
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

On using pre and postconditions to
tackle the aspect scheduling problem
by rewriting systems: a design-level

approach

Toufik Benouhibaa Amina Boudjedira

a. LISCO Laboratory, Computer Science Department, Badji Mokhtar
University, Annaba, Algeria

Abstract The aspect-oriented paradigm promises separation of crosscut-
ting concerns by modularizing them as aspects. This paradigm allows then
weaving aspects upon some points in the base system. Unfortunately, the
interaction of aspects may have an undesirable effect on each other and/or
on the base system if they are executed in any order. Many works tried to
solve this problem but the proposed solutions were either limited to some
simple models of aspects or used to check if a set of temporal properties
is preserved when aspects are introduced. In this paper, we propose a
framework based on extended UML diagrams (class and state/transition
diagrams) in order to make the detection of undesirable interaction more
powerful and realistic. This framework relies on finite state automata
(FSA); it transforms the interaction problem into a reachability issue. In
fact, bad interaction is expressed as a generic LTL property which is inde-
pendent of the system to be verified. This property can be checked using
any model-checker like Maude. To concretize the proposed framework, we
propose a rewriting system that allows an implicit construction of the FSA
of the base system and the aspects in addition to the aspects composition
and the weaving mechanism. Therefore, the proposed system defines a
translation scheme of UML models into rewriting logic specifications writ-
ten in Maude language. Thanks to the advances of the on-the-fly technique
in Maude, the use of its LTL model-checker avoids a systematic exploration
of all possible combinations of the aspects. The approach will be illustrated
by a case study in order to explain how it works.

Keywords Aspect interaction; finite state automata; pre/postconditions;
scheduling; UML class and state/transition diagrams; LTL; rewriting
systems.

Toufik Benouhiba, Amina Boudjedir. On using pre and postconditions to tackle the aspect scheduling
problem by rewriting systems: a design-level approach. Licensed under Attribution-NoDerivatives 4.0
International (CC BY-ND 4.0). In Journal of Object Technology, vol. 13, no. 6, 2014, pages 1:1–32.
doi:10.5381/jot.2014.13.6.a1

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2014.13.6.a1
http://dx.doi.org/10.5381/jot.2014.13.6.a1

2 · Toufik Benouhiba, Amina Boudjedir

1 Introduction

The object-oriented paradigm has been proposed for building easy-to-maintain under-
standable programs. However, this paradigm is particularly limited in the expression
of crosscutting features, i.e., those expressing concerns that affects several classes or
modules of the application. Indeed, in at least two cases (the tangling and scattering
code [SP05]) the object-oriented paradigm does not provide a satisfactory solution to
achieve clear and well-structured programs.

To overcome these problems, the advanced separation of concern approaches pro-
poses separating concerns and core functionalities of a system in distinctive structures.
Among these approaches, the aspect-oriented paradigm (AO) [FECA04] allows engi-
neers to design and implement software’s core functionalities and crosscutting concerns,
as a base system and separate modules, called aspects, respectively. These aspects
include pointcut declarations which provide logical definitions for selecting the join
points where a piece of advice is applied Before execution, AO’ weaving mechanism
integrates those aspects into the base system on the selected join points. This new
paradigm helps to create a more coherent system since it avoids scattering and tangling
the code of concerns everywhere in a system.

In spite of the improvement in modularity, reusability and maintainability of the
system, AO paradigm faces an important problem concerning the difficulty to reason
about the behavior of the whole system. Even when the base system and the aspects
are well defined, the weaving mechanism may lead to a bad interaction between all
parts. This is one kind of what is commonly known as aspect interaction problem
[SP05, TCZY09].

Let us note in passing that since aspects may modify any variable’s value of the
base system, the semantic of this latter can be drastically changed. Because of the
declarative nature of the aspects and the relationship between pointcuts and advices,
AO paradigm allows aspects to be woven upon the base system on many join points.
Hence aspects may interact with other aspects in the case of weaving multiple aspects
on the same join point of the system. Their interaction may have some undesirable
effects on each other and/or on the base system if they are executed in any order.

Many works have attempted to detect conflicts between aspects but the proposed
solutions were either limited to some simple aspect models or used to check whether
a set of temporal properties is preserved when aspects are introduced. Furthermore,
other approaches have tried to detect conflicts between aspects using the source-code.
These approaches cannot tackle powerfully the interaction problem because of the
complexity of the source-code. Hence, we argue that aspect interaction problem has to
be detected and fixed in early development stages in order to minimize maintenance
costs. Thus, we focus, in this article, on the detection of bad interactions between
aspects in general and aspect scheduling in particular at the model level. Models are
more abstract than code; therefore fixing errors in the design is cheaper then fixing
errors in the code.

In this paper, we present a rigorous framework for aspect-oriented modeling and
verification based on finite state automata (FSA) [Hop79]. In this framework, we
use a combination of the Aspect-UML class diagram [MV07] and High-Level Aspects
(HILA) [Zha10] UML states machines. First, classes and aspects are defined in the
Aspect-UML in order to be able to specify, among others, pre and postconditions of the
pertinent elements such as: methods, join points and advices. The behavior of these
elements is then specified in state/transition diagrams. Then, an FSA representing
the woven system is built. We will show that the scheduling problem can then be

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 3

transformed into a verification of a generic LTL [MP92] property.
In order to implement the proposed approach, we use the rewriting systems which

are interesting to model and verify aspect interaction problem. This is because rewriting
systems turned out to be very powerful in modeling and verifying the complex systems
[DJ90]. In fact, they allow an implicit construction of the FSA of the base system and
the aspects as well as aspect composition and weaving. In addition, they facilitate
the expression of the pre and postconditions by using rewrite rules. Therefore, we
propose a rewriting system to model the base system as well as the aspects. This
rewriting system is built upon the Maude tool [CDE+11] where each UML diagram is
transformed into Maude constructions. The Maude LTL model-checker is then used in
order to detect possible conceptual errors concerning aspect interactions. Maude has
the advantage from some of the advances in on-the-fly [EMS03] technique which lead
to a non-systematic exploration of all possible combinations of the verified aspects.

In the remainder of this article, we present in Section 2 the aspect-oriented paradigm
and the problems arising from the interaction of aspects. In section 3, we give the
different extended UML models used in our approach. We present in section 4 an
overview of the proposed approach. We outline, in section 5, the main phases of
the framework and argue that the interaction problem can be transformed into a
reachability issue. In order to concretize the proposed framework, we present in
section 6 how UML models are translated into Maude specifications. We illustrate
in, section 7, how LTL model-checker can be used to detect bad (or a correct) aspect
interactions in the case study. The results of interaction are discussed in this section.
Section 8, summarizes some related works. The conclusion of the paper and some of
its perspectives are given in section 9.

2 AO paradigm and the aspect interaction problem

AO paradigm is a methodology for separating transversal preoccupations or concerns
that crosscut the core functionalities of the base system by modularizing them into
reusable modules. The final system is built by inserting these modules within the base
system. The basic concept in AO paradigm is the aspect which is for AO paradigm
what a class is for object oriented programming: the modularization unit. During
the design or programming, any concern that crosscut several classes is considered
as an aspect ; this one consists of two parts: pointcut and advice. A pointcut is a set
of many join points that indicate some action or a state of the system where one
or several aspects apply. An advice is the behavior of an aspect, it can be executed
before, after or around the join point that has been selected by a pointcut. The
around advice contains a proceed instruction to execute the invoked join point. The
concepts introduced by this paradigm allow core functionalities (i.e., base system) and
crosscutting concerns (i.e., aspects) to be specified independently in separate modules.

The above mentioned concepts require that when running the base system, aspects
must be able to control the execution (intercept it, stop it, restart it, etc.) by
interleaving the execution of their advices. To achieve this, two approaches exist. The
first consists of statically re-mixing the aspects and business functionalities (i.e. during
or after the compilation of the code) with an operation called weaving. This latter
consists mainly in converting aspects into classes, advices into methods and inserting
calls to these methods in business functionalities where indicated by the pointcuts. So
the code that will finally run is merely an object-oriented code. The second approach
achieves a dynamic weaving (i.e. during the execution). This requires a platform that

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

4 · Toufik Benouhiba, Amina Boudjedir

is capable of stopping the execution business functionalities to give control to aspects
timely.

Despite of the improvement in modularity, reusability and maintainability of the
system, AO paradigm faces an important problem: it is difficult to reason about
the behaviors of the whole system obtained by weaving aspects onto to base system.
Since the base system is modified by weaving, unexpected results can emerge. In AO
paradigm, this issue is commonly known as the aspect interaction problem [SP05,
TCZY09].

In fact, aspect interaction problem is derived from the interaction between aspect
and base system, which name is Aspect/Base-system interference, and the interaction
between the aspects which name is Aspect/Aspect interference. The former interaction
arises from the declarative nature of the concepts of the AO paradigm. Some aspects
can be woven into the base system at many join point. As a result, aspects may
modify any variable’s value and change arbitrarily the control flow of the base system.
Thus, the semantic of this system can be drastically changed. The second interaction,
which is Aspect/Aspect interference, occurs when multiple aspects are woven at the
same join point of the system. Their interaction may have some undesirable effect
on each other and/or on the base system if they are executed in any order. Some of
these orders can be used in a harmful way that invalidates the desired properties of
the system. Actually, there are many kinds of Aspect/Aspect interference [SP05]:

• Dependence: each time an aspect is executed, another one should be also
executed.

• Redundancy: two aspects or more have the same effect.

• Scheduling: many independent aspects are concerned with the same joint point
but executing them in any order may violate the properties of aspects or the
properties of the base system.

The two former problems should be fixed in design level because the weaver cannot
find out the relationship between aspects and hence cannot determine whether a given
aspect should be executed or not. These problems should hence be resolved by the
aspect developer [SP05].

The scheduling problem, which is the subject of this paper, depends on both
design and implementation levels (the weaver’s rules). In fact, this problem may occur
when many aspects concern the same joint point. In such situation, the weaver has
to decide how to execute them. Parallel execution is possible but can lead to race
condition that makes the analysis of the system harder (especially if aspects use shared
variables). AspectJ weaver [KHH+01] which is one of the most popular frameworks,
usually executes them sequentially which means that a problem will arise: should
advices be executed in any order? And if not, what orders should be avoided? For
instance, logging and authentication aspects are an obvious example of this problem.
The combination of these aspects illustrates the scheduling problem. It is obvious that
if the former aspect is executed before the last one, the authentication event will not
be recorded.

