
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Declarative Layer Composition with
the JCop Programming Language

Malte Appeltauera Robert Hirschfeldb Jens Linckeb

a. SAP Innovation Center, Potsdam, Germany

b. Software Architecture Group, Hasso-Plattner-Institute,
University of Potsdam, Germany

Abstract Program behavior that relies on contextual information, such
as physical location or network accessibility, is common in today’s appli-
cations, yet its representation at the source code level is not sufficiently
supported by programming languages. With context-oriented program-
ming (COP), context-dependent behavior can be explicitly modularized
and dynamically activated. The available COP implementations offer lan-
guage constructs that allow to describe context-dependent functionality
and to specify for which control flows this functionality should be exe-
cuted. Since these language constructs require modifications to the source
code, the contemporary approaches limit the use of COP to program parts
whose source code is accessible to the developer (the user code). The dy-
namic control over context-dependent behavior in frameworks cannot be
directly addressed by COP as this would imply changes to the source code.
Instead, context-dependent behavior is addressed whenever a control flow
from the framework code enters the user code. Context composition must
be addressed at any of these control flow entry points, which may lead
to a redundant specification of this functionality. As a result, dynamic
control over layers emerges as a crosscutting concern that obstructs the
separation of concerns.

In this article, we discuss crosscutting layer composition in framework-
based applications in detail. Moreover, we discuss limitations for the ex-
pression of semantic relationships of layers that might lead to code du-
plication. We present a framework-based application, a simple action ad-
venture game that we implemented using a conventional COP language.
Along this example, we show how our JCop language supports the decla-
ration of layer composition and expression of layer relationships.

Keywords context-oriented programming, dynamic adaption, Java, frame-
work

Malte Appeltauer, Robert Hirschfeld, Jens Lincke. Declarative Layer Composition with the JCop
Programming Language. In Journal of Object Technology, vol. 12, 2013, pages 4:1–37.
doi:10.5381/jot.2013.12.2.a4

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2013.12.2.a4
http://dx.doi.org/10.5381/jot.2013.12.2.a4

2 · Appeltauer, Hirschfeld, Lincke

1 Introduction

Modern application design often requires the representation of behavior that strongly
depends on its execution context [ADB+99, Dey01]. For example, many applica-
tions designed for mobile platforms depend on physical location, user activity, or the
presence of other users. Such applications need to consider context information for
computation in order to better meet the users’ expectations. Also, some traditional
desktop applications need to take context information into account. For example,
some text processing applications dynamically change both their look-and-feel and
behavior depending on the users’ activity to provide a more intuitive user interaction.
Context-specific behavior is not always as perceptible for end users as in the previous
examples. More technical examples include switching network protocols depending on
the physical environment, or activating an encryption protocol based on the dynamic
evaluation of security policies.

We call the execution of a software module whose behavior and response varies
depending on contextual information a context-specific behavioral variation. For ex-
ample, a mobile phone may switch its incoming call mode from ringtone to vibrate
if the user enters a library, or the copy and paste semantics of a text processing tool
may vary if the user switches between plain text and an embedded spreadsheet.

The implementation of behavioral variations requires the modularization of the
context-specific behavior, and the dynamic control over its activation and execution.
Since a behavioral variation often affects several modules throughout an application,
we call it a crosscutting concern [KLM+97].

We distinguish between two kinds of crosscutting concerns. Homogeneous cross-
cutting concerns [ALS08] require the same source code to be executed at their join
points (points in the program’s structure or control flow [KLM+97]. A well known ap-
proach to the modularization of such concerns is aspect-oriented programming (AOP).
Heterogeneous crosscutting concerns [ALS08] require different source code to be ex-
ecuted at each of their join points. The implementation of behavioral variations is
mostly a heterogeneous crosscutting concern, requiring different objects of a control
flow to vary their behavior.

The context-oriented programming (COP) [HCN08, CH05] approach addresses the
representation of such heterogeneous crosscutting concerns. COP proposes the imple-
mentation of crosscutting functionality by partial method declarations that are able
to adapt any common method to their new behavior. Partial method declarations
are encapsulated by layer declarations. Hence, a layer is the implementation of a
behavioral variation. At run-time, the behavioral variations can be composed with
the core behavior of the classes by explicitly activating (or deactivating) layers for
specific control flows1.

