom of this
separation started to fall into question and the notion of object-oriented programming
emerged based on the idea that functions and data should be tightly bound together
and encapsulated. Since objects are essentially data-centric, this meant that data
played the dominant role in defining the architecture of a program.

The Core Metamodel consists of ten abstractions arranged as classes within a

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

8 · C. Atkinson, P. Bostan, D. Draheim

single hierarchy – see Fig. 5. The class Entity is an abstract class that serves as
the root of the inheritance hierarchy. Instances of subclasses of the class Entity may
therefore represent any kind of entity within a computing system. A Data Type is
essentially a set of values whose use is controlled by a number of rules. The instances
of a Data Type are values that do not have inherent identity of their own. Data
Type is an abstract class that has two subclasses – Primitive and Compound Data
Type. Primitive Data Types are used to represent the classic data types such as
Integer, Character, String, etc. Compound Data Type are data types whose values
are composed of combinations of Primitive and/or Compound Data Types, similar to
records or structs as used in programming languages like Pascal or C.

A Process represents a basic functional abstraction that includes a set of steps
arranged in some well-defined order to achieve some effect or to reach some goal. It
encompasses programming level abstractions such as subroutines, functions, proce-
dures and methods, as well as high-level notions of processes such as workflows and
business processes. Since these involve the sequential execution of sub-steps to achieve
a goal, processes have an associated notion of procedural or algorithmic state [AB09]
that represents its current progress through the designated sequence of steps. Pro-
cesses can have input and output parameters which can be objects or data types and
can also use other processes. The class Process is partitioned by the subclasses Free
Process and Allocated Process. A Free Process is a process that is not allocated to
any particular object. It therefore represents a purely functional abstraction, akin to
a function, procedure or subroutine in older programming languages. An Allocated
Process is a process that belongs to an object. The existence of an instance of an
Allocated Process is therefore tied to the existence of the object that it belongs to
and it cannot be used independently of that object. Allocated Processes have direct
access to the cohesive state of the object they belong to. They therefore correspond
to methods in object-oriented programming languages.

An Object represents the basic object abstraction familiar from object-oriented
programs and object-based computing in general. The basic characteristic of an
object is that it encapsulates one or more attributes of a Data Type behind one
or more Allocated Processes, i.e., methods or operations. Like objects from object-
oriented programming they have their own unique identity and can be duplicated.
Objects therefore unify the two core ingredients of function-oriented computing –
processes and data types. The key additional idea for service-oriented computing is
that objects come in two basic kinds – Ephemeral Objects and Architectural Objects.
Because they encapsulate data values, objects have an associated notion of cohesive
state [AB09], which captures the effects of the operations that have been applied to the
object. Although Processes only possess algorithmic state in our approach, Allocated
Processes can also participate in maintaining the cohesive state of the Object they
belong to in the sense that they update the data storing that state in a consistent way.
However, they do not have to. The difference corresponds to the distinction between
inspector and read-only operations in object-oriented programming. Free Processes
play no role in maintaining cohesive state because they do not belong to an Object.

Architectural Objects are stable objects whose lifetime normally coincides with
the lifetime of the system as a whole, because they are the components of the sys-
tem. The only exception is when architectural reconfigurations are performed. Ar-
chitectural Objects are generally large, behavior-rich objects and are usually few in
number. In fact, most of the time there is only one instance of them in a system.
The notions of components, services and distributed objects found in contemporary

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 9

output
input

uses / contains

disjoint, complete

usescontains

operation

disjoint, complete disjoint, complete

contains

Free
Pocess

Ephemeral
Object

Architectural
Object

Entity

Process

Compound
Data Type

Primitive
Data Type

Allocated
Pocess

contains

disjoint, complete

Data TypeObject

0..*
0..*
0..*

0..*0..*

uses
0..*

1..*

2..*

Figure 5 – The Core Metamodel.

distributed computing technologies are encompassed by the notion of architectural
objects. Ephemeral Objects are objects which have a temporary lifetime with respect
to the lifetime of the complete system. In other words, they are frequently generated
and deleted during the lifetime of a system and essentially correspond to data in
information systems.

The advent of the object abstraction in the late 70s led to the object-oriented
revolution that still dominates many programming languages today. In contrast, the
concepts and best practices of service-oriented architectures can be understood as
a move away from object-orientation back to a more traditional function-oriented
style of organizing data and processes. However, confusion surrounding SOA and its
relationship to other paradigms demonstrates that SOA’s conceptual model is not
optimal for all aspects of distributed computing. The model proposed in this article
can be viewed as an attempt to introduce a more sophisticated, unified approach that
can accommodate both function-oriented and object-oriented viewpoints depending
on what is optimal for the different roles involved.

4 Platform Independent Metamodels

4.1 Service-Oriented PIM Metamodel

The SPIMMetamodel extends the Core Metamodel with general, platform-independent
concepts for the server-side perspective of the client/server divide. The basic exten-
sions are the introduction of further subclasses of the classes Ephemeral Object and
Architectural Object. As shown in Fig. 6, the Ephemeral Object class is divided into
two subclasses, Data Object and Behaviour Rich Ephemeral Object. The first of these
represents a type that is purely a wrapper for sets of attributes. In other words, Data
Objects essentially wrap up and encapsulate the data contained in a Compound Data
Type by shielding the attributes from direct access via setter and getter operations.
They are therefore very similar to DTOs of the kind supported in J2EE. By defini-
tion, Data Objects therefore only contain create, read, update and delete (CRUD)
operations and provide no “rich” behaviour beyond the getter and setter operations.
This is what basically distinguishes a Data Object from a Behaviour Rich Ephemeral
Object. The latter kind of object type provides extra functionality in the form of

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

10 · C. Atkinson, P. Bostan, D. Draheim

disjoint, complete disjoint, complete

Data
Object

Behaviour Rich
Ephemeral Object

Observably Stateless
Architectural Object

Observably Stateful
Architectural Object

usescontains disjoint, complete

Ephemeral Object
(Package::Core)

Architectural Object
(Package::Core)

Object
(Package::Core)

0..*0..*

uses
0..*

Figure 6 – SPIM – Service-Oriented PIM Metamodel.

methods that calculate new information that is not directly stored in the attributes.
This means that these can no longer be regarded as mere Data Object types.

The Architectural Object class from the Core Metamodel is also divided into
two subclasses – Observably Stateful Architectural Objects and Observably Stateless
Architectural Objects. These capture the distinction between observably stateful and
observably stateless services [AB09]. Observably Stateful Architectural Objects are
objects that have a cohesive state from the point of view of a client. In concrete
terms this means that the methods of the object exhibit different behaviour for the
same set of explicit input parameters depending on the cohesive state of the object.
In contrast, Observably Stateless Architectural Objects have no observable cohesive
state.

4.2 Client-Oriented PIM Metamodel

The CPIM Metamodel extends the Core Metamodel with the general, platform-
independent concepts for the client perspective of the client/server divide. As with
the SPIM, the main extensions are applied to the Ephemeral Object and Architectural
Object class of the Core Metamodel, but the Process class is also extended to include
the notion of clients that are in general processes, so called Client Processes. The
specializations of the Ephemeral Object and Architectural Object classes reflect the
different client-oriented properties [AB09]. Basically, Ephemeral Objects are dynamic
objects while Architectural Objects are static objects.

