
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2014

Online at http://www.jot.fm.

Evaluation of Contemporary Graph
Databases for Efficient Persistence of

Large-Scale Models

Konstantinos Barmpisa Dimitrios S. Kolovosa

a. Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK
http://www.cs.york.ac.uk/

Abstract Scalability in Model-Driven Engineering (MDE) is often a bot-
tleneck for industrial applications. Industrial scale models need to be per-
sisted in a way that allows for their seamless and efficient manipulation,
often by multiple stakeholders simultaneously. This paper compares the
conventional and commonly used persistence mechanisms in MDE with
novel approaches such as the use of graph-based NoSQL databases; Pro-
totype integrations of Neo4J and OrientDB with EMF are used to compare
with relational database, XMI and document-based NoSQL database per-
sistence mechanisms. It also compares and benchmarks two approaches
for querying models persisted in graph databases to measure and compare
their relative performance in terms of memory usage and execution time.

Keywords scalability, persistence, model-driven engineering

1 Introduction

The popularity and adoption of MDE in industry has increased substantially in the
past decade as it provides several benefits compared to traditional software engi-
neering practices, such as improved productivity and reuse [MFM+09], which al-
low for systems to be built faster and cheaper. However, certain limitations of sup-
porting tools such as poor scalability which prevent wider use of MDE in industry
[KPP08, MDBS09] will need to be overcome. Scalability issues arise when large mod-
els (of the order of millions of model elements) are used in MDE processes.

When referring to scalability issues in MDE they can be split into the following
categories:

1. Model persistence: storage of large models; ability to access and update such
models with low memory footprint and fast execution time.

2. Model querying and transformation: ability to perform intensive and complex
queries and transformations on large models with fast execution time.

Konstantinos Barmpis, Dimitrios S. Kolovos. Evaluation of Contemporary Graph Databases for
Efficient Persistence of Large-Scale Models. In Journal of Object Technology, vol. 13, no. 3, 2014,
pages 3:1–26. doi:10.5381/jot.2014.13.3.a3

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.cs.york.ac.uk/
http://dx.doi.org/10.5381/jot.2014.13.3.a3
http://dx.doi.org/10.5381/jot.2014.13.3.a3


2 · Konstantinos Barmpis, Dimitrios S. Kolovos

3. Collaborative work: multiple developers being able to query, modify and version
control large-scale shared models in a non-invasive manner.

Previous works have suggested using relational and document NoSQL databases
to improve performance and memory efficiency when working with large-scale models.
This paper contributes to the study of scalable techniques for large-scale model persis-
tence and querying by reporting on the results obtained by exploring two graph-based
NoSQL databases (OrientDB and Neo4J), and by providing a direct comparison with
previously proposed persistence mechanisms. This paper is an extended version of
[BK12] with further analysis of the databases presented in Section 5 and results in
Section 7. This work is used as the foundation for [BK13], which integrates scal-
able persistence with reliable versioning. The remainder of the paper is organized
as follows. Section 2 introduces MDE and NoSQL databases. Section 3 discusses
other projects aiming at providing scalable model persistence. Section 4 introduces
the Grabats query used for evaluating the technologies. Section 5 presents the design
and implementation of two further prototypes for scalable model persistence based
on the OrientDB and Neo4J graph-based NoSQL databases. In section 6 we discuss
two approaches for navigation and querying of models stored in such databases. In
section 7 the produced prototypes are compared with existing solutions in terms of
performance. Finally, section 8 discusses the application of these results and identifies
interesting directions for further work.

2 Background

This section discusses the core concepts related to models, Model Driven Engineering
and NoSQL databases that will be used in the remainder of the paper.

2.1 Model-Driven Engineering

Model Driven Engineering is an approach to software development that elevates mod-
els to first class artefacts of the software engineering process. In MDE, models are
living entities used to describe a system and (partly) automate its implementation
through automated transformation to lower-level products. In order for models to be
amenable to automated processing, they must be defined in terms of rigorously spec-
ified modeling languages (metamodels). The Eclipse Modeling Framework1 (EMF) is
one of the most widely-used frameworks that facilitate the definition and instantiation
of metamodels, and a pragmatic implementation of the OMG Essential Meta Object
Facility (EMOF) standard.

In EMF, metamodels are defined using the Ecore metamodeling language, a high
level overview of which is illustrated in Figure 1. In Ecore, domain concepts are
represented using EClasses. EClasses are organized in EPackages and each EClass
can contain EReferences to other EClasses in the metamodel and EAttributes, which
are used to define the primitive features of instances of the EClass. Ecore also pro-
vides mechanisms for defining primitive types, enumerations, inheritance between
EClasses and operation signatures (but not implementations). EMF metamodels
can be instantiated both reflectively, and through code generated through a 2-stage
transformation. The code generation process involves a model-to-model transforma-
tion where the Ecore metamodel is transformed into an intermediate platform-specific
model (GenModel) that enables engineers to define low-level details of the metamodel

1http://www.eclipse.org/emf

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 3

implementation, and a model-to-text transformation from the intermediate GenModel
to Java. Under both the reflective and the generative approach, at runtime EMF mod-
els comprise of one or more Resources containing nested model elements (EObjects)
that conform to the EClasses of the Ecore metamodel.

Figure 1 – Simplified Diagram of the Ecore Metamodeling Language

By default, models in EMF are stored in a standard XML-based representation
called XML Metadata Interchange (XMI) that is an OMG-standardized format de-
signed to enhance tool-interoperability. As XMI is an XML-based format, models
stored in single XMI files cannot be partially loaded and as such, loading an XMI-
based model requires reading this entire document using a SAX parser, and converting
it into an in-memory object graph that conforms to the respective Ecore metamodel.
As such, XMI scales poorly for large models both in terms of time needed for upfront
parsing and resources needed to maintain the entire object graph in memory (the
performance issues of XMI are further illustrated in Section 7). To address these
limitations of XMI, persisting models in relational databases has been proposed.

Examples of such approaches include the Connected Data Objects (CDO)2 project
and Teneo-Hibernate3. In this class of approaches, an Ecore metamodel is used to
derive a relational schema as well as an object-oriented API that hides the under-
lying database and enables developers to interact with models that conform to the
Ecore metamodel at a high level of abstraction. Such approaches eliminate the ini-
tial overhead of loading the entire model in memory by providing support for partial
and on-demand loading of subsets of model elements. However, due to the nature of
relational databases, such approaches, while better than XMI, are still largely ineffi-
cient, as demonstrated in Section 4. Due to the highly interconnected nature of most

2http://www.eclipse.org/CDO/
3http://wiki.eclipse.org/Teneo/Hibernate

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


4 · Konstantinos Barmpis, Dimitrios S. Kolovos

models, complex queries require multiple expensive table joins to be executed and
hence do not scale well for large models. Even though Teneo-Hibernate attempts to
minimize the number of tables generated (all subclasses of an EClass are in the same
table as the EClass itself, resulting in a fraction of the tables otherwise required if
a separate table was created for each EClass, the fact that the database consists of
sparsely populated data results in increased insertion and query time as demonstrated
in the sequel.

To overcome the limitations of relational databases for scalable model persistence,
recent work [PCM11] has proposed using a NoSQL database instead. In the following
paragraphs we provide a discussion on NoSQL databases and their application for
scalable model persistence.

2.2 NoSQL Databases

The NoSQL (Not Only SQL) movement is a contemporary approach to data per-
sistence using novel, typically non-relational, storage approaches. NoSQL databases
provide flexibility and performance as they are not limited by the traditional rela-
tional approach to data storage [Sto10]. Each type of NoSQL database is tailored for
storing a particular type of data and the technology does not force the data to be
limited by the relational model but attempts to make the database (as much as is
feasible) compatible with the data it wishes to store [Ore10]. The NoSQL movement
itself has become popular due to large widely known and successful companies cre-
ating database storage implementations for their services, all of which do not follow
the relational model. Such companies include for example Amazon (Dynamo data-
base [DHJ+07]), Google (Bigtable database [CDG+08]) and Facebook (Cassandra
database [LM10]).

There are four widely accepted types of NoSQL databases, which use distinct
approaches in tackling data persistence, three of which are described by [PPS11] and
a fourth, more contemporary one, that is of increasing popularity:

1. Key-value stores consist of keys and their corresponding values, which allows
for data to be stored in a schema-less way. This allows for search of millions
of values in a fraction of the time needed by relational databases. Inspired
by databases such as Amazon’s Dynamo, such stores are tailored for handling
terabytes of distributed key-value data.