COP has been applied to several application domains where it showed to be a
promising approach for the encapsulation of heterogeneous crosscutting concerns.
However, research so far did not explicitly address the incorporation of COP’s control-
flow based adaptations with application domains that employ frameworks [JF88]. For
such programs, we distinguish between framework code, which is part of the framework
implementation, and user code, which is part of the concrete application implementa-
tion. One property that distinguishes frameworks from libraries is that they prohibit
access to their implementation [JF88]. That fact may complicate the declaration of

1A few COP implementations do not consider control flow-based layer activation but offer global
layer activation instead. In the following, we focus on control flow-based layer activation.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 3

partial methods for base methods inside frameworks, since information about their
implementation might be important for the implementation of their partial methods.
Still, it is technically possible to declare partial methods for framework methods since
the layer declaration is an external module and not part of the framework code.

A problem may occur, if a layer composition must be executed within the frame-
work code because its implementation would require direct modifications to the code,
which is prohibited. But even if the framework source code is accessible and could
be adapted, the identification of the correct adaptation location would require deep
knowledge about the internals and control flow logic of the framework. Obtaining this
technical knowledge, in turn, distracts the application programmer from his primary
task, i.e., developing the user code.

As a result, the framework code cannot be adapted by layer composition state-
ments. The solution is to move the composition statement instead to a later point
during the execution of the control flow at which the control flow enters the user
code is executed. This has two advantages. First, the user code is actually accessi-
ble and adaptable. Second, the developer should be familiar with this user code and
able to implement the adaptation straightforwardly. Unfortunately, control flows that
are initiated by framework code often have multiple entry points into the user code.
Therefore, the layer composition statements must be repeated at multiple points.
That imposes a novel crosscutting concern to our application, which is not driven
by the application logic itself but by the layer composition logic. This crosscutting
layer composition is a homogeneous crosscutting concern, which requires the same
with statement to be repeated at multiple points.

In previous publications, we motivated modularization issues of layer composition
in COP languages [AHM09] and proposed additional composition features, such as
the pointcut-based [AHM+10, AH12], static [SAH11], and reflective [RAL+11] layer
composition. We further developed these approaches and integrated them into our
Java-based language JCop. In this paper, we give a coherent presentation of JCop’s
composition features. In addition, we discuss its layer inheritance mechanism that
eases layer modularization. Throughout the paper, we present JCop’s language con-
structs along a running example of a graphical computer game. Section 2 introduces
the core concepts of COP and discusses its issues along our example application.
Section 3 presents JCop’s declarative layer composition. Section 4 explains language
features to express relationships between layers. Section 5 reports on the evaluation
of our concepts, which is based on several case studies. Section 6 discusses related
work and Section 7 concludes the paper.

2 Context-oriented Programming by Example

In this section we motivate COP along with an example application to which we
refer throughout the paper (Subsection 2.1), briefly present our context-oriented Java
extension JCop (Subsection 2.2), and explain issues concerning the expressibility of
the current COP language constructs (Subsection 2.3).

2.1 Example: Crosscutting Behavioral Variations in a Computer Game

In our graphical computer game RetroAdventure, the user controls a hero character
that moves through a world, speaks to computer-controlled characters, and collects
items that are distributed all over the world. The core application is implemented

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

4 · Appeltauer, Hirschfeld, Lincke

Figure 1 – Screenshots of the RetroAdventure world. left: The hero speaks on a rainy day.
middle: The hero is poisoned by a magic bottle. right: Level designer mode with map
information. Here: red lines mark the collision area.

in Java and employs the Swing [Gal06] GUI framework. A simplified object-oriented
decomposition of the user code is shown in Figure 2. In addition to that base func-
tionality, we identified several context-specific concerns that crosscut our class decom-
position:

Context-specific character behavior One of the items the hero can collect is a
magic bottle. If the hero collects (i.e., drinks) the bottle, he becomes dizzy and
confused for several minutes until the bottle magically fills up again. During
that time, he cannot properly walk and speak, and the color of his face turns
pink.

Environmental conditions The world in which the hero lives can change its en-
vironmental conditions, such as temperature, humidity, or daylight. These
changes affect pace and accuracy of the characters’ movement, their optical
range, and responses in conversations.

Level designer mode Besides the context-specific functionality that is directly con-
cerned with the game play, RetroAdventure comes with a debug mode that
reveals useful information to a level designer, such as the hero’s location coor-
dinates, his movement direction and speed, and a collision map that specifies in
which areas the hero is allowed to walk.