As shown in Fig. 7, the class Ephemeral Object is divided into two subclasses –
Private Ephemeral Object and Shared Ephemeral Object. This reflects whether or
not instances of a class can be shared by various client instances of a client type or
whether they remain private to a given client type instance.

The two subclasses of Architectural Object – Observably Stateful Architectural
Object and Observably Stateless Architectural Object – are both further divided into
two subclasses depending on whether they are shared or private similarly to Ephemeral
Objects. In fact, this is orthogonal to the property observably stateful/stateless, and
could also have been modeled as a separate generalization set.

A further extension to the PIM is the addition of the Client Application specializa-

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 11

disjoint, complete

Shared Observably
Stateless

Architectural Object

Private Observably
Stateless

Architectural Object

Shared Observably
Stateful

Architectural Object

Private Observably
Stateful

Architectural Object

disjoint, completedisjoint, complete

Observably Stateless
Architectural Object

Observably Stateful
Architectural Object

Shared
Ephemeral Object

Private
Ephemeral Object

Client
Application

Architectual
Object

Ephemeral
Object

Client
Process

Object
(Package::CORE)

Process
(Package::CORE)

uses

0..*

uses
0..*

contains

0..*

operation
1..*

Figure 7 – CPIM – Client-Oriented PIM Metamodel.

tion of Ephemeral Object to represent clients that are applications in the traditional
software engineering sense. These are a form of Ephemeral Object because they have
an identity, a cohesive state and a lifetime that is often much shorter than the lifetime
of the system that manipulates them.

5 PIM-Level Model Transformation Patterns

In this section we elaborate a series of core strategies used to switch between service-
oriented views onto a system. We do so by defining transformations of entities of
one view into entities of another view. The defined transformations map between one
perspective of an abstraction to another perspective of an abstraction. The patterns
are defined at the PIM level, however, they are intended to be exploited at the PSM
level, i.e., they are intended to be applied to specializations of the affected abstraction
as a concrete, practical realization step. The patterns are designed to be performed
automatically. They are meant to be built into emerging technologies for writing client
applications. Then, if a service is implemented in one way, the appropriate pattern
can be automatically applied, as desired, to provide the client with an alternative
view, and vice versa. The patterns are not necessarily applicable in isolation and
they establish model transformation principles rather than complete solutions. The
are intended to help reduce the levels of confusion and accidental complexity that
exists in SOA development today. In particular, we hope that they will become part
of the vocabulary of service-oriented computing. The transformations are reversible,
i.e., they can be applied back and forth. However, the names of the pattern reflect
one particular direction.

The five patterns that we describe are: the data type reification pattern, the

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

12 · C. Atkinson, P. Bostan, D. Draheim

Process
Manager

«Process»
P

p(a1: T1, ... , an:Tn): R

Ephemeral
Object
Manager

Process
Manager

Process
Externalization

Ephemeral
Object
Externalization

Data Type
Reification

«Architectural Object»
P

start(a1: T1, ... , an:Tn): ID
stop(id: ID): void
delete(id: ID): void
restart(id: ID): void
getResult(id: ID): R

«Architectural Object»
P

p(a1: T1, ... , an:Tn): R

«Architectural Object»
CustomerManager

setA1(id:ID, x: T1): void
getA1(id:ID): T1
...
setAn(id:ID, x: Tn): void
getAn(id:ID): Tn

create(): ID
delete(id: ID): void

findA1(a1: T1): ID[]
...
findAn(an: Tn): ID[]

«Architectural Object»
T

setA1(id:ID, x: T1): void
getA1(id:ID): T1
...
setAn(id:ID, x: Tn): void
getAn(id:ID): Tn

«Ephemeral Object»
T

-a1: T1
...
-an: Tn

setA1(x: T1): void
getA1(): T1
...
setAn(x: Tn): void
getAn(): Tn

T

-a1: T1
...
-an: Tn

Figure 8 – Foundational MDA patterns.

ephemeral object externalization pattern, the ephemeral object manager pattern, the
process externalization pattern and the process manager pattern. All the five patterns
are summarized in Fig. 8 in an abstract manner. In Fig. 9 we have also given example
application of instances of one of the patterns, i.e., the ephemeral object manager
pattern, to a concrete expert domain class, i.e., a customer having a name and an
address as attributes.

5.1 Data Type Reification

The data type reification pattern maps a Data Type to an Ephemeral Object. Es-
sentially, it reifies a plain Data Type whose instances represent collections of values,
into an Ephemeral Object type. The resulting Ephemeral Object can store the cor-
responding record values, however, as private attributes that can only be accessed by
appropriate setter and getter operations. In non-technical terms, the pattern turns
a plain record into a full-fledged object, i.e., it enriches the record by appropriate
methods. For example, if we are working with Web Service technologies, the Data
Type pattern allows for an object-oriented view of the structures that are commu-
nicated over the internet in document formats such as XML. Basically, the pattern
corresponds to the notion of DTOs (Data Transfer Object) in J2EE [KtET00]. We
have called the Data Type pattern a reification pattern, because it is an intuitive
term commonly used in the generative programming language community [CE00]. In
the strict sense of reflective programming terminology, the application of this pat-
tern consists of a reification step and a reflection step. First, we inspect the data
type, which amounts to a reification step. Next, we exploit the information that we

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 13

Ephemeral
Object
Manager

«Architectural Object»
CustomerManager

setName(id: Integer, n: String): void
getName(id: Integer): String
setAddress(id: Integer, a: String): void
getAdress(id: Integer): String
...
create(): Integer
delete(id: Integer): void

findName(name: String): Integer[]
findAddress(address: String): Integer[]
find...(...): Integer[]

«Ephemeral Object»
Customer

-name: String
-address: String
...

setName(n: String): void
getName(): String
setAddress(a: String): void
getAdress(): String
...

Figure 9 – Example application of foundational MDA patterns.

have gained about this data type to craft an Ephemeral Object, which amounts to a
reflection step.

5.2 Ephemeral Object Externalization

The ephemeral object externalization patterns maps an Ephemeral Object type to an
Architectural Object type – see Figs. 8 and 9. For a given Ephemeral Object type the
pattern defines an Architectural Object type that supports the same operations, but
the parameter list of each operation is extended with an additional object identify-
ing parameter, i.e., the additional parameter holds the identifier of an instance of the
Ephemeral Object class. This extra information is needed because a single instance of
an Architectural Object type is responsible for storing the state of all instances of the
Ephemeral Object type, and these need to be distinguishable. In a sense, therefore,
this pattern delegates the responsibility for the cohesive state and functionality of an
Ephemeral Object type to an Architectural Object. Figure 10 shows the basic way in
which the externalization pattern is used to map between an ephemeral object type
with behaviour and one architectural object that manages instances of the ephemeral
object type and, furthermore, contains the operations that have been previously as-
signed to the ephemeral object type. We can further distinguish between two different
variants of this pattern that we will refer to as light ephemeral object externalization
and full ephemeral object externalization. For the latter kind, we consider the exter-
nalization of all operations of an Ephemeral Object, while for the former kind only
the behaviour-rich operations are externalized to an Architectural Object and simple
getter- and setter-operations are excluded.