2. Tabular stores (or Bigtable stores - named after the Google database) consist
of tables which can have a different schema for each row. It can be seen as
each row having one large extensible column containing the data. Such stores
aim at extending the classical relational database idea by allowing for sparsely
populated tables to be handled elegantly – as opposed to needing a large amount
of null fields in a relational database, which scales very poorly when the number
of columns becomes increasingly large. Widely used examples of such stores are
Bigtable [CDG+08] and Hbase [Hba12].

3. Document databases consist of a set of documents (possibly nested), each of
which contains fields of data in a standard format like XML or Json. They
allow for data to be structured in a schema-less way as such collections. Popular
examples are MongoDB [Mon12] and OrientDB [Ori12].

4. Graph databases consist of a set of graph nodes linked together by edges (hence
providing index-free adjacency of nodes). Each node contains fields of data
and querying the store commonly uses efficient mathematical graph-traversal
algorithms to achieve performance; As such, these databases are optimized for

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 5

traversal of highly interconnected data. Examples of such stores are Neo4J
[Neo12] and the graph layer (OGraphDatabase) of OrientDB [Ori12].

NoSQL databases have a loosely defined set of characteristics / properties [Cat11]:
• They scale horizontally by having the ability to dynamically adapt to the addi-

tion of new servers.
• Data replication and distribution over multiple servers is used, for coping with

failure and achieving eventual consistency.
• Eventual consistency; a weaker form of concurrency than ACID (Atomicity,

Consistency, Isolation, Durability) transactions, which does not lock a piece of
data when it is being accessed for a write operation but uses data replication
over multiple servers to cope with conflicts. Each database will implement this
in a different way and will allow the administrator to alter configurations making
it either closer to ACID or increasing the availability of the store.

• Simple interfaces for searching the data and calling procedures.
• Use of distributed indexes to store key data values for efficient searching.
• Ability to add new fields can be added to records dynamically in a lightweight

fashion.
The CAP theorem defines this approach and states that a (NoSQL) database can
choose to strengthen only two of the three principles: consistency availability and
partition tolerance, and has to (necessarily) sacrifice the third. Popular NoSQL stores
chose to sacrifice consistency; BASE (Basically Available, Soft-state, Eventually con-
sistent) defines this approach.

NoSQL stores are seen to have the following limitations [Lea10]:
1. Lack of a standard querying language (such as SQL) results in the database ad-

ministrator or the database creator having to manually create a form of query-
ing.

2. Lack of ACID transactions results in skepticism from industry, where sensitive
data may be stored.

3. Being a novel technology causes lack of trust by large businesses which can fall
back on reliable SQL databases which offer widely used support, management
and other tools.

2.2.1 Graph Databases

As this paper presents an approach using graph-based NoSQL databases, we will
present them in more detail here.

Figure 2 describes the basic terminology used for property graphs, like the ones
used in graph databases. As such, graph stores describe their constructs in this
way, with nodes containing properties and relationships between them. Below we go
into more depth about two specific graph databases, Neo4J and (the graph layer of)
OrientDB.

Neo4J Neo4J is a popular, commercial Graph Database released under the GNU
Public License (GPL) and the Affero GNU Public License (AGPL) licenses. Neo4J
is implemented in the Java programming language and provides a programmatic way
to insert and query embedded graph databases. Its core constructs are Nodes (which
contains an arbitrary number of properties, which can be dynamically added and
removed at will) and Relationships, whereby Node represents a mathematical graph
node and Relationship an edge between two nodes.

4http://www.infoq.com/articles/graph-nosql-neo4j

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


6 · Konstantinos Barmpis, Dimitrios S. Kolovos

1 2 
PART_OF 

number=4 

name=car 
color=red 

node                  relationship                  property 

name=wheel 

Figure 2 – Diagram of property graph terminology4

OrientDB OrientDB is a novel document-store database released under the Apache
2 License. It is also implemented using the Java programming language and provides
a programmatic way to insert and query from a document database in Java. Ori-
entDB also has a graph layer which allows for documents to have edges between them
(edges are backed by documents themselves), emulating the property of index-free
adjacency of documents and hence effectively being a graph database. Its core con-
structs are ODocuments (which can contain an arbitrary number of properties that
can be dynamically added and removed).

3 Related Work

While the approach of persisting large models in NoSQL is a novel concept, it has
been already done, mainly by use of document-based databases. Below we briefly
present a popular model repository, in which a NoSQL store (MongoDB document
store) can be used to persist models. We also present Morsa, the first published work
of using a NoSQL store to tackle scalable model persistence (also MongoDB) and its
prototype tool.

3.1 The Connected Data Objects Repository (CDO)

CDO allows users to store and access models in repositories supported by a range
of back-end stores. CDO’s API is an extension of EMF’s and allows for a seamless
use of a remote store for accessing and manipulating models. CDO supports multiple
different back-ends such as relational databases and non-relational stores such as the
MongoDB NoSQL store.

Object-Relational Mapping CDO handles EObjects as CDOObjects that extend
the EObject class by adding CDO-specific metadata. To store an EMF model on
CDO, there are three main paths to pursue5: The first is to migrate a Resource (for
example an XMIResource) to a CDOResource (by copying all its contents to a new
CDOResource). The second is to use a GenModel to create CDOObjectImpl objects
by migrating the .gen-model file using the CDO Model Migrator. The third is to
use DynamicCDOObjectImpl that result from new dynamic model elements added to
a CDO session’s package registry. The model files used by CDO can be annotated

5http://wiki.eclipse.org/Preparing EMF Models for CDO

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 7

(such as with JPA – EAnnotations) in order to provide a tool for customization in the
storage of the model; such annotations are not directly needed by CDO and are only
useful if the back-end store supports them (such as Teneo/Hibernate, for example).

Furthermore, it is worth noting that CDO’s architecture, which is directly based
on such mapping, limits how much it can benefit from using other technologies as it
fundamentally represents model and metamodel data by means of tables.

User 
Application 

 

Client 

CDO Object 

CDO Session 

CDO Protocol 

IChannel 

CDO Transaction 

IConnector 

ResourceSet CDO Resource 

CDO Audit 

CDO View 

 

Server 

extends 

Figure 3 – CDO Client high-level architecture, adapted from the CDO Wiki6

Client From the client-side, the regular EMF API can be directly used after a
connection (session) has been established, but for using advanced CDO-specific func-
tionality (such as CDOView that allows queries directly to the CDO store, or CDO-
Transaction that allows for savepoints and rollbacks), additional dependencies to CDO
have to be included. Furthermore, a native CDO User Interface (UI) is provided for
accessing, manipulating and querying models stored in the repository. This client
architecture is seen in Figure 3.

Server On the server-side, this repository allows any form of storage to be easily
plugged in (such as a MongoDB NoSQL database). It uses a proprietary model-
based version control system (Audit Views) and supports collaborative development.
More information about model repositories and a comparison thereof with file-based
repositories of models can be found in [BK13].

3.2 Morsa: NoSQL Model Persistence Prototype

Morsa [PCM11] is a prototype that attempts to address the issue of scalable model
persistence using a document store NoSQL database (MongoDB) to store EMF models
as collections of documents. Morsa stores one model element per document, with its
attributes stored as key-value pairs, alongside its other metadata (such as a reference
to its EClass). Metamodel elements are stored in a similar fashion to model elements
and are also represented as entries in an index document that maps each model or
metamodel URI (the unique identifier of a model or metamodel element in the store)
into an array of references to the documents that represent its root objects. A high
level overview of the architecture of Morsa is displayed in Figure 4 by [PCM11].

Morsa uses a load-on-demand mechanism which relies on an object cache that
holds loaded model objects. This cache is managed by a configurable cache replace-

6http://wiki.eclipse.org/CDO

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


8 · Konstantinos Barmpis, Dimitrios S. Kolovos

Figure 4 – Persistence back-end structure excerpt for Morsa

ment policy that chooses which objects must be unloaded from the client memory
(should the cache be deemed full by the active configuration). While this attempts
to use an effective storage technique and succeeds in improving upon the current
paradigms, due to using a Document Store database the EReferences (which are se-
rialized as document references) are stored inefficiently, which hampers insertion and
query speed, as models tend to be densely interconnected with numerous references
between them. Nevertheless, the discussions on the various caching techniques and
cache replacement policies, as well as the different loading strategies are very effective
in conveying the large number of configurations possible in a single back-end persis-
tence example, and how optimizing the storage of different sizes and types of models
can be extremely complex. Hence any solution aiming at tackling this challenge needs
to be aware of these issues and experiment on the optimal way to handle them in its
specific context.