Graphics zooming For a better overview of the game world, the user can employ
a zooming feature, which implements a level-of-detail approach. It scales the
graphics and reloads new images with higher or lower level of detail.

Figure 1 shows screenshots of the application2. The implementation of each of these
feature crosscuts several classes of our decomposition. These adaptation points are
represented by colored circles in Figure 2. For example, the confused hero behavior
crosscuts the classes Hero, Character, EntityUI, and ImageProvider. In the following, we
describe how we implemented such crosscutting concerns using COP.

2The pixel art is borrowed from by Nintendo Co., Ltd.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 5

Figure 2 – Class Diagram of the user code of RetroAdventure, where the colored circles
represent crosscutting behavior.

2.2 Context-oriented Programming with JCop

COP allows the modularization of crosscutting concerns by layer declarations. Layers
are modules that are conceptually orthogonal to classes, i.e., a layer may extend or
replace the functionality of one or more classes. To distinguish between different
kinds of method definitions, we use the following terms. Listing 1 presents examples
of these terms in JCop syntax3.

Layer Declaration To distinguish a common (Java) method from methods whose
behavior is adapted by layers, we call the former plain method declarations (Line 2).
Layered method declarations are the counterpart to plain methods and describe meth-
ods that are potentially adapted by at least one layer (i.e, whose behavior may be
modified by a layer at run-time). A layered method declaration consists of a base
method and at least one partial method. The term refers to the static declaration of
plain and partial methods, which is independent of the layer activation at run-time4.

Base method declarations are the methods that are executed if no active layer pro-
vides a corresponding partial method. In most COP languages, the methods provided
by the base language belong to an implicit base layer, which is why we use the term
base method (Lines 3–4)5. Partial method declarations are declared within a layer
and implement a behavior variation of a base method (Lines 7, 12–14, 18–20)6. Layer
local methods are declared within a layer. They are only accessible from within the
layer and can be referred by partial methods for a better modularization (Lines 15).
The enclosing class of a base method is called the host class of the base method and
its partial method (Lines 1–9).

3JCop can be downloaded at https://www.hpi.uni-potsdam.de/swa/trac/Cop/wiki/JCop.
4In terms of AOP, layered method declarations, in particular their partial method declarations,

describe the static join point shadows of the layers’ behavioral variations.
5The base method declarations can be regarded as the static join point shadows of layers.
6A partial method declaration can be compared to an advice body in AOP.

Journal of Object Technology, vol. 12, 2013

https://www.hpi.uni-potsdam.de/swa/trac/Cop/wiki/JCop
http://dx.doi.org/10.5381/jot.2013.12.2.a4

6 · Appeltauer, Hirschfeld, Lincke

1 public class Hero {
2 public Point getPosition() {...} //plain meth.
3 public void move(Direction dir) {...} //base meth. for layered method Hero.move
4 private Position getPos() {...} //base meth. for layered method Hero.getPos
5
6 layer ConfusedHeroLayer { //layer extension declaration
7 private Position getPos() {...} //partial meth. for layered method Hero.getPos
8 }
9 }

10

11 public layer ConfusedHeroLayer { //(top-level) layer declaration
12 public void Hero.move(Direction dir) { //partial meth. for layerd meth. Hero.move
13 proceed(dir); //a proceed expression
14 }
15 private Direction getNewDir(Direction original) {...} //layer local method
16 }
17 public layer Rain { //(top-level) layer declaration
18 public void Hero.move(Direction dir) { //partial meth. for layerd meth. Hero.move
19 proceed(dir); //proceed expression
20 }
21 }

Listing 1 – A layer and partial method declaration in JCop.

In JCop, layers are type declarations that can contain partial method declarations
and the standard class member declarations (i.e., classes, methods, enums, and fields).
Like a top level class, a layer is declared in its own compilation unit and specifies a
new, named reference type. Unlike classes, nested and anonymous layer declarations
are not allowed. However, layer declarations can be extended (i.e., opened) in any
class to add partial member declarations (Lines 6–8).

Partial method declarations qualify their base method by their signature. They
are executed in the scope of the object to be adapted but declared within layers. The
scope of both the object and layer can be accessed through special keywords.