5.3 Ephemeral Object Manager

The ephemeral object manager pattern is, essentially, an extension of the ephemeral
object externalization pattern in Sect. 5.2. It also maps an Ephemeral Object type
to an Architectural Object type. As well as mapping the operations of an Ephemeral
Object type to the Architectural Object, with the extra parameters and/or return
values, as illustrated in Fig. 8, it also adds creation and deletion operations to com-
plete the CRUD functionality, as well as search operations to find instances of the
Ephemeral Object based on one or more of its attributes. Again the ephemeral object
manager pattern comes in full and light variants.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

14 · C. Atkinson, P. Bostan, D. Draheim

Manager
Architectural

Object

CRUD…
o1(ID,…)
o2(ID,…)

Ephemeral
Object

EO(…)
o1(ID,…)
o2(ID,…)

Ephemeral
Object

Ephemeral
Object

Ephemeral
Object

mapped to

Figure 10 – Ephemeral object externalization.

5.4 Process Externalization

The process externalization pattern maps a Process type to an Architectural Object
type – see Fig. 8. A single Process entity, with a given set of input parameters and/or
result is mapped to an Architectural Object type with a corresponding re-entrant
operation. Any client wishing to invoke the process therefore simply calls this op-
eration on the singleton instance of this type. The inner working of the operation
is completely invisible to the clients of the process. In a sense, therefore, this pat-
tern delegates responsibility for the functionality and algorithmic state of multiple
instances of a given Process type to a single instance of an Architectural Object type.

5.5 Process Manager

Like the process externalization pattern in Sect. 5.4, the process manager pattern also
maps a Process type to an Architectural Object type. The difference is that, like the
ephemeral object manager pattern, this pattern provides CRUD operations to create,
manipulate and destroy process instances. As illustrated in Fig. 8, this requires
individual process instances to be identified by a unique identifier (ID) that is passed
to, or returned by, invocations of the CRUD operations. While the Ephemeral Object
patterns handle the cohesive state of instances of the Ephemeral Objects, Process
patterns handle the algorithmic state of Processes. The process manager pattern can
also be interpreted as transforming an Architectectural Object that represents an
externalized process – Fig. 8.

5.6 Technology Independency of the Patterns

The patterns presented in Sects 5.1 to 5.5 capture some of the strategic design de-
cisions that have to be made to realize service-oriented systems, regardless of the
specific technology that is used to implement them. They are therefore strategic
platform-independent decisions. It is also important to note that clients are processes
or objects, depending on their exact nature. Thus, when the appropriate manager
pattern is applied, the algorithmic or cohesive state that is being maintained by the

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 15

architectural object is the state of the client – in other words, the state of the con-
versation between the client and an instance of an Architectural Object type. Such
conversations are often called sessions and the corresponding identifiers are called
session IDs. The model transformation patterns in this section are basic realization
patterns which relate PIM level abstractions to other PIM level abstractions. We use
the term “pattern” in the sense of the GRASP (General Responsibility Assignment
Software Patterns) of Larman [Lar04] rather than the GoF (Gang of Four) design
patterns [Gea95]. Like the GRASP patterns, the patterns that we have presented in
this section are oriented towards supporting the transition from PIM level models to
PSM level models. Like the GRASP patterns, they also represent mapping principles
and options rather than descriptions of reusable design structures a la GoF patterns.

6 Integrating the MDA SOA Patterns into the OSM-SUM

The transformational patterns developed in Sect. 5 perfectly fit to, and integrate
with, the OSM (Orthographic Software Modeling) vision aimed at overcoming es-
sential frictions and tensions faced in today’s software engineering tool landscapes.
Today’s software engineering projects suffer a high degree of artificial complexity due
to the plethora of artifacts and technologies generating multiple redundancies and in-
consistencies as a huge legacy problem. Although the problem is not visible in small
agile projects, in the future we will need large and even very large projects to solve
some of the open information system issues. The larger the projects, the larger this
problem, and we experience a point beyond which projects do not scale in today’s
software engineering. Despite many initiatives in the last two decades, the dream of
adequately supporting highly heterogeneous, diverse, distributed teams has not yet
been realized.

Orthographic Software Modeling, see, e.g., [AS08, Atk14], which has its roots in
the KorBa methodology [Atk02] is about completely rethinking the role of software
artifacts, the way software artifacts are generated and maintained and, in particular,
the relationship between different kinds of software. Orthographic Software Modeling
is about the complete integration of all software artifacts, from scratch, based on the
notion of the SUM (Single Underlying Model) – see Fig. 11. In the SUM all the
different kinds of artifacts typically used in today’s software engineering life cycle are
integrated into one, single conglomerate of modeling elements. The range of artifacts
we are talking about is exhaustive; it encompasses all kinds of platform indepen-
dent models as well as all kinds of platform-specific models and beyond that, way
more kinds of artifacts from all the realms of the software engineering life cycle: con-
figuration management, version management, systematic test management, project
management, and so on and so forth. The SUM is not a mere thought experiment,
we see it as a real option that is up to now hindered merely by the legacy problem of
our current software engineering artifact base coupled with a certain concrete-syntax
oriented attitude that we are used to in practice in today’s software engineering. Of
course, the SUM does not come for free. It will take a lot of effort and discipline to
build it. Furthermore it must be accompanied by a series of key success factors, that
we have summarized, e.g., in [AD13]. We only name a few of these key success factors
here: a notion of deep standardization, perfectly maintained meta-information, an in-
novative group moderation process, a focus shift towards management best practices
and so forth.

Once the SUM becomes reality, we can hope for a substantial increase in scale

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

16 · C. Atkinson, P. Bostan, D. Draheim

SUM

component
model

state diagram

activity diagram

Java
PL/SQL

platform-independent projection
- operational projection -

platform-specific model projection

platform-independent projection
- structural projection -

UML classes

Figure 11 – Example cutout the SUM (Single Underlying Model).

and speed in software engineering projects. With the SUM the old dream of com-
plete artifact traceability comes for free. The SUM is the enabler for Orthographic
Software Modeling. With OSM, all the artifacts that we are used to become views
onto the SUM. Therefore, OSM can be explained as a paradigm shift from model
transformation to view transformation [ASB09, Atk14]. OSM is also a paradigm
shift form a context-oriented perspective to an abstract syntax-oriented perspective
of software engineering, which matches the data modeling approach of form-oriented
analysis [DW04].

In Sect. 2.2 we have established a two-dimensional modeling space for the domain
of service-oriented software systems engineering – see Fig. 3. With the OSM approach
each of the four areas in Fig. 3, i.e., the Client-Oriented PIM, the Service-Oriented
PIM, the Client-Oriented PSM and the Service-Oriented PSM all become views onto
a single implementation base – the SUM. Similarly, each strand of each of the two
discussed dimensions, i.e., the abstraction dimension and the view dimension can be
considered OSM views onto the SUM. Here, we must not be confused that we have
named only one of the dimension a view dimension, and the other one an abstraction
level dimension – this is merely a property of the concrete modeling domain, i.e.,
the domain of service-oriented software systems engineering. With an appropriate
tool views and sub-views onto the SUM can be maintained. For example, the CPIM
and the SPIM can be considered sub views of the PIM abstraction-level view. Now,
an appropriate tool could support drill-down, roll-up and dicing operations on the
SUM and this way turning the SUM into a kind of model warehouse. Once we have
grasped the level, views and models in Fig. 3 as OSM views, we can understand
the transformational patterns in Sect. 5 as view transformations. This is where the

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 17

concepts elaborated in this article tie in with the essence of the OSM approach – the
paradigm shift from model to view transformation.

