
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011

Online at http://www.jot.fm.

An approach to the co-creation of
models and metamodels in Enterprise

Architecture Projects

Paola Gómeza Mario Sáncheza Hector Floreza

Jorge Villalobosa

a. Systems and Computing Engineering Department, Universidad de los
Andes, Bogotá Colombia
http://ticsw.uniandes.edu.co

Abstract The linguistic conformance and the ontological conformance
between models and metamodels are two different aspects that are fre-
quently mixed. This specifically occurs in the EMF framework resulting
in problems such as the incapability to load and modify metamodels at
runtime. In this paper we present a strategy to solve this problem by
separating the ontological and the linguistic aspects of a metamodel and
a metamodeling framework. The strategy has been implemented in a
graphical editor and is motivated in the context of Enterprise Architecture
Projects.

Keywords MDE, EMF, Dynamic Modeling, Flexible Typing, Conformance

1 Introduction

Ideally, a modeling phase in a project follows a prior metamodeling phase1; thus,
making the metamodels available before the actual modeling process starts. The goal
of such a metamodeling phase is to abstract the concepts and relations in the modeled
domain, and define what can and cannot be expressed in the models [SCDLG12].
Unfortunately, in some cases metamodels can be incomplete or even inexistent when a
modeling phase begins; they can even change afterwards. For instance, in the case
of the Domain-Specific Modeling Languages (DSMLs), it is common to change the
DSML as the domain is discovered [RKP12]. A similar situation exists in the context
of Enterprise Architecture (EA), where metamodels evolve rapidly due to the rapid
and continuous change of the current business environments [LFJU09] [Lan13]. As a
result, in the EA context, metamodels that change after model creation has begun are

1In this paper we will refer with modeling to the activities for creating models, and with meta-
modeling to the activities for creating metamodels

Paola Gómez, Mario Sánchez, Hector Florez, Jorge Villalobos. An approach to the co-creation of models
and metamodels in Enterprise Architecture Projects. In Journal of Object Technology, vol. 13, no. 3,
2014, pages 2:1–29. doi:10.5381/jot.2014.13.3.a2

http://www.jot.fm/copyright.html
http://www.jot.fm
http://ticsw.uniandes.edu.co
http://dx.doi.org/10.5381/jot.2014.13.3.a2
http://dx.doi.org/10.5381/jot.2014.13.3.a2
http://dx.doi.org/10.5381/jot.2014.13.3.a2

2 · Paola Gómez et al.

MMi

mi

MMi'

mi'

Δ''

Δ'
(a) When the model changes

MMi

mi

MMi

mi'

Δ'

Δ''

'

(b) When the metamodel changes

Figure 1 – Conformity problems

more the rule than the exception. In Section 2 we will discuss this point furthermore
in order to motivate the work presented in this paper.

Given this situation, it is more desirable to have modeling strategies that are able
to handle the opposite situation of the normal first metamodel, than a model strategy,
modifying the metamodels as a result of modeling actions in an easy way. An obstacle
to achieving this goal is that the current tools are based on a strong conformance
relation, which usually has to be permanently guaranteed. By a strong conformance,
we mean that each model must conform to the structure and restrictions imposed
by the metamodel [RKPP10] at any given time. This usually means that a model
element must be an instance of a metatype defined in the metamodels; relationships
between model elements must be relationship instances between metatypes, subject
to the cardinality rules as described. It also means that the element’s attributes
must be the only ones defined for the corresponding metatypes. Another problem is
that metamodels and models are not handled symmetrically, and sometimes not even
with the same tools. Thus metamodels cannot be manipulated as dynamically as the
models, making the modeling process rigid [RKP12].

All of this in particular, happens in the EMF framework [EMF]. This case is
very problematic because of two main reasons. On the one side, it is the most
prominent framework in the modeling community and there is a large and growing
number of projects and tools that depends on it. On the other side, EMF puts
very strong requirements on the metamodels: they have to be completely known
before any modeling can be done [RKP12]; problems of non-conformity are labeled as
errors, not as warnings, and require immediate resolution. Furthermore, changing
metamodels after those models have been created, requires additional transformations
and migrations. On top of that, after metamodeling is completed, there is usually a
code generation phase that makes metamodels even more static.

Dynamic EMF [Bud04] which is part of the EMF framework, is very powerful and
serves to create models using a programmatic interface. However, it can only handle
strong conformance and thus makes it complicated to change or replace metamodels
at runtime. While a solution entirely based on Dynamic EMF is possible, it would
require the constant application of transformations to the models under construction.

The consequences of the aforementioned problems are illustrated in Figure 1.
In Figure 1a, a model mi is initially conformant to a metamodel MMi. Later on,
some changes ∆′ are introduced in mi, converting it into model m′

i and breaking the
conformance to MMi. In tools based on EMF, it is necessary to fix this immediately
by modifying m′

i to recover the conformance. Instead, we would like to have the
possibility to introduce changes ∆′′ to create a metamodel MM ′

i and recover the
conformance in this way.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 3

Figure 1b shows the case when some changes ∆′ are introduced in MMi, converting
it into MM ′

i and breaking the conformance that mi had with MMi. In this case,
modeling tools also require that changes are applied to mi in order to recover the
conformance. We would like to trace the effects of ∆′ on the mi, and introduce changes
∆′′ to adjust mi and converting it in MM ′

i in order to recover the conformance. Auto-
matically adjusting mi to the changes in the metamodel, such as [HBJ09] [RKPP10],
is not part of work goals presented in this paper.

The process of changing both metamodels and models incrementally has been
called co-creation of models and metamodels [GSV13]. In this paper we present
the strategy to build a toolset to support co-creation by handling metamodels in a
dynamic way. This strategy is first of all based on distinguishing linguistic conformance
from ontological conformance [Küh06] [DLG10]. Furthermore, the strategy identifies
conformance problems to the domain metamodel and provides solutions both on model
and metamodel level. In order to provide a user interface, this strategy has already
been applied to the creation of a graphical GMF-based model editor called GraCoT
(Graphical Co-Creation Tool), independent of the domain metamodel.

Figure 2 – Co-creation process overview

Figure 2 shows how the co-creation strategy is applied using our tool. The figure
represents the general process to follow in order to create a domain metamodel
and model in an incremental way. First, the user who can be the modeler or the
metamodeler can create the domain metamodel and the model from scratch or import
one domain metamodel and one model stored in an ecore and xmi format respectively.
The domain model will be transformed in an appropriate format, which can be
manipulated by GraCoT. Later, the user can apply changes to the domain metamodel
or model, or check the model conformity whenever he wants. When the conformity
model is evaluated, three options are available: 1) The user can change the model or
metamodel again independently whether the validation was successful or not. 2) The
user can select one of suggested fixes by conformity inconsistency detected in order
to change the domain metamodel or model in an automatic way. In this case, the
validation is also automatically applied and the validation cycle restarts. 3) The user
can export the model when the validation is successful in order to obtain a standard
EMF format.

The rest of the paper is structured as follows. Section 2 presents a motivation
for this work in the Enterprise Architecture context. Section 3 and 4 present our
solution strategy and the approach on which this strategy is based. Next, Section 5

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

4 · Paola Gómez et al.

Figure 3 – Co-creation of models and metamodels example

explores the conformity validation applied to co-creation process. Section 6 explains
the mechanisms to guide the user during the co-creation process. Then, Section 7
presents the graphical editor. Section 8 briefly presents some related work. Finally,
Section 9 presents the conclusions.

2 Co-creation in EA

The main goal of Enterprise Architecture projects is to create a model that relates
business elements to the informational and technological aspects in order to analyze
the enterprise under study [CKRS12] [Ste10]. This analysis provides information that
can be used to make decisions about existing problems or desired improvements of the
enterprise [LFJU09] [GSV13]. The first phases of EA frameworks and methodologies
(e.g., TOGAF [The09]) usually involve activities directed towards identifying elements
to model their attributes, and their relations. This constitutes the metamodel for the
project, and provides the underlying structure to organize all the information gathered
and produced during the project. Accordingly, the metamodel can be classified
as descriptive, because it is constructed by the enterprise observation in order to
understand it [Béz05].