An interesting solution of the scheduling problem may involve the use of Aspect-
UML [Mos08]; a UML profile that allows modeling interactions between the base
system and aspects by extending the classic UML use case and class diagrams. The
new use case diagram allows integrating aspects as extensions of the base system use
cases. Meanwhile the new class diagram consists of adding aspects as a kind of new

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 5

classes and using OCL constraints to annotate both methods and advices (before and
after types). The annotations consist of the pre and postconditions of every action.
The scheduling problem can be solved by defining a precedence relationship (as it
is the case in AspectJ) between the conflicting aspects (aspects that share the same
join point) and representing it on Aspect-UML diagrams. This relationship is used
to define the sequential composition of the conflicting aspects. However, if it is not
always obvious to find the precedence relationship (especially in case of a big number of
aspects or if aspect interaction cannot be avoided as for aspects that modify variable’s
values of the base system) then the result can be disastrous.

At this level, the use of formal approaches can provide a good solution to this
problem by modeling base system/aspects interactions with Aspect-UML class dia-
grams. In this paper, we argue that the use of pre and postconditions in Aspect-UML
class diagram is useful for detecting bad aspect interaction. Thanks to these ones
(considered in our work as assumptions and not guards that have to be verified in
order to execute a given task), Aspect-UML models provide additional information to
analyze aspect interaction from a semantic point of view. The aim behind the use of
the pre and postconditions is to get some independence between the aspect interaction
problem and the properties to be verified (and preserved). Thus, the aspect interaction
problem can be defined or transformed into the verification of a generic property. The
definition of a set of global temporal properties that should to be preserved is harder
than defining simple conditions. In addition, it is not always obvious to define and
reason on global temporal properties since this requires reasoning about the whole
system. Pre and postconditions have the merit to operate on a local level which makes
them easier to define.

However, the use of Aspect-UML class diagram annotated with the pre and
postconditions is still insufficient to tackle the scheduling problem because we lack
information about the behavior of the system. It is hence judicious to combine this
diagram with state/transition diagrams as proposed by [Zha10] so that richer execution
scenarios could be considered.

In this work, we propose a rigorous framework for aspect-oriented modeling and
verification based on pre and postconditions and automata. We consider here bad
interaction between aspects and the base system as well as the scheduling problem.
In the proposed framework, classes and aspects are first defined in the Aspect-UML
in order to be able to define, among others, pre and postconditions of methods and
advices. The behavior is then specified in state/transition diagrams so that a finite
state automaton representing the woven system is built. We will show that aspect
interaction problem can then be transformed into a verification of a generic LTL
property which is independent of the system to be verified and hence enables the use
of any model-checker like Maude to verify bad interaction. We also propose a rewriting
system built with respect to the Maude tool [CDE+11] to model the whole system.
The use of rewriting systems seems to be a good idea to model the system since they
are suitable for the representation of the pre and postconditions of the methods and
advices as rewrite rules. Moreover, the use of rewriting system is also motivated by
the fact that interaction problem is equivalent to check the confluence of the aspects
execution orders.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

6 · Toufik Benouhiba, Amina Boudjedir

3 Modeling aspect-oriented systems

To model aspect-oriented systems at an early stage of the development, we have used
the Aspect-UML profile [Mos08] which introduces the fundamental concepts of AO
systems and permits to define methods’ pre and postconditions as OCL constraints.
However, this profile cannot define the dynamic behavior of the base system and the
aspects. In this case, the use of UML state/transition diagrams [OMG09] can be of
great help through modeling the behavior of the different objects and the advices
instead of just declaring them as OCL constraints. Hence, we have used High-Level
Aspect (HILA) [Zha10], an aspect-oriented extension of UML state machines, which
makes it possible to define rigorously the behavior of advices.

Figure 1 – A part of the class diagram of secure messaging system

3.1 Class diagram

The proposed framework will be validated through a case inspired from [ARS09] that
helps us to explain the different key points of our contribution. This example describes
a simulation of a secure messaging system in which the users can write, send and
receive messages. To these base functionalities, the system administrator decides
to add two aspects in order to improve the management quality. These aspects are
described below:

• The encrypting aspect encodes the written message in order to secure its trans-
mission in the system.

• The filtering aspect removes inappropriate words of the message in order to
alleviate the transmission of data (message).

Figure 1 shows the integration of the encrypting and filtering features in the
UML class diagram, using Aspect-UML notation. These crosscutting are depicted as
UML classifiers decorated with stereotype « Aspect». These aspects crosscut the base

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 7

system through the pointcut opSendText() which is modeled as a special interface
stereotyped with «PointCut». Both the encrypting and filtering aspects implement
the opSendText() pointcut and hence provide an implementation to the before advices.
These two aspects modify the same variable. Encrypting the text after filtering
inappropriate words is the obviously desired behavior. In reverse order, the filtering
aspect will be applied to an encrypted text and will not be able to filter this text since
the message is modified. This is a typical situation of aspects conflict because two
operations will be added before the join point and executed in a given order.

3.2 State/transition diagrams

UML state/transition diagrams describe the internal behavior (state changes) of
objects. It specifies the possible sequences of states and actions that an object can
handle during its life in response to events. Different types of events are defined
by UML (signals, method call). We will only focus on the events of the call type.
Aspect behavior is also modeled by state/transition diagrams as in HILA. Each advice
is represented by its own state/transition diagram in order to improve modularity.
However, since pointcuts definitions are given in the extended class diagram, they do
not figure in state/transition diagram. In addition, we suppose that there is neither
parallel region nor synchronization in order to avoid resumption conflict [ZH12]. By
synchronization, we mean barriers which are used by many processes to implement
a kind of rendez-vous. This can be seen as a future extension of our work. It is
noteworthy that the user is not meant to model either weaving or aspect composition
in state/transition diagrams since these activities are generic and should be model-
independent. Figure 2 shows the state diagram of the UserMessage class and the
filtering aspect.

Figure 2 – State/transition diagrams of the UserMessage (on the top) and Filtering aspect
(at the bottom)

Despite the fact that UML is a language endowed with widely used notation for
modeling complex systems, this language is still semi-formal. UML diagrams need to
be more formalized in order to ensure a correct behavior of a system. Hence, UML has
known considerable efforts to formalize its diagrams, among which the formalization
of the state-transition diagrams [CD05] can be cited. These diagrams were the most
used by the fact of their large application in the modeling of the internal behavior of
objects. In this work, we propose to model state/transition diagrams as finite state
automata (FSA) in order to formalize state/transition diagrams and provide a formal
model that describes advices composition and weaving. This formal representation
helps us later to verify the aspect interactions and advices scheduling problem.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

8 · Toufik Benouhiba, Amina Boudjedir

4 An Overview of the proposed approach

In this section, we explain the different activities involved in using our approach. The
first step of this approach (marked ’1’ the figure 3) represents the modeling of the
UML diagrams. The user models the Aspect-UML class diagrams: he defines each
classes and aspects and specifies the pre and postconditions of each method and advice.
Once Aspect-UML class diagram is modeled, the user proceeds to specify the behavior
of objects by using HILA-UML states-transition diagrams.

Figure 3 – An Overview of the proposed approach

The next step, marked ’2’ the figure 3, allows representing each state-transition
diagram with FSA. The aim of this representation is to define a framework in which
every entity (both the base system and the different advices) is processed in the same
manner as FSA. It is noteworthy that this work deals only with the state-transition
diagrams of the before and after advices. The reason of this is that state/transition
diagrams become simpler since proceed instruction of the around advice does not
appear in a before or an after advice (state/transition diagrams will look like any
ordinary object oriented system). In fact, the around advice requires storing their
context when the proceed instruction is encountered (a stack is often necessary to store
this context). The before and after advices don’t need this context because there is
no need to save anything after the execution of such advices. Their composition is
then easier and the complexity of the verification is greatly relaxed.

Once state-transition diagrams are represented with FSA, we proceed to step 3
(marked ’3’ the figure 3) to represent the composition and weaving of advices with
FSA. In the composition of advices of the same type, we merge the different FSA of
each advice into one single FSA that will be woven on the base system depending on
its nature. Note that we don’t consider terminating aspects: those that can terminate
the base system by executing a halt action. This is because the existence of two
terminating aspects means that at least one of them may not be executed, thus we
fail to reach the final state of the base system. Although this will not affect deeply
our modeling, we suppose that the considered aspects are not terminating. Moreover,
since defining pointcuts on aspects may lead to a non-terminating composition even

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 9

for an observer aspect (see [DDF12] for more details), we consider only pointcuts that
concern the base system. We will show in this step that aspect interaction problem
can be transformed into a verification of a generic LTL property. All the details of the
steps 2 and 3 are presented in section 5.

In Step 4 (marked ’4’ the figure 3), we propose a rewriting system that allows
an implicit construction of the FSA of the base system, the aspects, the aspects
composition and the weaving mechanism. This rewriting system is built with respect
to the Maude tool [CDE+11] to model the whole system. Thanks to the concepts of
the rewriting systems, it was possible to specify the pre and postconditions of the
different methods and advices with rewrite rules. In addition, the use of rewriting
system is also motivated by the fact that interaction problem is equivalent to check
the confluence of aspects execution orders. Section 6 presents the proposed rewriting
system in details.

Using the results from the previous step, the last step (marked ’5’ the diagram)
allows us to apply Maude model-checker for detecting bad aspect interaction. This is
discussed in section 7.

5 A formal framework for aspect-oriented modeling and verifica-
tion

5.1 Modeling state/transition diagrams

A state/transition diagram is considered as an FSA defined by (A,Q,init,F,δ) such
that A is set of actions, Q is the set of possible states, init is the initial state, F is the
set of final states (those corresponding to the end of the execution of an advice or the
destruction of an object) and δ: A × Q → Q is the transition function (it describes
how the state changes). In order to obtain a generic LTL property to verify, we require
that each FSA contains one single final state. This can be easily done by transforming
the state/transition diagram into a new FSA (A

′
, Q

′
, init,{f }, δ

′
) such that:

• A
′
= A ∪ {τ} where τ is a silent action (an action that has no effect). Each

action may have a precondition denoted by pre(a) and postcondition denoted by
post(a). Whenever a pre or a postcondition is not defined, it is assumed to be
equal to true.

• If F is a singleton then Q
′
= Q, else Q

′
= Q ∪ {f}.

• If δ(qi,a)=qj (such that qi, qj ∈ Q, a ∈ A) then δ
′
(qi,a)=qj . In addition, if F is

not a singleton, we add the following transitions (the goal is to have one final
state): δ

′
(q,τ)= f (such that q ∈ F).

