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Abstract In multi-stage languages the program code is finalized though
a sequence of transformations defined in the program itself, a process
known as staging, with stages also referred as metaprograms. Since stages
are essentially programs, they may also require application of aspect-
oriented methods to handle crosscutting concerns, something not considered
or supported in existing aspect systems. We introduce aspect-oriented
support for multi-stage languages by identifying three aspect types for
the staging pipeline, namely pre-, in- and post- staging. We discuss their
implementation in a language supporting compile-time metaprogramming,
where aspects are realized as batches of AST transformation metaprograms,
accompanied by an AOP-specific library. We also provide example scenarios
where the proposed aspect types may be used in practice. Finally, we
show how full-scale source-level aspect debugging is facilitated during the
program compilation process.

Keywords Aspect-Oriented Programming; Multi-Stage Languages; Metapro-
gramming.

1 Introduction
Multi-stage languages (MSLs) [TS00, Tah04, She98] take the programming task of code
generation and support it as a first-class language feature, realizing a sort of reification
of the underlying language code generator. When code generation becomes a language
construct, one may write generator code which produces other code that is integrated
in the main program by substituting its generator. Thus the generator plays the role
of a metaprogram, i.e. program producing program, while the process can be recursive
with the generated code further producing extra code, causing staging to be nested.
As a result, the practicing of multi-stage facilities is considered a metaprogramming
method. The notion of staging is outlined under Figure 1.

As programming practices evolve and the concept of code generation becomes more
and more mature, staging becomes a standard practice and the amount of staged
code grows rapidly. For instance, comprehensive exception handling design patterns
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Figure 1 – General staging process in multi-stage languages

can be fully automated and composed through non-trivial stage programs [LS12a].
Despite this growth, most MSLs still treat staging as a special feature that is separated
from the main language and is deployed with no resemblance to normal programs.
Interestingly, exceptions to this rule are amongst the earlier MSLs like Lisp [McC62]
and Scheme [Dyb09] whose macro systems offer the full power of the main language.
These languages are actually aligned to our argument that stage metaprograms deserve
the full range of programming techniques available to normal programs. We argue that
for stage metaprograms we should allow practicing of software engineering methods as
with normal programs, including handling of crosscutting concerns through aspects.

The latter relates to Aspect-Oriented Programming (AOP) [KLM+97], a method-
ology for modeling crosscutting concerns into modular units called aspects. Aspects
contain information about the additional behavior, called advice, that will be added
to the base program by the aspect as well as the program locations, called join points,
where this additional behavior is to be inserted based on some matching criteria, called
pointcuts. Aspects are typically expressed in separate languages and an aspect weaver
combines the base program with the aspect program to form the final program.

Our work is motivated by the lack of support for AOP in thecontext of a MSL, and
in particular not only for the normal programs but most importantly for all stages they
might contain. Stage programs, besides their special mission being primarily generative
to produce code, are essentially no different to normal programs. Thus, they deserve,
and require, all typical programming techniques of normal programs, including aspects.
For instance, within stage code, one may deploy logging aspects to support tracing
of method invocations, or apply exception handling aspects at appropriate call sites.
Apparently, there is no particular reason to forbid the application of such aspects in
stage code. In fact, there are also various scenarios related to the generative role of
stages. For example, stages handle code in the form of Abstract Syntax Trees (ASTs).
In this context, we could define aspects for AST manipulation, such as decorating with
extra code, validating according to criteria, or introducing custom iteration policies.

Without aspect support we simply limit the potential for developing stages using
state of the art programming practices. For instance, consider AspectJ [KHH+01],
a popular language for AOP, and Mint [WRI+10], a Java extension offering staging
facilities. Staged code within a Mint program is actually Java code. However, it is not
possible to use AspectJ to apply AOP on the staged code as it is never available in
a form that can be manipulated by the aspect weaver1. In fact, the reason is more

1Here we only consider compile-time weaving or post-compile weaving. The alternative of load-time
weaving that partly addresses this issue is discussed later on.
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fundamental: no interplay between the aspect weaver and a staging system has ever
been considered or proposed.

In current implementations for AOP the language compiler is ignorant of the aspect
weaver and the transformation it performs on the original program. Overall, the
aspect weaver is never in the compilation or execution loop. However, in MSLs, stages
are composed and evaluated during either compilation or execution disabling any
possibility for the aspect weaver to intervene. Additionally, the source or binary of
a stage is transient during compilation or execution and cannot be available to the
aspect weaver unless it becomes part of the loop. To resolve this, the respective source
or binary files for stages must be created and supplied to the aspect weaver during the
staging process. For the previous AspectJ and Mint example, the latter would involve
explicitly writing aspects for staged code and weaving them into the binary along with
the staged code so that the stage evaluation contains the advised functionality.

In this paper we propose the adoption of AOP in a MSL, introduce a methodology
for aspect weaving in the entire staging pipeline and discuss an implementation2 on
an existing MSL. In this context, we do not introduce a separate aspect language for
AOP, but we implement aspects as batches of AST transformation programs written
in the same language. This approach fits well with typical multi-stage metaprogram-
ming practices since programmers are already familiar with using and manipulating
ASTs. Also, it allows exploiting features like reviewing, inspecting or debugging AST
transformations that may already be offered by the MSL IDE. Overall, our main
contributions are:

• Methodology for aspect-orientation in the entire staging pipeline.

• Deployment of aspects as AST transformations expressed in the same language.

• Implementation of source-level weaving in a language with compile-time staging.

• Integrated tool-chain to support debugging of aspect transformation programs.

The rest of the paper is organized as follows. Section 2 provides some background
information related to ASTs, quasi-quotation and MSLs. Section 3 elaborates on
the aspect weaving options for the various staging approaches, explains the rationale
for introducing aspects into the staging pipeline and discusses the aspect categories
applied in each step. Section 4 introduces the notion of treating aspects as AST
transformation programs written in the same language and discusses how they can
be integrated in the workspace management and build process within an integrated
development environment. Section 5 presents various case studies deploying aspects in
stages. Section 6 focuses on tool support to facilitate full-scale source-level debugging
of aspect programs. Section 7 provides an analysis of related work while section
8 discusses additional issues about our approach and its deployment in a different
context. Finally, section 9 draws key conclusions.

2 Background
2.1 ASTs and quasi-quotation
Metaprogramming involves generating, combining and transforming source code, so it
is essential to provide a convenient way for expressing and manipulating source code

2For access to our system check the availability information at the end of the paper.
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fragments. Expressing source code directly as text is impractical for code traversal and
manipulation, while intermediate or even target code representations are too low-level
to be deployed. Currently, the standard method for representing and manipulating
code is based on ASTs, a notion originating from the s-expressions [McC62] introduced
by Lisp. Although ASTs provide an effective method for manipulating source code
fragments, manually creating them usually requires a large amount of expressions or
statements, making it hard to identify the actually represented source code [WC93].
Thus, ways to directly convert source text to ASTs and easily compose ASTs into
more comprehensive source fragments were required. Both requirements have been
addressed by existing languages through a feature known as quasi-quotation [Baw99].
Normal quotation skips any evaluation, thus interpreting the original text as code.
Quasi-quotation works on top of that, but instead of specifying the exact code structure,
it essentially providing a source code template that can be filled with other code.
To better illustrate this notion consider the following Lisp macro that generates the
multiplication of the argument X by itself.

(defmacro square (X)
’(* ,X ,X))

(square 5) ; 25

Definitions after the backquote operator ’ are not directly evaluated but are in-
terpreted as a code fragment (i.e. an AST). The reverse of backquote is the unquote
operator , that escapes the syntactic form and inserts its argument directly in the
expression being created. This way, the invocation (square 5) creates the expression
(* 5 5) that yields 25.

2.2 Multi-Stage Languages
MSLs extend the multi-level language [GJ95] notion of dividing a program into levels
of evaluation by making them accessible to the programmer through special syntax
called staging annotations [TS00]. Such annotations are introduced to explicitly specify
the evaluation order of the various computations of the program. In this sense, a
staged program is a conventional program that has been extended with the appropriate
staging annotations. To illustrate the behavior of staging annotations consider the
example written in MetaML [She98].

val code = <5>;
val square = <~code * ~code>;
val result = run square; (* 25 *)

Brackets <_> are used to create delayed computations thus constructing code
fragments (i.e. ASTs). Then escape ~_ allows combining smaller delayed computations
to construct larger ones by splicing its argument in the context of the surrounding
brackets (i.e. performs AST combination). In this sense, the second assignment of
the above code creates the delayed computation <5 * 5>. Finally, run evaluates the
code specified by the delayed computation in the current stage (i.e. performs code
generation based on the given AST), which in our example evaluates to 25. Notice
that run essentially operate like a typed eval function [TS00] that receives an AST
value instead of arbitrary source text.

Early research on MSLs like MetaML and MetaOCaml [CLT+01] targeted code
generation during program execution (runtime staging or runtime metaprogramming
- RTMP) and was focused in the domain of functional languages. Later research
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also covered the application of program staging methods during program compilation
(compile-time staging or compile-time metaprogramming - CTMP) as well as their
adoption in the context of imperative languages (both statically or dynamically typed),
thus offering various staging incarnations. For example, Template Haskell [SJ02] is
a statically typed functional language that supports CTMP, Converge [Tra08] and
Metalua [Fle07] are both dynamically typed imperative languages supporting CTMP,
while Metaphor [NR04] and Mint [WRI+10] are both statically typed imperative
languages that support RTMP.