7 Example SPSM Models

In this section we provide two examples of SPSM models for specific client- and
server-side implementation technologies. We consider the two most widely known
service-oriented system realization technologies – Web Services for the server-side
and Java for the client side.

7.1 Web Service SPSM Metamodel

The first generation of Web Service standards, i.e., WSDL (Web Service Description
Language) and SOAP (SOA Protocol), and several extensions of these represent one of
the most well-known and widely used service realization technologies. The definition
of the Web Service SPSM is given in Fig. 12. Not all of the concepts of the SPIM
are directly supported, so the Web Service SPSM actually restricts the use of some
of the concepts in the SPIM. The SPSM includes an indication of where the SPIM
abstraction has a different name in the specific realization technology. This is achieved
by placing the platform specific name in parentheses after the platform-independent
name in Fig. 12. This renaming is most evident in the case of Data Types. Web
Services basically support both kinds of Data Types as XML data types, i.e., simple
XML data Types as Primitive Data Types and complex XML data types as Compound
Data Types. The SPSM also indicates that Architectural Objects are referred to as
services in Web Service technology. Both forms of Architectural Objects are also
supported, but Observably Stateful Architectural Objects are further divided into
two subclasses, Inherently Stateful Architectural Objects and Inherently Stateless
Architectural Objects. This distinction reflects the fact that Architectural Objects
(i.e. Web Services) that appear to be stateful to clients (i.e. that are observably
stateful) may not in fact have any direct state of their own from an implementation
point of view, but may delegate the storage of this state to a third party (e.g. a
database) that is not visible to the client. Such types of Architectural Objects are
referred to as Inherently Stateless Architectural Objects. In contrast, an instance of
the type Observably Stateful Architectural Object may indeed encapsulate the state
that it exposes to clients. As discussed in [AB09] the failure to distinguish between
these two properties (observable versus inherent) statefulness is the root of much of
the confusion surrounding this issue in contemporary service-oriented technologies.
By providing an explicit model of the distinctions and relationship between these
two concepts and allowing Architectural Objects to be characterized accordingly, the
state-related behaviour of services can be much more clearly understood by client
developers and service providers alike.

The restriction to the SPIM relates to the distinction between Allocated Process
and Free Processes. The Web Service standard does not recognize the concept of free
processes and requires all processes to be allocated to objects. The Web Service SPSM
Metamodel in Fig. 12 therefore indicates that an Allocated Process corresponds to a
Web Service operation.

This Web Services SPSM is not a single particular SPSM, rather, it stands for a
certain service-oriented paradigm that became popular with concrete Web Services
technology and revolves around the vague notion of statelessness that is now usu-

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

18 · C. Atkinson, P. Bostan, D. Draheim

contains

disjoint, complete

Compound
Data Type

(Package::CORE)
[complex XML data type]

Primitive
DataType

(Package::CORE)
[simple XML data type]

disjoint, complete

DataType
(Package::CORE)

Inherently Stateless
Architectural Object

Inherently Stateful
Architectural Object

disjoint, complete

Observably Stateless
Architectural Object

(Package::SPIM)

Observably Stateful
Architectural Object

(Package::SPIM)

Architectual Object
(Package::CORE)

[Service]

Object
(Package::CORE)

Allocated Process
(Package::CORE)

[Process]

uses
0..*

2..*
contains

1..*
operation

1..*

Figure 12 – Web Service SPSM metamodel.

ally associated with the name SOA (service-oriented architecture). Actually, there
are concrete system architectures, both in industry and academia that were called
service-based, service-oriented, service buses, or even service-oriented architectures,
way before the SOA acronym gained widespread acknowledgement and usage. Even
more importantly, these service-oriented architectures often made use of full-fledged
object-oriented technology like CORBA and also exploited all the state-oriented fea-
tures that are associated with object-oriented technology. This section aims to clarify
the resulting terminological overload and identify the essential differences between
full object technology and SOA technology in the narrower, latter sense.

Service-oriented architecture is not a single vision or paradigm. Depending on
the particular community in which the term is used it can mean anything from
an enterprise architecture to an inter-enterprise architecture, though the acronym
SOA is often identified with the concrete web service technology stack and a cer-
tain mix of architectural principles that emerged in the early 2000s. Service-oriented
architecture started as a three-tier hub-and-spoke architecture for enterprise applica-
tions [FT02, KtET00, Ber96]. After the B2C hype it then became the carrier for a
lightweight B2B alternative for EDI [Emm93]. Another strand of SOA focusses on
the massive and systematic reuse of software components, both enterprise-wide, as
so-called SOA governance, and world-wide [ABHS07]. In the past there has been lot
of confusion about the concept of statelessness of services. To avoid this confusion it is
important to cleanly separate the conceptual level from the implementation level. At
the implementation level the question of state refers only to the decision about where
to maintain state, e.g., on the application server or in the database. From an archi-
tectural perspective the concept of statelessness actually represents a programming
language feature for the presentation of services to potential clients.

There is a direct tradeoff between the feature-richness of the service implemen-
tation technology platform and its usability for client developers. The less that is
assumed about programming language concepts and features, the simpler the map-
ping between the concepts of a client programming language and the concepts of the
service interface specification. A mapping is more than just a conceptual correspon-

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 19

dence between features, it embraces the complete realization technology involved in
bridging between the service interface and the client code. For example, the IDL
compilation and generation of stubs in the CORBA world belong to such a mapping.
In general, the less you assume about the client programming language concepts and
features, the easier it is for a client to exploit the service. Nevertheless, it is important
for the framework to provide clean, standardized language bindings to the IDL, since
this is the key to providing client programmers with a natural, tailored environment.
Techniques developed in frameworks such as CORBA [Gro06] and ODP [LMTV11]
are highly relevant here such as implicit binding.

A service facade can realize complex concepts like the construction and manipu-
lation of objects, whereas the service facade itself is not complex. A service facade
can be thought of as a remote control unit with knobs that support operations on the
complex artifacts behind. Though the implementing service code does not have to
be written in an object-based language, the structure of the overall system is object-
based because it results in the conceptual realization of objects. All of this is related
to the complexity of the exploited type system and the exploitation of the Ephemeral
Object Manager pattern. The Architectural Object in the pattern can be written in a
programming language that is not an object-oriented language. In fact, it could even
be written in a basic programming language that does not support complex types.
Pure SOA is an ideal based on the specification of interfaces that can be used imme-
diately in any existing programming environment. In general, SOA tries to find the
sweet spot between immediate and lightweight usability of a service and robustness of
its usage. In practice, software system designers make use of mediating type systems
like the .NET Common Type System. However, a mediating type system is already
a compromise. The described tradeoff is similar to the one described by John K.
Ousterhoust in his seminal paper on Scripting [Ous98], i.e., the trade-off between the
“weight” of a programming language and the maintainability of its code artifacts.

7.2 Java CPSM Metamodel

The first platform-specific model for the client-oriented perspective that we consider in
this section is the Java Standard Edition (Java SE) platform and its derivatives like the
Java Micro Edition (Java ME) and also the Android platform for mobile devices. Java
is one of the most widely used programming languages for writing client applications
both in terms of regular GUI driven programs that run on laptops and PCs and more
recently in terms of application for the rapidly expanding Android phone market.
We therefore first consider the basic Java language metamodel to elaborate how the
different kinds of abstractions specified in the CPIM can be supported (i.e. which Java
language constructs are used to represent the different kinds of software entities) in
the CPSM for Java. The Java language metamodel as presented in Fig. 13 represents
the basic concepts used to express a model or software program in the Java language.