Example 1. We present here the transformation of the state/transition diagram of
the filtering advice (figure 2) to FSA:(AFil, QFil, Idle, {endf }, δFil) such that:

• AFil= {initFiltering(), filterWord(), nextWord(), τ}
• QFil= {Idle, Active, Filtering, endf }
• δFil : QFil × AFil → QFil with:

– δFil (Idle, initFiltering())= Active
– δFil (Active, filterWord())= Filtering

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

10 · Toufik Benouhiba, Amina Boudjedir

– δFil (Filtering, nextWord())= Active
– δFil (Filtering, τ)= endf

The filtering advice is represented as an FSA with a set of states QFil and actions
AFil. The transition function δFil describes how these states change from the Idle
state to final state endf.

5.2 Advice composition

Through the functioning of the rewriting systems, it is not compulsory to build all
possible orders when many advices of the same type (before or after) apply to the
same point. In fact, the verification will not check all advices order unless no order
preserves the properties of the system. However, in order to clarify the composition of
the advices, we consider in this modeling all execution orders, i.e. each time the weaver
has to choose an advice to execute; the choice is made non-deterministically. That
is why we call it non-deterministic composition. Throughout this, if the verification
succeeds, one can be sure that any execution order is possible.

Let a and b be two advices of the same type that apply on the same joint point.
Their non-deterministic composition is denoted by a t b. There are two possibilities to
define this operation: the first one consists of keeping some composition information in
the automaton of a t b so that the operator will be associative, the second possibility
consists of giving a n-ary definition for it since a binary definition without keeping any
information on composition means that t is not associative but commutative. The
former solution is suitable for dynamic weaving (i.e. situations where we do not know
in advance how many aspects to combine) but requires a more a complex definition.
The latter solution is meanwhile suitable for static weaving and simpler to define.
In this paper, we used the second definition since a safe design would not generally
require a dynamic weaving.

Let’s consider now n advices of the same type that apply on the same join point.
Each advice is represented by an FSM as ai=(Ai, Pi, Qi, initi, {fi}, δi) such that i
= 1..n. We first define the set Φn as the set of one-to-one mapping from {1..n} to
{1..n} or, equivalently, all permutations of values from 1 to n (intuitively, an element
of Φn represents an execution order of advices). We consider the set Φi,1= {p ∈ Φn |
p(1)=i} (intuitively, Φi,1 corresponds to compositions in which the first element is the
advice i). The non-deterministic composition a1 t a2...t anis given by (AND, QND,
intND, {f }, δND):

• AND = ∪ni=1 Ai ∪ {τ}
• QND =((∪ni=1 Qi) × Φn) ∪ {intND, f }
• intND is the initial sate of the non-deterministic composition
• δND is the new transition function defined by:

– for i = 1..n
– δND(intND, τ)= δND(inti, pj) for each pj ∈ Φi,1(non deterministically
pick one execution order in which advice i is the first one to execute) —1
– for each q ∈ Qi

– if q ∈ Qi–{fi} then
• δND((q,p), x)=(q

′
, p) such that δi(q,x)=q

′
—2

– else
• if p(i)< n then δND((q,p),τ)=(δp(i+1),p) —3

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 11

• else δND((q,p),τ)=f —4

From the initial state initND of the non-deterministic composition and through
the transition functionδND, the FSA branches to the first advice of each possible per-
mutation (marked 1 in the algorithm). Taking the selected advice of one permutation,
all its states are taken into account (marked 2 in the algorithm) in the FSA until a
final state is reached. If there is another advice to be composed, the final state of
the previous advice is linked to the initial state of the new advice (marked 3 in the
algorithm). Otherwise, the final state is related to the final state f of the FSA through
the action τ (marked 4 in the algorithm).

Example 2. Let’s consider the filtering and encrypting aspects. The set of per-
mutations is Φ2=p1, p2 such that p1 ≡ [1,2] and p2 ≡ [2,1]. The result of their
non-deterministic composition is given in figure 4.

Figure 4 – Non-deterministic composition of the encrypting and filtering advices

From the initial state initND of the non-deterministic composition of the filtering
and encrypting advices, the FSA branches to the first advice of each possible permu-
tation with the action τ . In permutation p1 we find the filtering advice as a first one
followed by the encrypting advice whereas in permutation p2 we find the opposite.
By taking the filtering advice of the first permutation p1 (the same thing can be said
about p2), all its states are taken into account in the FSA until a final state is reached.
At this time, the final state of the filtering advice is linked with the initial state of
the encrypting advice with the action τ . All the states of this encrypting advice are
considered on the FSA until a final state is reached. This later will be related to the
final state f of the FSA with the action τ in order to have one final state.

5.3 Weaving

Since the scheduling problem depend on two levels: design level and implementation
level (the weaver’s rules), we chose, in this work, to be independent of the weaver’s
rules since these rules can vary from one weaver to another. Thus, the proposed
solution should resolve the problem on the design level. The only rule that should be
kept is that the execution of before advices should be prior to the execution of after
advices. Hence, we will not refer to the precedence of aspects nor advices anymore;
we rather prefer to use the expression: execution order. This means that all advices
will be processed independently of the aspects to which they belong.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

12 · Toufik Benouhiba, Amina Boudjedir

When many advices of the same type are defined over the same join point, we
initially apply non-deterministic composition in order to have at most one advice
of each type (since the weaver considers first the execution of before advices then
after advices). We consider now a base system given by a set of FSA: (Ab, Qb, intb,
{fb}, δb). The FSA: (ABc, QBc, intBc, {fBc}, δBc) and (AAc, QAc, intAc, {fAc}, δAc)
represent respectively the non-deterministic composition of before and after advices.
If we suppose that all advices concern the join point j (an action of the base system),
this means that the base system includes at least one occurrence of the instruction j
otherwise the weaving result is equal to the base system. The weaving of those advices
on the base system with respect to the join point j is defined by the FSA: weavingj
(Ajw, Qjw, init, {fb}, δjw) such that:

• Ajw = Ab ∪ ABc ∪ AAc ∪ {τ}
• Qjw = Qb ∪ ((QBc ∪ QAc) × Qb)
• δjw the new transition function is defined by:

– δjw(q,x)=q
′
with δb(q,x)=q

′
, x 6= j and q,q

′ ∈ Qb —1
– δjw(q,τ)=(q

′
, intBc) with δb(q,j)=q

′
, and q,q

′ ∈ Qb —2
– δjw((q,q

′
),x)=(q,q

′′
) with δBc(q

′
,x)= q

′′
,q ∈ Qb, q

′∈ QBc–{fBc} and q
′′ ∈ QBc —3

– δjw((q,fBc),j)=(q, intAc) with q ∈ Qb —4
– δjw((q,q

′
),x)=(q,q

′′
) with δAc (q

′
,x)= q

′′
,q ∈ Qb, q

′ ∈ QAc–{fAc} and q
′′∈ QAc —5

– δjw((q,fAc),τ)= q with q ∈ Qb —6

According to the above algorithm, the base system changes its states via the
transition function δjw (marked 1 in the algorithm) until a join point j is detected
(marked 2 in the algorithm). Once a joint point is detected, we first keep the state q
in order to have the return state after weaving. After that, the control flow is changed
to weave the before advices (marked 3 in the algorithm). At this level, the FSA of the
non-deterministic composition of the before advices is weaved onto the base system.
The FSA weavingj follows the control flow until a final state of the composed before
advices (marked 4 in the algorithm) is reached. Once the final state of the before
advices is reached, the control flow is passed to the invoked join point (marked 4 in
the algorithm) by using the kept state q. After that, the control flow is passed to the
FSA of the non-deterministic composition of the after advices. At this time, this later
FSA is weaved to the base system and follows the control flow until the final state of
the composed after advices (marked 6 in the algorithm) is reached. Once reached, the
control flow is passed to the base system to continue the sequel of the system.

It is worth noting that this algorithm is slightly changed when only before advices
(resp. after advices) are defined like in the following example.

Example 3. Let’s compute the weaving of advices filtering and encrypting on the
base system. Those advices crosscut the base system through the join point sendText().
The weaving result is given by the FSA weavingsendtext() (Asendtext()w , Qsendtext()w ,
initb, {S4}, δ

sendtext()
w) defined in figure 5.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 13

Figure 5 – Graphical representation of the weaving of advices

From the initial state S0, the base system changes its states until a join point
sendText() is detected. Once this is done, we first keep the state S3 in order to have
the return state after weaving. After that, the control flow is changed to weave the
before advices. At this level, the FSA of the non-deterministic composition of the
before advices is weaved onto the base system. Afterward, the FSA follows the control
flow until a final state of the composed before advices is reached. Then, the control
flow is passed to the invoked join point sendText() by using the kept state S3 which
in turn passes the control flow to the base system to continue the sequel of the

5.4 Interaction detection and verification

For the purpose of verification, we give here the definition of paths. Let FSA =(A, Q,
init, {f }, δ) be a finite state automaton constructed from a state/transition diagram.

Definition 1. A path is a finite or infinite word q0 q1 ... such that its alphabet is Q,
q0 = init and ∀ i ∃ a: δ(qi,a)= qi+1.

When the woven system is produced, we can decide whether the woven system preserves
the base system’s properties. For instance, we can verify if a given base system temporal
property expressed in LTL is still preserved. Let’s consider an LTL property φ verified
by the base system. If φ is not verified by the woven system then a counter-example
can be generated. This one has the form of uvω if we consider infinite executions or
uv∗ if finite executions are rather considered (u and v are finite paths). Actually, the
woven system fails to preserve the base system properties if one of the two problems
occurs: either the composition cannot terminate which means that the final state of
the base system will not be reached (as explained in [DDF12]), or a precondition of a
given action is not verified by the current state of the system.

In the first problem, a counter-example corresponds to a path uvω such that v is
exclusively composed of states of the form ((q, q

′
), p) such that q is a base system

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

14 · Toufik Benouhiba, Amina Boudjedir

state, q
′
is an aspect state and p is an execution order. In the second problem, which

corresponds to the violation of a precondition, the counter-example is a finite path u.
Since the base system is deadlock free and u contains at least one state of the form
((q, q

′
), p).

In both cases, we conclude that the execution orders that figure in u (or possibly
v) are bad and should be avoided. Unfortunately, it is not obvious to decide which
scheduling order is responsible of the problem if there is more than one conflict.