Our work has been carried out in the dynamic object-oriented language Delta
[Sav05, Sav10] and its Sparrow IDE [SBG07], extending them to supports aspect
transformations in the entire staging pipeline. Before going into details specific for
aspects, let’s first brief the metaprogramming elements of our language as they are
adopted throughout our discussion.

• Quasi-quotes (written <<...>>) are analogous to Lisp backquote or MetaML
brackets and can be inserted around language elements to convert them to AST.
Quasi-quotes can be nested at any depth (AST representing other ASTs) to allow
forms for multiple levels of staging. For instance, << << x >> >> represents the
AST of << x >>.

• Escape (written ~(expr)) operates like Lisp unquote or MetaML escape and
is used inside quasi-quotes to prevent converting expr to its AST form and
evaluate it normally. It allows combining existing AST values in the AST being
constructed by the quasi-quotes. Due to their special meaning within quasi-
quotes, to create an AST value containing an escape we use a special form, called
delayed escape, denoted as <<~~expr>>. A delayed escape essentially creates an
AST with a placeholder for inserting code. As we discuss later, this can be used
in the context of AOP to refer to the return value of a function or method that
uses after advice or to emulate the proceed functionality of around advice.

• Inline (written !(expr)) operates like a Lisp macro invocation or MetaML
run annotation by evaluating expr at translation time and inserting its value
(that must be an AST) directly into the main AST, substituting itself and thus
transforming the original source. Inline tags within quasi-quotes are allowed,
but as all other quasi-quoted expressions they are just AST values and are not
directly evaluated. For instance, <<!(f())>> represents the AST of inlining
the result of function f and involves no staged evaluation. If however this is
inlined in the source, generating the code !(f()), it will require evaluation, thus
causing further staging.

• Execute (written &stmt) can be used to execute a statement at translation time.
In Delta, function definitions are syntactically statements, so we can also write
&function f(){...} to denote that f will be available only during compilation.
Quasi-quoted execute tags are supported, but are again treated as ASTs.

3 Aspects in Staging
There are two approaches for weaving aspect code along with normal program code:
source-level weaving and binary-level weaving. Source-level weaving involves applying
the aspect on the original source to get the transformed version of the source that is
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Figure 2 – The two alternative contexts for aspect weaving

then compiled to binary (Figure 2, top). On the other hand, in binary-level weaving
the source is normally compiled to binary and then the aspects are applied to generate
an updated binary version (Figure 2, bottom). However, in the context of existing MSL
implementations, none of these approaches is sufficiently supported to facilitate AOP at
a full scale. To explain why, we first consider the potential options for applying aspect
weaving (either source- or binary-level) being before, during and after the staging
process. Then we study the way such options can be supported under both CTMP and
RTMP, the latter either for compiled implementations - RTMPC , or interpreted ones -
RTMPI (clearly, the distinction refers to the implementation method, not the language
itself). As we discuss latter, the weaving options, and the way they can be applied,
strongly depend on the MSL implementation approach. Although our system supports
CTMP and all source-level weaving options, we discuss the rest two options to outline
the important differences on weaving implementation, and because they concern a wide
range of languages. In particular, RTMP concerns mainstream languages like Java
and C#. Although not MSLs by default, they have MSL extensions, and also provide
powerful reflection mechanisms that enable some degree of runtime metaprogramming
[LS13]. Overall, the MSL implementation approach maps to different options of
source or binary weaving, which display varying usability, expressiveness and efficiency
properties when it comes to programming and applying aspects.

3.1 Weaving Options
In CTMP (Figure 3), the initial source is parsed into an AST form that is used
to extract any stage metaprograms. For each stage, we extract its AST, optionally
unparse it to get the stage source and then compile it to get the stage binary. The
stage program is then run to transform the initial source by updating the program
AST. This process continues until we have no more staging. At that point we can
unparse the AST to get the final source and then compile it to get the final program
binary or just translate the AST directly into binary. As already mentioned, examples
of languages supporting this staging model are Converge, Metalua and Delta (support
of a model is not necessarily exclusive; in fact all above languages also support RTMP).

In RTMPC (Figure 4), the main source is directly compiled into binary that is then
loaded by the execution system. The runtime version of the main program contains
stages that when invoked will generate code either as dynamic source code or directly
in binary format. The dynamic source code has to be further compiled in binary
code and will eventually update the instructions of the currently executing program.
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Figure 3 – Compile-time staging and aspect weaving options

Figure 4 – Runtime staging (compiled language case) and aspect weaving options

Figure 5 – Runtime staging (interpreted language case) and aspect weaving options
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Such compilation may produce directly native code, or byte code for languages with
virtual machine runtimes. In the latter case, once byte code is loaded and executed,
typical JIT compilation may be applied, a process with no particular interference or
relationship to the weaving or staging process. The same process is repeated for all
meta-instructions encountered in the program execution. Languages supporting this
staging model include MetaOCaml, Metaphor and Mint.

In RTMPI (Figure 5), the initial source is parsed into an AST form and then
evaluated by the interpreter. Any stage metaprogram is also extracted in AST form
and then evaluated by a recursive invocation of the interpreter. In case we want to
have the stage source available, after extracting the stage AST we can unparse it to
get the respective stage source, optionally transform it, and then parse it to AST
for it to be evaluated. The extra steps taken to allow manipulating the stage source
can be used as an entry point for AST transformations on the stage metaprogram.
Languages supporting this staging model include MetaML, Lisp and Scheme.

Apart from the processing diagrams, Figures 3-5 also highlight the potential options
for applying aspect weaving in a MSL. These options are not mutually exclusive and
can be combined to achieve aspect orientation in multiple steps of the compilation
or execution process. For instance, in CTMP we could apply source-weaving on the
initial source (Figure 3: 1), apply source- or binary-weaving on the stage source or
binary of the stage metaprogram respectively (Figure 3: 2-3), or finally we could
apply source- or binary-weaving on the final version of the code, as transformed after
evaluating all stages (Figure 3: 4-5). Similarly, in RTMPC we could apply source- or
binary-weaving on the main code (Figure 4: 1-2) and then at runtime apply source- or
binary-weaving on the code generated by the metaprogram (Figure 4: 3-4).

Finally, in RTMPI , and following the common interpreted evaluation order for
stages, we could apply source-level weaving on the initial source (Figure 5: 1) or the
stage source that has to be unparsed for this purpose (Figure 5: 2). To offer the
weaving option after the evaluation of stages (Figure 5: 3) a small modification on
the way stages are actually interpreted is required. In particular, stages are commonly
evaluated as part of the main program execution and as soon as they are met within
program definitions. Thus, staging evaluation interleaves main program evaluation.
In general, once staging completes, part of the main program is already executed,
rendering meaningless to apply aspects on a program that is already partially evaluated.
The reason is simple to explain. Consider we allow such weaving to take place, and
imagine a function that is affected by weaving and which has already been invoked
many times. Then, the semantics of such a function can vary during execution, with
the version before weaving being different to the one another after weaving. Now, this
sort of inconsistency appears only due to interleaving of stage evaluation with the
main program. To adopt an interpreted evaluation that disables interleaving would
be trivial in RTMPI implementations and with no discount on stage expressiveness.
In particular, it suffices to apply stage evaluation first, and then, once no staging
remains, proceed evaluating the main program. In fact, this type of ordering is similar
to CTMP implementations, while setting after staging weaving a well-defined option.

Notice that in all previous cases, the initial source file contains both normal
program code together with stage code, while aspect code is considered to be in
separate files. Thus, a weaving process may in fact apply aspects to any of them.
We further elaborate on what functionality can be addressed by the potential aspect
applications in the following section.

The difference between applying AOP in a normal language and a meta-language
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Weaving
Context

Weaving
Subject

Compile-time
Staging

Runtime Staging
Compiled
language

Interpreted
language

Source Code
Initial source X X X
Stage sources X X X
Final source X N/A X

Binary Code
Initial binary N/A X N/A
Stage binaries X X N/A
Final binary X N/A N/A

Table 1 – Ability to implement aspects under different categories of MSLs and for the
different possible weaving contexts and subjects

is that in the former case, there is a single source or binary for transformation, while
in the latter case there are multiple sources or binaries for transformation, involved in
different parts of the process. Table 1 summarizes the options for applying AOP with
different combinations of source and binary aspect weaving for each staging approach.

Trying to apply the current AOP practices without interfering with the staging
pipeline, means essentially operating as a source code pre-processor or binary code
post-processor, thus limiting the potentials for aspect weaving. For CTMP we are
limited to weaving options 1, 4 and 5, for RTMPC we are limited to weaving options 1
and 2, while for RTMPI we are limited to the single option 1. These however cannot
fully express aspect transformations in the staging pipeline. For RTMPC , this should
be clear, as the dynamic code is generated at runtime with no way to be updated.
For RTMPI , it would be possible for the normal or staged code present in the initial
source but there is no way to handle any code introduced by staging. For CTMP, the
only supported scenario relates to a two-stage language, where we have only one stage
of metaprogramming and the entire meta-code is available within the original source.
In this case, it is possible to apply source-level weaving to transform the existing meta-
code, while also applying binary-level weaving right after compilation to transform
the code generated by the metaprogram. An example for this scenario would be C++,
where a pre-compilation source-level weaving could transform the template code (i.e.
the stage-code) and a post-compilation binary-level weaving transform the template
instantiations (i.e. the generated code). The previous method cannot be applied for
languages with more than two stages (i.e. more than one nested metaprograms). The
reason is that the initial source-level weaving can only transform the meta-code that
already exists in the original source, but not the meta-code that is introduced as a
result of a previous stage. Other than that, any binary-level weaving would operate
on the final program source after all stage metaprograms have been executed, and of
course cannot transform their functionality.