4 The Grabats 2009 Case Study and Query

To obtain meaningful evaluation results, we have evaluated all solutions using large-
scale models extracted by reverse engineering existing Java code. For this purpose, we
have used the updated version of the JDTAST metamodel used in the SharenGo Java
Legacy Reverse-Engineering MoDisco use case7, presented in the Grabats 2009 contest
[Gra12] described below, as well as the five models also provided in the contest.

A subset of the Java JDTAST metamodel is presented in Figure 5. In this fig-
ure, there are TypeDeclarations that are used to define Java classes and interfaces,
MethodDeclarations that are used to define Java methods (in classes or interfaces, for
example) and Modifiers that are used to define Java modifiers (like static or synchro-
nized) for Java classes or Java methods.

The Grabats 2009 contest comprised several tasks, including the case study used
in this paper for benchmarking different model querying and pattern detection tech-

7http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 9

Figure 5 – Small subset of the Java JDTAST metamodel

nologies. More specifically, task 1 of this case study is performed, using all of the case
studies’ models, set0 – set4 (which represent progressively larger models, from one
with 70447 model elements (set0) to one with 4961779 model elements (set4)), all of
which conform to the JDTAST metamodel.

These models are injected into the persistence technologies used in the benchmark
(insertion benchmark) and then queried using the Grabats 2009 task 1 query (query
benchmark) [SJ09]. This query requests all instances of TypeDeclaration elements
which declare at least one MethodDeclaration that has static and public modifiers
and the declared type being its returning type (i.e. singleton candidates).

In the following sections we use the JDTAST metamodel as a running example
to demonstrate our approach for persisting large-scale models in the Neo4J and Ori-
entDB graph databases.

5 Persisting and Querying Large-Scale Models using Graph
Databases

As discussed above, NoSQL databases have been shown to be a promising alternative
that overcomes some of the limitations of relational databases for persistence of large-
scale models, briefly summarized in Section 2.1. Extending the study of the suitability
of NoSQL databases for persistence of large-scale models, in this work prototype
model stores based on Neo4J [Neo12] and OrientDB [Ori12] have been created, and
their efficiency has been compared against the default EMF XMI text store and a
relational database (using CDO with its default H28 store as well as a MySQL9 store,
to integrate with EMF). This section discusses the design and implementation of the

8http://www.h2database.com/html/main.html
9http://www.mysql.com/

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


10 · Konstantinos Barmpis, Dimitrios S. Kolovos

two model stores; to our knowledge, this is the first time graph databases are used to
persist large models.

Due to the highly-interconnected nature of typical models, key-value stores as
well as tabular NoSQL data-stores were not considered, as they target a different
class of problems (as explained above in Section 2.2). Hence the decision was made
to experiment with a document based (and hybrid-graph) database (OrientDB) and
a pure graph database (Neo4J). After initial trials, the document layer of OrientDB
lagged behind the graph layer (as can be expected with the nature of the data be-
ing stored) so the focus shifted on comparing two graph databases. The rationale
behind choosing these technologies was that Neo4J is a particularly popular, stable
and widespread graph database while OrientDB not only provides a document layer
and a graph layer, but also has a flexible license, which Neo4J does not, as detailed
in their respective subsections 5.1 and 5.2 below.

The Neo4J and OrientDB stores attempt to solve the aforementioned scalability
issues using graph databases to store large models. As such stores have index-free
adjacency of nodes, we anticipate that retrieving subgraphs or querying a model
will scale well. The main differences between the two prototypes lie in the fact that
OrientDB’s core storage is in documents (and uses a graph layer to handle the data as
a graph) while Neo4J’s core storage is as a graph. In the following sections we present
our approaches for persisting and querying models that conform to Ecore metamodels
using Neo4J and OrientDB databases, and we then evaluate the performance of our
two prototypes against XMI and CDO.

5.1 Neo4J

In our prototype, a Neo4J-based model store consists of the following:

• Nodes representing model elements in the model stored. These nodes contain
as properties all of the attributes of that element (as defined by the EClass it
is an instance of) that are set.

• Relationships from model element nodes to other model element nodes. These
represent the EReferences of the model element to other model elements.

• Nodes representing EClasses of the metamodel(s) the models stored are in-
stances of. These nodes only have an id property denoting the unique iden-
tifier (URI) of the metamodel they belong to, followed by their name, ie:
org.amma.dsl.jdt.core/IJavaElement is the id of the EClass IJavaEle-
ment in the org.amma.dsl.jdt.core Ecore metamodel. These lightweight
nodes are used to speed up querying by providing references to model elements
that are instances of this EClass (ofType reference) as EClasses that inherit
from it (ofKind reference) – as such types of queries are very common in model
management programs (e.g. model transformations, code generators etc.). This
is the only metamodel information stored in the database, as explained below.

• An index containing the ids of the EClasses and their appropriate location in
the database. This allows typical queries (such as the Grabats query described
above) to use an indexed EClass as a starting point, in order to find all model
elements of a specific type, and then navigate the graph to return the required
results.

Journal of Object Technology, vol. 13, no. 3, 2014

org.amma.dsl.jdt.core/IJavaElement
org.amma.dsl.jdt.core
http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 11

The above data contains all of the information required to load a model and
evaluate any EMF query, provided that the metamodel(s) of the model is also available
(e.g. registered to the EMF metamodel registry10) during the evaluation of the query,
as detailed metamodel information is not saved in the database (only the model
information is stored in full). This is due to the fact that metamodels are typically
small and sufficiently fast to navigate using the default EMF API. Thus any action
that may require use of such metamodel data, like querying whether this element can
have a certain property (as it may be unset, and therefore not stored in the database)
or whether a reference is a containment one for example (as the database only stores
the reference’s name) will need to access the metamodel (e.g. through the EMF
registry), retrieve the EClass in question and extract this information from there.
Note that the database supports querying of a model, insertion of a new model (from
a file-based EMF model) as well as updating a model (adding or removing elements
or properties).

Figure 6 shows how a model conforming to the Java metamodel described above
is stored in Neo4J. EClasses only store their full name (including their EPackage)
and have ofType and ofKind relationships to their instances (we note that in EMF
such relationships are not references but results of applying the .eClass() operation
on the model element). Model elements store all their properties and relationships to
other model elements (as well as to their EClass and superclass(es)). Note that even
though all Neo4J relationships are bi-directional, they have a starting and an end
node so can be treated in the same way as references internally. Opposite references
are similarly created (but with the starting and end node reversed), linked to one
another internally, and treated as usual.

MethodDeclaration 
 

‘constructor’ : Boolean 
 
 
 

 
‘Id’= ‘org.amma.dsl.jdt.dom 

/TypeDeclaration’ 

 
‘Id’= ‘org.amma.dsl.jdt.dom 

/MethodDeclaration’ 

 
‘name’ = ‘AptPlugin’ 
 

‘localTypeDeclaration’ = ‘true’ 
 

‘memberTypeDeclaration’= 
‘false’ 

 
‘name’ = ‘getPlugin’ 
 

‘constructor’ = ‘false’ 

ofType ofType ofType ofType 

bodyDeclarations 

bodyDeclarations bodyDeclarations 

                               ECore                                Neo4J 

Metamodel 
 
 
 
 

 
 
 
 
 
 

         Model 
 

TypeDeclaration 
 

‘name’ : String 
 

‘localTypeDeclaration’ : Boolean 
 

‘memberTypeDeclaration’ :  
 Boolean 

AptPlugin : TypeDeclaration 
 

‘localTypeDeclaration’ = ‘true’ 
 

‘memberTypeDeclaration’ = 
‘false’ 

 

getPlugin : MethodDeclaration 
 

‘constructor’ = ‘false’ 
 
 
 