We notice, however, that this reasoning requires the user to define labels (atomic
propositions) for every state in the diagram otherwise classical verification approaches
would not be usable. This is not an obvious task since our modeling is based on
properties of actions and not on properties of states. In particular, one has to define
a Kripke structure in order to be able to apply, among others, the LTL verification
procedure (based on Büchi automata [Büc62]). Our aim here is not to verify if some
temporal properties are preserved by the woven system. Instead, we are interested in
the verification of violation of pre and/or postcondition.

We present two approaches for verifying the non-violation of pre and postconditions.
The first one is somehow limited because it assumes some precedence relation between
actions. The second one is more general and transforms the non-violation property
into a reachability issue.

5.4.1 Precedence based verification

In this approach, we build for each action a the set of all actions that can be executed
after a. Formally, we define this set as ξa ={c| post(a) → pre(c)} (postcondition of a
is compatible with the precondition of c). Obviously, since τ can be always executed,
it belongs to any ξa.

Once all sets ξa are computed, we will be interested by event-based temporal
properties. For instance, we consider that writing a means that action a can be
executed in the current step, Xa means that a can be executed in the next step, Ga
means that a can always be executed, etc.

Now, let P be the system precondition and Q be the system postcondition. We
define two special actions in order to consider P and Q. The first action is actp for
which the precondition is true and the postconditionis P. The second action is actQ
for which the precondition is Q and the postcondition is true. We hence transform
every FSA (A, Q, init, {f }, δ) into a Kripke structure (Q ∪ { init

′
, f′}, R, init

′
, L)

such that:

• (q, q
′
) ∈ R if δ(q,a) = q

′

• (init
′
,init) ∈ R and (f,f

′
) ∈ R

• L(q)= {a| ∃ q′ ∈ Q : δ(q,a) = q
′
} such that q ∈ Q

• L(init
′
)= {actp } and L(f)= {actq}

The preservation problem is transformed into the verification of the following LTL
property:

(∧a∈A G(a → ∨c∈ξa (Xc)) ∧ (F actQ) (1)

This property means that whenever an action a is executed, the next one must
be an action whose precondition is implied by the postcondition of a. For the sake of
verification, we assume here that for every state q in the finite state automaton, the
transition system δ is defined in such way that δ(q,τ) = q.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 15

5.4.2 LTL-based verification

The previous analysis relies on operations order; we qualified it as naive since it only
considers binary precedence. However, it can be enhanced by rigorously defining
precedence between operations but this is a complex task that requires a deep analysis
of pre and postconditions.

Instead of basing the reasoning on operation precedence, we can use pre and
postconditions in order to label the states of the systems. The labeling algorithm we
are presenting depends on substitutions over predicates. We adopt here a definition of
pre and postconditions similar to those used in [NKK97].

A precondition (resp. postcondition) is an AND-conjunction of predicates ψ(x1,...,
xn) (such that x1,...,xn are variables). A precondition is allowed to have negations
¬ψ(x1,...,xn) meaning that a predicate does not hold. An action a with a precondition
pre(a) and postcondition post(a) can change a state s into a state s

′
with respect to a

global property prop (an AND-conjunction of predicates) representing the state of the
whole system. The execution of a is possible if each predicate in pre(a) is satisfied
by prop, i.e., prop → ψ(x1,...,xn). Once executed, all predicates of pre(a) are retired
from prop and restated by those defined by post(a). We would notice here that this
modeling is somehow influenced by our choice to use rewriting systems as a support
for model checking (replacing preconditions with postconditions is seen as a rewriting
operation). The operation of replacing predicates of pre(a) by those of post(a) in prop
is written as prop[pre(a) \ post(a)].

In order to apply classical LTL verification for example, we construct a Kripke
structure. First, a new finite state automaton is built as follows. Suppose (A, Q, init,
{f }, δ) a finite state automaton for which pre and postconditions belong to a set Ω
(with respect to variables s and s

′
). Suppose that the precondition of the base system

is P and that the postcondition is Q. The new finite state automaton is given by (A,
Q × Ω ∪{end},(init, P),{end},δ). A state (q,φ) figures in this new automaton if φ is
not false in q. The new transition function is given by:

δ
′
((q,φ), m)=(q

′
, φ [pre(m) \ post(m)]) (2)

Such that δ(q, m)= q
′
and φ → pre(m). The following transitions are also added to

ensure reaching the final state:

δ
′
((f,φ), τ)= end (3)

Such that φ → Q.
With this formalization, respecting all pre and postconditions means simply reach-

ing the final state end, i.e., it is sufficient to test whether the LTL property F end is
verified. In other words, we can say that the different advices orders are confluent, i.e,
we get the same final result whatever the execution order is.

It is also possible to deal with the problem in another way. Actually, if there are
lots of advices to be woven, then exploring all execution orders may be time consuming.
We can hence be interested in finding one or some orders that do not violate pre
and postconditions (good execution orders). It is sufficient to test whether the LTL
property G ¬ end is verified.

6 The rewriting system and its underlying formalism

The use of rewriting systems is suitable for the modeling and the verification of
aspect interaction problem by the fact that interaction problem is equivalent to check

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

16 · Toufik Benouhiba, Amina Boudjedir

the confluence of the execution orders. Thus, in order to concretize the proposed
framework, we propose a rewriting system to model the base system and aspects. This
rewriting system is built with respect to the Maude tool. In the following of these
sub sections, we will first give an overview of rewriting logic and Maude tool. We
then explain how the UML models are translated into Maude constructions so we can
detect undesirable aspect interactions.

6.1 Overview of rewriting logic and Maude

Rewriting logic [CDE+02] is a flexible logical framework for expressing a very wide
range of concurrency models and distributed systems. Many rewriting based languages
have been proposed; in this paper we use the Maude language [CDE+11]. It is a
specification and programming language based on rewriting logic. Data types can be
defined as well as their properties by giving signatures, and equations. The behavior
is expressed by rules. These rules are of the form "t ⇒ t’ if C" which indicates that
"term t becomes t’ if a certain C is verified". The condition C is optional, so rules can
be unconditional. Maude also supports object oriented programming and it integrates
an LTL model-checker that can be used to verify the required properties.

6.2 Translation of UML models into Maude constructions

This step begins by the translation of the Aspect-UML class and state/transition
diagrams into Maude specifications. After that, the weaving process which consists
of the detection of the join point, the non-deterministic composition of advices and
integration of these advices at the corresponding join point is represented. Note that
this implementation is partially based on [BBM10] in which the authors dealt only
with Aspect-UML class diagram.

6.2.1 Structural specification rewrite theory (SSRT)

The aim of the SSRT is to model the set of all structural elements (i.e. classes,
aspects, attributes, methods) of the class diagram. Our solution is partially inspired
by Maude object oriented programming [CDE+11]. Each UML class is specified with
a Base-SSRT represented as a module. Each module defines an operator of sort Cid
(class identifier) to represent the name of UML class. The attributes and methods
of classes are respectively represented by operators of sorts Attribute and Msg. If
an object Obj of sort Oid (object identifier) has a method with no parameter, this
method will be represented by an operator such in mark 1. Otherwise, it will be
represented by an operator such in mark 2. These operators are represented as:

op ClassName : -> Cid.
op AttributeClassName : -> Attribute.
op MethodClassName: Oid -> Msg. --1
op MethodClassName: OidParms -> Msg. --2

Aspects are modeled in the same way. Each aspect is represented with an Aspect-
SSRT (Aspect structural specification rewrite theory). Concretely, this corresponds to
a system module. This one defines the name of the aspect with an operator of sort
Aid (a subsort of the sort Cid). The different attributes (resp. methods mark 2 and
3) of an aspect are represented by means of operators of sort AspAttribute in mark 1
(resp. AspMsg) which is a subsort of the sort Attribute (resp. Msg). These operators
are represented as:

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 17

sort Aid . subsort Aid < Cid .
sort AttributeAsp. subsort AttributeAsp < Attribute .
sort AspMsg . subsort AspMsg < Msg .
op AspectName: -> Aid .
op AttributeAspectName:-> AspAttribute . --1
op MethodAspectName: Oid -> AspMsg . --2
op MethodAspectName: Oid Parms -> AspMsg . --3

Moreover, every aspect should have an operator DefAdv that defines the advice
name, its type (before or after) and the join point. This will be done thanks to a
membership axiom. These operators are represented as:

sorts AdviceName Advice.
ops Before After: -> AdviceType.
op DefAdv(_,_,_): AdviceName AdviceType Msg -> Advice.

6.2.2 Behavior specification rewrite theory (BSRT)

The UML state/transition diagrams describe the behavior of the base system objects
and the advices of each aspect. The representation of these diagrams consists of
associating a BSRT to each diagram. Each BSRT defines the following configurations
(A,S,T) where:

• A is the set of possible actions (methods). In Maude, these actions are represented
as messages of sort Msg (or AspMsg).

• S is the set of possible states (of the object or the advice). These states are
represented through a set of sorts and operators as:

ops s1 s2...sn : -> State .

The initial and final states are represented respectively by operators of sort
InitState and FinalState (subsorts of State).

• The set of transitions T specifies how the state changes from a current state Si
to a new one Sj with respect of an executed action ActionName() as:

Si × ActionName() => Sj

In Maude, each object Obj (resp. instance of aspect AspIns) of class Cl (resp.
of an aspect class Asp) with the actual state Si and n attributes is represented
by the following syntax (this corresponds to the state of a system):

<Obj:Cl| 〈 ObjState:Si 〉, 〈att1:val1〉,...,〈 attn:valn〉>

As described in the OCL constraints of the class diagrams, each method of the
object Obj (resp. AspIns) has pre and postconditions. If a method introduces
a modification on one or many variables of the object (resp. the aspect) then
the state should be expressed by using rewriting variables in order to specify
the action effect. Furthermore, if pre/postconditions require some values for the
variables, then the required values are directly specified within the object (resp.
the aspect) state. By using the new syntax of each object (resp. the different

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

18 · Toufik Benouhiba, Amina Boudjedir

advices of each aspect), a transition is represented as:

rl[Object/Advice]: ActionName()
<Obj:Cl/ AspIns:Asp |
〈 ObjState/AdvState:Si 〉, 〈 att1:val1 〉,..., 〈 attn:valn 〉>

⇒
<Obj:Cl/ AspIns:Asp |
〈 ObjState/AdvState:Sj 〉, 〈 att1:val

’
1 〉,..., 〈 attn:val’n 〉>

Where val
′

1,...,val
′

n expresses precondition and variables’values. The rule can
also be conditional if there are some other conditions that cannot be directly
represented in the rule (for example, the state Si is not equal to certain values
Si 6= ValueState).