Another possible weaving approach, still operating on binary level, would be to
insert the extra functionality upon loading of the binary. This can be achieved by
extending the loader with hooks that will perform the weaving, being the way load-time
weaving is actually supported in AspectJ. Disregarding any performance penalties
about the computations taking place at loading time, binary loading occurs for both
normal and stage programs, so this approach could potentially be used to weave
functionality in both of them without interfering with the staging pipeline.

However, this method does not allow differentiating between normal and stage
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programs, meaning they cannot be supported with different aspects. The only way
enabling different aspects, following our proposition, is for the MSL to uniquely name
and separate the produced stage classes for all stage code fragments. The later would
allow load-time weaving approaches by selectively intervening only on stage classes,
once adopting the class name patterns of the MSL compiler. However, the latter
requires two important changes. Firstly, we should guarantee that the MSL generates
separate classes for stage code snippets, something not currently supported by known
runtime MSLs for Java. Secondly, the naming patterns for stage classes should become
a documented feature of MSLs so that load-time weavers can exploit them. Essentially,
these two extensions serve no other purpose than allow bringing a load-time weaver
into the staging loop. The later repeats our earlier argument that no stage-level
weaving is possible without the MSL actually setting the ground.

Additionally, load-time weaving is applicable only for languages compiled to byte-
code, like Java or C#, when run directly by respective virtual machines. However, it is
not appropriate when Ahead-Of-Time compilation (AOT) is applied on such languages.
Clearly, it is not applicable for languages that directly generate native code, like C or
C++. Overall, we consider load-time weaving to be insufficient for full-scale aspect
deployment within a MSL and do not further include it in our discussion, although it
could achieve functionality similar to some of the case studies discussed later on.

In conclusion, in order to effectively support aspects for stages in a MSL, aspect
weaving should be necessarily introduced as part of the staging process.

3.2 Aspect Categories
In a MSL, the original program p0 also contains the stage metaprograms s1, ..., sn.
With the execution of these stages, the original program p0 is transformed sequentially
to p1, ..., pn, the last being the final program version. In AOP, we typically have the
original program p that is advised by an aspect program a. Introducing AOP in a MSL
requires considering the various interaction points: (i) program p0 is advised by aspect
program a; (ii) stage metaprograms s1, ..., sn are advised by aspect program a; and
(iii) intermediate program transformations p1, ..., pn are advised by aspect program a.

Considering the first interaction point, the program p0 contains both normal
program code and staged code, meaning that the aspect a could advise any of them.
However, none of them have their final form yet; normal code may be transformed by
stage code, while code of a particular stage may be transformed by higher stage code.
This means that applying aspect a to advise normal program code or stage code may
cause inconsistencies and thus should be avoided. For example, consider a scenario
where we advise the normal code to insert logging functionality for all functions it
contains. With this taking place before the staging process, any functions generated
due to staging will not contain the logging functionality, eventually resulting into final
code where only some of the functions are actually advised. Nevertheless, applying
an aspect on the original program can be useful. It can introduce additional code
for a specific stage or even introduce extra stages. Such an aspect can be seen as
a higher-order metaprogramming facility that allows the transformation logic to be
entirely decoupled from the main source code. For example, this allows turning normal
code to stage code to perform some computations during compilation and improve
performance (sort of partial evaluation) or introduce stage code that performs static
analysis on specific parts of the original source. Such aspects are always executed
before the staging process, so we call them pre-staging aspects.

In the second interaction point, we have each stage metaprogram si being advised by
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the aspect program a. Each stage contains code from both the original program along
with code generated by stages directly embedded in it (higher-order). Thus, applying
the aspect right before its evaluation, guarantees that the stage has its final form and
that the advice functionality is consistent. The reason for using such aspects relates
to crosscutting functionality typically found in stage code. With stages involving code
generation, the manipulation of ASTs is very common, typically involving scenarios of
structural validation, decoration with extra functionality or attributes, and custom
iterators. Apart from their special purpose as code generators, stages are also programs
that may involve crosscutting functionality typically found in normal programs, like
synchronization, logging and monitoring. For instance, a common scenario may involve
adding logging calls to trace meta-function invocations. For the weaver to deploy such
aspects, it needs to have access to the source or binary code of each stage. This means
that the compiler (in CTMP) or the runtime system (in RTMP) should not treat
stages as private transient programs, but should somehow supply produced source or
binary files to the aspect weaver to operate on. Additionally, interplay between the
weaver and the compiler or runtime is required following the actual weaving process.
More specifically, in source-level weaving, the compiler (or interpreter) generates the
stage source, gives it to the weaver and gets back the advised version that it then
compiles (or interprets). In binary-level weaving (only in compiled-languages), the
compiler first compiles the stage source to binary, gives it to the weaver and gets back
the advised binary version. We call such aspects in-staging aspects.

For the third interaction point, we notice that the intermediate program trans-
formations p1, ..., pn−1 are in fact intermediate forms. This means that any aspect
application in them occurs on an incomplete program and may thus cause inconsis-
tencies. The case of applying an aspect on pn in particular requires that all stage
evaluations have been performed and the final program version has no more staging.

It should be noted that in RTMP, either interpreted or compiled, it is generally
undecidable to judge if no further staging process can take place after a certain
runtime point. The reason is that use of reflection mechanisms, dynamic loading or
eval can generate implicit staged code, not visible in the currently executing program
instructions. Moreover, in either RTMP or CMTP, aspects applied after staging could
also introduce further staging. Consequently, there is no way to impose just a single
staging process. As a result, we define as final a program containing no more staged
code. Clearly, if implicit staging is introduced by the evaluation of the final program
itself, or by aspects applied after staging, then further aspect weaving following the
proposed approach reapplies. With such a scenario, additional staging rounds occur,
leading to another final program at the end. In this sense, the term final just denotes
the program resulting from a staging process, not by all staging processes. Overall,
aspects on pn play the same role as aspects on normal programs: there is a program
that needs to be advised involving no staging. They are applicable to both CMTP
and RTMPI , for the latter assuming a non-interleaved execution. They do not apply
to RTMPC , since, when the runtime staging process completes, part of the program
has already been executed. Such aspects are always applied after the staging process,
so we call them post-staging aspects.

Table 2 gives an overview of each discussed aspect category, highlighting its purpose
and deployment options for each staging approach.

For a complete combination of stages and aspects one may introduce multi-stage
programming in the context of an aspect program. In fact, MSLs fully support
nested stages, being metaprograms that generate the code of enclosing metaprograms.
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Purpose Compile-time
Staging

Runtime Staging
Compiled
language

Interpreted
language

P
re

St
ag

in
g Introduce

or update
staging on
the original
program

Before source
compilation (source

weaving)

Before main
compilation (source
weaving) or after
main compilation
(binary weaving)

Before main
interpretation

(source weaving)

In
St

ag
in

g

Update
stages

Before stage
compilation (source
weaving) or after
stage compilation
(binary weaving)

Before dynamic
source compilation
(source weaving) or
after dynamic source
compilation (binary

weaving)

Before stage
interpretation

(source weaving)

P
os

t
St

ag
in

g

Update the
final

program

Before final
compilation (source
weaving) or just
after compilation
completes (binary

weaving)

N/A (main program
is already executing)

After
non-interleaved
interpretation
of all stages

(source weaving)

Table 2 – Overview of stage aspect categories and their application context for different
MSL implementation approaches

Similarly, one could consider chained aspects, being aspects applying cross-cutting
concerns on the logic of other aspects. Thus, their combination is theoretically
unlimited. Regarding the blending of stages and aspects, an aspect program a0
may itself contain stage metaprograms s1, ..., sn that transform it sequentially into
a1, ..., an, the last being the final version of the aspect program. Such a combination
is meaningful, enabling aspect properties like pointcuts and advice to be generated
through metaprogramming. However, it requires the aspect language to be extended
with multi-stage constructs. If we consider an aspect to be applied to a client program
through a binary executable form, any staging during aspect compilation is transparent
to all of its clients, so its deployment remains the same despite staging. Effectively,
the two sides of the combination between MSLs and AOP are orthogonal and can
be adopted independently of each other. In this paper we primarily focus in the first
direction, i.e. introducing AOP in a MSL. However, as discussed in the following
section, we provide aspects as transformation programs written directly in our MSL,
meaning our aspects can be fully staged.

4 Aspects without Dedicated Languages
A spin-off outcome of our work is an alternative way to apply aspect transformations.
Essentially, we treat aspects as AST transformation programs written in the same
language and deploying an aspect library working on ASTs. We elaborate on this notion
and discuss how such transformation programs can be integrated in the workspace
management and build process of the integrated development environment. We do
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not argue that this is the ultimate approach towards supporting AOP; we present it
as a viable alternative and discuss its advantages when deployed in an existing MSL.