Because of the concern plurality and complexity of the EA models, the metamodels
are typically large. Unfortunately, these metamodels cannot be easily reused from
one project to the next because they need to be adjusted for the enterprise under
study, scope, interests, and resources available for the project [LFJU09]. On top of
this, metamodels are not completely fixed from the start of the projects. They are
frequently adapted as the project advances because new valuable information is found,
or because some elements initially included are now considered irrelevant to the project
or to the enterprise, or because the focus of the project changed. As a result, the
previously created models must be made conformant to the new metamodel.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 5

An example of a co-creation process is illustrated in Figure 3. The model of the
enterprise initially conforms to a metamodel that defines the concepts Enterprise
and Employee, and establishes a relation between them; the model has initially two
employees related to the enterprise. Later on, some changes are introduced in the
model when two new clients are associated to the enterprise. In this moment, the
conformance is broken because the metamodel did not define the concept Client or
its relation with the enterprise. To recover the conformity, the metamodel has to be
adjusted.

Afterwards, further changes are made to the metamodel: the concept Client is
introduced, as well as one mandatory relation establishing that each employee must
have at least one client. This last change breaks the conformance again, and now
adjustments are required.

Unfortunately, the tools available to handle modeling and metamodeling for EA
projects do not properly support the co-creation process in order to allow changes
on the model or the metamodel as desired and at any time. This situation creates
extra difficulties to the modelers participating in the project, because the co-creation
process must be stopped to deal with technological problems in order to solve the
conformity problems found.

3 An approach to support co-creation

To solve the problems previously describes, we propose a strategy based on 4 functional
capabilities, which are shown in Figure 4. The main one consists of a dynamic
conformity validation, whose objective is to verify the conformance of any model with
respect to any dynamically loaded domain metamodel. This validation process is able
to identify and classify inconsistencies between the model and the domain metamodel,
and to select mechanisms helping the user to solve each problem detected.

Figure 4 – Co-creation solution strategy

To solve the conformity problems identified in the model, the strategy proposes
a functional capability to guide the user in this process. This functional capability
helps the user to modify the model or the domain metamodel, while solving each
inconsistency step by step, and applying an adequate tactic. The solution for each
inconsistency (in order to recover the conformity) may involve modifications to the
model and/or the domain metamodel.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

6 · Paola Gómez et al.

Figure 5 – Domain metamodel example

In order to provide a user interface, the strategy proposes a graphical editor to
create and edit models regardless of their conformity to the domain metamodel. In
addition, this editor is capable of modifying the domain metamodel, or dynamically
adapting to changes introduced from outside the editor. Finally, handling of standard
frameworks is guaranteed in order to manipulate different standard formats and
provide compatibility.

4 Model typing

According Kühne [Küh06], a metamodel can provide both an ontological and a
linguistic framework for model creation. As an ontological framework, a metamodel
describes which information of the reality can be represented by model elements,
and which are the valid ways related to them. For example, the Figure 5 depicts a
metamodel that describes enterprise information related with the sales department,
sellers, supervisors, and the relationships than can exist between them. As a linguistic
framework, a metamodel defines the structural elements or primitives required to
describe the models, their elements, and their relationships [DLG10]. With respect to
the former perspective, model elements are ontological instances of the metatypes; but
with respect to the latter perspective, model elements are linguistic instances of the
metatypes. For instance, when the sellers of an enterprise are modeled, an instance
of Seller is necessary corresponding to the domain. At the same time, an instance
of some primitive is also necessary corresponding to some structural instance. These
two perspectives are complementary and both necessary in order to have models with
semantics.

Tools such as EMF combine the ontological and the linguistic aspects: ontological
and linguistic conformity are validated simultaneously, using the same artifacts. Thus,
it is impossible to create a model that conforms to a metamodel from one perspective
and not from the other. While this is not necessarily a bad thing, the technological
complexity associated to handling the linguistic perspective in EMF has had conse-
quences on its ontological perspective. In particular, EMF uses a generation-based
technique to create the framework of classes to define and validate models. This has
benefits for the performance of EMF-based applications. However, it is very static,
and it is responsible to prevent metamodels at runtime from changing easily.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 7

Figure 6 – GIMM Metamodel

In order to overcome these limitations and to allow the construction of EMF models
using metamodels selected or created at runtime, the strategy presented in the previous
section separates the ontological and the linguistic aspects of model construction and
validation as much as possible. As a result, it is possible to work around the restrictions
imposed by EMF’s architecture, and maintain basic compatibility with EMF-based
approaches.

To support this separation, an intermediate metamodel called GIMM (Generic
Intermediate Metamodel) is proposed. GIMM provides a basic linguistic framework
for the definition of models; this means, GIMM provides the necessary primitives to
create a functional and basic model that can be handled by the different components
of the strategy. This metamodel (see Figure 6) was inspired on the subset of UML
that serves to describe object diagrams. Due to this, GIMM provides primitives in
order to create models that follow the description of an object diagram. Therefore, we
are not interested in including types usually encountered in meta-metamodels such as
classifiers, as in the case of Ecore.

The root of GIMM is the type called Model, which serves as the container for all
the other elements. The types Element and Relation serve to respectively represent
the element instances that appear in a model, and the relationships between them.
Each element in a GIMM model has an attribute called typeName that serves to relate
the element to a metatype in the domain metamodel. Likewise, relations have names
that serve for the same purpose. Indeed, the type Relation is classified in the types
ContainmentRelation and CrossRelation, which serves to conceptually differentiate
the containment property of one EReference in the domain metamodel.

The type Attribute serves to represent the actual attributes values of the elements
contained in a model: each Attribute instance has a typeName, a datatype, and a value.
In the current version of GIMM, attribute types may only be integers, doubles, strings,
booleans, or dates, which are treated through an enumeration. The list of attribute
types can be adjusted in the future without impacting dramatically the handling of
datatypes.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

8 · Paola Gómez et al.

GIMM is used by means of the traditional EMF mechanisms and only covers
linguistic conformance; therefore, it does not have any information about the domain.
Thus, a framework of classes (EClass) based on this metamodel is generated and used
for the graphical construction and validation of the models.

In the proposed strategy, the conformity validation uses the ontological and linguis-
tic separation in order to verify the ontological conformance of any GIMM model with
respect to the domain metamodel. In addition, GIMM also provides the structure
needed to guarantee compatibility with standard frameworks [EMF] through transfor-
mations to import any model, and make it conform to the GIMM metamodel. On the
other hand, it is also possible to apply transformations in order to export a GIMM
model and make it conform to the domain metamodel in the linguistic sense.

5 Dynamic validation of conformity

The proposal presented in this paper considers the ontological and linguistic con-
formance validation each time the model or the domain metamodel is modified. In
order to support this, and thus support co-creation processes, we designed and built a
validation engine that identifies conformity problems. The rest of the section focuses
on presenting said engine and how EVL is used to verify both ontological and linguistic
aspects.

5.1 Validating models with EVL

EVL (Epsilon Validation Language) is a language that permits to define constraints
and evaluate it on models [EVL]. These constraints or invariants are grouped in
contexts, which are related to specific metamodel types. Each constraint checks
conditions over elements in the evaluated model, and for unsuccessful checks, the
corresponding instances are marked with errors or warnings (warnings indicate that
there is a possibility to fix the problem).

EVL also supports constraint dependencies, which block a constraint evaluation
until all its dependencies have been validated. Because of this, a careful definition
of contexts and constraints is essential for a successful execution of the validation
process.

Figure 7 shows how evaluation priorities and dependencies in GIMM are related to
certain elements of the metamodel that function as context for the constraints. Con-
straints associated to the context Model (MC) are the first one. They are followed by the
constraints in the contexts Element (EC), Attribute (AC), ContainmentRelation
(CRC), and CrossRelation (CrRC). According to these priorities, the Attribute

instances of some Element instance are not checked until this Element instance is
checked. This priority schema is the result of analyzing the dependencies between all
the constraints required to adequately support a co-creation process. Henceforth, we
refer to the constraints as validation rules because they validate conformance of the
model against the domain metamodel and against GIMM.

We already said that the implementation of the validation engine is based on
EVL. However, the validation rules, which are expressed as EVL constraints, are not
predetermined in the engine because this would limit the capacity to use arbitrary
metamodels and modify them at runtime. Instead, the engine has a number of
predefined Xpand templates [XPD], which are used to dynamically generate the
necessary, metamodel specific validation rules. This generation process is invoked

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 9

Figure 7 – Validation priorities

whenever it is necessary because the metamodel changed. There is one template for
each of the validation rules that will be presented in the next section, but if necessary,
these templates can be complemented with new ones. Nevertheless we are confident
that the templates currently included will suffice in most cases.