The implementation of behavioral variations can be regarded from two perspec-
tives. A developer may focus either on the commonality of the partial methods that
implement a behavioral variation (i.e., their interaction among themselves) or on their
individuality (i.e., their interaction with its host class). If the focus is on commonality,
partial methods should be implemented within the layer declaration. Thus, the in-
teraction (and coupling) among the partial methods can be implemented easier, since
the partial methods are defined in the same scope. For example, the partial methods
of an HTML rendering layer that visits a document structure would probably contain
similar functionality (i.e, the rendering of the different document nodes) and require
the same auxiliary methods for pretty printing. Therefore, it makes sense to declare
these methods physically close to each other (i.e., in the same layer declaration).
Contrary, if the focus is on individuality and close iteration with their host class,
the partial methods should be implemented physically close to their base method
definition (i.e, in the host class) rather than in their top-level layer declaration. For
example, in a editor for structured text, a layer may add a text formatting action in
a tool tip. The the partial methods implement quite different functionality, such as
the rendering of widgets, parsing the document tree, and applying formatting rules.
These partial methods have more dependencies to their respective host classes than
among each other. Therefore, we would implement them physically close to their base
functionality (i.e., in the same host class).

As a result, JCop’s layer definitions can be extended within classes with additional

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 7

partial methods. Layer declaration extensions can only contain partial methods of
base methods that are defined or inherited by the enclosing class. This mechanism
also allows adaptation of private or protected methods in Java with respect to their
visibility. In Listing 1, we chose to implement the partial method move within the layers
(Lines 12–14, 18–20). Alternatively, we could extend the layer declaration within the
class7.

Layer Composition Layers can be composed with the base system per control flow.
To express layer composition, JCop provides the with block statement (containing
an argument list for the layers to be activated) that can be used in the bodies of
methods, constructors, and initializers. The specified layers are only active for the
dynamic extent of the with block. This implies that the activation of a particular
layer is confined to the threads in which the layer was explicitly activated. Layer
activation does not propagate to new threads—they start with no layers being active.
The following code shows an activation of ConfusedHeroLayer and RainLayer and the
method invocation of Hero.move within the block of a with statement:

public void moveHeroLeft() {
with (new ConfusedHeroLayer(), new RainLayer()) { getHero().move(Direction.LEFT); }

}

To explicitly disable layer execution for a certain control flow, JCop offers the without

(for a specific layer instance) and withoutall (for any instance of a specific layer type)
block constructs.

The proceed Expression A layer composition can contain several partial methods of
a layered method. On method invocation, the call is delegated to the partial method
of the outermost layer. To explicitly invoke the next partial method declaration, we
can use the pseudo-method proceed (Listing 1, Lines 13, 19). The order of the partial
methods that can be traversed by proceed is determined by the layer activation order.
In the listing above, ConfusedHeroLayer is activated before RainLayer. Therefore, the
call to move is first send to ConfusedHeroLayer. If its partial method contains proceed,
it is delegated to RainLayer. In turn, if this partial method contains proceed, the
base method is called. Note that the base method is always the last method in the
composition chain. If one partial method in the composition chain does not contain
proceed, the succeeding partial methods and the base method are not executed. There
is no way to bypass the layer composition chain and directly call the base method.
Both the return type and the expected arguments of proceed must conform to the
method’s signature.

2.3 Problems

In the previous section, we introduced the language constructs (layer declaration
and explicit layer activation) that are provided by all (layer-based) COP languages
we know of. This layer-based implementation allows for an explicit representation
of context-specific behavior by encapsulation of crosscutting concerns and run-time
control over their activation.

7In literature, partial method declarations within top-level layers are also called class-in-layer
declarations. Layer extension declarations are an instance of layer-in-class declarations [CH05].

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

8 · Appeltauer, Hirschfeld, Lincke

Figure 3 – Redundant layer compositions in RetroAdventure (gray: framework thread,
white: main thread).

However, the use of these language features imposes new modularization issues,
namely crosscutting layer compositions and inexpressible relations between layers,
which are explained in the following.

2.3.1 Crosscutting Layer Compositions

In our implementation of RetroAdventure, we encountered some issues concerning
the specification of the dynamic layer composition that demand for more flexible
composition expressions.

We explain that issue by the example of the layer ConfusedHero that implements
the context-specific character behavior. This layer should be activated whenever
the magic bottle is empty (i.e., whenever the hero recently drunk the bottle). The
corresponding layer activation is implemented by the following with statement:

with(currentHeroBehavior()) { ... }

and the following auxiliary method8:

Layer currentHeroBehavior() {
if(getBottle().isEmpty()) return new ConfusedHeroLayer();
else return null;

}

Figure 3 (white box) presents a sequence diagram of a user interaction. The with

statement is used in the keyPressed method of the KeyboardListener class, so that any
user-triggered control flow can activate the layer. So far, we are able to concisely
express the composition of ConfusedHero at only one point in our class decomposition
– namely within the keyboard listener callback method.