4.1 Aspects as Transformation Batches
To test aspects for stages we started thinking of crafting a prototype aspect engine for
our staged language. In this context, we observed that the language offers quasi-quotes,
escaping, and a comprehensive AST library, all of which are not staged but can be
used as part of a normal program. Now, the latter are essentially everything one needs
to algorithmically perform source code transformations. Practically, aspects are a
restricted form of algorithmic cross-cutting transformations, currently offered with
distinct languages with automations in expressing pointcuts and advice. Regarding
pointcuts, one might directly offer a library set to search AST nodes against criteria
defined as predicate functions. A similar library set can also be offered for defining
and applying advice.

The prototype implementation of our approach offers only static aspect transfor-
mations, being analogous to the static model offered by AspectJ. However, treating
aspects as transformation batches is not limited to static weaving as such. Batches
may be implemented in a runtime preprocessing process to perform binary or load-time
weaving, thus operating in a way similar to the dynamic aspect weaving model. We
focused on a compile-time static model only for practical reasons: (i) it is more efficient,
as it introduces no runtime overhead; and (ii) it leads to smaller executable images,
since the aspect program is not linked with the affected program.

Along these lines, it became clear that all aspect features may be directly realized
via a respective aspect library working on ASTs. This led us to the idea of turning
aspect programs to normal language programs taking as input the AST of another
program while deploying the aspect library to apply pointcuts and advice directly in the
main language. In particular, aspect programs contain a main function, conventionally
called transform, which takes a single AST argument, transforms it as needed and
returns the updated version. To apply a series of aspect programs on a source file we
use a special weaver program. The weaver initially takes the source file and parses it
into an AST. Then, for each of the given aspect programs, it invokes the transform
function passing as argument the current AST version which it then updates based
on the function’s return value. The same process continues until all aspect programs
have been applied and the source has been transformed to its final form, encompassing
the source code as advised by all the aspects. Essentially, aspect weaving is a batch
process of AST transformations (see Figure 6).

Figure 6 – Source-level aspect weaving as a batch of AST transformation programs.
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Figure 7 – Overview of all aspect transformation batches occurring during compilation.

The above transformation process applies to all discussed aspect categories. As
shown in Figure 7, we have three batches (chains) of transformation programs as
follows: (i) one for the original program - pre-staging aspects; (ii) one for each stage -
in-staging aspects; and (iii) one after the staging process - post-staging aspects. Once
the last batch is applied, the final program version is then compiled to binary form.

From a deployment perspective, we try to minimize the coupling between the
compiler and the aspect weaver and achieve a uniform invocation style. In fact, they
never communicate explicitly, but are coordinated by the build system. To this end,
the aspect weaver always receives a batch and an affected source file as input, and
produces a source file as output. In this sense, the weaver is unaware of the previously
mentioned aspect categories. It simply applies the current transformation batch to
the input source file. Along these lines, the compiler also receives a source file as input
by the build system. With aspects present, the transformed source version is supplied
to the compiler; otherwise the original source file is directly supplied. The reason for
unparsing the result of every aspect transformation batch, and not maintaining it in
the form of an AST, is for simplicity, since this way, we retain the original compiler
accepting directly source text.

This approach has many advantages compared to custom aspect languages. Firstly,
no second language and translator are deployed. Secondly, by turning aspects to
normal programs they can be directly hosted in the language IDE and be normally
debugged. Thirdly, aspects become first-class IDE citizens and thus can be managed
under the same umbrella with the programs they actually transform. Finally, their
software engineering directly reuses the techniques and constructs of normal programs,
not requiring reinventing the wheel as with aspects languages (e.g. aspect inheritance
is essentially reintroduced).

Overall, we realized that the AST manipulation elements are not merely some utility
elements for staged languages, but could play a fundamental role in all cases where
source code needs to be manipulated. In particular, if supported with the required
IDE extensions, they can substitute transformation languages by a combination of
processes and libraries.

4.2 Aspect Transformation Library
As previously discussed, the metaprogramming elements of the language are sufficient
for any AST transformation and thus for introducing cross-cutting functionality.
However, we further facilitate the development of aspect programs by providing an
AST transformation library with functionality that resembles the typical AOP style.

Journal of Object Technology, vol. 13, no. 1, 2014

http://dx.doi.org/10.5381/jot.2014.13.1.a1


Aspects for Stages: Cross Cutting Concerns for Metaprograms · 15

Since we target AST transformations, joinpoints essentially match specific AST
node types to which advice functionality can be added. For example, we support the
typical joinpoints like the call and execution of a function or method, the execution of
an object constructor, the getting or setting of an object field and the execution of
an exception handler. Each of them correspond to specific AST nodes; the function
execution corresponds to the AST of the body of the matched function while the
execution of an exception handler corresponds to the AST of the matched exception
handler’s body. Pointcuts are expressed as string literals and are matched against AST
nodes using a custom pattern matching language. For example, the pointcut method
m(*) will match nodes corresponding to method definitions with name m and any

number of arguments. We support the typical pointcuts covering the basic joinpoints,
pointcut combinators (i.e. and, or, not) for composition as well as some pointcuts
specific for AST manipulation. For instance, the ast(type) pointcut matches all
AST nodes that have the given type, the parent(pattern, [childId]) matches
parent nodes whose child at index childId (or any child if not specified) satisfies the
given pattern while the descendant(pattern) matches the nodes that are part of
a sub-tree whose root node is of the given type. Such pointcuts allow specifying
fine-grained aspect transformations on a target AST. For example if we want to advise
the break statements of a for loop within some method m we can use the following
pointcut: "ast(break)and descendant(for)and descendant(method m(*))". In
the same sense, the pointcut "ast(assign)and parent(id(x), lvalue)" will match
all assignments whose child with index lvalue, i.e. whose left value, is an identifier x,
for instance x = 1, x = f(), etc.

The main function of our library is aspect(target: ast, pointcut: string,
advice_type: enumerated, advice: ast) that given a target AST and the pointcut
to match will insert the advice AST as specified by the advice type. The target
argument may specify either the entire program AST or any of its sub-trees that may
have been obtained through custom AST traversal or prior node matching against
some criteria. Regarding the advice type, we support before, after and around advice,
meaning that the given code may be inserted respectively before, after or around
the matched joinpoint. The exact way that advice code is inserted depends on the
joinpoint and the matched AST node; for example, when we match the execution of a
function, before advice inserts the given code at the beginning of the matched function
body, while after advice inserts its code at all exit paths of the matched function body.
For after advice applied on function or method execution in particular, we can use the
delayed escape << ... ~~retval ... >> that will carry the original return value of
the function. Another delayed escape, specifically << ... ~~proceed ... >>, is also
typically used in around advice. The advice is applied by firstly substituting the AST
being advised with the given advice AST and then by replacing the delayed escape (~~
proceed) with the original AST value. For example, when applying the around advice
<<print("before"); ~~proceed; print("after")>> on the AST of a function call
<< f()>> the result will be <<print("before"); f(); print("after")>>. This
construct can also be combined with ASTs that contain staging annotations. For
example, the advice <<!(~~proceed)>> can transform the expression f() into !(f()),
while the advice <<~~(~~proceed)>> can transform x into ~x (the first delayed escape
represents a single ~ while the ~~proceed is typically replaced by the target AST, here
x). Essentially, when using around advice, the last argument to the aspect function
can be seen as a process that takes the matched AST and transforms it as described
by the target AST.
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Library
functions

aspect(target:ast, pointcut:string, advicetype:enumerated, advice:ast):void
match(target:ast, pointcut:string) : list<ast>
advise(target:ast, advicetype:enumerated, advice:ast) : void

Advice type BEFORE AFTER AROUND
Basic
Pointcuts

execution(pattern) call(pattern) setter(pattern)
exception(pattern) class(field) getter(field)

AST
Pointcuts

child(pattern [, childId]) descendant(pattern) ast(type)
parent(pattern [, childId]) ascendant(pattern) construction(pattern)

Pointcut
Combinators pointcut and pointcut pointcut or pointcut not pointcut

Table 3 – Overview of the basic elements offered by our AOP library

To allow explicit transformation logic while still relying on pattern matching we also
provide two additional functions: match(target: ast, pointcut: string), that
will find and return all nodes within the target AST that match the given pointcut and
advise(target: ast, advice_type: enumerated, advice: ast) that will insert
the advice AST in the target as specified by the advice type. A summary of the basic
elements offered by our AOP library is provided in Table 3.

4.3 Aspects in the Workspace Manager
In a system supporting binary-level weaving, the aspect sources are typically placed
along with the normal program sources in the workspace management. For instance,
in the AJDT [Fou] Eclipse plugin for AspectJ, there are aspect-enabled projects
that can host both normal Java and AspectJ source files whose generated code is
woven together after compilation. In a system with source-level weaving, the aspect
transformation has to be in executable form while a normal program is still in source
code waiting to be transformed before its compilation. This means that aspect sources
and normal program sources are compiled at different times and thus should be
properly distinguished in the workspace management. Particularly in our system,
where aspects are implemented as typical programs within the same language and their
separation with normal programs relies only on their different deployment, supporting
such a distinction is even more critical.