Furthermore, validation rules can be classified according to the kind of context,
and thus to how they are generated; they can be unique or multiple. In the first case,
a single rule has to be generated and is applied in a number of places. As an example,
consider the rule to verify that the attribute typeName of each Element matches the
name of some metatype in the metamodel. Such a rule can be abstracted as the
function:

rule: Element→ {true, false}
rule(x) ≡ x.typeName ∈ { t1, t2, . . . , tk }

Where t1, t2, . . . , tk are the names of the metatypes defined in the metamodel. It can
be seen that this exact rule can be applied to any element, without requiring specific
generated versions.

In the case of multiple rules, it is necessary to replicate a single rule while instan-
tiating some of its values. As an example, consider now the rule to verify that an
Attribute a on an Element e is defined in the metatype t. A functional representation
of such a rule could be:

rule: Attribute→ {true, false}
rule(a) ≡ a.typeName ∈ { n1, n2, . . . , nj } ⋀ a.Element.typeName ∈ { t }

Where n1, n2, . . . , nj are the names of the attributes defined in the metatype t, and
this metatype corresponds with the typeName of e. Such a rule is only useful for the
attributes of instances t, but the same pattern can be applied to any other metatype.
Therefore this rule has to be replicated a number of times equals to the number of
classes in the domain metamodel.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

10 · Paola Gómez et al.

Table 1 – Problems detected by linguistic rules

RULE Linguistic problem detected in the model Fix

MC-LR-1 The value of the attribute MetamodelURI must be provided with the URI of
the domain metamodel

3

EC-LR-1 The Element instance does not have any value in the attribute typeName 3

EC-LR-2 The value of the attribute typeName in one Element instance has blanks 3

AC-LR-1 The Attribute instance does not have any value in the attribute typeName 3

AC-LR-2 The value of the attribute typeName in one Attribute instance has blanks 3

AC-LR-3 The value of the attribute typeName in one Attribute instance starts or ends
with comma

3

AC-LR-5 The value of the attribute value in one Attribute instance does not correspond
with the type specified in the attribute type

3

CRC-LR-1 The ContaintmentRelation instance does not have any value in the attribute
typeName

3

CRC-LR-2 The value of the attribute typeName in one ContaintmentRelation instance
has blanks

3

CRC-LR-3 ∗ Two ContaintmentRelation instances associate two Element instances with
opposite direction

7

CrRC-LR-1 The CrossRelation instance does not have any value in the attribute typeName 3

CrRC-LR-2 The value of the attribute typeName in one CrossRelation instance has blanks 3

5.2 Validation rules

In order to properly validate models both from the ontological and linguistical per-
spective, we have defined 31 validation rules and dependencies between them. These
rules were inspired by the following sources: the set of validation rules that EMF
applies to models [EMF]; the requirements that define the conformance of a model to
the domain metamodel; and works that formalized conformance constraints in Ecore
[PCP09] [PC10] or proposed strategies to re-establishing models conformance [KSP11]
[SKE+14].

Out of the 31 total rules, there are 12 Linguistic Rules: 1) check whether the
model is properly constructed with respect to the GIMM or not; 2) and satisfy some
additional restrictions required to guarantee a successful ontological validation. These
rules e.g check that the attribute metamodelURI of the model is set with a valid
domain metamodel. They also check whether the values of the attributes typeName are
properly formed (no blanks, no symbols, etc.) or not. Linguistic Rules are described in
Table 1 where each one has an identifier divided into three parts: the first part indicates
the context to which the rule belongs (e.g. MC for Model Context); the second part
indicates whether the rule is linguistic (LR) or ontological (OR); and the last part is a
consecutive rule. In addition, some rules analyze the absence of mandatory information
in the model, and the presence of extra, non-required information. These rules, which
are marked with ∗ in Tables 1 and 2, are also called existential rules.

On the other hand, the 19 ontological rules, which are described in Table 2, are
used to evaluate the conformance with respect to the domain metamodel. A rule

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 11

Table 2 – Problems detected by ontological rules

RULE Ontological problem detected in the model Fix

MC-OR-1 ∗ The domain metamodel has several root EClasses 7

MC-OR-2 The value of the attribute MetamodelURI is different from the URI of the
current domain metamodel

3

MC-OR-3 ∗ The model does not have any instance conforms to the root EClass in the
domain metamodel

5

EC-OR-1 The value of the attribute typeName in one Element instance does not
match with any EClass name in the domain metamodel

3

EC-OR-2 ∗ The Element instance has several owner instance 7

EC-OR-3 ∗ There are several Element instances that match with the root EClass in
the domain metamodel

7

EC-OR-4 ∗ The Element instance does not have associated the Attribute instances
required

7

EC-OR-5 ∗ The Element instance does not have associated the ContaintmentRelation

instances required
7

EC-OR-6 ∗ The Element instance does not have associated the CrossRelation in-
stances required

7

EC-OR-7 ∗ The Element instance does not have an owner instance 7

AC-OR-1 The value of the attribute typeName in one Attribute instance does not
match with any EAttribute name of the correspondent EClass in the
domain metamodel

3

AC-OR-2 The value of the attribute type in one Attribute instance does not match
with the EType in the correspondent EAttribute in the domain metamodel

3

AC-OR-3 The value of the attribute typeName in one Attribute instance is not
defined, but the correspondent EAttribute in the domain metamodel has
a default value

3

AC-OR-4 The quantity of values specified in the attribute value for one Attribute

instance is lower than the lower bound in the domain metamodel or greater
than the upper bound in the domain metamodel

3

AC-OR-5∗ There are several Attribute instances with the same value in the attribute
typeName that belongs to the same Element instance

7

CRC-OR-1 The value of the attribute typeName in one ContaintmentRelation in-
stance does not match with any EReference name of the correspondent
EClass in the domain metamodel

3

CRC-OR-2 The quantity of ContaintmentRelation instances belong to one Element

instance is lower than the lower bound in the domain metamodel or greater
than the upper bound in the domain metamodel

3

CrRC-OR-1 The value of the attribute typeName in one CrossRelation instance does
not match with any EReference name of the correspondent EClass in the
domain metamodel

3

CrRC-OR-2 The quantity of CrossRelation instances belong to one Element instance
is lower than the lower bound in the domain metamodel or greater than
the upper bound in the domain metamodel

3

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

12 · Paola Gómez et al.

Figure 8 – Dependencies between validation rules

is classified as ontological when the verification is based on the information of the
domain metamodel, independently whether this rule depends of other linguistic or
ontological rules. These ontological rules use the value of the attributes in GIMM in
order to match the model and its elements with the domain metamodel and its types.
For example, the rule MC-OR-2 checks that the attribute metamodelURI points to a
valid domain metamodel. Other rules such as EC-OR-1 and CRC-OR-1 check whether
the attribute typeName of each Element and Relation point to a valid metatype in
the domain metamodel or not.

Validation rules may or may not offer solutions to fix the problems detected. When
a solution exists, these rules mark the problematic instance with a warning; when
there is no solution, the instance is marked with an error. The third column of Tables
1 and 2 uses the symbols 3 and 7 to indicate if the rule provides some solution to the
problem detected or not.

The proposed dependencies between validation rules are presented in Figure 8.
These dependencies ensure that validations can be successfully performed, even though
they do not have to be defined in the same context. Figure 8 uses the same identifiers
as Tables 1 and 2.

In order to illustrate these dependencies, it is possible to appreciate in the Figure
8 that the rule AC-OR-1 requires the previous validation of rule EC-OR-1: AC-OR-1

validates whether the typeName of one Attribute instance matches with some EAt-
tribute name of the corresponding EClass in the domain metamodel; however, this
can only be validated if EC-OR-1 is successful checked.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 13

5.3 Writing validation rules

While using concrete examples, we now will show how validation rules are defined.
For this purpose we will show how a rule is describe in an Xpand template that then
is used to generate one or multiple EVL scripts. We also show how some validation
rules also includes fixes, which correspond to valid solutions that users may apply to
fix the problems identified by each rule.

The rule EC-OR-1, called hasRightElementName, uses information of the domain
metamodel to carry out the validation of the corresponding instances in the model;
therefore, it is an ontological rule. This rule, checks whether the attribute typeName of
the Element entity matches the name of some metatype in the domain metamodel.
In this comparison, the rule ignores the abstract metatype names. In addition, this
rule offers two solutions to the user through a quickfix wizard: Select a valid name
and Add EClass to the domain metamodel.