As can be seen when comparing the CPIM metamodel as defined in Sect. 4 with the
CPSM metamodel for Java as depicted in Fig. 14 there are no meaningful structural
differences between the two metamodels. However, the metamodel depicted in Fig. 14
specifies which kinds of entities can be mapped to the Java language constructs. These
mappings can be summarized as the following equivalent pairs of elements:

• JavaMethod ↔ Process

• JavaClass ↔ Object

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

20 · C. Atkinson, P. Bostan, D. Draheim

<<enumeration>>
Kind

+byte
+short
+int
+long
+float
+double
+char
+boolean
+String

JavaMember
+isTypeOf:JavaClassifier
+owner:Classifier

JavaField
+isTransient: Boolean
+isVolatile: Boolean
+isFinal: Boolean
+value: JavaValue[0..1]

JavaMethod
+isNative: Boolean
+isSynchronized: Boolean
+body: String

 JavaClass
+isActive: Boolean
+implements: JavaInterface [o..∗]

 JavaInterface JavaPrimitiveType
+kindName: Kind

JavaElement
+ name:String

<<enumeration>>
Modifier

+abstract
+final
+regular
+static

<<enumeration>>
Visibility

+public
+protected
+package
+private

JavaPackage

JavaValue
+value: String

JavaParameter
+isTypeOf:Classifier
+ owner: JavaMethod [0..1]
+result: Boolean
+value:JavaValue[0..1]

JavaPackageElement

 JavaClassifier
+modifier: Modifier
+visibility: Visibility
+super: Classifier [0..∗]
+rested: Classifier [0..∗]

+contents
o..∗

Figure 13 – Java language metamodel.

• JavaPrimitiveType ↔ Primitive Data Type

• regular JavaClass ↔ Ephemeral Object

• static JavaClass ↔ Architectural Object

As illustrated in Fig. 14, on the Java platform a Process entity can never stand-
alone and always represents an entity that needs to be assigned to an Object entity
with the role of an operation. In terms of the Java language constructs a Process
entity is mapped to a Java Method element, while an Object entity type is always
represented by the Java Class construct that may own one or more Java Method
elements as its members.

On the next level, Ephemeral Objects can be represented in the Java language as
regular Java Classes. We consider a regular class as an entity that can be instantiated
dynamically and has at least one encapsulated entity and one Allocated Process to
maintain and manipulate its internal state (i.e. they always represent stateful enti-
ties). In contrast, Architectural Object entities are characterized as either observably
stateful or stateless as described in the CPIM in Sect. 4. In terms of the Java language
constructs both kinds are represented by static Java Classes ready to be accessed at
any time as long as the accessing client instance is running and alive. For a static
Java Class, all its assigned Allocated Process entities (i.e. Java Methods) are also
allocated with the Java modifier set to static.

As a mainstream object-oriented language, Java is able to support all of the con-
cepts in the CPIM in a fairly direct way. The only two things from the CPIM that
Java does not support are Compound Data Types and Free Processes since data
composition and behavioral abstractions are achieved using objects. Ephemeral (i.e.
dynamic) objects correspond directly to regular classes, while Architectural Objects
correspond to static Java classes, since only one instance of them is required.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 21

Local-Private
Static

Observably Stateless
Architectural Object

Remote-Private
Static

Observably Stateless
Architectural Object

Remote-Shared
Static

Observably Stateless
Architectural Object

Local-Private
Static

Observably Stateful
Architectural Object

Remote-Private
Static

Observably Stateful
Architectural Object

Remote-Shared
Static

Observably Stateful
Architectural Object

disjoint, complete

Static
Observably Stateless
Architectural Object

Static
Observably Stateful
Architectural Object

Remote-Private
Ephemeral Object

Remote-Shared
Ephemeral Object

specific /
global to

Client
Application

Business
Process

disjoint, complete

Client Type

only Ephemeral
Objects

Entity

DataType
(Package::CORE)

[Java primitive type]

Local-Private
Ephemeral Object

disjoint, complete

Static
Architectural Object

(Package::SPIM)
[static JavaClass]

Dynamic
Ephemeral Object
(Package::SPIM)

[regular JavaClass]

Object
(Package::CORE)

[Java class]

Allocated Process
(Package::CORE)

[Java method]

uses
0..*

contains
0..*

1..*

output
0..*

input
0..*

uses
0..*

encapsulates
0..*

operation
1..*

Figure 14 – Java language CPSM.

8 Example Scenario

Figure 15 illustrates a scenario involving two different client application types. The
first client application (Salesman client) supports the salesman responsible for inter-
acting with customers to create mortgage proposals that are electronically submitted
for approval. A second client application (Financial Expert client) is used by the
financial experts who are responsible for analyzing proposed mortgages and sending
notifications to customers about the acceptance or rejection of mortgage proposals.
As illustrated in the following models, this example scenario contains a typical mix
of different kinds of objects and relationships.

8.1 PIM-level Models

In Fig. 16, a CPIM model which captures these types from the perspective of the
Salesman client application type is presented. It consists of five classes that are of im-
portance from the client type’s perspective, three of them are of the type Ephemeral
Object (EO) whose instances are created and deleted as the system operates, and two
of them are of the type Architectural Object (AO) representing permanent instances.
Furthermore, the stereotypes indicate that both Architectural Object types are ob-
servably stateful, but that one of them, the PriorityQueue type, is shared between
multiple instances of different client types, while the other type, the Dictionary is
private to an instance of the client type Salesman. Similarly, two of the Ephemeral
Object types are shared, while one type is private.

Next we consider the CPIM for the Financial Expert client type, presented in
Fig. 17. This indicates that there are only four classes of importance, three Ephemeral

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

22 · C. Atkinson, P. Bostan, D. Draheim

insurance
database

Financial Expert

Salesman

Customer priority queue

dictionary

mortgage
proposal

mortgage
proposal

customer

mortgage

Figure 15 – Mortgage sales example.

Object types as well as one Architectural Object type. All but one of them, Noti-
fication, also appears in the Salesman client CPIM, with the same properties. The
stereotype of this new class, Notification, therefore indicates that this is a private
Ephemeral Object type.

After presenting the CPIM models for the Mortgage Sales scenario, we next intro-
duce a SPIM model for the scenario from the perspective of a single service provider
working for the same organization developing the two client applications. As shown in
Fig. 18, any object that is either part of the Salesman or the Financial Expert client
models is also in the Mortgage Sales SPIM model. As can be seen from the diagram, it
includes several Data Ephemeral Object types, one Behaviour-Rich Ephemeral Object
type as well as two Observably Stateful Architectural Object types.

Note that since clients usually only need to see a portion of a server’s full capa-
bilities, client PIMs usually include only a section of (i.e. a view of) a part of the
server’s overall PIM. Moreover, as in this case, different clients often have different
views which only partially overlap.

8.2 PSM-level Models

After the introduction of the PIM-level models for the Mortgage Sales example sce-
nario, this subsection presents a subset of the PSM-level models for the Mortgage
Sales scenario using Java as a platform for the client-oriented PSM model and Web
Services as the platform for the service-oriented PSM model. First, we consider the
Salesman client Java CPSM as presented in Fig. 19. Note, that we omit the CPSM
of the Financial Expert client for space reasons.