Our system supports this distinction by introducing the notion of aspect sources
that are organized in aspect projects. An aspect source contains all typical source
information required for its build and deployment (e.g. compilation flags, dependencies,
runtime libraries, etc.) as well as information about its transformation purpose, i.e. if
it is a pre-staging, an in-staging or a post-staging aspect. This information is explicitly
provided by the programmer who specifies the transformation category for each aspect
source. In fact, for a single aspect it is possible to specify more than one category,
for instance both in-staging and post-staging. The reason for this is that stages may
involve computations typically found in a normal program, so they may also require
similar crosscutting functionality. Thus, a single aspect is allowed to address both
stages and normal programs.

Aspect projects are used for grouping aspect sources and allow specifying the
ordering of multiple aspect sources of the same type. For each project or source file
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within the workspace, the IDE allows specifying the aspect projects that will be used to
advise it. As aspect programs are also programs, aspect sources inherit all properties
of normal sources and they can be advised as well. This means that it is possible to
use an aspect transformation to manipulate the code of another aspect transformation
(but not of itself, as that would require a pre-existing binary of its code).

4.4 Aspects in the Build Process
Aspect transformation may be part of the compilation loop; however the aspect weaver
need not be tightly coupled with the compiler. Actually, they may both be unaware
of the existence of the other and let the build system orchestrate their interoperation.

The aspect weaver just takes an input source, transforms it one or more times and
gives as output the resulting output source, thus naturally involving no additional
interoperation with either the compiler or the build system. On the other hand, the
compiler receives as input a source file and gives as output a binary file; however
it requires interoperating with the build system to handle the build process of any
stages involved in the process. In this sense, interaction between the build system,
compiler and aspect weaver, illustrated in Figure 8, is as follows. When a source
is to be built, the build system invokes the weaver with that source as input (step
1), applies the associated pre-staging aspects, receives its output (step 2) and then
uses that as input to the compiler (step 3). Then, during the staging pipeline, the
meta-compiler assembles the stage source (step 4) and asks the build system to build
it (step 5) and provide its binary code; that code will then be execute to update the
AST of the initial program being compiled. After receiving the stage source, the build
system can invoke the aspect weaver to apply the in-staging aspects (step 6), get
the transformed stage source (step 7) and send it for compilation on a new compiler
instance (step 8). The nested compilation will provide the stage binary (step 9) that
the build system can then supply to the original compiler (step 10) to continue its
stage execution. After the current stage execution, if there are still additional stages
the same process is repeated (step 11). Eventually, there will be no more staging and
the source code resulting from the staging process is ready to be built (step 12). This

Figure 8 – Interaction diagram between the build system, compiler and aspect weaver.
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final source is then propagated to the weaver for applying the post-staging aspects
(step 13), and the result is sent to yet another compiler instance (step 15) that will
generate the final binary code (step 16).

This description assumes that the aspect transformations are already available
in binary form. In general, this may not be the case, so before applying any aspect
transformations, the build system may first have to build them to get their binary form
(Figure 8, steps 1a, 6a, 13a). Such build steps are automatically perform by the system
if needed and may involve additional meta-compilation, in case the target aspect source
contains meta-code, or even recursive aspect transformations, if the target aspect is
also advised by another aspect. Essentially, a single build request for the initial source
may trigger multiple nested build requests for metaprograms or aspect programs
involved directly or indirectly in the process. For instance, consider a pre-staging
aspect source that contains meta-code and a normal source with no meta-code that
will be advised by the aspect source. When trying to build the normal source we
require the binary of the aspect source, meaning we have to build it first (normal
source, step 1a). Since the pre-staging aspect involves no aspect transformations of
its own, it is directly sent to the meta-compiler that handles the staging process and
returns a binary for it (aspect source, steps 3-5, 8-12 and 15-16). Then we can continue
with the weaving of the normal source and the subsequent meta-compilation process
that will result in the final binary (normal source, steps 1b-5, 8-12 and 15-16). Of
course, if either the aspect source or the original source were advised by additional
in-staging or post-staging aspects, there would be further aspect weaver invocations
(i.e. steps 6-7 and 13-14) and possibly additional nested build requests. Overall, the
build process is a recursive process that relies on the following principles:

• Building a source advised by specific aspect projects requires recursively building
all aspect sources of these projects, invoking the aspect weaver to transform the
initial source and then recursively building the last transformation result.

• Building a source with no aspect transformations, but containing meta-code
requires assembling each stage, building it recursively, executing its binary code
to update the main program AST and finally recursively building the final source
when no more meta-code is present.

• Building a source with no aspect transformation or meta-code requires recursively
building any module dependencies for the initial source and then finally typically
translating its source code into binary.

5 Case Studies
To show that the proposed approach is not just a theoretical concept but also has
practical applications, we provide example scenarios focusing on pre-staging and
in-staging aspects. For post-staging aspects we do not provide explicit scenarios as
any typical AOP aspect is also a valid post-staging aspect.

5.1 Aspects to Insert Staging
In [Tah04], Taha describes a methodology for taking conventional programs and
turning them into multi-stage programs thus reducing potential runtime overhead and
improving performance. For instance consider the classic power example.
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function power (x, n) { // original power version
if (n == 0) return 1;
else return x * power(x, n - 1);

}
a = 2; print(power(a, 4)); // recursive invocation at runtime
function spower (x, n) { // staged power version

if (n == 0) return <<1>>;
else return <<~x * ~(spower(x, n - 1))>>;

}
a = 2; print(!(spower(<<a>>, 4))); // final code is: print(a*a*a*a*1);

Typically, the staged version has to be explicitly written by the programmer.
However, it is possible to turn the methodology into an algorithm allowing the
automation of this process (i.e. a methodology for transforming function power into
spower automatically). Implementing such an algorithm requires analyzing the AST
of the target program to locate potential for deploying staging and then transforming
it appropriately to introduce the necessary staging annotations. In this sense, the
application of the algorithm can be seen as an aspect-oriented transformation that
weaves the advice functionality, i.e. staging annotations, at the desired pointcuts, i.e.
source locations with staging potential. In particular, this is a pre-staging aspect; it
will transform the initial source, originally containing only normal code, to enrich it
with staging annotations. The aspect is shown below with transform being its entry
point. Notice the use of the previously described AST-wise pointcuts like descendent,
child, ast, etc. used for fine-grained AST matching.

toAST = << <<~~proceed>> >>; //transforms x into <<x>>, used below
function InFunc(name) { return "descendant(function "+ name +"(*))"; }
function MatchCall(name) { return "call(" + name + ")"; }
function StageDefinition(func) { //stage the function body

local addEscape = <<~~(~~proceed)>>; //transforms x to ~x
local recursiveCall = MatchCall(func.GetName());
aspect(func,recursiveCall,AROUND,addEscape);//escape recursive calls
local exprs = match(func, "child(return)");//begin with return exprs
while(not exprs.empty()) { //until handling all exprs for the result

local dependencies = listnew(); //holds deps for the current exprs
foreach(local expr, exprs) {

advise(expr, AROUND, toAST); //turn expr into AST form
ids=match(expr,"id(*) and not descendant("+recursiveCall+")");
foreach(local id, ids) { //for matched ids (args&locals) in expr

dependencies.pushback(id.GetName());//mark id as a dep
advise(id, AROUND, addEscape); //escape the id

}
}
exprs.clear();
foreach(local dep, dependencies) { //check for assignments to deps
assigns=match(func,"ast(assign) and parent(id("+dep+"),lvalue)");
foreach(local assign, assigns) //recursively for matched assigns

exprs.pushback(assign.GetChild("rvalue"));//check the rvalues
}

}
}

Journal of Object Technology, vol. 13, no. 1, 2014

http://dx.doi.org/10.5381/jot.2014.13.1.a1


20 · Yannis Lilis and Antony Savidis

function StageCalls(ast, funcName) {
calls = match(ast, MatchCall(funcName)+"and not "+InFunc(funcName));
foreach(local call, calls) { //for each matched non-recursive call
foreach(local actual, call.GetActuals()) //iterate over actuals
if(not actual.IsConst()) advise(actual,AROUND,toAST); //stage args
advise(call, AROUND, << !(~~proceed) >>); //stage entire call

}
}
function transform (ast) { //ast holds the code to be transformed

foreach(local func, match(ast, "function *(*)"))//find all functions
//can the result be expressed as a math function over input args?
if (CanBeStaged(func)) {

StageDefinition(func); //stage the function definition
StageCalls(ast, func.GetName()); //stage calls in the entire ast

}
return ast; //the transformed ast is the aspect weaving result

}

In particular, the aspect will first try to find functions that have potential for
staging. Without going into details, this process essentially looks for functions whose
result can be expressed in a mathematic expression over their input arguments. Power,
as well as other mathematical functions like factorial, fibonacci, etc., fit the above
description and will be matched by the aspect. For each of the matched functions,
we need to stage both definition and invocations. For the definition, we have to
stage all items relating to the function result. In this sense, we begin by properly
staging the return expressions of the function while marking any argument or local
variables involved in their computation. We then repeat the same process targeting any
assignment to the previously marked variables. We properly stage the right hand side
of each assignment and mark any additional arguments or local variables involved in its
computation. This process continues iteratively until all involved variables have been
handled. We should also note that any recursive function invocations are by default
considered to be involved in the final function result so they are staged up-front and
then excluded from the remaining process (hence the recursive call pointcut). For the
power example in particular, this process will transform return 1; to return <<1>>;
and return x * power(x, n-1); to return <<~x * ~(power(x, n-1))>>;. This
is achieved by applying around advice and specifying toAST = << <<~~proceed>> >>
and addEscape = <<~~(~~proceed)>> as advice targets. The former essentially turns
1 into <<1>> and x * power(x, n-1) into <<x * power(x, n-1)>> while the latter
further transforms <<x * power(x, n-1)>> into <<~x * ~(power(x, n-1))>>.