The rule EC-OR-1 is defined for the Element context using the EVL code presented
in Listing 1. Note that this is not exactly an EVL script, but an Xpand template
that when is expanded, results in a valid EVL script. In this code, the rule EC-LR-2

is first validated in order to guarantee that the attribute typeName has not blanks.
Next, the block check validates whether the typeName value of the current Element
instance matches with any name of the EClass names collection provided by the domain
metamodel. Please note, at line 4 the label <EClass names in domain metamodel>:
this is a label that Xpand replaces with the proper values whenever the domain
metamodel changes. Line 9 shows the message associated to the current instance
whether the validation is not successful.

1 critique hasRightElementName {
2 guard : self.satisfies(’EC-LR-2’) //Rule name: hasBlanksInElementName
3 check {
4 var validNames = Collection { <EClass names in domain metamodel> };
5 if (validNames.includes(self.typeName)) { return true; }
6 else { return false; }
7 }
8

9 message: ’The instance (EClass) \’’ + self.typeName + ’\’ has not a valid name.’
10

11 fix {
12 title: ’Select a valid name ...’
13 do {
14 var rvHelper = new Native(’co.edu.uniandes.enar.gracot.rulesValidation.RVHelper’);
15 var newName := rvHelper.changeInstanceEClassName(validNames , self.typeName);
16 if(newName <> null) self.typeName := newName;
17 }
18 }
19 fix {
20 title: ’Add EClass \’’ + self.typeName + ’\’ to the domain metamodel ...’
21 do {
22 var rvHelper = new Native(’co.edu.uniandes.enar.gracot.rulesValidation.RVHelper’);
23 rvHelper.addEClassToMM(self.typeName, validNames , <root of the domain metamodel>);
24 }
25 }
26 }

Listing 1 – EVL code of the rule EC-OR-1

Two fix blocks indicate the possible solutions for the problems eventually detected.
In the first fix block, one Java class provides a service which receives the EClass names
of the domain metamodel and the current typeName. Later, according to the user
actions, the new typeName for the Element instance is returned to modify the model
directly by the constraint. In the second fix block, the Java class provides a service

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

14 · Paola Gómez et al.

which receives the EClass names of the domain metamodel, the current typeName,
and the root EClass name of the domain metamodel. Later, according to the user
actions, the metamodel can be modified using services from the constraint.

We now describe a more complex, multiple validation rule. The rule CRC-OR-1,
called hasRightContainmentRelationName SinceElement<X>, is defined in the Con-
tainmentRelation context, but it is replicated by each EClass that can be a source of
any containment EReference in the domain metamodel. Before the evaluation, the
rule depends on three rules: a) the rule CRC-LR-2 (hasBlanksInContRelationName),
which validates if the typeName value has blanks; b) the rule EC-OR-1 (hasRightEle-
mentName), which validates the right typeName for the Element instances that are
the source and relation target; c) and the typeName of the source Element instance
corresponds with the source EClass name for which the rule has been replicated. Next,
the rule checks three conditions: a) whether the typeName of the current Containmen-
tRelation instance matches with any containment EReference name of the domain
metamodel where the source EClass name matches with the EClass name used to
replicated the rule; b) whether the typeName of the target Element instance matches
with any of the possible names provided by the domain metamodel in which it is
considered the target EClass and its inheritance; c) Finally, the rule validates whether
the ContainmentRelation instance typeName matches with any valid EReference name
between the source and target selected. The rule offers two fixes called Select a valid
name and Add EReference to the domain metamodel.

The EVL template for the rule is provided by Listing 2. Line 3 shows the described
dependencies to the other rules mentioned above. In this template, at lines 5,8,28 and
43, <X> refers to the EClass name used to expand it whenever the domain metamodel
is modified. The schemes of the lines 10 to 14 and 30 to 32 are repeated for all
possible target EClass. In these schemes, <1...n> refers to each possible target
EClass. Particularly, for each scheme, <1...n> is replaced for the same name where it
appears. In addition, the template is responsible for providing the right EClass and
EReference names considers all and only the valid names; this means that abstract
EClasses are discarded, and inheritance structures are covered. Finally, two fix blocks
indicate the possible solutions.

In the first fix block, at line 27, one Java class provides a service which receives
the valid containment EReference names of the domain metamodel between the valid
source and target, the valid Cross EReference names since source EClass, the typeName
of the current ContainmentRelation instance and the typeName of the current source
Element instance. Later, the new typeName for the ContainmentRelation Instance is
returned to modify the model directly by the constraint.

In the second fix block, at line 47, the Java class provides another service, which
receives the current ContainmentRelation typeName, the current source Element
instance typeName, the current target Element instance typeName and the valid Cross
EReference names since the source EClass. Later, according to the user actions, the
metamodel can be modified using services out of the constraint.

Figure 9 shows an example of the rule CRC-OR-1 applied on a concrete case. The
model shown in the figure, whose conformity is evaluated over the domain metamodel
shows in Figure 5, has one warning associated to the problem that this rule validates.
In this model the ContainmentRelation instance called sellers does not have a valid
typeName between the Elements instances called IRDept and Seller.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 15

1 critique hasRightContainmentRelationNameSinceElement<X>
2 {
3 guard : self.satisfies(<CRC-LR-2>) and //Rule name: hasBlanksInContRelationName
4 self.target.satisfies(<EC-OR-1>) and //Rule name: hasRightElementName
5 self.source.satisfies(<EC-OR-1>) and (self.source.typeName == ’<EClass <X> name>’)
6

7 check {
8 if((Collection{ <All Containment EReference names of EClass <X>> }).includes(self.typeName)){
9

10 if((Collection{ <Names of possible Target EClass <1...n >) and its
inheritance>}).includes(self.target.typeName) {

11 if((Collection{ <Containment EReference names since EClass source towards Target EClass
<1...n> > }).includes(self.typeName){

12 return true;
13 }
14 }
15 ...
16

17 return false;
18 }else{ return false; }
19 }
20

21 message: ’...’
22

23 fix {
24 title: ’Select a valid name ...’
25 do {
26 var rvHelper = new Native(’co.edu.uniandes.enar.gracot.rulesValidation.RVHelper’);
27 var newName; var namesGroup = (Collection {});
28 var namesERefsNoCont=(Collection{ <All Cross EReference names of <X>> });
29

30 if((Collection{ <Names of possible Target EClass <1...n > and its inheritance>
}).includes(self.target.typeName)) {

31 namesGroup.addAll((Collection{ <Containment EReference names since EClass source towards
Target EClass <1...n > > }));

32 }
33 ...
34

35 newName := rvHelper.changeInstanceEReferenceName(namesGroup, namesERefsNoCont, self.typeName,
self.source.typeName);

36 if(newName <> null) self.typeName := newName;
37 }
38 }
39 fix {
40 title : ’Add Containment EReference \’’ + self.name + ’\’ to the domain metamodel’
41 do {
42 var rvHelper = new Native(’co.edu.uniandes.enar.gracot.rulesValidation.RVHelper’);
43 var namesERefsNoCont = (Collection{ <All Cross EReference names of EClass <X>> });
44 rvHelper.addContainmentEReferenceToMM(self.typeName, self.source.typeName,

self.target.typeName, namesERefsNoCont);
45 }
46 }
47 }

Listing 2 – EVL code of the rule CRC-OR-1

The EVL code generated in order to validate the valid ContainmentRelation
instances associated to instances of the IRDept metatype is shown in Listing 3, which
corresponds with the description shows in Listing 2. In this code, at line 9, valid
ContainmentRelation names are provided based on the domain metamodel, which
are selected based on the direct Containment EReferences of the EClass IRDept such
as IRSellers and masterSellers, and the indirect Containment EReferences of the
EClass IRDept due to its inheritance structure such as newSellers, oldSellers,
Ssupervisors. Finally, the rule validates whether the typeName of the target Element
matches to some direct or indirect target EClasses to the possible EReferences selected
(lines 11, 15 and 19).

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

16 · Paola Gómez et al.