Figure 6 – Example high-level mapping from Ecore to Neo4J

5.1.1 Transactions and I/O

The default mechanism for querying the database uses ACID transactions in a similar
manner to SQL databases, and any number of operations can be carried out per
transaction (such as creation of a node, creation of an edge, creation of a property of
a node). The database uses the relevant operating system’s Memory Mapping for its
I/O (MMIO) in order to increase performance. Hence if a transaction has too many
operations in it (more than the allocated MMIO (or even the maximum Java heap)
can handle) then the performance of the transaction will suffer. On the other hand
if transactions perform too few operations then there will be a lot more transactions
needed for performing a task and hence the overall run time of this task will be longer.
Hence an equilibrium needs to be found around the size of transactions and dependent
on the total memory allocated to the process. A further balance needs to be found

10http://www.eclipse.org/epsilon/doc/articles/epackage-registry-view/

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


12 · Konstantinos Barmpis, Dimitrios S. Kolovos

between the Java heap and the MMIO which will add up to be the total memory used
by the process. Even further the memory available for inserts is hindered by the XMI
resource being loaded (which uses a considerable amount of memory) and for large
models needs to be taken into consideration. Empirical tests have shown that using:

Runtime.getRuntime().maxMemory()−xmiResourceMemory
15000

to be the number of operations per transaction works efficiently. The value of
xmiResourceMemory is calculated dynamically after the relevant file(s) have been
loaded into memory by using the before and after delta in memory consumption.
This number is obtained by considering information given in the documentation11

and by testing various values for the denominator (aka the size of each object to be
committed in the transaction). The tests performed demonstrated that other values
were less performant than this; the value assumes that, on average, each object in the
transaction will be of size 15000 bytes. If this value is not reasonable for the specific
context, either it is too large (for example someone storing a large model consisting of
elements containing only a single boolean attribute and a single reference), or it is too
small (for example someone storing a large model consisting of elements containing
large strings inside them and multiple references to one another) it should be altered
by the administrators.

Table 1 – Configuration used for MMIO for Neo4J

key value

nodestore.db.mapped memory 3 × x + “M”

relationshipstore.db.mapped memory 14 × x + “M”

propertystore.db.mapped memory x + “M”

propertystore.db.strings.mapped memory 2 × x + “M”

propertystore.db.arrays.mapped memory x + “M”

Concerning the Heap vs. MMIO the following ratios described in Table 1 works
efficiently as well, using:

x = Runtime.getRuntime().maxMemory()
60×1000000 ;

whereby x is a constant calculated from the maximum heap memory given to the
JVM, config is the map of configuration options Neo4J uses for MMIO for each of its
files and “M” denotes to Neo4J that values are in megabytes. In this case, the values
reflect considering the suggestions given in the Neo4J documentation12, tailored for
the specific machine the server is running on (using the current JVM heap), and to
our expected need for high-efficiency traversal of the store. Different sets of values
were tested (such as the exact ones shown in the documentation12) and displayed
poorer performance in our test cases (such as in the Grabats query example).

5.2 OrientDB

An OrientDB-based model store consists of the following:

11http://docs.neo4j.org/chunked/stable/performance-guide.html# configuring neo4j
12http://docs.neo4j.org/chunked/milestone/configuration-io-examples.html

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 13

• ODocuments representing (the nodes of the) model elements in the model stored.
These nodes contain as fields all of the attributes of that element (as defined by
both its EClass and its superclass(es)) that are set.

• ODocuments representing (the references (edges)) from model element nodes
to other model element nodes. These represent the EReferences of the model
element to other model elements.

• ODocuments representing metamodel EClasses of the metamodel the model
stored adheres to. These nodes have an ‘id’ field denoting the URI of their pack-
age followed by their Name, ie: org.amma.dsl.jdt.core/IJavaElement
is the id of the EClass IJavaElement in the EPackage: org.amma.dsl.jdt.
core. They also have a ‘class’ and a ‘superclass’ field which contain lists of
the database ids of their ofType and ofKind elements (the ones they are a class
or a superclass of).These lightweight class nodes are used to speed up queries
by providing direct links (in the form of lists) to model elements that have this
EClass as their class (ofType reference) or superclass (ofKind reference). This
is the only metamodel information actually stored in the database, as explained
below. The reason references are not used (like in Neo4J) is that they are too
heavyweight (in a similar manner to how the ones in Morsa are), and empiri-
cal evidence shows that execution time using references instead of lists is much
slower. We acknowledge that keeping a dynamic list of model instances in the
EClasses has a significant effect in model alteration performance but in the ab-
sence of a more efficient way to handle such information in OrientDB (such as
the bi-directional references in Neo4J), we chose to use this in order to signif-
icantly enhance query performance (for example when a model transformation
requires access to all instances of a class to work with).

• An index containing the ids of the EClasses and their appropriate location in
the database. This allows a typical query to use an indexed EClass as starting
point, in order to find all of the model elements of a specific type, and will then
navigate the graph to return the appropriate results.

The above data contains all of the information required to load a model and
provide answers to any EMF query, provided that the metamodel(s) of the model
is registered to the EMF registry before any actions can be performed, as detailed
metamodel information is not saved in the database. Thus any action which may
require use of such metamodel data will go to the EMF registry, retrieve the EClass
in question and get this information from there. Note that the database supports
querying of a model, insertion of a new model (from an Ecore - XMI document) as
well as updating a model (adding or removing elements or properties).

Figure 7 shows how a model conforming to the Java metamodel described above
is stored in OrientDB. EClasses only store their full name (including their EPackage)
and lists of the id’s of their model instances (to whom they are ofType or ofKind).
Model elements store all their properties (as well as the id of their EClass and a list of
the id’s of their possible superclass(es)) and relationships to other model instances. We
note that in EMF such relationships are not actual references but results of applying
the .eClass() operation on the model element.

Journal of Object Technology, vol. 13, no. 3, 2014

org.amma.dsl.jdt.core/IJavaElement
org.amma.dsl.jdt.core
org.amma.dsl.jdt.core
http://dx.doi.org/10.5381/jot.2014.13.3.a3


14 · Konstantinos Barmpis, Dimitrios S. Kolovos

MethodDeclaration 
 

‘constructor’ : Boolean 
 
 
 

 

‘identity’ = #1:1 
 

‘Id’= ‘org.amma.dsl.jdt.dom 
/TypeDeclaration’ 

 

‘class’ = {#1:3} 
 

‘superclass’ = {} 
 

 

‘identity’ = #1:2 
 

‘Id’= ‘org.amma.dsl.jdt.dom 
/MethodDeclaration’ 

 

‘class’ = {#1:4} 
 

‘superclass’ = {} 
 

 

‘identity’ = #1:3 
‘name’ = ‘AptPlugin’ 
‘localTypeDeclaration’ = ‘true’ 
‘memberTypeDeclaration’= 

‘false’ 
‘ofType’ = #1:1 
‘ofKind’ = {} 

 

 

‘identity’ = #1:4 
 

‘name’ = ‘getPlugin’ 
 

‘constructor’ = ‘false’ 
 

‘ofType’ = #1:2 
 

‘ofKind’ = {} 
 

ofType ofType 

bodyDeclarations 

bodyDeclarations bodyDeclarations 

                               ECore                                OrientDB 

Metamodel 
 
 
 
 

 
 
 
 
 
 

         Model 
 

TypeDeclaration 
 

‘name’ : String 
 

‘localTypeDeclaration’ : Boolean 
 

‘memberTypeDeclaration’ :  
 Boolean 

AptPlugin : TypeDeclaration 
 

‘localTypeDeclaration’ = ‘true’ 
 

‘memberTypeDeclaration’ = 
‘false’ 

 

getPlugin : MethodDeclaration 
 

‘constructor’ = ‘false’ 
 
 
 

Figure 7 – Example high-level mapping from Ecore to OrientDB

5.2.1 Transactions and I/O

The default mechanism for querying the database does not use transactions but in-
ternal mechanisms to update the database when appropriate and ensure eventual
consistency. The database uses the relevant operating system’s Memory Mapping for
its I/O (MMIO) in order to increase performance. In this paradigm the MMIO is not
embedded in the Java heap hence the programmer needs to keep enough RAM avail-
able after executing the program for the MMIO in order not to overflow the system
and make it go into swap. Like in the previous example, a balance needs to be found
between the Java heap and the MMIO which will add up to be the total memory used
by the process. Empirical tests have shown that using the default configuration for
64 bit systems works efficiently; this configuration sets the MMIO to:

(maxOsMemory −maxProcessHeapMemory) × 50%

whereby maxOsMemory is the maximum memory used by the operating system
and maxProcessHeapMemory is the maximum heap given to the OrientDB server.
In some situations (such as if running OrientDB on a dedicated server) using ×85%
instead of the above ×50% is beneficial, but since the tests we ran on a standard
desktop computer this was not possible.