However, during the execution of this user-triggered control flow, other threads
may asynchronously call methods that are layered by ConfusedHero but without having

8We assume that the method Bottle.isEmpty returns true for a period of time after being drunk
by the hero and then switches back to false meaning that the bottle has been magically filled up
again.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 9

import model.*;
import ui.*;

public layer Rain{
public void WorldUI.renderMap(){
// render rain
}
public void Character.move(Direction dir){
// calculate the new pace and direction
}
public void Character.talkTo(Character c){
// mix *atishoo* into the conversation
}
}

import model.*;
import ui.*;

public layer Snow{
public void WorldUI.renderMap(){
// render snow
}
public void Character.move(Direction dir){
// calculate the new pace and direction
}
public void Character.talkTo(Character c){
// mix *brr* into the conversation
}
}

Listing 2 – Two semantically similar layers that require redundant partial method declara-
tions.

this layer activated. For example, the Swing framework may asynchronously call the
paint methods of the classes EntityUI and WorldUI, which both provide partial methods
for paint. Because these framework-triggered control flows do not pass the keyPressed

method (and its with statement), they only execute the base declarations of the paint

methods and ignore their partial declarations. Therefore, the control flows of the UI
thread must be extended with a layer composition as well. Figure 3 (gray box) shows
this framework-triggered control flow. Because we cannot access the source code of
the UI loop9 inside the framework, layer composition is moved to the entry points
of the framework-triggered control flows into the user code. As an effect, the layer
composition statements are redundantly implemented at several source code locations.

With that, layer composition is now a crosscutting concern in our implementation.
Obviously, this fact contradicts the intention of COP to support the separation of
concerns. Section 3 describes how crosscutting layer composition can be modularized
using context classes in JCop.

2.3.2 Inexpressible Relationships between Layers

The behavior of layers can be semantically related. In the RetroAdventure world, it
can either rain or snow, but not both, see Listing 2. Therefore, it should be possible
to declare the two layers to be mutually exclusive.

Moreover, both layers Rain and Snow adapt the base program at the same base
methods. As they provide similar functionality, they also require similar subroutines
that must be redundantly declared for each layer, see Listing 2. Such relationship
between layers cannot be directly expressed by means of COP implementations so
far. In Section 4, we describe how JCop addresses this issue.

3 Declarative Expression of Crosscutting Layer Compositions

In the previous section, we discussed some of the limitations of current COP imple-
mentations: If applied to specific application architectures, it may be impossible to
concisely declare a layer composition. Instead, adaptation statements are scattered
over the application, which in turn hinders good separation of these crosscutting
concerns. JCop offers means to declaratively express layer compositions. Layer com-

9For simplification, we represent the main UI thread loop by a class UILoop in the diagram.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

10 · Appeltauer, Hirschfeld, Lincke

1 public contextclass MagicBottleContext {
2 private MagicBottle bottle;
3 private Layer confusedBehavior = new ConfusedHeroLayer();
4

5 public MagicBottleContext(MagicBottle bottle) {
6 this.bottle = bottle;
7 }
8 public boolean heroDrunkTheBottle() {
9 return bottle.isEmpty();

10 }
11 when(heroDrunkTheBottle()) : with(confusedBehavior);
12 }

Listing 3 – A context class handling the composition of ConfusedHeroBehavior.

positions can be expressed by composition predicates that are encapsulated in a con-
text class module (Subsection 3.1). Furthermore, layer declarations can be declared
globally active (Subsection 3.2).

3.1 Context Classes

JCop’s declarative layer composition is implemented by a domain-specific aspect ori-
ented language [KLM+97]. Its join point model consists solely of method executions,
which can be specified by pointcuts. Syntactically, declarative compositions consist
of two parts, a pointcut part and an advice composition part. The pointcut part is a
logic expression consisting of built-in and named pointcuts. The advice composition
contains a sequence of with and/or a without operators. Layer composition pointcuts
can be composed using the logic operators disjunction, conjunction, and negation.
JCop provides four built-in pointcuts, on, when, this, and args, and the declaration of
named pointcuts.