Figure 9 – Example of the validation rule CRC-OR-1 on a GIMM model

1 critique hasRightContainmentRelationNameSinceElementIRDept
2 {
3 guard: self.satisfies(’hasBlanksInContRelationName’) and // Rule CRC-LR-2
4 self.target.satisfies(’hasRightElementName’) and // Rule EC-OR-1
5 self.source.satisfies(’hasRightElementName’) and // Rule EC-OR-1
6 (self.source.typeName == ’IRDept’)
7

8 check {
9 if((Collection {’newSellers’,’oldSellers’,’Ssupervisors’,’IRSellers’,

’masterSellers’}).includes(self.typeName)){
10

11 if((Collection {’MasterSeller’,’Seller’}).includes(self.target.typeName)){
12 if((Collection {’newSellers’,’oldSellers’,’IRSellers’}).includes(self.typeName))
13 return true;
14 }
15 if((Collection {’Coordinator’,’Supervisor’ }).includes(self.target.typeName)) {
16 if((Collection { ’Ssupervisors’ }).includes(self.typeName))
17 return true;
18 }
19 if((Collection { ’MasterSeller’ }).includes(self.target.typeName)) {
20 if((Collection { ’masterSellers’ }).includes(self.typeName))
21 return true;
22 }
23

24 return false;
25 }else{ return false; }
26 }
27

28 //message and fix blocks ...
29 }

Listing 3 – Example snippet of EVL code used by the rule CRC-OR-1 in the Figure 9

6 User guidance at co-creation

In order to guide and suggest to user different ways to solve conformity problems
identified in the model, easily doing the work of modelers, the strategy proposes a
functional capability focused on guiding the user through the co-creation process.
Instead of having to manually apply changes to the models and domain metamodels
in order to solve the problems, using automatic assistances it is possible to do so in
perfectly valid ways just with a few clicks. When problems are detected, the user can
use the guidance offered or not; this means that the user can choose whether he wants

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 17

to use one of the suggested assistances to recover the conformity, or he can choose to
leave the model in a state of non-conformity.

A set of assistances is provided to fix the problems classified as warnings by the
validation rules. These assistances are presented to the user through the quickfix
options, and they are associated with each fix block of the EVL code designed for the
validation rules. Therefore, these assistances are immutable due to its dependency of
the validation rules, which are also immutable during the co-creation process.

When the solution is selected, the problem is solved modifying the model or the
domain metamodel automatically. This solution can be applied immediately or not
at all, depending on whether additional information is needed. If this occurs, this
information is required through one of the 13 wizards designed for this purpose.

As in our previous work, Tables 3 and 4 show the suggested solutions provided
by those linguistic and ontological validation rules that offer fix the problem detected
[GSV13]. The third column of both tables indicates whether the suggested solution
is interactive; this means, whether a wizard is required or not. For each suggested
solution, the last column of both tables indicates whether the change is applied to the
model or to the domain metamodel.

Linguistic validations focus on guaranteeing the model structure. Thus, the
suggested solutions shown in Table 3 describe changes to the model that serve to
recover a valid structure. If this is not achieved, ontological validation rules cannot
be verified. On the other hand, these ontological validations focus on preserving the
conformity between a model and the domain metamodel. As a result, the changes can
be applied both to models and domain metamodels, as shown in Table 4.

Table 3 – Suggested solutions to linguistic validation rules

Rule Suggested solution Interactive? Change

MC-LR-1
Set metamodelURI with current URI No Model

Set metamodelURI Yes Model

EC-LR-1

Set an automatic Element typeName No Model

Establish the Element typeName Yes Model

Select a valid Element typeName Yes Model

EC-LR-2 Remove blanks No Model

AC-LR-1
Set an automatic Attribute typeName No Model

Establish the Attribute typeName Yes Model

AC-LR-2 Remove blanks No Model

AC-LR-3 Adjust start and end commas No Model

AC-LR-5 Select a new valid EType Yes
Model/

Metamodel

CRC-LR-1
Set an automatic ContainmentRelation typeName No Model

Establish the typeName Yes Model

CRC-LR-2 Remove blanks No Model

CrRC-LR-1
Set an automatic CrossRelation typeName No Model

Establish a CrossRelation typeName Yes Model

CrRC-LR-2 Remove blanks No Model

Note that the suggested solution to the rule AC-LR-5 in Table 3, which checks
whether the value of one Attribute instance corresponds with the type specified, can
also change the domain metamodel. This change focuses on preserving the structure
between the type and the valid format of the value, using in an Attribute instance.
When this rule is unsuccessfully validated, the suggested solution asks the user to

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

18 · Paola Gómez et al.

Table 4 – Suggested solutions to ontological validation rules

Rule Suggested solution Interactive? Change

MC-OR-2 Update metamodelURI No Model

EC-LR-1
Select a valid Element typeName Yes Model

Add EClass Yes Metamodel

AC-OR-1
Select a valid Attribute typeName Yes Model

Add EAttribute No Metamodel

AC-OR-2

Set the valid Attribute type Yes Model

Set the current type as the EType No Metamodel

Set a new valid EType Yes
Model/

Metamodel

AC-OR-3
Use a default value No Model

Set a default value and use it Yes Metamodel

AC-OR-4 Add and remove values Yes Model

CRC-OR-1
Select a valid ContainmentRelation typeName Yes Model

Add Containment EReference Yes Metamodel

CRC-OR-2
Set current cardinality No Metamodel

Modify cardinality Yes Metamodel

CrRC-OR-1
Select a valid CrossRelation typeName Yes Model

Add Cross EReference Yes Metamodel

CrRC-OR-2
Set current cardinality No Metamodel

Modify cardinality Yes Metamodel

select a valid type, which is chosen from the list of types presented in Section 4. When
the selection is performed, two situations can happen at the same time: 1) if the
selected type does not correspond with the EType provided by the domain metamodel,
this is updated with the new EType; or 2) if the selected type does not match with
the type used in the model, this is updated with the new type.

In addition, we have designed monitoring services associated to assistances that
discover the changes applied to the domain metamodel automatically and update the
validation rules accordingly. Subsequently, the validation is automatically applied in
order to find new conformance problems. In a similar way, when the model is modified
through such assistance, the model validation is also applied automatically.

Figure 10 shows an example of the quickfix used to ask the user about the proper
way to handle the problem detected by rule EC-OR-1, which validates whether or not
the attribute typeName of one Element instance match with any valid EClass name of
the domain metamodel. The options provided are related with the fix blocks in the
corresponding EVL template shown in the Listing 1. As a result, three alternatives
are presented to the user: 1) select another name or value for the attribute typeName

from the set of EClass names that are present in the domain metamodel; 2) add the
new EClass in the domain metamodel; or 3) ignore the warning and keep the model
in a non-conforming state.

In this case, the first and second alternative require an additional wizard in order
to ask extra information to the user. Particularly, if the second alternative is selected,
the wizard shown in Figure 11 asks the information required to add the new EClass
in the domain metamodel. In this wizard, the user must provide the EReference or
ESuperType information associated with the EClass, i.e. the user must choose either
one ESuperType and/or one EReference. When the user selects the ESuperType
option, the wizard provides one set of available names and the user must select one
of them. On the other hand, if the user decides to associate the new EClass with a

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 19

Figure 10 – Quickfix for an invalid typeName of an Element instance

new EReference, the new EClass will be the target EClass and the wizard provides
one set of the available EClass names for the source EClass. Thus, the user must
select one of these names and provide additional information such as name, cardinality
and containment of the new EReference. In addition, the wizard validates integer
formats, range of cardinality and the EReference name format. When the wizard
finishes successfully, the domain metamodel is modified, the validation rules updated
and the validation executed to solve the problem in the model.

Figure 11 – Wizard that adds a new EClass ’Supplier’ in the domain metamodel of the
Figure 5

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

20 · Paola Gómez et al.

7 GraCoT

The strategy described in the previous sections has been implemented in a graphical
editor called GraCoT (Graphical Co-creation Tool)2, which is based on EMF and GMF
technology [GMF]. GraCoT is also based on the Eclipse platform, and its plug-in
architecture is composed of seven components: a) EuGENia Editor, which provides
the graphical interface; b) Rules Validation, which verifies the conformance of any
model respect to the domain metamodel; c) Updates Generation, which updates the
validation rules used by the Rules Validation component; d) Wizards, which provides
the user assistance; e) Transformations, which provides mechanisms to import and
export to the standard xmi format; f) Fusion Utilities, which manipulates the domain
metamodel; g) and Utilities, which offers generic operations. Some of these components
form the core component of the tool, while others just provide extension points to
allow their interaction. These technical details can be consulted in the Section 3.1 of
our previous work [GSV13].