6 Model Querying

Sections 5.1 and 5.2 have presented two graph-based NoSQL solutions proposed to
tackle the problem of persisting large-scale models. This section will discuss two
distinct ways in which persisted models can be queried, as well as their benefits and
drawbacks. It is worth noting that the current implementation does not support any
other forms of non-native querying other than the Epsilon (EOL) layer seen below.

6.1 Native Querying

The default way of querying these stores is using their native API. In both the Neo4J
and the OrientDB examples, this involves (in most cases) using the index discussed
above as a starting point of the query, and then navigating the object graph through
its relationships (which represent EMF references) in order to calculate the required
results. This method has the important advantage of being the most efficient way to
retrieve data from the databases. Nevertheless, it also demonstrates certain short-
comings which should be considered:

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 15

• Query Conciseness Native queries can be particularly verbose and, consequently,
difficult to write, understand and maintain. For example the equivalent of
the query presented in Listing 2 spans over 200 lines of Java code (without
comments) when expressed using the native Neo4J API.

• Query Abstraction Level Native queries are bound to the specific technology
used; they have to be engineered for that technology and cannot be used for a
different back-end without substantial alteration in most cases. Table 2 sum-
marizes several key methods available in the Neo4J API and Listing 1 shows
some of the code used to implement the Grabats query in Neo4J. Line 1 iterates
through all of the outgoing references of the typeDeclaration of relationship type
bodyDeclarations. Line 3 keeps only the methodDeclarations from these relation-
ships. Lines 7 to 11 get the name of the methodDeclaration. Line 12 iterates
through all of the outgoing references of the methodDeclaration of relationship
type modifier (in order to find if the methodDeclaration has public and static
modifiers). A similar approach is used in OrientDB, omitted in the interest of
space.

Table 2 – Example methods available in the Neo4J API

Method Return Type Description of Functionality

AbstractGraphDatabase
.getNodeById(long id)

Node Returns the node with id
‘id’ from the AbstractGraph-
Database

PropertyContainer
.getProperty(String prop)

Object Returns the value of the prop-
erty ‘prop’ in the PropertyCon-
tainer (for example in a Node)

Node.getRelationships
(Direction dir, Relation-
shipType rType)

Iterable<Relationship> Returns an iterable with all
of the relationships of type
‘rType’ with direction ‘dir’ with
respect to the Node

Relationship.getEndNode() Node Returns the node at the end of
the Relationship (all relation-
ships have a start and an end
node)

...
1 for (Relationship outEdge : typeDeclaration.getRelationships(

Direction.OUTGOING, new RelationshipUtil().
getNewRelationshipType("bodyDeclarations"))) {

2 Node methodDeclaration = outEdge.getEndNode();
3 if (new MetamodelUtils().isOfType(methodDeclaration,new

MetamodelUtils().eClassNSURI(methodDeclarationClass))) {
4 boolean isPublic;
5 boolean isStatic;
6 String currMethodName;
7 for (Relationship methodDeclarationOutEdge :

methodDeclaration.getRelationships(Direction.OUTGOING,

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


16 · Konstantinos Barmpis, Dimitrios S. Kolovos

new RelationshipUtil().getNewRelationshipType("name")))
{

8 Node name = methodDeclarationOutEdge.getEndNode();
9 currMethodName = name.getProperty("fullyQualifiedName").

toString();
10 //break;
11 }
12 for (Relationship methodDeclarationOutEdge :

methodDeclaration.getRelationships(Direction.OUTGOING,
new RelationshipUtil().getNewRelationshipType("
modifiers"))) {

...

Listing 1 – Code excerpt for the Grabats query implemented in Neo4J

6.2 Back-end independent navigation and querying

A common way to access and query models (such as the ones stored in Neo4J or
OrientDB, shown above) is using commonly agreed upon interfaces such as the EMF
Resource and using a higher-level query language that is independent of the persis-
tence mechanism. Examples of such languages include OCL and EOL [KPP06] (from
the Epsilon [Ric09] platform), which abstract over concrete model representation and
persistence technologies using the OCL pivot metamodel [Edw11] and Epsilon Model
Connectivity [Dim08] layer respectively. In this section we illustrate using the facil-
ities provided by Epsilon/EOL to support back-end independent querying – but in
principle a similar approach could also apply to OCL. We avoid presenting any OCL
queries as they only support EMF-based models (using the EMF Resource interface to
go from their persisted form to an in memory representation), a feature that our cur-
rent prototypes do not support. Our aim here is to measure the impact of introducing
a higher-level query language in terms of conciseness and performance.

Epsilon The Epsilon platform [Ric09] is an extensible family of languages for com-
mon model management tasks and includes tailored languages for tasks such as model-
to-text transformation (EGL), model-to-model transformation (ETL), model refactor-
ing (EWL), comparison (ECL), validation (EVL), migration (Flock), merging (EML)
and pattern matching (EPL). All task-specific languages in Epsilon build on top of a
core expression language – the Epsilon Object Language (EOL) – to eliminate dupli-
cation and enhance consistency.

As seen in Figure 8, EOL – and as such all languages that build on top of it – is
not bound to a particular metamodeling architecture or model persistence technology.
Instead, an intermediate layer – the Epsilon Model Connectivity layer – has been
introduced to allow for seamless integration of any modeling back-end, using a driver-
based approach where integration with a particular modeling technology is achieved
by implementing a driver that conforms to a Java interface (IModel) provided by
EMC. Table 3 displays some of the important methods in this interface and a short
explanation of their functionality. For a more detailed discussion on EMC and the
IModel interface, the reader can refer to Chapter 3 of [Dim08].

To enable querying models persisted in the graph databases discussed in this
paper using EOL, we have implemented two EMC drivers: one for Neo4J and one
for OrientDB. Listing 2 shows how using the two new EMC drivers, the Grabats

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 17

Ta
sk

-s
p

ec
if

ic
 

la
n

gu
ag

es
 Model Refactoring (EWL)     Pattern Matching (EPL)     Model Validation (EVL)           … 

 

Model Comparison (ECL)                       Model-to-model Transformation (ETL) 
 

Model Merging (EML)     Code Generation (EGL)                  Model Migration (Flock) 

Te
ch

n
o

lo
gy

-s
p

ec
if

ic
 

d
ri

ve
rs

 

Eclipse Modeling Framework (EMF)    Schema-less XML    Neo4J Store     OrientDB Store 
 

Meta Data Repository (MDR)        CSV           Bibtex                   MetaEdit+                      … 

Epsilon Object Language (EOL) ≈ JavaScript + OCL 
 

Epsilon Model Connectivity (EMC) 
 

extend 

implement 

Figure 8 – The Epsilon Model Connectivity Layer

query – which as discussed above, spanned more than 200 lines of Java code – can be
expressed using a few lines of, arguably more understandable and easier to maintain,
EOL code.

In the following section, we use these drivers to evaluate the impact of using EOL
as a higher-level query language in terms of performance.