According to the Java CPSM metamodel that we have presented before, Fig. 19
contains the same entities as specified in the Salesman client CPIM, but replaced
by the corresponding entities of the Java CPSM. Note that the properties “shared”
and “private” are removed in the CPSM since the handling of these issues is deferred
to the underlying infrastructure (which is aware of the PIM-level specifications) the
applications interact with when executing. The most important issue here is that

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 23

proposes

applies-for
«Private

Observably Stateful
Architectural Object»

Dictionary

«Private Ephemeral Object»
Mortgage

«Shared
Observably Stateful
Architectural Object»

PriorityQueue

«Shared Ephemeral Object»
MortgageProposal

«Shared Ephemeral Object»
Customer

Salesman client CPIM

1

0..1 0..* 1
stored-in

1

1

0..* 1
stored-in

0..1 0..1
receives

Figure 16 – Salesman client CPIM.

notifies-about

receives

«Private Ephemeral Object»
Notification

«Shared
Observably Stateful
Architectural Object»

PriorityQueue

«Shared Ephemeral Object»
MortgageProposal

«Shared Ephemeral Object»
Customer

Financial Expert Client CPIM

1

0..1

1

1

0..* 1
stored-in

0..1 0..1
receives

Figure 17 – Financial Expert client CPIM.

Ephemeral Object types are represented by regular Java classes and Architectural
Object types are represented by static Java classes in the CPSM to convey their
behaviour to the client developer.

Finally, to complete the Mortgage Sales example scenario and to cover the full
spectrum of models proposed in this article, in Fig. 20 we present an SPSM based
on the Web Service SPSM metamodel that we have introduced before. We therefore
will also apply some of the patterns that have been proposed to map the presented
PIM-level abstractions of the SPIM to PSM-level abstractions in the SPSM.

As Ephemeral Objects are not supported in the Web Services SPSM metamodel,
we have to apply one of the proposed patterns of Sect. 5 to be able to create a model
on the level of the Web Services SPSM. For reasons of space we pick out two exam-
ples at this point. The first is the Customer entity that has been mapped from an
Ephemeral Object type to an Architectural Object type applying the Ephemeral Ob-
ject Manager pattern. We have chosen to provide the PriorityQueue as an Inherently
Stateless Architectural Object in this example. As a second example we pick out the
PriorityQueue type that remains an Architectural Object as already specified in the
SPIM. For the PriorityQueue we have chosen to provide it as an Inherently Stateful
Architectural Object type whose instances maintain their state on their own, while
the previous example, the Customer, defers state to an external participating resource
like a database for example.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

24 · C. Atkinson, P. Bostan, D. Draheim

proposesreceives
applies-for

«Observably Stateful
Architectural Object»

Dictionary

«Behaviour-Rich
Ephemeral Object»

Mortgage

«Data Ephemeral Object»
Notification

«Observably Stateful
Architectural Object»

PriorityQueue

«Data Ephemeral Object»
MortgageProposal

«Data Ephemeral Object»
Customer

Mortgage Sales SPIM

0..* 1
stored-in

1

1

0..1

1 1

1

notifies-about 1

0..1

0..* 1
stored-in

0..1 0..1
receives

Figure 18 – Mortgage sales SPIM.

proposes

applies-for
«Static Observably

Architectural Object»
[static JavaClass]

Dictionary

«Ephemeral Object»
[regular JavaClass]

Mortgage

«Static Observably
Architectural Object»
[static JavaClass]

PriorityQueue

«Ephemeral Object»
[regular JavaClass]
MortgageProposal

«Ephemeral Object»
[regular JavaClass]

Customer

Salesman client Java CPSM

1

0..1 0..* 1
stored-in

1

1

0..* 1
stored-in

0..1 0..1
receives

Figure 19 – Salesman client Java CPSM.

proposes
applies-for

receives

«Inherently Stateful
Architectural Object»

[Service]
Dictionary

«Inherently Stateless
Architectural Object»

[Service]
Mortgage

«Inherently Stateless
Architectural Object»

[Service]
Notification

«Inherently Stateful
Architectural Object»

[Service]
PriorityQueue

«Inherently Stateless
Architectural Object»

[Service]
MortgageProposal

«Inherently Stateless
Architectural Object»

[Service]
Customer

Mortgage Sales Web Service SPSM

0..* 1
stored-in

1

1

0..1

1 1

1

notifies-about
1

0..1

0..* 1
stored-in

0..1 0..1
receives

Figure 20 – Mortage Sales Web Service SPSM

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 25

9 Related Work

A dedicated language for modeling service-oriented architectures, the Service oriented
architecture Modeling Language (SoaML) [Gro09] has also been standardized by the
OMG. The Service-Oriented Modeling and Architecture (SOMA) published by IBM
in 2004 [Ars04] was one of the first fully fledged methods targeted at service-oriented
architectures. However, it is a very broad spectrum method that covers many more
aspects of the development lifecycle than just the modeling and documentation of the
services in a service-oriented architecture. The same goes for the Service-Oriented
Modeling Framework (SOMF) developed by Michael Bell [Bel08]. It covers everything
from the modeling of business goals and processes to enterprise architecture. Probably
the method most focused on supporting the UML-based modeling of service-oriented
architectures per se is the method of Piccinelli and Skene [PS05]. Their approach
focuses on the modeling of Electronic Service Systems (ESSs). The approach uses
a mixture of metamodels and profiles (the ESS profile) to support two views of ser-
vices – a capability view showing how services are composed from capabilities and
an implementation view showing how business assets are assigned to capability roles
to make services concrete. However, both views are highly abstract and platform
independent, and provide no support for modeling SOA realizations on a particular
execution platform. Similarly, the method of Lopez-Sanz et.al. [LSACM08] aims to
support the modeling of service-oriented software architectures using MDA principles.
It does this within the context of the MIDAS model-driven methodological framework
by defining a single metamodel containing typical concepts from service-oriented com-
puting. However, like [PS05] it also focuses exclusively at the PIM level from a single
perspective. In [MSTW12] a functional, symmetric view on pools of services is for-
mally established. The interplay of client/server entities is specified by a variant of
abstract state machines. It pursues an orthogonal, classical client/server architecture
based on that formalization.

Rich internet applications [FRSF10] realize desktop experience on the basis of ex-
tended web client technology. The emergence of RIAs is technology-driven [FRSF10]
and therefore the discussion of RIA development is necessarily technology-dependent.
Disciplined approaches to RIA development are challenged by the concrete mix of
technologies in this area. The approach in [ACL13] aims at a systematic RIA devel-
opment by exploiting patterns from the model-driven architecture approach. It is a
classical domain-specific language approach in that it creates a stable model of the
exploited technologies. The approach [ZLC+12] tackles the concrete RIA data ac-
cess problem and aims at mitigating the client/data friction. The realized framework
provides support for the typical data issues in RIA development, e.g., proprietary lo-
cal storage solutions. However, they must not be mixed with data-driven generative
approaches [DLW05].