GraCoT serves to create models that conform to GIMM and it is also capable of
validating the ontological conformity of the model with respect to a domain meta-
model. On the other hand, GraCoT provides assistance to the user based on the
domain metamodel (e.g., by indicating which are the valid types and valid attributes),
and is capable of handling models that conform to that metamodel. An important
characteristic of GraCoT is also being capable of modifying the domain metamodel.

Figure 12 shows a screenshot of GraCoT. The left hand side, shows the canvas
to create models conformant to GIMM. The appearance of this graphical editor was
tweaked in order to make the diagram resemble an object diagram from UML [UML].
Each element e.g. displays the class it belongs to (from the domain metamodel),
and the slots with the attribute values. Note that the attributes appearing in these
elements are those specified in the domain metamodel, and not those specified in
GIMM. On the right side of the image, an unmodified GMF graphical editor displays
the domain metamodel to which the left model is related. On the bottom side of the
image, GraCoT has the properties view, which presents information related to the
selected instance, and the problems view, which presents details of the problems found
in the model.

As mentioned above, problems are marked in the canvas of the GIMM model as
errors or warnings depending on whether or not they offer any solution to the user
to fix the problem. This problems detection is discovered by our validation engine.

In addition to the 13 wizards related to co-creation assistances, GraCoT provides
another set of 8 wizards supporting different modeling operations such as creating
diagrams, selecting a new domain metamodel, exporting the model, validating the
model, and establishing the GraCoT configuration.

An important aspect of GraCoT is related with the transformations that can be
applied to models. On the one hand, there is a transformation to import any model
and make it conform to the GIMM metamodel. In order to do this, both the model
and the domain metamodel, which have the corresponding EMF format, are first
loaded into the tool. Then, a transformation embedded in GraCoT generates the
GIMM model and sets the metamodelURI to point to the right file in order to indicate
the domain metamodel. On the other hand, there is the transformation to export a

2GraCoT web site: http://gracot.virtual.uniandes.edu.co/

Instructions for installing GraCoT are available at:
http://gracot.virtual.uniandes.edu.co/index.php/download

Journal of Object Technology, vol. 13, no. 3, 2014

http://gracot.virtual.uniandes.edu.co/
http://gracot.virtual.uniandes.edu.co/index.php/download
http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 21

Figure 12 – Screenshot of GraCoT

GIMM model, which generates an EMF model in .xmi format and makes it conform
to the domain metamodel and to the linguistic sense. This process can be done only if
the GIMM model has been validated successfully.

The algorithm behind this output transformation generates an element in the
output model for each GIMM model element. This is possible because of the attribute
typeName in each Element instance, which is used to find the adequate metatype in
the domain metamodel. The output transformation uses this mandatory attribute
to create the necessary attributes and relations. Figure 13 shows a fragment of the
GIMM model of Figure 12, and the corresponding exported model. In this case, they
are connected by the attribute typeName of each GIMM model instance.

7.1 GraCoT in action

In order to evaluate our co-creation proposal and GraCoT, we have used a real scenario
on a startup company called Forever Alone, which is a commercial scenario built for
our EA Laboratory. Forever Alone is a social network where affiliated wholesome
entertainment establishments offer exclusive products and services to single people

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

22 · Paola Gómez et al.

Figure 13 – A GIMM model exported

with high incomes. In addition, this single people can arrange virtual or face to face
meetings through a secure technology platform that identifies and analyzes geographic
location preferences and/or time available in order to ensure a pleasant encounter.

The design and the construction of this scenario are supported by a complex and
large model and domain metamodel that have been built using GraCoT. Particularly,
we will focus in the first design stage which consisted of modelling the Business Canvas
in order to shows in a high level the Enterprise Business Model [OP10]. As a result,
the metamodel of this part of the scenario incorporates the concepts and relations
that the architecture group considered necessary in order to analyze the model in the
future.

On the other hand, the model was built by experts and other architecture group
members starting from an initial metamodel that they had to modify in order to
support the information needed in the model. During this co-creation process they
used the fixes that GraCot provides in order to streamline and facilitate the modeling
process. Currently, this metamodel can change again in order to support new business
expectations, new analysis needs, or information that was not considered previously.

Figure 14 shows the Business Canvas model and metamodel built to Forever Alone.
Figure 14a shows in background the full metamodel and the zoom, in foreground, is fo-
cused in showing just some concepts: ValueProposition, Partnership and Activity,
and some relations: ValueProposition to Partnership, ValueProposition to Activity
and vice versa. Currently, this canvas metamodel has 16 concepts and 23 relationships.

On the other hand, Figure 14b shows in background the full canvas model where
it is possible to appreciate that the size and complexity is remarkable compared to
the metamodel size. Currently, this Business Canvas model contains 69 Element

instances, 207 Attribute instances and 309 Relation instances. In addition, the figure
foreground shows a model zoom conforms to the metamodel zoom shown in Figure 14a.
The zoom contains three Element instances whose typeName are ValueProposition,
Partnership and Activity, and it is also possible to appreciate that CrossRelation

instances whose typeName are valuePropositions and activities, are considered in order
to keep the conformity with the metamodel.

Regarding the user experience, there are positive aspects to highlight and others
that can be improved. As positive aspects, users expressed about the co-creation

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 23

(a) Forever Alone Business Canvas metamodel

(b) Forever Alone Business Canvas model

Figure 14 – Modeling Forever Alone

process as a practical and nice process; the possibility to modify the metamodel from
the model was quite useful for them. In particular, they considered very useful to
identify conformity problems and to provide fixes in order to recover the conformance.
They expressed that the proposal saves modelling time, avoids manual mistakes, and
gives confidence to the user when during the modelling process; he discovers that it is
necessary adjusting the metamodel. With respect to GraCoT as tool, users rated it as
an easy and enjoyable tool. They took just a few hours to acquire the skills to use the
tool. In addition, they quickly became familiar with conformity problems identified
and suggested fixes.

On the other hand, the graphical handling and the performance, in particular
when the model is very large, should be improved. Users expressed a desire for a
friendlier graphical handling when the model is very large because when there are a
lot of instances is a bit tricky to manipulate the model. In addition, users reported an
increase in the time required to validate the model as it grows.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

24 · Paola Gómez et al.

8 Related work

In this section we briefly present some previous works that are somehow related to
our own. In the first place, Gabrysiak et al. [GGLS11] discuss how metamodels can
be used in a flexible way, and they present a classification of approaches based on how
dynamic metamodels in the tools are. Typically, modeling approaches fall into only
one of the categories they propose. However, our proposal belongs simultaneously
to several categories. With respect to the definition of metamodels before modeling
(this is the first category of the classification), our strategy supports user-generated
metamodels that are metamodels designed by the users of the tools and not by the
developers of the tools. An example of this is a domain metamodel created for a
particular EA project. Our strategy also supports using stencils as metamodels, which
means that some base metamodels are provided and are adapted to the particular
needs of each user. An example of this is an archetypical metamodel extracted from
an EA framework, which is adapted to particular projects. With respect to modeling
captured insights (this is the second category of the classification), our strategy provides
support for the co-creation of models and metamodels, and also for the co-evolution
of these two aspects. The third category in the classification groups those tools where
the metamodel is extracted from the model after the latter has been completed. This
is not something that we are currently interested in supporting.

In [USO07], Ubayashi et al. present a reflective editor for the construction of
models and the construction of aspect-based models in particular. The strategy that
they present has similar goals to the one we presented because in the end they are
able to co-create models and metamodels. However, there are some fundamental
differences in the approaches. Firstly, their approach is specifically targeted to aspect
oriented modeling, and the only changes that can be introduced in the metamodels
are extensions to model additional aspects. Secondly, their approach regenerates the
editors when the metamodels change. As we have seen, in our approach only the
validation rules are regenerated.

The Reflective Ecore Model Diagram Editor[ECO09] was a graphical editor based
on GMF to manipulate EMF models independently of the metamodel. Therefore, the
goals of this editor were very similar to those of our own. This editor was capable of
dynamically loading a metamodel, while creating models conform to it. On the other
hand, it offered a dynamically generated tool palette with the element types obtained
from the metamodel. However, this editor had some restrictions related to the way it
handled relations and attributes from the metamodel. In addition, the editor modified
the generated code by EuGENia, and it does not propose a clear architecture, which
is inconvenient for our strategy, and architecture, which we intend to decouple and
enhance for scalability. Unfortunately the project has been abandoned since 2009 and
was compatible with the Eclipse, EMF and GMF versions of the day. Because of this,
and because of the difficulties to continue the work that had already been done in that
editor, we developed our own solution to the problem.