We notice, however, that this translation does not cope really with the modeling.
In fact, since each rule should specify the method’s name to be executed, we have
to specify every time which methods to be executed next. Formally, consider a
set of states Q, a transition δ(qi,m)=qj and A={a1,..., an} a set of methods such
that ∀ a ∈ A, ∃ qa ∈ Q :δ(qj ,a)=qa (intuitively, A is the set of methods that can
be executed starting from state qj). Independently of pre and postconditions,
the transition δ(qi,m)=qj is translated as follows:

rl[Object/Advice]:
<Obj:Cl | 〈 ObjState/AdvState:qi 〉...>

Active(BeginMethod, m(), BaseSystem/Aspect)
⇒

<Obj:Cl| 〈 ObjState/AdvState:qj 〉...>
Active(EndMethod, m(), BaseSystem/Aspect)
GetMessage(a1(Obj) a2(Obj)...an(Obj))

The predicate (term) Active(...) indicates how the system is executed. It is
used in order to pass the control to the next method, the first before advice or
the join point. In this rule, it is used in order to define which method is being
executed (when used with the parameters (BeginMethod,m() and BaseSystem or
Aspect)). The parameters (EndMethod,m(),BaseSystem) mean that the method
m() has been successfully executed within the base system and hence next
methods could be executed (when the last parameter equals Aspect this means
that the execution is done within an aspect). This is done by building a list
GetMessage(a1(Obj) a2 (Obj)...an(Obj)) which corresponds to methods that
can be executed next. A non-deterministic rewriting rule is then used in order
to explore all possibilities (X is a variable that indicates which part of the whole
system is being executed: the base system or the aspect):

rl[NonDeterministicNextMethod]:
GetMessage(List1 m1:Msg List2) Active(EndMethod, m2, X)

⇒
Active(BeginMethod, m1, X)

In order to indicate the methods to be executed in the initial state and to switch
between the different systems, we have used the flags Active(Trigger) for the base

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 19

system and Active(TriggerAdvice) for the advices. This is done in the following
structure:

eq Active(Trigger/TriggerAdvice)
=
<Obj/AspIns: Cl/Asp | 〈 ObjState/AdvState: InitState 〉>
Active(EndMethod, Tau, BaseSystem/Aspect)
GetMessage(a1(...) a2(...)...an(...))

Where Tau is a silent message (corresponding to the action τ) used to switch to
a given transition system.

6.3 Weaving

6.3.1 Detection of the join point and collection of advices that share this point

This step consists of detecting the joint point specified by the different aspects. The
detection is carried out by using a set of conditional equations the goal of which is
to monitor the base system messages corresponding to one or more pointcuts. Once
a join point is detected, two lists are built: the first one contains the before advices
(BeforeList) while the second one contains the after advices (AfterList).

6.3.2 Non-Deterministic Composition and Integration of advices

The purpose of the proposed approach is the detection of eventual errors in as-
pect scheduling when composing conflicting advices. Hence, the weaving has to
consider all possible orders. We have used a set of equations and rewrite rules in
order to ensure, on the one hand, a non-deterministic composition of the conflicting
advices and, on the other hand, the integration of this composition into the base
system. We have also used a set of flags (via Active(..)) to switch between the base
system and the advices when necessary. When a join point is detected, the term
Active(BeginMethod,m(),BaseSystem) is rewritten as Active(WeavingBefore) in order
to indicate that control passes to the before advices.

The weaver considers a non-deterministic composition of the conflicting before
(or after) advices. This is achieved thanks to Maude rewriting mechanism. In fact,
whenever a rule contains variables, Maude considers all their possible instantiations.
Hence, it is possible to extract non-deterministically one element from a list. By
repeating this process, all permutations of a list can be easily generated. The following
rewrite rule illustrates this fact (a similar rule is used in order to process the after
advices).

rl[NonDeterministicBeforeComposition]:
BeforeList(befAdv Adv befAdv’, JoinPoint)

⇒
BeforeList(befAdv befAdv’,JoinPoint) Adv Active(TriggerAdvice)

Maude chooses non-deterministically the advice Adv. By using the trigger flag
Active(TriggerAdvice), this advice Adv begins the execution of the rules that reflect
its behavior until it achieves its final state. Once the selected advice reaches the final
state, Maude proceeds with the composition of the remaining list of the before advices
(it re-executes the previous non-deterministic before composition rule). Maude will
then choose another advice, executes its behavior and so on until it remains no before

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

20 · Toufik Benouhiba, Amina Boudjedir

advices to be composed. At this level, the control should be past to execute the
invoked join point by using the Active(BeginMethod,JoinPoint,BaseSystem) flag which
triggers the execution of the invoked join point method. To achieve this, we use the
following equation (noneAdvice means that the list of advices is empty):

eq BeforeList(noneAdvice, JoinPoint)
=
Active(BeginMethod, JoinPoint, BaseSystem)

Once the invoked join point is executed, another equation is then used to switch
back to the after advices:

eq Active(EndMethod, M, BaseSystem) = Active(WeavingAfter)

The execution of the after advices follows the same principle adopted in the
execution of the before advices.

7 Implementation of the proposed approach with Maude

The implementation of each step explained above is given here.

7.1 Representation of the base system

We present below a part of the representation of the UserMessage class with a Base-
SSRT and Base-BSRT. These later illustrate respectively the structure and the behavior
specification of the UserMessage class.

mod USER-MESSAGE is
pr CONFIGURATION .
sort M-SateValues
--- The different States
ops Pending Active Writing Sending -> M-SateValues.
--- ClassName
op UserMessage : -> Cid . ---1
---Attributes
op Text : String -> Attribute . ---2
--- Methods
op SendText : Oid -> Msg . ---3
...
crl[send] : SendText(M) ---4

< M: UserMessage | MState: State, Text : mssg >
=>

< M: UserMessage | MState: Sending, Text : mssg >
if State == Writing. ...

endm

In the above structure, the UserMessage class is represented with a system module.
This module imports the Configuration Maude module in order to represent the
essential concepts of the object-oriented systems. The name of the UserMessage class
is represented by an operator in mark 1. The attributes of this class are represented
with operator of sort Attribute (mark 2). The methods (we take only one method) are

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 21

also represented by operators as shown in the above structure (mark 3). The behavior
of each method is represented by conditional rewrite rule (mark 4). This rule describes
the transition between the writing and sending states. The term sendText() means a
message is sent to the object M asking for the execution of SendText() method. The
execution of this method is not realized unless the preconditions are verified (State
= Writing). Once these preconditions are fulfilled, the right-hand side of the rule is
reduced and the postconditions of the method sendText() replace the preconditions.

7.2 Representation of the aspects

The different aspects are represented with Aspect-SSRT and Aspect-BSRT. These
later illustrate respectively the structure and the behavior specification of the aspects.
We give here as an example, a part of the translation of the encrypting aspect.

mod ENCRYPTING is
pr User-MESSAGE .
--- The different States
sort E-StateValues .
ops Pending Encrypting : -> E-StateValues .
--- AspectName
op Encrypting : -> Aid . ---1
---Methods
op Encrypt : Oid String -> AspMsg . ---2
---AdviceName
op EncryptAdvice: -> AdvName .
mb DefAdv(EncryptAdvice,Before,sendText(M): Advice. ---3

var M : Oid .
crl[Encrypt]: Encrypt(M) ---4

< EncryptAdvice: Encrypting | AdvState : Pending >
< M: Message | MState: State, Text : mssg >

=>
< EncryptAdvice: Encrypting | AdvState: Encrypting >
< M: Message | MState: State, Text : Encrypt(mssg)>

if mssg =/= null .
endm

In the above structure, a part of the representation of the encrypting aspect of the
figure 1 is illustrated. This aspect is represented by a system module which defines
an operator to represent the name of aspect (as it is shown in mark 1). The different
methods of this aspect are represented in the mark 2. The name, the type of the
advice and the invoked join point are represented with the term DefAdv in mark 3.
The behavior of each method is represented by conditional rewrite rule (mark 4). The
pre and postconditions of this rule are respectively represented in the condition of the
rule and the left-hand side of this rule.

7.3 Results and discussion

Once the translation of the different diagrams (Aspect-UML and state/transition) and
the representation of the composition and weaving process are done, we proceed to the

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

22 · Toufik Benouhiba, Amina Boudjedir

verification of the aspect interaction problem. The verification consists of exploring
all possible aspects orders and verifying if all pre and postconditions are respected.
To obtain that, Maude LTL model-checker can be used to verify an LTL property
(reachability property). This property is expressed as <> FinalState (<> corresponds
to F). Hence, the command to be executed is:

red modelCheck (InitialState, <>FinalState)

Where:

• InitialState represents an initial configuration of the system where the verification
should be start. This initial state takes into consideration the base system objects
and the archiving and notification aspect which are initially supposed correct.

• FinalState represents the final configuration of the system. This final state
defines the necessary operators used in the definition of the reachability property.

Using this command, Maude model-checker starts the verification from the defined
InitialState and test whether all possible orders of advices can lead to the FinalState
of the base system. Let us use this command with the encrypting and the filtering
aspects. When both aspects are woven to the system, the Maude model-checker
reports a counter-example (as it is presented in the following result). The existence of
a counter-example means that the base system and the advices behave badly or that
the scheduling order is bad. The above counter-example represents the deadlock of
the system which means that the reachability of the final state is no longer possible.
In general way (as it is explained in section 5.4), a counter-example is a pair (u,v)
consisting of two lists of transitions, where the first one u corresponds to a finite path
beginning in the initial state of the system until an acceptor or reachable state of the
system is found. The second list of transitions v describes a loop which is a cycle on
this acceptor state. Noting that each transition is represented as a pair SystemState,
RL, consisting of a state of the system and the label of the rule applied to reach the
next transition.