1 TypeDeclaration.all
2 .collect(td|td.bodyDeclarations
3 .select(md:MethodDeclaration|
4 md.modifiers.exists(mod:Modifier|mod.public=="true")
5 and md.modifiers.exists(mod:Modifier|mod.static=="true")
6 and md.returnType.isTypeOf(SimpleType)
7 and md.returnType.name.fullyQualifiedName ==
8 td.name.fullyQualifiedName
9 )

10 )
11 .flatten()
12 );

Listing 2 – The Grabats 2009 query expressed in EOL

7 Evaluation

In this section, XMI, Teneo/Hibernate using a MySQL server, CDO (using its default
H2 SQL database as well as with a MySQL server) and the two prototypes imple-
mented in this work are compared to assess their performance and efficiency in terms
of memory use.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


18 · Konstantinos Barmpis, Dimitrios S. Kolovos

Table 3 – Subset of Methods defined in the IModel interface

Method Return Type Summary of Functionality

allContents() Collection<?> Returns a collection containing all of the
objects contained in the model.

getAllOfType(String
type)

Collection<?> Returns a collection containing all of the
objects whose EClass is ‘type’

getAllOfKind(String
type)

Collection<?> Returns a collection containing all of the
objects whose superclass is ‘type’

getTypeOf(Object
instance)

Object Returns the EClass of the ‘instance’ el-
ement

isOfType(Object
instance, String type)

boolean Returns True iff the ‘instance’ object has
EClass ‘type’
NB: throws EolModelElementTypeNot-
FoundException if the EClass ‘type’
does not exist

knowsAboutProperty
(Object instance, String
property)

boolean Returns True iff the ‘instance’ object
can have the property ‘property’

getPropertyGetter() IPropertyGetter Returns the IPropertyGetter used by
this model. An IPropertyGetter is a
class which defines how properties and
references are found in the persisted
model and has to also be implemented.

getPropertySetter() IPropertySetter Returns the IPropertySetter used by
this model. An IPropertySetter is a
class which defines how properties and
references are set (updated or initial-
ized) in the persisted model and has to
also be implemented.

7.1 Execution Environment

Performance figures that have been measured on a PC with Intel(R) Core(TM) i5-2300
CPU @ 2.80GHz, with 8GB of physical memory, and running the Windows 7 (64 bits)
operating system are presented. The Java Virtual Machine (JVM) version 1.6.0 25-
b06 has been restarted for each measure as well as for each of the 20 repetitions of
each measure. Results are in seconds and Megabytes, where appropriate.

Table 4 shows the configurations that have been used for the JVM and for the
relevant databases aiming to optimize execution time and were obtained empirically.

7.2 Model Insertion

Tables 5 and 6 show the results for the insertion of an XMI model into the databases.
We assume availability of XMI model files so models written to an XMI file are
omitted.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 19

Table 4 – Configuration Options for Benchmarks

Config
Persistence Mechanism

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Neo4J OrientDB

JVM -Xmx6G -Xmx6G -Xmx5G -Xmx5G -Xmx6G -Xmx5G

Database n/a default default default 2.2G MMIO 1.5G MMIO

Regarding insertion time, Teneo/Hibernate did not successfully insert set2 – set4
and CDO did not successfully insert set3 – set4 (neither with H2 nor with MySQL),
as even with maximum memory allocated to both client and server in both cases, they
threw a timeout exception, so values are omitted. For small model sizes, in the order
of tens of megabytes (set0, set1), CDO performs the best but for larger ones, in the
order of hundreds of megabytes (set2 – set4), Neo4J and OrientDB are not only able
to store them successfully, but for set2 do so faster than CDO. It is worth noting that
for set3 – set4, due to the sizes of the files, the computer’s RAM is exhausted hence
the operation is greatly bottlenecked by I/O from the hard disk. This results in a
greater variance in the results and hence the averages presented here are influenced
by multiple factors such as the physical location of each database on the hard disk.

Table 5 – Model Insertion (Persistent to Database) Size Results

Model
Size

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Neo4J OrientDB

Set0 8.75 38.6 26.0 34.8 29.4 53.6

Set1 26.59 83.1 67.0 75.7 85.9 134.0

Set2 270.12 - 539 551 794 1197

Set3 597.67 - - - 1750 2591

Set4 645.53 - - - 1890 2789

Table 6 – Model Insertion (Persistent to Database) Execution time Results

Model
Time taken

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Neo4J OrientDB

Set0 n/a 58.7 11.8 26.2 12.4 19.6

Set1 n/a 218.2 19.2 66.7 32.5 57.1

Set2 n/a - 778.5 647.5 499.1 590.8

Set3 n/a - - - 2210 2245

Set4 n/a - - - 2432 2397

7.3 Query Execution Time and Memory Footprint

Table 7 shows the results for performing the first Grabats 2009 [Gra12, SJ09] query
on the databases. As previously mentioned, the Grabats query finds all occurrences
of TypeDeclaration elements that declare at least one public static method with the
declared type as its returning type.

As Teneo/Hibernate did not insert set2 – set4 and CDO did not insert set3 – set4

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


20 · Konstantinos Barmpis, Dimitrios S. Kolovos

Table 7 – GrabatsQuery Results

Model Metric
Persistence Mechanism

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Neo4J OrientDB

Set0
Time 1.20 4.53 0.60 0.61 0.11 0.43

Mem (Max) 42 248 14 12 15 10
Mem (Avg) 19 117 12 9 11 10

Set1
Time 2.28 7.34 1.12 1.06 0.62 1.18

Mem (Max) 111 323 17 20 18 27
Mem (Avg) 48 176 13 17 13 17

Set2
Time 16.51 - 12.94 12.20 3.10 9.83

Mem (Max) 813 - 98 120 401 742
Mem (Avg) 432 - 32 70 195 255

Set3
Time 84.91 - - - 6.71 24.41

Mem (Max) 1750 - - - 960 2229
Mem (Avg) 844 - - - 620 881

Set4
Time 145.67 - - - 7.16 29.65

Mem (Max) 1850 - - - 1070 2463
Mem (Avg) 939 - - - 866 1314

(neither with H2 nor MySQL), query values are omitted for these test cases. As can
be observed, Neo4J demonstrates the best performance in terms of execution time and
OrientDB is faster than XMI but also uses a comparable memory footprint. CDO
has the lowest memory consumption for the queries it can run (we are not considering
memory use of set0 and set1 as it is extremely low and the variance caused by the
computer itself is significant) but is also slower to execute than Neo4J and comparable
to OrientDB.

Using this empirical data we can deduce that even though OrientDB’s Graph layer
is competitive and can be an improvement to XMI even for the largest model sizes
in this benchmark, due to the fact that it is built atop a document store causes its
performance to be lower than that of Neo4J, which is a pure graph-based database.

Table 8 shows the results for performing the Grabats query using the EMC query
on the databases next to their native query results from Table 7.

As can be expected this layer adds an overhead both in memory and execution
time, but the results are still greatly superior to XMI persistence.

Figure 10 compares the total time taken for Ecore’s XMI loader and our prototypes
to answer the query, starting from a model provided in an XMI file. The querying
time (at 0 times performed) is the time it takes to insert the model to the store as we
assume the availability only of the XMI files.

The total time is calculated assuming that the persistence mechanism is discon-
nected from the query API each time but the persistence (for the NoSQL) is not
deleted (for example if one execution of the query is performed on each working day)
and can be used to visualize after how many such runs a NoSQL solution would be
beneficial to deploy. It is worth noting that the query execution time for XMI, not
counting the loading of the resource is comparable to Neo4J query execution times
(seen in Table 7), so if a model only needs to be analyzed very few distinct times,
with multiple queries executed, XMI is still the fastest approach, assuming that the

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 21

Table 8 – Grabats Query Results – Using Native and EMC

Model Metric
Persistence Mechanism

Neo4J OrientDB Neo4J (EMC) OrientDB (EMC)

Set0
Time 0.11 0.43 0.35 0.99

Mem (Max) 15 10 12 15
Mem (Avg) 11 10 11 12

Set1
Time 0.62 1.18 0.61 2.21

Mem (Max) 18 27 12 23
Mem (Avg) 13 17 11 14

Set2
Time 3.10 9.83 6.02 15.63

Mem (Max) 401 742 520 910
Mem (Avg) 195 255 280 390

Set3
Time 6.71 24.41 12.71 38.92

Mem (Max) 960 2229 1320 2400
Mem (Avg) 620 881 520 750

Set4
Time 7.16 29.65 14.99 41.37

Mem (Max) 1070 2463 1410 2540
Mem (Avg) 866 1314 810 870

client can handle the immense memory consumption it requires.
Regarding native querying, for set2, Neo4J is preferable to XMI after around 35

repeats while OrientDB after around 90. For set3, Neo4J is around 28 while OrientDB
37. For set4, Neo4J is around 18 while OrientDB 21.

We can observe that for any model size both NoSQL solutions are beneficial after
some threshold, the larger the model size the earlier we can use NoSQL solution to
persist it and that Neo4J is always more performant than OrientDB.

Regarding EMC querying we observe that for set2, OrientDB has similar gradient
to XMI, with the lines only intersecting at around 2500 repeats and with Neo4J still
outperforming XMI at around 49 repeats. For set3 and set4, we see similar results to
Figure 10, with Neo4J surpassing XMI at 30 and 19 repeats respectively and OrientDB
at 53 and 23 respectively.