Then, for each invocation, the aspect will introduce the inline operator and turn
any non-constant argument to its corresponding AST form. In the power example, this
process will transform the invocation power(a, 4); toAST = << <<~~proceed>> >>
turns a into <<a>>, while <<!(~~proceed)>> further transforms power(<<a>>,4) into
!(power(<<a>>, 4)). The result is essentially the automatic staging of all relevant
function invocations that achieves the desired performance gain.This would not have
been possible without the pre-stage aspect, as the original program contained no
staged code and its compilation would yield binary code where all functions and their
invocations maintained their original form.

This may not be a representative AOP example, but it shows how a pre-staging
aspect should operate, i.e. updating or changing the staging of a program, and
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illustrates a scenario were such functionality is useful. In fact, this example relates
to partial evaluation and would be typically handled by a partial evaluator without
requiring the extra aspect specification. However, the binding-time analysis involved
in partial evaluation is not complete and can only approximate the knowledge of
the programmer, meaning that explicitly specifying how the code should be staged
may yield better results. Additionally, implementing the aspect involves mainly AST
manipulation that a programmer is familiar with, while effective use of a partial
evaluator involves a steep learning curve [JGS93].

Considering the specific power example, writing and applying the aspect is of course
more complicated than staging the code manually. However, the aspect is generic
enough that it can be used for a variety of other mathematical functions without
the need for manually staging each of them. Additionally, the aspect automatically
locates and stages all function invocations; without that, the programmer would have
to locate all such invocations (probably multiple ones, scattered in the source code)
and stage them manually.

5.2 Aspects for Custom Static Analysis
During the compilation process, a compiler typically performs a series of static analysis
checks to the program being compiled. However, a programmer is typically not aware
of the checks being performed while also being unable to customize their behavior.
The latter can be achieved by placing staged code at specific locations within the
original source so that their execution performs the desired static analysis checks. In
this direction, we can use a pre-staging aspect to introduce the custom analysis code
along with its deployment. For example, the aspect below introduces staged code to
analyze all functions definitions.

function transform (ast) {
local allFunctions = match(ast, "ast(function)")
foreach(local func, allFunctions) { //iterate over matched functions

local name = func.GetName();
//insert a staged call to analyze the matched function
advise(func,AFTER,<<&analyze(compiler::GetFunctionAst(~name));>>);

}
advise(ast,BEFORE,<<&function analyze(f){...}>>);//insert staged def
return ast;

}

5.3 Aspects to Introduce Memoization in Stages
To improve runtime performance for mathematical functions involving intense com-
putations a common technique is to generate for them constant tables, i.e. tables
that will map specific function arguments directly to a constant value. Such tables
can be generated by metaprograms; for example, consider the following code that
generates a constant table for a range of Fibonacci numbers. As indicated by the &
annotation, functions fibonacci and GenerateFibonnaciTable are staged; in partic-
ular, the latter uses the former to calculate the required values and merge them into a
constant table that is inlined in the program code (!(GenerateFibonnaciTable(20))
invocation). At runtime, function fib will provide the result directly by accessing the
generated constant table.
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&function fibonacci(n){//compile time version using normal computation
if (n == 0 or n == 1) return 1;
else return fibonacci(n - 1) + fibonacci(n - 2);

}
&function GenerateFibonacciTable(upperBound) {

local numbers = nil;
for (local i = 0; i < upperBound; ++i)

numbers = <<~numbers, ~(fibonacci(i))>>; //merge computed values
return <<[~numbers]>>; //generate const table with these values

}
function fib(n) { //runtime version using the generated const table

static table=!(GenerateFibonacciTable(20));//inline const table here
return table[n];

}
print("fib(15) = ", fib(15)); //call involves no runtime overhead

While the above technique improves runtime performance, during compilation the
metaprogram still has to compute the required values, something that may take a
long time. To improve compile-time performance (metaprogram execution), we can
use memoization, i.e. caching the result of a function to avoid recalculating it with
the same arguments. This functionality is not coupled to a specific metaprogram
but would apply to any metaprogram with similar functionality. As such, it can
be expressed as an in-staging aspect that will be used for each such metaprogram
advising its function invocations with memoization. The fibonacci example above can
be advised with memoization by the following aspect code:
function transform (ast) {

local pointcut = "execution(function fibonacci(n))";
local beforeAdvice = <<static memoizer = []; //memoization cache

if(memoizer[n] != nil) return memoizer[n];>>;
aspect(ast, pointcut, BEFORE, beforeAdvice);
//memoize the result:~~retval will carry the original return value
aspect(ast, pointcut, AFTER, <<return memoizer[n]=~~retval;>>);
return ast;

}

5.4 Aspects for Locking Shared Objects in Stages
Since stages are normal programs, their execution may involve multiple threads of
execution that share various resources. This raises the issue of protecting stage code
from possible race conditions by introducing typical synchronization constructs like
mutexes. This can be achieved using a locking aspect as shown in the following code.
function transform (ast) {

local inClass = "class(SharedObject)"; //class for synchronization
local pointcut = inClass + " and execution(method *(*))";
aspect(ast, pointcut, BEFORE,<<self.mutex.lock();>>);
aspect(ast, pointcut, AFTER,<<self.mutex.unlock();>>);
aspect(ast,inClass,BEFORE,<<@mutex:mutexnew()>>); //add mutex member
return ast;

}
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5.5 Aspects for Tracing Diagnostics in Stages
Stages may contain code that was never part of the original program and thus it
may not be easy to trace their execution when they don’t behave as expected. In
such cases, unless the IDE provides support for debugging metaprograms, the only
option is to manually insert logging calls within functions of the stage program to
trace their execution. However, logging is a well-known crosscutting concern that can
be addressed through AOP. In this sense, using the following code as an in-staging
aspect achieves the desired functionality.

function transform (ast) {
local funcs = match(ast, "execution(function *(*))");
foreach(local f, funcs){ //iterate over matched function definitions

local name = f.GetName();
advise(f, BEFORE, <<print("Entering " + ~name);>>);
advise(f, AFTER, <<print("Exiting " + ~name);>>);

}
return ast;

}

Note that since we use an in-staging aspect, the ast argument passed to the
transform function will contain stage code. As such, the tracing functionality is only
introduced in functions available in stages, and not the functions of the final program.

5.6 Aspects for Exception Handling in Stages
As already discussed, the code of a stage metaprogram may be sophisticated and
involve multiple scenarios where errors can occur. In this context it is a typical
practice to use exception handling to separate the normal execution from the error
handling code. Exceptions can be seen as a crosscutting concern allowing them to be
modularized as aspects [KLM+97]. In this sense, stage code could utilize an in-staging
aspect to be advised with the error handling logic. For example, the following aspect
can be used to specify different exception handling policies for a variety of use cases.

function AllMethodsInClass(class)//func to create pointcut expressions
{ return "execution(method *(*)) and descendant(class("+class+"))"; }

function transform (ast) {
aspect(ast, AllMethodsInClass("RemoteObject"), AROUND,

<<try { ~~proceed; } catch Exception { log(Exception); }>>
); //log and ignore any exception from remote object invocations
aspect(ast, AllMethodsInClass("StackWithDbyC"), AROUND,

<<try { ~~proceed; } catch ContractException { assert false; }>>
); //no contract exceptions allowed with using Design by Contract
aspect(ast, AllMethodsInClass("ConfigurationManager"), AROUND,

<<try { ~~proceed; } catch IOException
{ throw [@class:"ConfigException", @source:IOException]; } >>

); //hide low level IOExceptions and raise higher level ones
return ast;

}
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5.7 Aspects for Decorating Classes in Stages
Stages are mainly code generators and thus they make extensive use of AST creation
and manipulation. Even if the AST library offered by the language facilitates AST
traversal and manipulation, programmers may still want to decorate AST values with
custom functionality. To do so, one would have to implement an additional library and
manually decorate AST creation occurrences in the code. The latter can be seen as a
crosscutting concern that can be addressed through the following in-staging aspect. In
particular, the aspect will locate all quasi-quotes nodes (i.e. AST creations) and apply
the desired decoration based on the language element they contain. Of course, any
inlines and escapes have to be advised as well to retrieve the original AST value from
the decorated object.

function transform (ast) {
local quotes = match(ast,"ast(quasiquote)");//find all AST creations
foreach(local quote, quotes) {

if (quote.GetChild().GetType() == "class")
advise(quote, AROUND, <<[ //AST creations replaced with objects

@ast : ~~proceed, //original AST stored as normal data
method GetMethods (){...}, //custom methods added
method GetAttributes(){...},
method BaseClasses (){...}

]>>);
else if (quote.GetChild().GetType() == "function")

advise(quote, AROUND, <<[ //AST creations replaced with objects
@ast : ~~proceed, //original AST stored as normal data
method GetName () {...}, //custom methods added
method GetActual(n){...},
method GetLocals() {...}

]>>);
else //perform similar handling for other quoted language elements

}
//replace escape and inline targets with original AST
aspect(ast, "child(escape)", AROUND, <<~~proceed.ast>>);
aspect(ast, "child(inline)", AROUND, <<~~proceed.ast>>);
return ast;