Although our approach shares some of the same goals as general purpose model-
ing and distributed computing frameworks such as RM-ODP [LMTV11], UFO [Gui05]
and CORBA Component Model [Gro06] it is much more focused on service-oriented
computing. In this regard it has more in common with COSMO [Qea07] and Ser-
vice Component Architecture (SCA) [Edw14]. The big difference between these ap-
proaches and the approach presented in this article is that they do not explicitly
distinguish between client-developer and service-provider views of service-oriented
systems. The approach presented in this article is unique in (i) highlighting the four
possible combinations of the PIM versus PSM perspectives and the service-client ver-
sus service-provider perspective as the four most important viewpoints from which to

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

26 · C. Atkinson, P. Bostan, D. Draheim

visualize service oriented architectures, (ii) identifying a core set of concepts common
to all these viewpoints, (iii) specializing these core concepts into four distinct meta-
models optimized for the modeling of service-oriented architectures from the point of
view of each distinct viewpoint.

Many of the concepts elaborated in this article may seem similar to the CORBA
[Gro06] and J2EE [KtET00] frameworks, because these also tried to facilitate dis-
tributed computing in terms of object concepts. However, there are two main differ-
ences to our approach. The first is that we focus on client-side issues, and on reducing
the artificial complexity experienced by client developers when accessing service in-
frastructures. Second, CORBA and J2EE both focus on the creation of distributed
systems from a green field, from requirements to components, whereas we place equal,
if not more, emphasis on the reuse of existing server-side assets, from components to
requirements. One aspect of client-development that is not addressed in the approach
is graphical user-interface design. Although it simplifies the development of graphical
user interface by providing a simpler model in the sense of the MVC pattern, the ap-
proach presented in this article does not focus on the development of graphical user
interfaces per se.

10 Conclusion

Given the importance of client side functionality in service-oriented computing, and
the ongoing evolution of server-side realization technologies from distributed-object
and service-oriented architectures to cloud computing, there is a growing need to
lower the complexities and barriers involved in developing client applications. These
range from large scale business applications and business processes to laptop pro-
grams and small “apps” on mobile devices. In this article we have presented a unified
conceptual framework for describing service-oriented computing systems at two key
levels of abstraction, i.e., a platform- independent and platform-specific level, and
from the perspective of two key roles or stakeholders, i.e., the client-developer and
the service-provider. This separation of concerns enables us to support distinct views
of a system which are customized for the different stakeholders in a particular ap-
plication optimized for their specific needs. In particular, client developers can be
provided with an object-oriented viewpoint of the abstractions involved in a partic-
ular business process or application. This can relieve them of the burden of writing
code or process specifications to interact with services at the level of abstraction that
was optimized for maximum interoperability rather than for usability by clients. The
main contribution of this approach lies not only in the shape and structure of the
overall modeling framework but also in the separation of concerns and identification
of common abstractions that is reflected in the contents of the various metamodels.
On the basis of the achieved conceptual model we were able to define a set of six basic
realization patterns that can be used to support the core client-oriented abstractions
on top of all compliant server-side technologies. Finally, we have explained why the
achieved unified conceptual model and the defined transformational pattern perfectly
integrate with the Orthographic Software Modeling approach.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 27

References

[AB09] C. Atkinson and P. Bostan. Towards a Client-Oriented Model of Types
and States in Service-Oriented Development. In EDOC 2009 – the 13th
IEEE International EDOC Conference, August 2009. doi:10.1109/
EDOC.2009.16.

[ABHS07] C. Atkinson, P. Bostan, O. Hummel, and D. Stoll. ICWS 2007 – the
5th IEEE International Conference on Web Services. In A Practical
Approach to Web Service Discovery and Retrieval, . IEEE Press, 2007.
doi:10.1109/ICWS.2007.12.

[ACL13] J.L.H. Agustin, P. Carmona, and Lucio. An MDA Approach to De-
velop Web Components. Advances in Intelligent Systems and Comput-
ing, 206:511–522, 2013. doi:10.1007/978-3-642-36981-0_47.

[AD13] C. Atkinson and D. Draheim. Cloud Aided-Software Engineering
– Evolving Viable Software Systems through a Web of Views. In
Z. Mahmood and S. Saeed, editor, Software Engineering Frameworks
for the Cloud Computing Paradigm. Springer, 2013. doi:10.1007/
978-1-4471-5031-2_12.

[AHVE07] Hess A, B. Humm, M. Voß, and G. Engels. Structuring Software Cities
A Multidimensional Approach. In EDOC 2007 – the 11th Enterprise
Distributed Object Computing Conference, pages 122–129. IEEE, 2007.
doi:10.1109/EDOC.2007.17.

[Ars04] A. Arsanjani. Service-Oriented Modeling and Architecture. IBM Online
Article, November 2004.

[AS08] C. Atkinson and D. Stoll. Orthographic Modelling Environment. In
FASE’08 – the 11th International Conference on Fundamental Ap-
proaches to Software Engineering, LNCS 4961. Springer, March 2008.
doi:10.1007/978-3-540-78743-3_7.

[ASB09] C. Atkinson, D. Stoll, and P. Bostan. Supporting View-Based Develop-
ment through Orthographic Software Modeling. In ENASE’2009 – the
4th Intl. Conference on Evaluation on Novel Approaches to Software
Engineering. INSTICC Press, 2009.

[Atk02] Colin Atkinson. Component-based Product Line Engineering with
UML. Addison-Wesley, 2002.

[Atk14] Colin Atkinson. From Language Engineering to Viewpoint Engineer-
ing – Keynote. In B. Combemale and D.J. Pearce and Olivier Barais
and J.J. Vinju, editor, SLE’2014 – the 7th International Conference
on Software Language Engineering, LNCS 8706. Springer, September
2014.

[BAD11] P. Bostan, C. Atkinson, and D. Draheim. Towards a Unified Concep-
tual Framework for Service-Oriented Computing. In 2nd International
Workshop on Models and Model-driven Methods for Service Engineer-
ing (3M4SE-2011), Enterprise Distributed Object Computing Confer-
ence Workshops (EDOCW), 2011. doi:10.1109/EDOCW.2011.29.

[Bel08] M. Bell. Introduction to Service-Oriented Modeling – Service-Oriented
Modeling: Service Analysis, Design, and Architecture. Wiley & Sons,
2008.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.1109/EDOC.2009.16
http://dx.doi.org/10.1109/EDOC.2009.16
http://dx.doi.org/10.1109/ICWS.2007.12
http://dx.doi.org/10.1007/978-3-642-36981-0_47
http://dx.doi.org/10.1007/978-1-4471-5031-2_12
http://dx.doi.org/10.1007/978-1-4471-5031-2_12
http://dx.doi.org/10.1109/EDOC.2007.17
http://dx.doi.org/10.1007/978-3-540-78743-3_7
http://dx.doi.org/10.1109/EDOCW.2011.29
http://dx.doi.org/10.5381/jot.2015.14.1.a2

28 · C. Atkinson, P. Bostan, D. Draheim

[Ber96] Philip A Bernstein. Middleware – a Model for Distributed System
Services. Communications of the ACM, 39(2):86–98, February 1996.
doi:10.1145/230798.230809.

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming – Methods,
Tools, and Applications. Addison-Wesley, 2000.

[Coa11] Smart Manufacturing Leadership Coalition. Implementing 21st Cen-
tury Smart Manufacturing – Workshop Summary Report. SMLC, June
2011.

[DLW05] D. Draheim, C. Lutteroth, and G. Weber. Robust Content Creation
with Form-Oriented User Interfaces. In CHINZ 2005 – 6th Interna-
tional Conference of the ACM’s Special Interest Group on Computer-
Human Interaction, ACM International Conference Proceeding Series,
vol. 94. ACM Press, 2005. doi:10.1145/1073943.1073953.