These results seem to show that the overhead of using Epsilon with OrientDB
is sufficient enough to cause it to only be negligibly more efficient than XMI for
relatively small model sizes (set0 – set2); when working with large enough model
sizes (set3 – set4) though, OrientDB’s EMC performance starts to reflect that of
its native querying with respect to XMI. Regarding Neo4J, Epsilon’s overhead only
minorly effects its overall performance causing to be quickly surpass that of XMI for
any model size.

7.4 Disc Space

As expected, Neo4J and OrientDB require more disk space than XMI. Figure 9 shows
the ratios of relative disk space needed to store the different models (set0 – set4) for
the different technologies, using the results in Table 5.

All three ratios, for large enough model sizes, tend to a constant. This constant is
estimated to be 4.3 for XMI – OrientDB, 2.9 for XMI – Neo4J and 1.45 for Neo4J –
OrientDB. For smaller model sizes variables such as database-specific overhead seem

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


22 · Konstantinos Barmpis, Dimitrios S. Kolovos

Figure 9 – Ratios of relative disk space used for the different persistence mechanisms

0 1 2 3 4
0

1

2

3

4

5

6

7
R
at
io

Model: set(X)

Ratio: XMI - Neo4J

Ratio: Neo4J - OrientDB

Ratio: XMI - OrientDB

to influence the ratios substantially (hence the larger ratios with respect to XMI for
smaller models). Hence, for large enough models, we can expect an OrientDB store
to be around 4.3x as large as its XMI file and a Neo4J store around 2.9x as large.
Furthermore the results seem to show that Neo4J is more efficient in storing the
data relative to OrientDB, which can be expected as it handles references in a more
lightweight fashion, as explained in Sections 5.1 and 5.2. The ratio between Neo4J and
OrientDB seems to indicate that for both databases their relative overheads discussed
above are similar, but OrientDB is less efficient in that regard (with a 19.2% delta in
the ratio between Neo4J and OrientDB at set0 and the one at set4).

8 Conclusions

This paper has explored the use of graph-based NoSQL databases to support scalable
persistence of large models by exploiting the index-free adjacency of nodes provided
by these stores. Prototypes for integrations of both Neo4J and OrientDB with EMF
as well as with Epsilon’s EMC have been implemented and described in detail. Bench-
marks using the Grabats 2009 query have been executed and have shown that:

• Native queries provide performance results which greatly surpass XMI text file
based stores and can store models larger than CDO.

• Back-end independent queries (using Epsilon’s EMC) provide a maintainable
and performant alternative to native querying.

These results can promote further research and development of large-scale model
persistence solutions based on graph-based NoSQL databases, a feasible performant
alternative to XMI.

Further work in this area would include implementation of features allowing for
more memory-efficient client access to the repositories, for scenarios where execution
time can be traded for a lower memory footprint, as well as creation of query opti-
mizations that allow for more efficient model navigation, hence eliminating some of
the execution time required to run them.

Acknowledgments

The work in this paper was partly supported by the European Commission via the
OSSMETER FP7 project (#318736). Information included in this document reflects
only the authors views. The European Commission is not liable for any use that may
be made of the information contained herein.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 23

Figure 10 – Performance Comparison for full execution of the Grabats Query from XMI
through the relevant persistence mechanism using native and EMC querying

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI

Neo4J OrientDB

(a) Performance for set2

0 2 4 6 8 10 12 14 16
0

20

40

60

80

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMINeo4J (EMC)

OrientDB
(EMC)

(b) Performance for set2 (EMC)

0 4 8 12 16 20 24 28 32
0

10

20

30

40

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI
Neo4J

OrientDB

(c) Performance for set3

0 6 12 18 24 30 36 42 48
0

10

20

30

40

50

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI

OrientDB
(EMC)Neo4J

(EMC)

(d) Performance for set3 (EMC)

0 4 8 12 16 20 24 28 32
0

10

20

30

40

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI

Neo4J

OrientDB

(e) Performance for set4

0 4 8 12 16 20 24 28 32
0

10

20

30

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI

Neo4J (EMC)

OrientDB
(EMC)

(f) Performance for set4 (EMC)

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a3


24 · Konstantinos Barmpis, Dimitrios S. Kolovos

References

[BK12] Konstantinos Barmpis and Dimitrios S. Kolovos. Comparative analy-
sis of data persistence technologies for large-scale models. In Proceed-
ings of the 2012 Extreme Modeling Workshop, XM ’12, pages 33–38,
New York, NY, USA, 2012. ACM. URL: http://doi.acm.org/10.
1145/2467307.2467314, doi:10.1145/2467307.2467314.

[BK13] Konstantinos Barmpis and Dimitris Kolovos. Hawk: towards a scal-
able model indexing architecture. In Proceedings of the Workshop on
Scalability in Model Driven Engineering, BigMDE ’13, pages 6:1–6:9,
New York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.
1145/2487766.2487771, doi:10.1145/2487766.2487771.

[Cat11] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec.,
39(4):12–27, May 2011. URL: http://doi.acm.org/10.1145/
1978915.1978919, doi:10.1145/1978915.1978919.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A Distributed Storage System for Struc-
tured Data. ACM Trans. Comp. Syst., 2008. URL: http://doi.
acm.org/10.1145/1365815.1365816, doi:10.1145/1365815.
1365816.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s
highly available key-value store. In Proc. 21st ACM SIGOPS sym-
posium on Operating systems principles, SOSP ’07, pages 205–220,
2007. URL: http://doi.acm.org/10.1145/1294261.1294281,
doi:10.1145/1294261.1294281.

[Dim08] Dimitrios S. Kolovos, Louis M. Rose, Antonio Garcia Dominguez and
Richard F. Paige. The Epsilon Book. 2008. URL: http://www.
eclipse.org/epsilon/doc/book/.

[Edw11] Edward Willink. Aligning OCL with UML. In Proceedings of the Work-
shop on OCL and Textual Modelling, volume 44 of Electronic Com-
munications of the EASST, 2011. URL: http://journal.ub.tu-
berlin.de/eceasst/article/view/664.

[Gra12] Grabats2009. 5th International Workshop on Graph-Based Tools [on-
line], 2012. [Accessed 1 June 2012] Available at: http://is.tm.tue.
nl/staff/pvgorp/events/grabats2009/.

[Hba12] Hbase Developers. Hbase, Tabular NoSQL Database [online], 2012. [Ac-
cessed 1 June 2012] Available at: http://hbase.apache.org/.

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The
epsilon object language (eol). In Proceedings of the Second Euro-
pean Conference on Model Driven Architecture: Foundations and Ap-
plications, ECMDA-FA’06, pages 128–142, Berlin, Heidelberg, 2006.
Springer-Verlag. URL: http://dx.doi.org/10.1007/11787044_
11, doi:10.1007/11787044_11.

Journal of Object Technology, vol. 13, no. 3, 2014

http://doi.acm.org/10.1145/2467307.2467314
http://doi.acm.org/10.1145/2467307.2467314
http://dx.doi.org/10.1145/2467307.2467314
http://doi.acm.org/10.1145/2487766.2487771
http://doi.acm.org/10.1145/2487766.2487771
http://dx.doi.org/10.1145/2487766.2487771
http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://dx.doi.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
http://journal.ub.tu-berlin.de/eceasst/article/view/664
http://journal.ub.tu-berlin.de/eceasst/article/view/664
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://hbase.apache.org/
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.5381/jot.2014.13.3.a3


Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models · 25

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack.
Scalability: The Holy Grail of Model Driven Engineering. In
Proc. Workshop on Challenges in MDE, collocated with MoDELS
’08, Toulouse, France, 2008. URL: http://ssel.vub.ac.be/
ChaMDE08/_media/chamde2008_proceedingsd121.pdf?id=
wsorganisation&cache=cache#page=10.

[Lea10] Neal Leavitt. Will NoSQL Databases Live Up to Their Promise? Com-
puter, 43(2):12 –14, February 2010. doi:10.1109/MC.2010.58.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April
2010. URL: http://doi.acm.org/10.1145/1773912.1773922,
doi:10.1145/1773912.1773922.