}

5.8 Aspects for Custom AST Iteration in Stages
It is typical for staged code to traverse the tree structure of an AST value. In Delta,
this is achieved through an AST visitor, where node types are associated with handler
functions. For example, the following code will traverse the AST shown and invoke the
associated handler (i.e. the anonymous function) for every function node contained
within the AST.

ast = << function f() { return << function g() {} >>; } >>;
visitor = astvisitornew();
visitor.sethandler("function", function(node, id, entering){ ... });
ast.acceptpreorder(visitor);
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The visitor does not differentiate between functions being directly within the
traversed AST or inside any nested quasi-quotes it contains, meaning that in this
example the handler will be triggered by both functions f and g. However, it is very
common for the traversal to target only functions directly within the AST and not
nested ones. To achieve this, we have to introduce additional handlers to keeps track
of the stage nesting and modify existing ones to utilize this information. This can be
modeled with the following in-staging aspect:

function transform(ast) {
visitors = "ast(assign) and parent(call(astvisitornew()),rvalue)";
foreach(local visitor, match(ast, visitors)) {
local handlers = "execution(function (node, id, entering)) and
descendant(call("+id.GetName()+".sethandler(*))"; //match handlers

local advice = <<if (nesting==0)~~proceed;>>;//consider func nesting
aspect(visitor.GetEnclosingBlock(), handlers, AROUND, advice);
local id = visitor.GetChild("lvalue").copy();
advise(visitor,AFTER,<< //introduce nesting and increase/decrease it

local nesting = 0; //as needed in quasi-quote and escape handlers
~id.sethandler("quasiquotes", function(node, id, entering)

{ if (entering) ++nesting; else --nesting; });
~id.sethandler("escape", function(node, id, entering)

{ if (entering) --nesting; else ++nesting; });
>>);

}
return ast;

}

Notice that we first update existing handlers and then introduce the new ones to
avoid advising them or having to specify a more complex pointcut that excludes them.

5.9 Aspects for AST Validation in Stages
ASTs are usually constructed through quasi-quotes, however they cannot express
structures depending on some computation, for example having an if statement
with a variable number of else if clauses. To allow generating such code patterns,
metalanguages typically provide some extra facility, like a library for explicit AST
creation and manipulation. ASTs created using either the library or through quasi-
quotes should interoperate; however while ASTs created by quasi-quotes are well-
formed, ASTs created through the library may be incomplete or even ill-formed. In
this context, a programmer could insert custom validation code at specific source
locations, ensuring that any AST is well-formed and that any manually constructed
erroneous AST is reported as early as possible. This functionality can be achieved
through an in-staging aspect by introducing a validate function weaving invocations
to it at locations where a manually constructed AST is combined with an AST created
through quasi-quotes, along with any staged function that operates on an AST.

function transform(ast) {
local validator = << function validate(ast) { ... return ast; } >>;
advise(ast, BEFORE, validator); //introduce the validate function
//turn <<... ~x ...>> into validate(<<... ~(validate(x)) ...>>)
aspect(ast,"ast(quasiquotes)", AROUND, <<validate(~~proceed)>>);
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aspect(ast,"child(escape)", AROUND, <<validate(~~proceed)>>);
//turn !(...) into !(validate(...))
aspect(ast,"child(inline)", AROUND, <<validate(~~proceed)>>);
aspect(ast,"execution(function *(ast,*)) and not execution(function

validate(*)",BEFORE,<<validate(ast);>>); //validate AST arguments
}

6 Debugging Aspects
Utilizing aspects or metaprograms in a development process is a challenging task on its
own. Trying to combine the two presents an inherently increased level of complexity,
requiring the IDE to provide advanced tool support for writing and debugging programs
in order to help programmers in this demanding task. In this direction, we extend
our previous work on tool support for metaprogramming [LS12b], to also support
aspect-oriented transformations. Since we build upon our implementation for aspect
support, the discussion is focused on source-level weaving. Nevertheless, the feature
implementation could also utilize binary-level weaving, while the rationale for their
support is still valid in both cases.

6.1 Reviewing Woven Code
When aspect code is woven together with normal program code, either through source-
or binary-level weaving, the result is a transformed version of the code that is not
available to the programmer. This may not be an issue when the resulting code
behaves as expected or the aspect is simple enough to verify its functionality in a
few execution sessions. However, if the resulting code does not behave as expected
or the aspect involves some complex pointcuts, information about the final version
of the code can be invaluable to programmers, allowing them to see how the aspect
application transformed the code and figure out the reason of the erroneous behavior.
Reviewing the results of aspect weaving can provide helpful information even when
the resulting code executes correctly, as it enables programmers to move from an
abstract representation of the final code to a concrete visualization, increasing their
understanding of the transformation that takes place.

This is a similar requirement with the reviewing of the updated version of the
main program after having evaluated some stage metaprogram [LS12b]. As such, it is
addressed in a similar way by unparsing the AST produced by the aspect transformation
into source text, storing that text into a source file, and finally notifying the IDE to
insert it in the workspace, properly associating it with the original source. Sparrow
already supports this functionality for metaprogram results, so the only addition
required involves the aspect weaver. In case of multiple aspects, the weaver generates
an updated version of the source code after applying each separate transformation,
thus providing a full trajectory of the transformation process. Figure 9 illustrates a
sample workspace involving files generated by both staging and aspect transformations.

6.2 Providing Accurate Compile Errors
When the source code of a program that has passed through multiple transformation
steps contains errors, it is not clear whether the error was present in the original source
or if it was introduced as a result of one or more of the transformations [Tra08]. In this
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Figure 9 – Sample workspace with sources generated by staging and aspect transformations

sense, instead of a single error report specifying the final error location, the compiler
should be able to track down and provide the first introduction of the erroneous code
as well as the complete transformation chain that led to its final form. To achieve this
functionality it is possible to associate any generated source location with the source
location it originated from before the transformation took place. This way, we can
create a list of source references that can track the error across all source files involved
in the compilation.

A similar error tracking scenario is involved in the typical metaprogramming
process requiring the creation and maintenance of a list of source references [LS12b].
However, in that case the entire process takes place within the compiler that simply
provides the IDE with all relevant source reference information upon generating the
error report. With the introduction of aspect transformations, we have a separate
aspect weaver process responsible simply for source transformations and unaware of
the source references maintained by the compiler. Since the aspect weaver and the
compiler have to be as loosely-coupled as possible, the infrastructure for the source
references is moved within the IDE, stored as metadata accompanying each generated
source file. This way, whenever a generated source is created by a transformation
process, either due to aspects or metaprogramming, we also provide the associated
source references to the IDE. With this information, the IDE can then track down
all sources involved in the generation or transformation of an error and form the
entire transformation chain, properly associating it with any issued error report. This
functionality is illustrated in Figure 10, where the given error report refers to all source
files involved in the generation of the erroneous code. This allows the programmer
to navigate across the various source files versions (as discussed they are available in
the workspace), reviewing the transformations performed from one version to the next
and eventually understanding which transformation introduced the error.
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Figure 10 – Tracing compile errors in the source transformation pipeline involving staging
and aspects; source names refer to the workspace of Figure 9

6.3 Tracing the Evaluation of Aspects
Being able to view the result of an aspect transformation is a step closer to debugging
aspect applications; however it lacks the information about how the code reached its
final form. Such information involves tracing the entire control flow of the transforma-
tion logic as well as inspecting the transformation data. Essentially, the requirement is
to provide full-fledged source-level debugging of the aspect program that is invoked to
perform the transformation. Any aspect program is executed during the compilation
process and performs AST modifications, so it resembles the execution of a normal
compile-time metaprogram. In this sense, we can reuse the IDE debugger front-end
functionality for compile-time debugging [LS12b] and instrument the aspect weaver
with a debugger back-end that will handle the execution of the aspect programs. This
way we can support debugging of the aspect transformation logic without practically
making any changes to the existing infrastructure. An example of such a debugging
session is illustrated in Figure 11.

As we mentioned earlier, in-staging aspects transform stage metaprograms before
they are evaluated, so the two execute sequentially. From a debugger perspective,
this means that the front-end has to be able to support multiple different back-ends.
Additionally, all stage executions take place within the compiler, meaning they are
served by a single debugger back-end, while the aspect transformations for different
stages are executed by different aspect weavers, meaning they are served by multiple
debugger back-ends. Essentially this means that the debug session of the stage
metaprogram can be interleaved with the debug sessions of the in-staging aspects.

For example consider a program with two stages of metaprograms where each of
these stages is subject to an aspect transformation. When compilation begins, the
debugger back-end within the compiler will connect with the IDE front-end. After the
first stage is composed it will be sent to the aspect weaver for transformation. Upon
launching the weaver, its debugger back-end will also connect to the IDE front-end
overriding the previous connection. The weaver will then proceed with the execution
of the aspect transformation that is the first program that will be debugged. After
finishing the transformation, the debugger back-end of the weaver disconnects from
the IDE front-end, restoring the compiler debugger back-end as the active one. The
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compiler then proceeds with the execution of the first stage that is the second program
that is debugged. When the stage execution is finished, the initial program AST is
transformed and ready to compose the second stage. The same process is repeated,
with the launch of the aspect weaver creating a new active debugging connection for the
aspect transformation of the second stage and its termination restoring the compiler’s
debugging connection as the active one, to finally debug second stage execution.