[Dra10] Dirk Draheim. The Service-Oriented Metaphor Deciphered. Journal of
Computing Science and Engineering, 4(4), December 2010.

[DW04] D. Draheim and G. Weber. Form-Oriented Analysis – A New Method-
ology to Model Form-Based Applications. Springer, October 2004.

[Edw14] M. Edwards. Service Component Architecture. OASIS, April 2014.

[Emm93] M.A. Emmelhainz. EDI – A Total Management Guide. Van Nostrand
Reinhold, 1993.

[FRSF10] P. Fraternali, G. Rossi, and F. Sanchez-Figueroa. Rich Internet
Applications. IEEE Internet Computing, 14(3):9–12, 2010. doi:
10.1109/MIC.2010.76.

[FT02] R.T. Fielding and R.N. Taylor. Principled Design of the Modern Web
Architecture. ACM Transactions on Internet Technology, 2(2):115–150,
2002. doi:10.1145/514183.514185.

[Gea95] Erich Gamma and et al. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing – Concepts and
Techniques. Morgan Kaufmann Publishers Inc., 1st edition, 1992.

[Gro06] Object Management Group. CORBA Component Model Specifica-
tion, version 4.0, formal/06-04-01 dtc/06-02-01. Object Management
Group, April 2006.

[Gro09] Object Management Group. Service Oriented Architecture Modeling
Language – SoaML OMG Specification. Object Management Group,
2009.

[Gui05] G. Guizzardi. Ontological Foundations for Structural Conceptual Mod-
els, PhD Thesis, CTIT Series, No. 05-74. CTIT, 2005.

[Haa05] Laura Haas. Building an Information Infrastructure for Enterprise Ap-
plications. In 1st VLDB Workshop on Trends in Enterprise Application
Architecture, LNCS 3888. Springer, 2005. doi:10.1007/11681885_1.

[KtET00] N. Kassem and the Enterprise Team. Designing Enterprise Applica-
tions with the Java 2 Platform, Enterprise Edition. Sun Microsystems,
2000.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.1145/230798.230809
http://dx.doi.org/10.1145/1073943.1073953
http://dx.doi.org/10.1109/MIC.2010.76
http://dx.doi.org/10.1109/MIC.2010.76
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1007/11681885_1
http://dx.doi.org/10.5381/jot.2015.14.1.a2

Foundational MDA Patterns for Service-Oriented Computing · 29

[Lar04] Craig Larman. Applying UML and Patterns, 3rd edition. Prentice Hall,
2004.

[LMTV11] P. F. Linington, Z. Milosevic, A. Tanaka, and A. Vallecillo. Building
Enterprise Systems with ODP – An Introduction to Open Distributed
Processing, 1st edition. Chapman & Hall, 2011.

[LSACM08] M. Lopez-Sanz, C. J. Acura, C. E. Cuesta, and E Marcos. Defining
Service-Oriented Software Architecture Models for a MDA-based De-
velopment Process. In 7th Working IEEE/IFIP Conference on Software
Architecture, 2008. doi:10.1109/WICSA.2008.15.

[MSTW12] H. Ma, K.-D. Schewe, B. Thalheim, and Q. Wang. A Formal Model for
the Interoperability of Service Clouds. Service Oriented Computing and
Applications, 6(3):189–205, 2012. doi:10.1007/s11761-012-0101-7.

[Ous98] J.K. Ousterhout. Scripting – Higher-Level Programming for the 21st
Century. Computer, 31(3):23–30, 1998. doi:10.1109/2.660187.

[Par85] David L. Parnas. Software Aspects of Strategic Defense Systems.
Communications of the ACM, 28(12):1326–1335, December 1985.
doi:10.1145/214956.214961.

[PS05] G. Picinelli and J. Skene. Service-oriented Computing and Model
Driven Architecture. In Service-Oriented Software Systems Engineering
– Challenges and Practices. Idea Group, 2005.

[Qea07] D. Quartel and et al. COSMO: A Conceptual Framework for Service
Modelling and Refinement. Information Systems Frontiers, 9(2–3):225–
244, July 2007. doi:10.1007/s10796-007-9034-7.

[Sol03] R. Soley. Model Driven Architecture, white paper formal/02-04-03,
draft, 3.2. Object Management Group, November 2003.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American,
265, September 1991. doi:10.1145/329124.329126.

[ZLC+12] Q. Zhao, X. Liu, X. Chen, J. Huang, G. Huang, and H. Mei. A Data
Access Framework for Service-Oriented Rich Clients. Service Oriented
Computing and Applications, 6(2):99–116, 2012. doi:10.1109/SOCA.
2010.5707150.

About the authors

Colin Atkinson has been the leader of the Software En-
gineering Group at the University of Mannheim since April
2003. His research interests are focused on the use of
model-driven and component based approaches in the devel-
opment of dependable computing systems. Contact him at
atkinson@informatik.uni-mannheim.de, or visit http://swt.
informatik.uni-mannheim.de/.

Journal of Object Technology, vol. 14, no. 1, 2015

http://dx.doi.org/10.1109/WICSA.2008.15
http://dx.doi.org/10.1007/s11761-012-0101-7
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.1145/214956.214961
http://dx.doi.org/10.1007/s10796-007-9034-7
http://dx.doi.org/10.1145/329124.329126
http://dx.doi.org/10.1109/SOCA.2010.5707150
http://dx.doi.org/10.1109/SOCA.2010.5707150
mailto:atkinson@informatik.uni-mannheim.de
http://swt.informatik.uni-mannheim.de/
http://swt.informatik.uni-mannheim.de/
http://dx.doi.org/10.5381/jot.2015.14.1.a2

30 · C. Atkinson, P. Bostan, D. Draheim

Philipp Bostan is research associate at the Software Engineer-
ing Group at the University of Mannheim. His research interests
are focused context-sensitive on services and service discovery, as
well as service-oriented software development. Contact him at
bostan@informatik.uni-mannheim.de.

Dirk Draheim is head of the data center of the University of
Innsbruck. He is also adjunct reader at Software Engineering
Group at the University of Mannheim. His research interests
are focused on software science and the specification of software-
intensive systems. Contact him at draheim@acm.org, or visit
http://draheim.formcharts.org.

Journal of Object Technology, vol. 14, no. 1, 2015

mailto:bostan@informatik.uni-mannheim.de
mailto:draheim@acm.org
http://draheim.formcharts.org
http://dx.doi.org/10.5381/jot.2015.14.1.a2

	Introduction
	Structure of the Conceptual Model
	Abstraction Levels and Roles
	Abstraction Levels vs. Client-and Service-Oriented Views

	The Core Metamodel
	Platform Independent Metamodels
	Service-Oriented PIM Metamodel
	Client-Oriented PIM Metamodel

	PIM-Level Model Transformation Patterns
	Data Type Reification
	Ephemeral Object Externalization
	Ephemeral Object Manager
	Process Externalization
	Process Manager
	Technology Independency of the Patterns

	Integrating the MDA SOA Patterns into the OSM-SUM
	Example SPSM Models
	Web Service SPSM Metamodel
	Java CPSM Metamodel

	Example Scenario
	PIM-level Models
	PSM-level Models

	Related Work
	Conclusion
	Bibliography
	About the authors