1. reduce in WEAVER-CHECK: modelCheck(InitialState, <> FinalState (A))
2.result ModelCheckResult:
3.counterexample (
4. { < M: UserMessage | MState: Pending, Text: null>, ’init}
5. { < M: UserMessage | MState: Active, Text: null >, ’writeText }
6. { < M: UserMessage | MState: Writing, Text: msg >

AdvicesOrder(Null), ‘BeforComposition }
7. { < M: UserMessage | MState: Writing, Text: msg >

< EncryptAdvice: Encrypting | AdvState : InitialState >
AdvicesOrder(EncryptAdvice), ’TriggerEncrypting }

8. { < M: UserMessage | MState: Writing , Text: msg >
< EncryptAdvice: Encrypting | AdvState : Pending >

AdvicesOrder(EncryptAdvice) , ’Encrypt}
9. { < M: UserMessage | MState: Writing, Text: msg’ >

< EncryptAdvice: Encrypting | AdvState : FinalState >
AdvicesOrder(EncryptAdvice) ,’FinalEncrypt}

10. { < M: UserMessage | MState:Writing, Text: msg’ >
AdvicesOrder(EncryptAdvice) , BeforComposition }

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 23

11. { < M: UserMessage | MState: Writing , Text: msg’ >
< FilterAdvice: Filtering | AdvState : InitialState >

AdvicesOrder(EncryptAdvice, FilterAdvice) , ’TriggerFiltering}
12.,
13. { < M: UserMessage | MState: Writing, Text: msg’ >

< FilterAdvice: Filtering | AdvState : InitialState >
AdvicesOrder(EncryptAdvice, FilterAdvice) , deadlock}

)

The first list of transitions u (starts from line 4 to line 12) is composed of a set of
pairs. Each pair can be represented as {(BSState),RL} if there is no interaction between
aspect and base system. Otherwise, the pair is {(BSState,AState,AdvicesOrder),
RL} such that: BSState is a base system state, AState is an aspect state which is
represented respectively by means of an object and aspect instance, and AdvicesOrder
is an execution order of advices. The second list of transition v (shown line 13) contains
one transition which is represented as a deadlock situation. This situation is due
to (note that only the relevant part of the counter-example is shown in the above
result): before executing the join point sendText(), the system starts the composition
of advices (line 6) by choosing the encrypting advice as the first advice to be executed
(line 7). We have used the AdvicesOrder predicate (list of advices) in order to show
the advice order composition during the execution. So, the chosen encrypting advice
intervenes before sending message by trying to encrypt the written message. Once the
encrypting advice ends, the control flow is passed to the filtering advice as it is shown
in line 11. At that time, a deadlock (line 13) situation is encountered by the fact
that the preconditions of the filtering advice are not verified (pre: M.text = msg, see
figure 1) and the filtering aspect will not be able to filter this text since the message
is modified. Consequently, the execution of the encrypting advice before the filtering
advice led to a deadlock situation which blocked the execution of the filtering advice
and thereafter the execution of the base system. The execution of the filtering advice
should hence be considered first.

7.3.1 Discussion

The proposed approach allowed us to show how the integration of aspects (as it is the
case of the encrypting and filtering aspects) that share the same join point (sendText())
in the base system can violate some properties and hence interact badly with the base
system. In general way, the woven system fails to preserve the base system properties
if one of two problems occurs: either the composition cannot terminate which means
that the final state of the base system will not be reached, or a precondition (or a
postcondition) of a given action is not verified by the current state of the system (see
section 5.4 for more details). We have therefore tested whether all possible orders of
advices can lead to the final state of the system and we have obtained a counterexample.
This one indicates that the preconditions of the notification advice are violated when
executing the archiving advice which has led to the deadlock of system. Note that the
violation of the pre and/or postconditions does not mean necessarily that the base
system will be halted but we can say that the whole system would be in an incoherent
status, which makes it impossible to predict its future states.

However, although the approach resolves the problem of interaction in design level
(the complexity of the problem will be less important than working on the source code
level), the verification of all possible orders of advices can be hard to do especially

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

24 · Toufik Benouhiba, Amina Boudjedir

when the number of aspects (advices) is important (the number of all possible orders
is as n! where n is the number of the advices).

To make our approach scalable, the verification of all possible orders of advices
can be avoided in many ways:

1. Defining a deterministic composition: In some cases aspects can be inde-
pendent of each other. This is particularly the case for aspects that do not
change the base system variables and do not share any variable (for example,
a logging aspect and a tracing aspect). In such case, the composition becomes
deterministic and it is sufficient to check one execution order. In Maude con-
structions this is equivalent to define the composition operator as commutative
leading hence to consider all combinations as equivalent.

2. Defining groups: On the design level the designer can conceptually define
several independent groups of dependent aspects. The idea is to put together
aspects that may interact since they use shared variables. The verification does
not need to explore all execution orders of all aspects, it is sufficient to verify
each group independently of the others. Suppose, for simplicity, p the number
of groups and q the number of aspects per group. Instead of exploring (pq)!
orders, the model-checker will only explore p(q)! possible orders.

3. Looking for the good order: If no reduction is possible and the number of
advices is not important, we can be rather interested in looking for one or a
limited number of good execution orders (as explained in section 5.4). In Maude
construction this is done by the following command:

red modelCheck (InitialState, []~ FinalState)

It is noteworthy that, Maude does not build the entire system, because this one
is rather built on demand (or on-the-fly). In fact, Maude starts the verification
of the advices order by the pairwise checks between the advices. Suppose that
the execution order to be explored is the following:

(((a1, a2), a3)..., an)

If the verification of a pair of the advices (for instance a1 and a2) fails, then
the whole execution order is aborted and a counter-example is generated. This
avoids the verification of the remaining order once a problem is detected in the
current pair order, and thus minimizes the number of the checked states (the
same behavior of Maude is done if there is a problem between the base system
and the advices). When the pairwise verification of the advices succeeds, it
passes to another pair of the advices (for instance the result of a1, a2 with a3)
until a correct order is found.

All these propositions reduce the state-space size of the verification and the
simulation time. In addition, the state-space size can be reduced by the nature of
Maude that can detect isomorphic states in branches and can merge them into one
branch. This means that, during the rewriting mechanism, if Maude finds states that
have the same result then it can merge them into a single state. This mechanism
can be done when Maude starts the verification of the commutative aspects, thus the
result of each order of these aspects is the same. Consequently, Maude merges all the
branches of these orders into on branch.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 25

8 Related Works

Several works were dedicated to detect and verify aspect interaction. We can classify
these works into two categories depending on what level they actually act: source-code
level and design model level.

In the former category, the authors of [ZZ07] presented six bug patterns in AspectJ
which provide to both researchers and programmers a clear view of what kind of
bugs may happen in AspectJ programs and how to detect them. The study of bug
patterns mainly focused on the aspects of bug pattern symptoms, cause root, cures
and preventions. This work has been extended in [SZZ+8] with more bug patterns in
AspectJ. Thus, the authors of [SZZ+08] presented XFindBugs, an eX-tended FindBugs
for AspectJ, to help programmers to find potential bugs in AspectJ applications
through static analysis. XFindBugs supports 17 bug patterns to cover common error-
prone features in an aspect-oriented system, and integrated the corresponding bug
detectors into the FindBugs framework. The authors evaluated XFindBugs on a
number of large-scale open source AspectJ projects. Beside the fact that this approach
is based on a source code, we think that the detection of aspect interaction problem
at the code level may even become unnecessary and more expensive at the same time.

In general, the source-code category of works can be divided in its turn into two
subcategories: syntactic and semantic approaches. The focus of syntactic-based
approaches [DFS02, SK03b, SdM03] is limited to analyze aspects sharing join points
and updating common variables of base systems in order to detect aspect conflicts.
For instance, Douence et al. [DFS02] presented a framework characterized by a very
expressive crosscut language, static conflict analyses and linguistic support for conflict
resolution. The authors proposed to model the program as an observable execution
trace and aspect as rules specifying instructions to insert at an execution state. The
weaver process is modeled by analyzing aspects rules and determining the set of rules
applicable to the current join point. In this paper, the notion of aspects independence
is a sufficient condition to ensure that weaving is well defined. Thus, two general
independence properties (strong independence and independence w.r.t a program) have
been presented. For each case, an algorithm is provided to check whether two aspects
are independent. Finally, the authors proposed some commands for conflict resolution.
This framework is later extended to other type of aspects (stateful aspects) [DFS04]
that deal with inter-crosscut variables. Beside the fact that these approaches are based
on source code, the authors concentrate their analysis on the detection of conflicts
revealed by the syntax which is limited regarding coverage and precision.

To increase the accuracy and the significance of the verification process, semantic
interference analysis should rather be considered. In this area, many approaches have
been proposed. For example, Xu et al. [XR07] extended a regression test selection
technique for Java to take aspects into account. The authors proposed a source-code-
based control-flow representation of AspectJ programs, referred to as the AspectJ
Inter-module Graph (AJIG). An AJIG includes (1) Control-Flow graphs (CFGs) that
model the control flow within Java classes, within aspects, and across boundaries
between aspects and classes through non-advice method calls, and (2) interaction
graphs that model the interactions between methods and advices at certain join points.
An AJIG captures the semantic intricacies of an AspectJ program without introducing
extra nodes and edges to represent the low-level details of compiler-specific code.
The authors defined a two phase graph traversal algorithm that identifies differences
between two versions of an AspectJ program. The algorithm is specifically designed to
take into account the interactions between methods and advices at join points, which

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

26 · Toufik Benouhiba, Amina Boudjedir

is allowed by our approach too, but unlike our work they consider the precedence
between the set of advices that shared the same join point. The authors implemented
the regression test selection technique and performed an experimental evaluation of
its precision and cost.

In a series of papers [KS03, SK03a, GK06, KK08], Katz and his group addressed
various issues of model checking aspect-oriented code. In [KK08], the authors proposed
the use of LTL formulas to define a set of assume-guarantee properties of aspects.
The assume properties are general properties which any base program should satisfy
otherwise the aspect cannot be woven to that program. The guarantee properties are
satisfied by the program after weaving the aspect. A pairwise check is performed by the
approach: two aspects are interference-free if when they are woven to a base program
satisfying their assumption properties (the guarantee properties should be satisfied
after weaving). Maven model-checker is used for automatic verification of properties.
The proposed approach is interesting because it relies on the semantic interference
among aspects, but, in contrast to our work, the authors did not consider the aspect
scheduling problem in first preoccupation since they focus on the verification of LTL
properties. In an extended work with Goldman [GKK10], state machines are used to
model the base program, the aspects, and the woven system. The weaving process
is implemented by integrating the aspect state machine directly to the base system
state machine. However, the approach only focuses on one aspect at a time and they
only consider weakly invasive aspects. Moreover, when interference is detected (i.e. a
property is not satisfied) the programmer is responsible to fix it (they don’t provide
composition operators as it was presented in our approach) and thus the approach does
not provide any solution. In fact, this work is proposed to cope with the limitations of
Krishnamurthi et al. [KF07] proposition, where a state machine is defined for each
advice, and focused on treating aspects not modifying data variables of base systems.
The approach is interesting because it can simplify the verification of the system, but
it can only be used if the aspects are independent, unlike our approach.