[MDBS09] Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria. Uni-
form Random Generation of Huge Metamodel Instances. In Proceedings
of ECMDA-FA ’09, pages 130–145, Berlin, Heidelberg, 2009. Springer-
Verlag. URL: http://dx.doi.org/10.1007/978-3-642-02674-
4_10, doi:10.1007/978-3-642-02674-4\_10.

[MFM+09] Parastoo Mohagheghi, Miguel Fernandez, Juan Martell, Mathias
Fritzsche, and Wasif Gilani. MDE Adoption in Industry: Challenges
and Success Criteria. In Models in Software Engineering, volume 5421
of Lecture Notes in Computer Science, pages 54–59. Springer, 2009.
URL: http://dx.doi.org/10.1007/978-3-642-01648-6_6.

[Mon12] MongoDB Developers. MongoDB, Document-Store NoSQL Database
[online], 2012. [Accessed 1 June 2012] Available at: www.mongodb.
org/.

[Neo12] Neo4J Developers. Neo4J, Graph NoSQL Database [online], 2012. [Ac-
cessed 1 June 2012] Available at: http://neo4j.org/.

[Ore10] Kai Orend. Analysis and Classification of NoSQL Databases and Evalu-
ation of their Ability to Replace an Object-relational Persistence Layer.
Architecture, p. 100, April 2010. http://weblogs.in.tum.de/
file/Publications/2010/Or10/Or10.pdf.

[Ori12] OrientDB Developers. OrientDB, Hybrid Document-Store and Graph
NoSQL Database [online], 2012. [Accessed 1 June 2012] Available at:
http://www.orientechnologies.com/.

[PCM11] Javier Espinazo Pagán, Jesús Sánchez Cuadrado, and Jesús Garćıa
Molina. Morsa: a scalable approach for persisting and accessing large
models. In Proceedings of MODELS’11, pages 77–92, Berlin, Heidelberg,
2011. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
id=2050655.2050665.

[PPS11] Rabi Prasad Padhy, Manas Ranjan Patra, and Suresh Chandra Sat-
apathy. RDBMS to NoSQL: Reviewing Some Next-Generation Non-
Relational Database’s. IJAEST, Vol.11(1), 2011. URL: http:
//www.ijaest.iserp.org/archieves/19-Sep-15-30-11/
Vol-No.11-Issue-No.1/3.IJAEST-Vol-No-11-Issue-No-
1-RDBMS-to-NoSQL-Reviewing-Some-Next-Generation-Non-
Relational-Database’s-015-030.pdf.

Journal of Object Technology, vol. 13, no. 3, 2014

http://ssel.vub.ac.be/ChaMDE08/_media/chamde2008_proceedingsd121.pdf?id=wsorganisation&cache=cache#page=10
http://ssel.vub.ac.be/ChaMDE08/_media/chamde2008_proceedingsd121.pdf?id=wsorganisation&cache=cache#page=10
http://ssel.vub.ac.be/ChaMDE08/_media/chamde2008_proceedingsd121.pdf?id=wsorganisation&cache=cache#page=10
http://dx.doi.org/10.1109/MC.2010.58
http://doi.acm.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1007/978-3-642-02674-4_10
http://dx.doi.org/10.1007/978-3-642-02674-4_10
http://dx.doi.org/10.1007/978-3-642-02674-4_10
http://dx.doi.org/10.1007/978-3-642-01648-6_6
www.mongodb.org/
www.mongodb.org/
http://neo4j.org/
http://weblogs.in.tum.de/file/Publications/2010/Or10/Or10.pdf
http://weblogs.in.tum.de/file/Publications/2010/Or10/Or10.pdf
http://www.orientechnologies.com/
http://dl.acm.org/citation.cfm?id=2050655.2050665
http://dl.acm.org/citation.cfm?id=2050655.2050665
http://www.ijaest.iserp.org/archieves/19-Sep-15-30-11/Vol-No.11-Issue-No.1/3.IJAEST-Vol-No-11-Issue-No-1-RDBMS-to-NoSQL-Reviewing-Some-Next-Generation-Non-Relational-Database's-015-030.pdf
http://www.ijaest.iserp.org/archieves/19-Sep-15-30-11/Vol-No.11-Issue-No.1/3.IJAEST-Vol-No-11-Issue-No-1-RDBMS-to-NoSQL-Reviewing-Some-Next-Generation-Non-Relational-Database's-015-030.pdf
http://www.ijaest.iserp.org/archieves/19-Sep-15-30-11/Vol-No.11-Issue-No.1/3.IJAEST-Vol-No-11-Issue-No-1-RDBMS-to-NoSQL-Reviewing-Some-Next-Generation-Non-Relational-Database's-015-030.pdf
http://www.ijaest.iserp.org/archieves/19-Sep-15-30-11/Vol-No.11-Issue-No.1/3.IJAEST-Vol-No-11-Issue-No-1-RDBMS-to-NoSQL-Reviewing-Some-Next-Generation-Non-Relational-Database's-015-030.pdf
http://www.ijaest.iserp.org/archieves/19-Sep-15-30-11/Vol-No.11-Issue-No.1/3.IJAEST-Vol-No-11-Issue-No-1-RDBMS-to-NoSQL-Reviewing-Some-Next-Generation-Non-Relational-Database's-015-030.pdf
http://dx.doi.org/10.5381/jot.2014.13.3.a3


26 · Konstantinos Barmpis, Dimitrios S. Kolovos

[Ric09] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Dri-
valos, Fiona A.C. Polack. The Design of a Conceptual Framework
and Technical Infrastructure for Model Management Language Engi-
neering. In Proc. 14th IEEE International Conference on Engineer-
ing of Complex Computer Systems, Potsdam, Germany, 2009. URL:
http://dx.doi.org/10.1109/ICECCS.2009.14.

[SJ09] Jean-Sebastien Sottet and Frédéric Jouault. Program comprehension. In
Proc. 5th Int. Workshop on Graph-Based Tools, 2009. URL: http:
//is.ieis.tue.nl/staff/pvgorp/events/grabats2009/
cases/grabats2009reverseengineering.pdf.

[Sto10] Michael Stonebraker. Sql databases v. nosql databases. Commun. ACM,
53(4):10–11, April 2010. URL: http://doi.acm.org/10.1145/
1721654.1721659, doi:10.1145/1721654.1721659.

About the authors

Konstantinos Barmpis is a second year EngD (Engineering
Doctorate) student in the Enterprise Systems Research Group at
the University of York.

He has a bachelor’s degree from Imperial College London in
Joint Mathematics and Computer Science and a master’s degree
from the University of Saint Andrews in Software Engineering. He
is now focused on researching scalability issues in MDE.

His e-mail address is kb@cs.york.ac.uk and his web-page
is http://www.cs.york.ac.uk/˜kb.

Dimitrios S. Kolovos is a lecturer in Enterprise Systems in the
Department of Computer Science of the University of York.

To date, he has published more than 70 articles in international
journals, conferences and workshops in the field of MDE, and
is currently leading the development of the Epsilon open source
MDE platform (http://www.eclipse.org/epsilon).

His e-mail address is dimitris.kolovos@york.ac.
uk and his web-page is http://www.cs.york.ac.uk/

˜dkolovos.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.1109/ICECCS.2009.14
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://doi.acm.org/10.1145/1721654.1721659
http://doi.acm.org/10.1145/1721654.1721659
http://dx.doi.org/10.1145/1721654.1721659
mailto:kb@cs.york.ac.uk
http://www.cs.york.ac.uk/~kb
http:// www.eclipse.org/epsilon
mailto:dimitris.kolovos@york.ac.uk
mailto:dimitris.kolovos@york.ac.uk
http://www.cs.york.ac.uk/~dkolovos
http://www.cs.york.ac.uk/~dkolovos
http://dx.doi.org/10.5381/jot.2014.13.3.a3

	Introduction
	Background
	Model-Driven Engineering
	NoSQL Databases
	Graph Databases


	Related Work
	The Connected Data Objects Repository (CDO)
	Morsa: NoSQL Model Persistence Prototype

	The Grabats 2009 Case Study and Query
	Persisting and Querying Large-Scale Models using Graph Databases
	Neo4J
	Transactions and I/O

	OrientDB
	Transactions and I/O


	Model Querying
	Native Querying
	Back-end independent navigation and querying

	Evaluation
	Execution Environment
	Model Insertion
	Query Execution Time and Memory Footprint
	Disc Space

	Conclusions
	References
	About the authors