In [SCDLG12], Sanchez et al. present a framework capable of creating a metamodel
from model fragments that are constructed by end-users using sketching tools, such
as Visio, PowerPoint, or Dia. This approach, called Botton-up Meta-Modelling, is
directed to domain experts that do not know MDE but use informal drawing tools.
The proposed framework transforms the models made with these informal tools into
untyped model fragments which are annotated by engineers in order to indicate the
actions to take when the metamodel is induced. By means of these model fragments
and annotations, changes can be automatically applied on the metamodel, but only

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 25

if they do not break the conformity. Otherwise, the user is queried for additional
information. The framework also provides a catalog of refactorings, and it can export
the induced metamodel to EMF and MetaDepth.

The aforementioned framework differs from our proposal in several points. First
of all, our proposal is targeted to modelers with sufficient MDE knowledge, or also
to engineers with high capacity of abstraction. In our proposal the model does not
have to be annotated in order to induce the metamodel. Also, the user can always
decide how and when the model or metamodel have to be changed. Furthermore, the
co-creation process does not include any automatic decisions: every change to the
metamodel has to be a result of a decision made by the user, either by 1) using the
assistance, or 2) by using the manual handling. A similarity between the approaches
is requesting additional information from the user when the automatic change require
so. With respect to the platforms, our approach is more limited, since it can only
support the EMF models and metamodel.

In [DLG10], a metamodeling environment called MetaDepth is presented. This
environment allows metamodeling with an arbitrary number of ontological levels
and permits a dual ontological and linguistic instantiation based on a linguistic
metamodel proposed by authors. Similarly to GIMM, this linguistic metamodel
provides a structure for all metalevels levels. That is, models at all levels are linguistic
instances of said linguistic metamodel. Additionally, each level can provide linguistic
extensions, and potency annotations can be used to manage these multiple levels. In
contrast, our proposal proposes just two levels, but the metamodel level considers two
metamodels: the generic intermediate metamodel (GIMM) and the domain metamodel,
which is not a linguistic instance of GIMM. On the other hand, Metadepth manages
models just in the deep levels, thus suggesting a top-down strategy. Conversely, our
approach supports both a top-down strategy, and a bottom-up strategy. Finally,
MetaDepth is also integrated with the Epsilon language; particularly, with EVL to
express constraints.

There are other approaches that allow software developers to extend existing
metamodels using Profiles: In UML [UML], profiles are used to define stereotypes,
that is additional metadata structures for elements in UML metamodels that define
which values can be attached as tagged values in the corresponding elements in the
models. For instance, a software developer can create a Persistence profile including a
Table stereotype applicable to classes. This stereotype can define attributes, such as
table and database names. Then, developers using the profile in an UML editor can
annotate any class using that Table stereotype with concrete values for the defined
attributes. The main benefits of using profiles reside in the capability of UML editors
to ignore or enforce the profiles, allowing to extend metamodels without affecting
existing models or tools (i.e. it is not necessary to update them). In EMF Profiles
[LWW+12], the notion of profiles has been adapted to support metamodeling in
EMF. This allows extending metamodels in a lightweight way, for instance by adding
metamodel information without breaking the conformance of existing models. Our
approach currently does not support profile extensions, stereotypes or annotations.

9 Conclusions and future work

In this paper we have discussed some problems related to the lack of dynamicity
in model editors and the impossibility to load new metamodels at runtime. These
problems particularly occur in EMF, which is one of the best known frameworks for the

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a2

26 · Paola Gómez et al.

construction of model-based tools. In the paper, we presented a strategy to solve this
problem and we discussed how it was successfully implemented in a graphical editor
based on GMF called GraCoT, which is supported in several additional technologies
to be fully functional.

To support the strategy, validation rules were developed to identify and classify the
linguistic and ontological inconsistencies. In addition, assistance wizards were designed
to fix these inconsistencies, and to help in adjusting the model or domain metamodel.
This combination of rules and assistance wizards give GraCoT a great capability to
detect and solve problems modifying GIMM models and domain metamodels through
the user assistance.

Although GraCoT is now fully functional, there are some of its aspects that are
worth more development. One aspect is to improve the appearance of the tool, and in
particular of the palettes that are available to create models in the canvas. Currently,
those palettes are fixed and based on the GIMM metamodel. However, we would like
to be able to make those toolbars dynamic, in order to be able to configure them based
on the currently loaded metamodel. Another aspect worth of being further developed,
is separating the two components that are currently part of the editor. The first one
of those components is the graphical editor itself; the second one is the core elements
allowing the dynamic manipulation and conformance validation of models. If those
two components are separated, it will be a lot easier to include the co-creation features
into other tools.

Finally, there are two big ideas that we intend to pursue in order to make the
GraCoT a lot more powerful. The first one is to be able to evaluate constraints
specified for the domain metamodels. Currently, this is only possible when the model
is exported. Then, the EVL validation rules are updated accordingly. Afterwards,
the generated model is checked, and the warning messages (if any) are mapped back
into the GIMM conforming model. This strategy involves many frequently performed
steps, and thus it is a candidate to be automatized. Finally, we state as first line of
future work the creation of the mechanisms to evaluate EVL rules directly on top of
the GIMM model. The second idea for future work is to evaluate the performance of
GraCoT and to optimize it.

References

[Béz05] Jean Bézivin. On the unification power of models. Software & Systems
Modeling, 4(2):171–188, 2005. doi:10.1007/s10270-005-0079-0.

[Bud04] Frank Budinsky. Eclipse modeling framework: a developer’s guide.
Addison-Wesley Professional, 2004.

[CKRS12] Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais, and Jacques
Simonin. Extending enterprise architecture modeling languages for
domain specificity and collaboration: application to telecommunication
service design. Software & Systems Modeling, pages 1–12, 2012. doi:

10.1007/s10270-012-0298-0.

[DLG10] Juan De Lara and Esther Guerra. Deep meta-modelling with metadepth.
In Objects, Models, Components, Patterns, pages 1–20. Springer, 2010.
doi:10.1007/978-3-642-13953-6_1.

[ECO09] Reflective Ecore Model Diagram Editor, 2009. URL: http://
dynamicgmf.sourceforge.net/.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-012-0298-0
http://dx.doi.org/10.1007/s10270-012-0298-0
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dynamicgmf.sourceforge.net/
http://dynamicgmf.sourceforge.net/
http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 27

[EMF] Eclipse Modeling Framework Project (EMF). URL: http://www.
eclipse.org/modeling/emf/.

[EVL] Epsilon Validation Language (EVL). URL: http://www.eclipse.org/
epsilon/doc/evl/.

[GGLS11] G Gabrysiak, H Giese, A Lüders, and A Seibel. How can metamod-
els be used flexibly? In Proceedings of FlexiTools Workshop at ICSE
2011, page 5. ACM, 2011. URL: http://www.ics.uci.edu/~nlopezgi/
flexitoolsICSE2011/papers/gabrysiak_flexitools_icse2011.pdf.

[GMF] Graphical Modeling Project (GMP). URL: http://www.eclipse.org/
modeling/gmp/.

[GSV13] Paola Gomez, Mario Sanchez, and Jorge Villalobos. A tool for co-creation
of models and metamodels in specific domains. In ACadeMics Tooling
with Eclipse (ACME 2013) Workshop at ECMFA, ECOOP and ECSA
2013, 2013. doi:10.1145/2491279.2491284.

[Gua92] Nicola Guarino. Concepts, attributes and arbitrary relations: some
linguistic and ontological criteria for structuring knowledge bases.
Data & Knowledge Engineering, 8(3):249–261, 1992. doi:10.1016/

0169-023X(92)90025-7.

[HBJ09] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Cope-
automating coupled evolution of metamodels and models. In ECOOP
2009–Object-Oriented Programming, pages 52–76. Springer, 2009. doi:

10.1007/978-3-642-03013-0_4.

[KSP11] Ali Hanzala Khan, Espen Suenson, and Ivan Porres. Class and ob-
ject model conformance using owl2 reasoners. In Jaan Penjam, ed-
itor, Symposium on Programming Languages and Software Tools
(SPLST 11), volume 2011, pages 126–137. TUT Press, 2011. URL:
http://tucs.fi/publications/view/?pub_id=pKhSuPo11a.