We can also cite, in this subcategory (semantic-based approaches), the work of
[ARS09] in which the authors proposed an approach to detect aspect interference
at shared join points using the aspect-oriented language: Composition Filters (CF)
[AT98]. First, the authors specified the semantic of each syntax element of the language.
After that, the graph of the join point model is generated from the source code of
the program. The execution of the system is then simulated by considering all advice
orders. This simulation checks whether the execution orders are confluent (i.e. the
same final result whatever the execution order is) in which case we can conclude that
the system is interference free. Beside the fact that this approach is based on source
code, it lacks to tell why the advices behave badly with each other and/or with the
base system.

The authors of the design model category of works tried to integrate aspects within
abstract models to ensure early detection of interaction problem. For instance, the
works of [MV07, Mos08], which is one of the works that inspired our contribution,
introduce a new UML profile named Aspect-UML as an extension of the classic UML
use case and class diagrams. The new use case diagram allows integrating aspects as
extensions of the base system use cases. Meanwhile, the new class diagram consists of
adding aspects as a kind of new classes and using OCL to annotate both methods and
advices. The annotations consist of defining the pre and postconditions of every action.
The system can be verified by using use-case scenarios in order to check whether
the system violates pre and/or postconditions. Several methods were hence applied

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 27

to make that such as: software abstraction [MV07], colored Petri Nets [Mos08] and
rewriting systems [BBM10]. Compared to Alloy, considered as a simple checker in
[MV07], Maude is less restricted. If in Alloy, we should set a limit on the size of the
instances to generate (small scope hypothesis), Maude does not have this limit except
that we must fix the maximum tree depth rewriting if the number of states is infinite.
According to the designers of Maude [CDE+11], we can solve this problem by using a
more abstract modeling of the problem.

[XAXW09] presented an approach for modeling and verifying an aspect-oriented
system in a general way. The authors defined class and aspect models with state
machines. These models are then composed and weaved in a final model that will
be verified against desired system properties. However, the weaving process was
not rigorously defined and the authors did not consider the scheduling problem
since they supposed a predefined execution order. In the same axis, the authors of
[CHA+10] proposed a technique and tool for the detection of conflicts between aspects
at the model level. The proposed approach works on models defined in UML with
an extension for modeling pointcuts and advice. The authors have defined graph-
transformation rules that constitute an operational semantics for aspect-oriented
models. By implementing this operational semantics with a model-checker GROOVE
[KR06], they can automatically detect violations of invariants at the modeling level.
Beside the fact that this approach relies on the detection of the semantic interference
among aspects after weaving, aspect composition and the weaving process was not
formally defined. In addition, our aim in this work is to show that the interaction
problem can be transformed into a generic property which is independent of the system
to be verified and hence enables the use of any model-checker to verify bad interaction.
However, the verification of invariants changes depending on the studied system (this
is also the case of the verified properties of [XAXW09]).

In addition, the authors of [CYD10] considered an aspect model in which every
action (method or advice) is described by a pre and a postcondition. By using the
weakest precondition concept, the authors defined many conditions that should be
fulfilled in order to avoid bad interaction. Unlike the work of Chen et al [CYD10],
our underlying formal foundations are different. Their work is built on a denotational
semantics and theorem proving, while our work is based on finite state automata and the
interaction problem is transformed into a generic LTL property which is independent
of the system to be verified. Hence, it enables the use of any model-checker like Maude
to verify bad interaction.

The aspect problem has also been considered in approaches that combine compo-
nents and aspects. [HDA11] proposed a model of aspectualized components and used
UPPAAL [BLL+95] to verify if the introduction of a set of aspects does not affect
some properties of the system (expressed as a CTL [BMP81] property).

We can also cite in the design model category, the work of Zhang [Zha10] which is
one of the inspirations for this work. The author proposed the HILA diagrams, which
are an aspect-oriented extension of state/transition diagrams, in order to model aspect
behavior while considering the parallelism case on the aspects. The author proposed
a weaving algorithm in order to produce a new diagram that represents the woven
system. An interaction problem rises then when some states of the base system or the
aspects could not be reached. However, this work considered only guards: conditions
that have to be verified in order to execute a given advice. Zhang had also defined a
criterion for the existence of conflicts but does not propose a verification method to
detect them. We can also notice that the aspect model considered by Zhang is not close

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

28 · Toufik Benouhiba, Amina Boudjedir

to the one defined by AspectJ as in our case. In addition, Zhang et al [ZH12] presented
the weaving algorithms of aspects in HILA diagrams. In particular, they show how
the weaving process detects potential conflicts between different aspects. Thus, the
authors have been used the model-checker Hugo/RT in order to check some global
properties which is not always obvious to define them since this requires reasoning
about the whole system. In addition, the verification of these properties depends on
the studied system which isn’t the case of our work.

9 Conclusion

In this paper, we have investigated the aspect interaction problem in general and
aspect scheduling in particular. We have presented a framework that uses many UML
diagrams (Aspect-UML class and state/transition diagrams) and transforms them into
FSA in order to discover bad execution orders and/or bad aspect interaction with
the base system. In the proposed framework, classes and aspects are first defined in
Aspect-UML class diagram which makes it possible to define, among others, pre and
postconditions of methods. The behavior is then specified in state/transition diagrams.
After that, an FSA that represents the woven system is built. We have shown that
scheduling problem can be transformed into a reachability issue and thus could be
expressed as a generic temporal property which is independent of the system to be
verified.

In order to concretize our work, we have proposed a rewriting system to model
the base system as well as the aspects. Firstly, the Aspect-UML class diagram that
describes the structural elements is transformed into functional modules by defining
sorts, operations and membership predicates. Then, all state/transition diagrams
are transformed into system modules that define behavior as rewrite rules which are
suitable to the representation of the pre and postconditions. Finally, the third step
takes up the implementation of the weaving process. Afterward, we have verified
the generated specifications with Maude LTL model-checker that benefits from some
of the most recent advances in on-the-fly technique which lead to a non-systematic
exploration of all possible combinations of the verified aspects.

The proposed approach can be enriched in many ways. For instance, only Aspect-
UML class and state/transition diagrams have been used. It would be interesting
to extend our approach by considering other UML diagrams (such as collaboration
diagrams). Furthermore, the current work deals only with before and after advices.
Moreover, it relies on the fact that pointcuts correspond only to the base system. It
can be improved in different ways. The presented framework can be extended by
integrating the around advices and considering more general kinds of pointcuts by
defining them on aspects. It can be also interesting to investigate the relationship
between the proposed framework and special aspect classes (like those proposed by
[Kat06], [DDF12]). It would be interesting to have a better characterization of the
non-violation of pre and postconditions depending on the classes of advices. For
instance, consider two observing aspects [DDF12] (i.e. aspects that can introduce
new instructions and a new local state but do not modify the base system’ state and
control-flow) which are independent (i.e. an aspect cannot modify the local state of
another aspect). If there is a violation of pre or postconditions when weaving these
independent aspects on the base system, we can conclude that the problem is due to a
bad interaction between the aspects and the base system and not between the two
aspects since we have assumed that they cannot modify the local states of each other.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 29

Finally, the aim of the presented implementation is to show the feasibility of the
proposed approach and to offer a preliminary support of aspect programming in Maude.
The proposed implementation respects our modeling but contains some details in code
the goal of which is to ensure the composition of advices and weaving. Although, this
code is independent of the system, it is preferable to hide all these details. In addition,
it seems to be interesting to integrate the aspect-oriented paradigm as an attractive
support in rewriting systems (as it is the case of object-oriented paradigm in Maude
[CDE+11]). Thus, we think that it will be better to design an extension to Maude by
using meta-rewriting for example in order to realize this goal.

References

[ARS09] Mehmet Aksit, Arend Rensink, and Tom Staijen. A graph- transfor-
mation based simulation approach for analysing aspect interference on
shared join points. In Preceedings of the 8th ACM international confer-
ence on Aspect-Oriented Software Development, pages 39–50, Virginia,
USA, March 2009. doi:10.1145/1509239.1509247.

[AT98] Mehmet Aksit and Bedir Tekinerdogan. Aspect-oriented programming
using composition filters. In Preceedings of the European Conference
on Object-Oriented Programming, Germany, July 1998. doi:10.1007/
3-540-49255-0_132.

[BBM10] Amina Boudjedir, Toufik Benouhiba, and Djamel Meslati. Verifica-
tion of aspect composition and integration using rewriting systems. In
Preceedings of the First International Symposium on Modeling and Im-
plementing Complex Systems, pages 138–148, Algeria, May 2010.

[BLL+95] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Uppaal- a tool suite for automatic verification of real-time
systems. In Preceedings of the 4th DIMACS Workshop on Verification
and Control of Hybrid Systems, pages 232–243, Heidelberg, June 1995.
doi:10.1007/BFb0020949.

[BMP81] Mordechai BenAri, Zohar Manna, and Amir Pnueli. The temporal logic
of branching time. In Preceedings of the 8th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 164–176,
New York, 1981. doi:10.1145/567532.567551.

[Büc62] J.Richard Büchi. On a decision method in restricted second order arith-
metic. In Proceedings of the International Congress in Logic, Method and
Philosophical Sciences, pages 1–11, California, 1962.

[CD05] Michelle L. Crane and Juergen Dingel. On the semantics of uml state
machines: Categorization and comparison. Technical report, School of
Computing, Queen’s University, Canada, 2005.

[CDE+02] Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, José Meseguer, and Carolyn Talcott. Maude: specification
and programming in rewriting logic. Theoretical Computer Science,
285:187–243, August 2002. doi:10.1016/S0304-3975(01)00359-0.

[CDE+11] Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Nar-
ciso Marti-Oliet, José Meseguer, and Carolyn Talcott. Maude Man-

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.1145/1509239.1509247
http://dx.doi.org/10.1007/3-540-49255-0_132
http://dx.doi.org/10.1007/3-540-49255-0_132
http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1145/567532.567551
http://dx.doi.org/10.1016/S0304-3975(01)00359-0
http://dx.doi.org/10.5381/jot.2014.13.6.a1

30 · Toufik Benouhiba, Amina Boudjedir

ual (version 2.6), January 2011. http://maude.cs.uiuc.edu/maude2-
manual/maude-manual.pdf.

[CHA+10] Selim Ciraci, Wilke Havinga, Mehmet Aksit, Christoph Bockisch, and
Pim van den Broek. A graph-based aspect interference detection approach
for UML-based aspect-oriented models, volume 6210, page 321–374.
Springer, 2010. doi:10.1007/978-3-642-16086-8_9.