Offering the functionality described above requires extensions in the infrastructure;
in particular allowing the debugger front-end to handle multiple back-ends. However,
considering the execution order of the systems involved in the process, namely the
compiler and the instances of the aspect weaver, it is clear that no two systems may
run in parallel. This means that the only required extension is to support adding and
removing debugger connections, while typically serving the one added most recently.

7 Related Work
To our knowledge, this is the first work with a systematic proposition towards support-
ing aspects for stage programs in the context of MSLs. However, we consider our work
to be closely related to the attempts of using metaprogramming features for achieving
aspect-orientation. For example, AOP++ [YZC05] is a generic AOP framework in
C++ that utilized the metaprogramming constructs of the language, i.e. templates, to
express pointcut expressions and match joinpoints at compile-time. Nemerle [SMO04]
facilitates metaprogramming through its macro system and can support AOP features
by applying annotation based macro invocations on program classes. AspectR [BF02]
is a library for Ruby that utilizes metaprogramming techniques to implement AOP by
wrapping code around existing methods in classes. Groovy AOP [KG08] is an AOP
system for Groovy that provides a hybrid dynamic AOP implementation based on
both metaprogramming and byte-code transformation. Aspects, pointcuts and advice
are specified at compile-time based on a Groovy based domain-specific language while
the advice is woven into byte-code at runtime using dynamic compilation.

Languages like Lisp or Scheme have a built-in notion of stages, while they also facili-
tate AOP through library support, for example using AspectL [Cos04] or AspectScheme
[DTK06] respectively, thus allowing potentially combining stages and aspects. However,
these libraries target generic AOP and do not provide explicit support for introducing
aspects in staged code. This means that while from an expressiveness point of view
it is possible to specify aspects for stages, from a software engineering point of view
it requires introducing additional sophisticated macros, something difficult even for
advanced users. The latter could be easily addressed with a dedicated AOP library
for stages offering such macros out of the box and thus facilitating the adoption of
AOP practices in staged code. It also shows that even languages with both concepts
require a more systematic approach for their combined deployment.

MorphJ [HS11] is a language that introduces a form of meta-programming by
enabling the specification of general classes that are produced by iterating over members
of other classes. In this sense, it can also be used to achieve AOP functionality
by advising structural program features (e.g. method before-, after-, and around-
advice). As a program generation or transformation approach, MorphJ only allows
enhancement of classes through subtyping or delegation. On the contrary, our system
allows arbitrary code generation or transformation making it more expressive. As an
AOP approach, MorphJ allows advising normal program code but cannot support
advising its reflective transformation functionality, i.e. the metaprogram specifying the
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general class generation. A fundamental point of our proposition is that metaprograms
may also require AOP functionality, so we support all stages of a multi-stage program
to be subject to AOP. The advantage of MorphJ over our system (or other AOP tools)
is the guarantee of modular type safety enabling the general classes to be type-checked
independently of their uses. Indeed, in our system it is possible for an aspect program
to be valid on its own, but cause errors upon its deployment. However, such an error
is still reported during compilation, while the offered error reporting facility discussed
in section 6.2 allows it to be easily identified and thus resolved.

There are also systems that provide dynamic AOP support through meta-object
protocols or byte-code modification at load- or run-time. Examples include but are not
limited to JAC [PDFS01], Handi-Wrap [BH02] and Spring [Joh11] for Java, AspectS
[Hir02] for Smalltalk and AspectLua [CBF05] for Lua. This approach is orthogonal to
our work that focuses on systems with static AOP (like AspectJ).

Existing tools for debugging code involving AOP are also relevant to our work.
For example, [EAH+07, YBA12] offer support for debugging the final woven code
while properly associating execution with the original source code or the aspect source
code. Our system relies on source-level weaving and keeps the results of each aspect
transformation, so source-level debugging of the woven code is straightforward by
using the result of the final aspect transformation. Instead we focus on providing
source-level debugging support for the transformation logic, allowing programmers
view normal and aspect related code as ASTs and trace the entire weaving process.

The application of aspects has been applied in Model-Driven Engineering (MDE)
as well, introducing cross-cutting concerns directly at the modeling domain. The
latter requires custom MDE languages to represent aspects, in particular to express
pointcuts and advice, and respective weavers operating on models. Examples of such
work are discussed in [SHU02], [CvdBE07] and [FS07]. In our context, such techniques
could be applied assuming a notion such as staged models is defined and supported in
the MDE arena. In other words, staged models could be considered as models resulting
from the evaluation of generative models, something analogous to source code staging.
Now, while meta-modeling is widely used in MDE, it has a connotation quite different
to the genuine generative behavior of stages in MSLs. Overall, once staged models are
somehow supported, aspect categories like the ones proposed may directly apply.

8 Discussion
We continue by discussing elements that may differ in other languages and provide an
overview for deploying our approach using a mainstream AOP language like AspectJ.

Scope extrusion In the Delta language, variables within quasi-quotes are resolved
with their name in the context where the quoted code will actually be inserted, i.e. are
lexically scoped at the insertion point. In this sense, there are no guaranties regarding
name bindings and as such no scope extrusion issue. However, our proposition towards
AOP for stages is orthogonal to such an issue. In a language where symbols within
quasi-quotes bind to specific variables via lexical scoping, the same language facilities
that are used to guarantee the name binding for normal program compilation can be
extended to also apply for any aspect transformations. For example, Template Haskell
[SJ02] and Converge both use the notion of original names to bind quasi-quoted
symbols to top-level definitions within a module. In particular, for a top-level function
f within a module M, any reference to f used within quasi-quotes is directly translated
to M:f (M.f for the Converge version), uniquely referring to the particular name. In
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the same sense, any quasi-quote of an aspect transformation could also refer to the
same function f using an extension for original names. Since the name of the module is
not directly available during the compilation of the aspect program, we could instead
use a special delayed escape ~~module that will be replaced with the name of the
module when it becomes available. This way, we could directly use original names
within quasi-quotes, for instance writing <<~~module:f>>.

Interaction and Commutation Among Aspects Our implementation realizes
aspects as separate AST transformation programs that are applied sequentially. In this
sequence, any aspect being applied operates on the result of earlier aspects, so naturally
the application order is important; in fact, applying aspect programs with a different
order may yield different results meaning that this is not a commutative process. For
example, consider an aspect for introducing additional members to a class and another
one for automatically generating accessor functions for the class members. If the former
aspect is applied first the resulting class will have accessor functions for all members
while if it is applied second any newly introduced members will have no accessor
functions. Apart from the ordering issue, aspect transformations are applied once
and for all, without the ability to be triggered again by other aspects. Essentially, an
aspect may inspect changes introduced by earlier aspects, but not vice versa, effectively
disallowing any bidirectional interaction between two aspects. Both limitations arise
from the particular aspect implementation as transformation programs and are not
inherent issues of our proposition for aspects in stages. In this sense, utilizing a more
traditional AOP approach, with a separate aspect language and collective weaving of
the aspect code along with the normal program or metaprogram code, aspects of the
same category can interact with each other, while their commutation is the same as
with normal aspects.

AOP for stages using Mint and AspectJ To apply our methodology using
Mint and AspectJ, AspectJ first has to be extended to support the staging extensions of
Mint. The latter is required so as to allow the aspect code contain staging annotations.
Additionally, the stage binaries produced by Mint need to be available before they
are executed so as to be advised by the aspect weaver. Essentially, the translation-
execution loop required for the staging process has to provide an entry point allowing
updating the original stage binary with the advised one. With these extensions, we
can then follow the binary weaving shown in Figure 4. Initially, the original program
is compiled to binary and is advised by the pre-staging aspects. As such, the program
execution that follows uses the advised version of the binary. At runtime, whenever
a stage binary is produced, the aspect weaver can intercept it, advise it with the
in-staging aspects and then send it for execution. This way, the stage execution
contains both original and aspect functionality. Regarding post-staging aspects, Mint
uses runtime metaprogramming so, as previously discussed, they cannot be supported.

9 Conclusion
In this paper we focused on the application of AOP in the context of staging and
introduced aspect-orientation in the entire processing pipeline of a MSL. Towards this
direction we identified three separate categories of aspects that should be supported
for expressing transformations for either normal or staged code, either present in the
original program or the result of code generation. Each aspect category targets a
specific step of the staging pipeline and has a specific goal. Specifically, pre-staging
aspects target the original code and can be used to introduce staging or transform
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existing stages. Then in-staging aspects concern stages and apply AOP to affect stage
code. Finally, post-staging aspects (applicable only in CTMP) aim to affect the final
source resulting from the staging process and apply typical AOP transformations.

To realize the proposed methodology we carried out the implementation on an
existing language with compile-time multi-stage metaprogramming. Our system
provides full support for aspect-orientation in a MSL, relies on source-level weaving and
implements aspects as batches of AST transformation programs. This implementation
approach seemed to fit well with typical multi-stage metaprogramming practices since
programmers are already familiar in using and manipulating ASTs. Additionally, it
allows exploiting features like reviewing, inspecting or debugging AST transformations
that may already be offered by the language IDE.

Overall, our work aims to setup a discipline for applying AOP in MSLs and
hopefully stimulate further work towards combined practices amongst the two worlds.
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