[Küh06] Thomas Kühne. Matters of (meta-) modeling. Software & Systems
Modeling, 5(4):369–385, 2006. doi:10.1007/s10270-006-0017-9.

[Lan13] Marc Lankhorst. Introduction to enterprise architecture. In Enter-
prise Architecture at Work, pages 1–10. Springer, 2013. doi:10.1007/

3-540-27505-3_1.

[LFJU09] Robert Lagerström, Ulrik Franke, Pontus Johnson, and Johan Ullberg. A
method for creating enterprise architecture metamodels–applied to sys-
tems modifiability analysis. International Journal of Computer Science
and Applications, 6(5):89–120, 2009. doi:10.1007/s11219-010-9100-0.

[LWW+12] Philip Langer, Konrad Wieland, Manuel Wimmer, Jordi Cabot, et al.
Emf profiles: A lightweight extension approach for emf models. Journal
of Object Technology, 11(1):1–29, 2012. doi:10.5381/jot.2012.11.1.

a8.

[OP10] Alexander Osterwalder and Yves Pigneur. Business model generation:
A handbook for visionaires, game changers, and challengers. NewYerk
Wiley, 2010.

[PC10] Vladiela Petrascu and Dan Ioan Chiorean. Towards improving the
static semantics of xcore. Studia. Universitatis Babes-Bolyai, LV(3):61–

Journal of Object Technology, vol. 13, no. 3, 2014

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/epsilon/doc/evl/
http://www.eclipse.org/epsilon/doc/evl/
http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/papers/gabrysiak_flexitools_icse2011.pdf
http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/papers/gabrysiak_flexitools_icse2011.pdf
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://dx.doi.org/10.1145/2491279.2491284
http://dx.doi.org/10.1016/0169-023X(92)90025-7
http://dx.doi.org/10.1016/0169-023X(92)90025-7
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://tucs.fi/publications/view/?pub_id=pKhSuPo11a
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/3-540-27505-3_1
http://dx.doi.org/10.1007/3-540-27505-3_1
http://dx.doi.org/10.1007/s11219-010-9100-0
http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://dx.doi.org/10.5381/jot.2014.13.3.a2

28 · Paola Gómez et al.

70, 2010. URL: http://www.cs.ubbcluj.ro/~studia-i/2010-3/
06-PetrascuChiorean.pdf.

[PCP09] Vladiela Petrascu, Dan Ioan Chiorean, and Dragos Petrascu. Proposal
of a set of ocl wfrs for the ecore meta-metamodel. Studia. Universitatis
Babes-Bolyai, LIV(2):89–108, 2009. URL: http://www.cs.ubbcluj.ro/

~studia-i/2009-2/09-PetrascuChiorean.pdf.

[RKP12] Louis M Rose, Dimitrios S Kolovos, and Richard F Paige. EuGENia
Live: A Flexible Graphical Modelling Tool. In Extreme Modeling (XM
2012) Workshop at ACM/IEEE 15th International Conference on Model
Driven Engineering Languages & Systems (MoDELS 2012), 2012. doi:

10.1145/2467307.2467311.

[RKPP10] Louis M Rose, Dimitrios S Kolovos, Richard F Paige, and Fiona AC
Polack. Model migration with Epsilon Flock. In Theory and Practice of
Model Transformations, pages 184–198. Springer, 2010. doi:10.1007/

978-3-642-13688-7_13.

[SCDLG12] Jesús Sánchez-Cuadrado, Juan De Lara, and Esther Guerra. Bottom-up
meta-modelling: an interactive approach. In Model Driven Engineering
Languages and Systems, pages 3–19. Springer, 2012. doi:10.1007/

978-3-642-33666-9_2.

[SKE+14] Johannes Schönböck, Angelika Kusel, Jürgen Etzlstorfer, Elisabeth
Kapsammer, Wieland Schwinger, Manuel Wimmer, and Martin Wis-
chenbart. Care - a constraint-based approach for re-establishing
conformance-relationships. In Asia-Pacific Conference on Concep-
tual Modelling (APCCM 2014), CRPIT, pages 19–28, 2014. URL:
http://crpit.com/confpapers/CRPITV154Schoenboeck.pdf.

[Ste10] Dirk Stelzer. Enterprise architecture principles: literature review and
research directions. In Service-Oriented Computing. ICSOC/Service-
Wave 2009 Workshops, pages 12–21. Springer, 2010. doi:10.1007/

978-3-642-16132-2_2.

[The09] The Open Group. TOGAF Version 9. Van Haren Pub, 2009.

[UML] Unified Modeling Language (UML) Version 2.0. http://www.uml.org/.
URL: http://www.omg.org/spec/UML/2.0/.

[USO07] N Ubayashi, S Sano, and G Otsubo. A reflective aspect-oriented model
editor based on metamodel extension. In Proceedings of the Interna-
tional Workshop on Modeling in Software Engineering, page 12. IEEE
Computer Society, 2007. doi:10.1109/MISE.2007.3.

[XPD] Xpand. http://wiki.eclipse.org/Xpand/. URL: http://wiki.eclipse.
org/Xpand.

Journal of Object Technology, vol. 13, no. 3, 2014

http://www.cs.ubbcluj.ro/~studia-i/2010-3/06-PetrascuChiorean.pdf
http://www.cs.ubbcluj.ro/~studia-i/2010-3/06-PetrascuChiorean.pdf
http://www.cs.ubbcluj.ro/~studia-i/2009-2/09-PetrascuChiorean.pdf
http://www.cs.ubbcluj.ro/~studia-i/2009-2/09-PetrascuChiorean.pdf
http://dx.doi.org/10.1145/2467307.2467311
http://dx.doi.org/10.1145/2467307.2467311
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1007/978-3-642-33666-9_2
http://dx.doi.org/10.1007/978-3-642-33666-9_2
http://crpit.com/confpapers/CRPITV154Schoenboeck.pdf
http://dx.doi.org/10.1007/978-3-642-16132-2_2
http://dx.doi.org/10.1007/978-3-642-16132-2_2
http://www.omg.org/spec/UML/2.0/
http://dx.doi.org/10.1109/MISE.2007.3
http://wiki.eclipse.org/Xpand
http://wiki.eclipse.org/Xpand
http://dx.doi.org/10.5381/jot.2014.13.3.a2

An approach to the co-creation of models and metamodels in Enterprise Architecture Projects · 29

About the authors

Paola Gómez is a PhD student in engineering at the Universidad
de los Andes, Bogotá Colombia.
Contact her at pa.gomez398@uniandes.edu.co, or visit http:

//sistemas.uniandes.edu.co/~pa.gomez398.

Mario Sánchez is an assistant professor of the Department of
Systems and Computing Engineering at the Universidad de los
Andes, Bogotá Colombia.
Contact him at mar-san1@uniandes.edu.co, or visit http://

sistemas.uniandes.edu.co/~mar-san1.

Hector Florez is a PhD student in engineering at the Universidad
de los Andes, Bogotá Colombia.
Contact him at ha.florez39@uniandes.edu.co, or visit http:

//sistemas.uniandes.edu.co/~ha.florez39.

Jorge Villalobos is an associate professor and head of the Depart-
ment of Systems and Computing Engineering at the Universidad
de los Andes, Bogotá Colombia.
Contact him at jvillalo@uniandes.edu.co, or visit http://

sistemas.uniandes.edu.co/~jvillalo.

Journal of Object Technology, vol. 13, no. 3, 2014

mailto:pa.gomez398@uniandes.edu.co
http://sistemas.uniandes.edu.co/~pa.gomez398
http://sistemas.uniandes.edu.co/~pa.gomez398
mailto:mar-san1@uniandes.edu.co
http://sistemas.uniandes.edu.co/~mar-san1
http://sistemas.uniandes.edu.co/~mar-san1
mailto:ha.florez39@uniandes.edu.co
http://sistemas.uniandes.edu.co/~ha.florez39
http://sistemas.uniandes.edu.co/~ha.florez39
mailto:jvillalo@uniandes.edu.co
http://sistemas.uniandes.edu.co/~jvillalo
http://sistemas.uniandes.edu.co/~jvillalo
http://dx.doi.org/10.5381/jot.2014.13.3.a2

	Introduction
	Co-creation in EA
	An approach to support co-creation
	Model typing
	Dynamic validation of conformity
	Validating models with EVL
	Validation rules
	Writing validation rules

	User guidance at co-creation
	GraCoT
	GraCoT in action

	Related work
	Conclusions and future work
	References
	About the authors