[CYD10] Xin Chen, Nan Ye, and Wenxu Ding. A Formal Approach to Analyzing
Interference Problems in Aspect-Oriented Designs, volume 6445, pages
157–171. Springer, 2010. doi:10.1007/978-3-642-16690-7_7.

[DDF12] Simplice Djoko Djoko, Rémi Douence, and Pascal Fradet. Aspects
preserving properties. Science of Computer Programming, 77:393–422,
March 2012. doi:10.1016/j.scico.2011.10.010.

[DFS02] Rémi Douence, Pascal Fradet, and Mario Südhot. A Framework for the
Detection and the Resolution of Aspect Interaction, volume 2487, page
173–188. Springer, September 2002. doi:10.1007/3-540-45821-2_11.

[DFS04] Rémi Douence, Pascal Fradet, and Mario Südhot. Composition, reuse
and interact analysis of stateful aspect. In Preceedings of the 3rd In-
ternational Conference Aspect-Oriented Software Development, pages
141–150, 2004. doi:10.1145/976270.976288.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite Systems,
volume B: Formal Models and Semantics, chapter 6 of Handbook of
Theoretical Computer Science, pages 243–320. ACM, Amsterdam, 1990.

[EMS03] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The
Maude LTL Model Checker and its Implementation, volume 2487 of
Lecture Notes in Computer Science, page 230–234. Springer, Berlin, May
2003. doi:10.1007/3-540-44829-2_16.

[FECA04] Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit. Aspect-
Oriented Software Development. Addison Wesley Professional, 2004.

[GK06] Max Goldman and Shmuel Katz. Modular generic verification of ltl
properties for aspects. In Preceedings of the Foundations of Aspect
Languages Workshop, Germany, 2006.

[GKK10] Max Goldman, Emilia Katz, and Shmuel Katz. Maven: modular aspect
verification and interference analysis. Formal Methods System Designs,
37:61–92, November 2010. doi:10.1007/s10703-010-0101-1.

[HDA11] Abdelhakim Hannousse, Rémi Douence, and Gilles Ardourel. Static
analysis of aspect interaction and composition in component models. In
Proceedings of the 10th ACM international conference on Generative
programming and component engineering, pages 43–52. ACM, 2011.
doi:10.1145/2047862.2047871.

[Hop79] John E. Hopcroft. Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 1979.

[Kat06] Shmuel Katz. Aspect categories and classes of temporal properties,
volume 3880, pages 106–134. Springer, 2006. doi:10.1007/11687061_4.

[KF07] Shriram Krishnamurthi and Kathi Fisler. Foundations of incremental
aspect model-checking. ACM Transactions on Software Engineering and
Methodology, 16(7), 2007. doi:10.1145/1217295.1217296.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.1007/978-3-642-16086-8_9
http://dx.doi.org/10.1007/978-3-642-16690-7_7
http://dx.doi.org/10.1016/j.scico.2011.10.010
http://dx.doi.org/10.1007/3-540-45821-2_11
http://dx.doi.org/10.1145/976270.976288
http://dx.doi.org/10.1007/3-540-44829-2_16
http://dx.doi.org/10.1007/s10703-010-0101-1
http://dx.doi.org/10.1145/2047862.2047871
http://dx.doi.org/10.1007/11687061_4
http://dx.doi.org/10.1145/1217295.1217296
http://dx.doi.org/10.5381/jot.2014.13.6.a1

On using pre and postconditions to tackle the aspect scheduling problem by rewriting systems · 31

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. Getting started with aspectj. Communi-
cations of the ACM, 44:59–65, 2001. doi:10.1145/383845.383858.

[KK08] Emilia Katz and Shmuel Katz. Incremental analysis of interference
among aspects. In Proceedings of the 7th workshop on Foundations of
aspect-oriented languages, pages 29–38. ACM, 2008.

[KR06] Harmen Kastenberg and Arend Rensink. Model Checking Dynamic
States in GROOVE, volume 3925, pages 299–305. Springer, 2006.

[KS03] Shmuel Katz and Marcelo Sihman. Aspect validation using model check-
ing, volume 2772, pages 373–394. Springer, 2003.

[Mos08] Farida Mostefaoui. Un cadre formel pour le développement orienté aspect
:modélisation et vérification des interactions dues aux aspects. PhD
thesis, University de Montreal, August 2008.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. ACM, 1992.

[MV07] Farida Mostefaoui and Julie Vashon. Design level detection of interac-
tions in aspect uml models using alloy. Journal of Object Technology,
6(7):137–165, August 2007.

[NKK97] Masahide Nakamura, Yoshiaki Kakuda, and Tohru Kikuno. Petri net
based detection method for non deterministic feature interactions and
its experimental evaluation. In Feature Interactions in Telecommunica-
tions and Distributed Systems IV, pages 138–152, July 1997.

[OMG09] OMG. Unifed Modeling Language Superstructure (Version 2.2.), 2009.
URL: http://www.omg.org/spec/UML/2.2/Superstructure/PDF/.

[SdM03] Damien Sereni and Oege de Moor. Static analysis of aspects. In Pro-
ceedings of the 2nd international conference on Aspect oriented software
development, pages 30–39, 2003. doi:10.1145/643603.643607.

[SK03a] Marcelo Sihman and Shmuel Katz. Model checking applications of
aspects and superimpositions. In Proceedings of the Foundations of
Aspect Oriented Languages, pages 51–60, Germany, March 2003.

[SK03b] Maximilian Störzer and Jens Krinke. Interference analysis for aspectj. In
Foundations of Aspect-Oriented Languages, pages 35–44, March 2003.

[SP05] Lionel Seinturier and Renaud Pawlak. Foundations of AOP for J2EE
Development. Eyrolles, 2005.

[SZZ+08] Haihao Shen, Sai Zhang, Jianjun Zhao, Jianhong Fang, and Shiyuan
Yao. Xfindbugs: extended findbugs for aspectj. In Proceedings of the 8th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 70–76. ACM, 2008. doi:10.1145/1512475.
1512490.

[TCZY09] Kun Tian, Kendra Cooper, Kang Zhang, and Huiqun Yu. A clas-
sification of aspect composition problems. In Proceedings of Third
IEEE International Conference on Secure Software Integration and
Reliability Improvement, pages 101–109. Shanghai, IEEE, 2009. doi:
10.1109/SSIRI.2009.33.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.1145/383845.383858
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://dx.doi.org/10.1145/643603.643607
http://dx.doi.org/10.1145/1512475.1512490
http://dx.doi.org/10.1145/1512475.1512490
http://dx.doi.org/10.1109/SSIRI.2009.33
http://dx.doi.org/10.1109/SSIRI.2009.33
http://dx.doi.org/10.5381/jot.2014.13.6.a1

32 · Toufik Benouhiba, Amina Boudjedir

[XAXW09] Dianxiang Xu, Omar El Ariss, Weifeng Xu, and Linzhang Wang. Aspect-
oriented modeling and verification with finite state machines. Journal
of computer science and technology, 24:949–961, September 2009. doi:
10.1007/s11390-009-9269-5.

[XR07] Guoqing Xu and Atanas Rountev. Regression test selection for aspectj
software. In Proceedings of the 29th International Conference on Soft-
ware Engineering, pages 65–74. IEEE, 2007.

[ZH12] Gefei Zhang and Matthias Hölzl. Weaving semantic aspects in hila. In
Proceedings of Transactions on Aspect-Oriented Software Development,
pages 263–274. ACM, 2012. doi:10.1145/2162049.2162080.

[Zha10] Gefei Zhang. Aspect-Oriented State Machines. PhD thesis, University
Ludwig Maximilians, November 2010.

[ZZ07] Sai Zhang and Jianjun Zhao. On identifying bug patterns in aspect-
oriented programs. In Proceedings of the 31st Annual International
Computer Software and Applications Conference, pages 431–438, Bei-
jing, July 2007. IEEE. doi:10.1109/COMPSAC.2007.159.

About the authors

Toufik Benouhiba is an associate professor at Annaba Badji
Mokhtar university (Algeria). He obtaind the PhD degrees from
the University of Technology of Troyes (France). He is a member
of the LISCO Laboratory and works on formal and semi-formal
verification approaches in addition to the using of metaheuristics
for testing and verification. Contact him at toufik.benouhiba@
gmail.com.

Amina Boudjedir is a PhD. student at the University of Badji
Mokhtar-Annaba in Algeria. She has obtained her Master of Sci-
ence degree in Computer Science from the University of Badji
Mokhtar-Annaba, in 2009. She is a member of the LISCO Lab-
oratory, pursuing a PhD. thesis on using rewriting systems for
modeling and verification of aspects-oriented applications. This
thesis is followed under the supervision of the Associate Professor
Toufik Benouhiba and the Professor Djamel Meslati. Her main
areas of interest include software engineering and more specifically
Aspect-Oriented Paradigm, and Formal Methods. Contact her at
a.boudjedir@hotmail.fr.

Acknowledgments We would like to thank the Professor Djamel Meslati; the head
of the Laboratory of Complex Systems Engineering "Laboratoire d’Ingénierie des
Systèmes COmplexes" (LISCO) for the comments and suggestions on the work.

Journal of Object Technology, vol. 13, no. 6, 2014

http://dx.doi.org/10.1007/s11390-009-9269-5
http://dx.doi.org/10.1007/s11390-009-9269-5
http://dx.doi.org/10.1145/2162049.2162080
http://dx.doi.org/10.1109/COMPSAC.2007.159
mailto:toufik.benouhiba@gmail.com
mailto:toufik.benouhiba@gmail.com
mailto:a.boudjedir@hotmail.fr
http://dx.doi.org/10.5381/jot.2014.13.6.a1

	Introduction
	AO paradigm and the aspect interaction problem
	Modeling aspect-oriented systems
	Class diagram
	State/transition diagrams

	An Overview of the proposed approach
	A formal framework for aspect-oriented modeling and verification
	Modeling state/transition diagrams
	Advice composition
	Weaving
	Interaction detection and verification
	Precedence based verification
	LTL-based verification

	The rewriting system and its underlying formalism
	Overview of rewriting logic and Maude
	Translation of UML models into Maude constructions
	Structural specification rewrite theory (SSRT)
	Behavior specification rewrite theory (BSRT)

	Weaving
	Detection of the join point and collection of advices that share this point
	Non-Deterministic Composition and Integration of advices

	Implementation of the proposed approach with Maude
	Representation of the base system
	Representation of the aspects
	Results and discussion
	Discussion

	Related Works
	Conclusion
	Bibliography
	About the authors