Built-in Pointcuts The on pointcut can describe method executions at which layers
should be composed. The respective method is specified by its signature, similar to
an execution pointcut in AspectJ-like languages [KHH+01, AGMO06]10.

The when pointcut allows for a more implicit description of layer composition, inde-
pendent of the actual execution in the main control flow. It is useful for applications
in which context activation depends on the change of a specific property (such as the
state of a MagicBottle object) that can be evaluated by a boolean expression. When-
ever this expression evaluates to true, the layer composition is applied. Listing 3
presents a context class that declares a when pointcut to evaluate whether the hero
should apply its confused behavior (Line 11).

The when pointcut expressions are evaluated every time a method invocation is
potentially dispatched to a layer involved in the composition, i.e, at every execution of
a layered method. In general, the pointcut expressions are considered to be side-effect
free11. In order to guarantee that a dynamic extent is executed with a consistent layer
composition, we impose an additional restriction to the when evaluation. JCop ensures
that, once a when pointcut is evaluated, it is not re-evaluated within the dynamic extent

10In the following, we assume that on pointcuts use this signature-based join point specification.
However, using an annotation-based approach as used in AspectJ, would be also possible conceptu-
ally.

11A similar restriction is specified for expressions used in guard predicates in the ObjectTeams
language [HHM07].

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 11

originating from this evaluation. This strategy conforms to the original context-
oriented programming model: once a composition has been activated, it is consistent
and valid until its with block terminates. However, if another evaluation strategy
is desired, the when pointcut can be labeled with an annotation. The annotation
@CheckOncePerCflow represents the default behavior explained in the previous paragraph
(i.e., no annotation is specified). The annotation @CheckAlways denotes a continuous
evaluation at any method execution. This may be useful if the expression to be
evaluated has side effects that should be always executed.

The two remaining pointcuts this and args help to further specify the join points
collected by on and when but do not bind new join points.

Named Pointcuts Pointcut expressions may become complex and hard to com-
prehend. For a better modularization, they can be explicitly declared by a named
pointcut declaration. Named pointcut declarations are treated as a member of their
enclosing context class. As a type member, it may have an access modifier such as
public, protected, private, abstract, or final.

Syntactically, named pointcuts in JCop are similar to their counterparts in As-
pectJ. However, named pointcuts in JCop do not have parameters because they do
not pass variables to their advice block.

Composition Advice A composition advice consists of a comma separated list of
with, without, or withoutall operations that are applied to the join point consecutively.
The composition block is only executed if the pointcut condition matches at least
one join point. There are two different reasons for a pointcut to match. Either, a
method is executed that is declared by an on pointcut. Or, the expression of a when

pointcut evaluates to true. The layers specified by the composition operations are
applied to the composition in the order they occur in the advice declaration. The
following advice activates first an instance of ConfusedHeroLayer and ZoomingLayer, and
then deactivates all active layers of type RainLayer:

on(...): with(new ConfusedHeroLayer(), new ZoomingLayer()), withoutall(RainLayer.class)

This corresponds to the following explicit declaration, which would be required at any
matching join point:

with(new ConfusedHeroLayer()) {
with (new ZoomingLayer()) {
withoutall(RainLayer.class) {
...

} } }

Context Class Declaration Declarative compositions and named pointcuts are
enclosed by a context class declaration, a special class declaration that must contain
at least one composition declaration. In addition, context class declarations can
contain any class member declarations and named pointcut declarations. Context
class declarations use the keyword contextclass instead of class.

3.2 Static Active Compositions

Layers Layers can also be used for static extensions of the application, which is
denoted by the use of the staticactive modifier in the layer declarations. At the
initialization of a program, a singleton instance of all static active layer is created
and added to the composition. For the initialization of the singleton, the default

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

12 · Appeltauer, Hirschfeld, Lincke

1 void initMagicBottles() {
2 MagicBottle greenBottle = new MagicBottle();
3 MagicBottle redBottle = new MagicBottle();
4 MagicBottleContext greenBottleCtx = new MagicBottleContext(greenBottle);
5 MagicBottleContext greenBottleCtx = new MagicBottleContext(redBottle);
6
7 greenBottleCtx.deploy(); // composition: [eval(greenBottleCtx), base]
8 with (new RainLayer()) { // composition: [RainLayer, eval(greenBottleCtx), base]
9 redBottleCtx.deploy(); // composition: [eval(redBottleCtx), RainLayer,

10 ... // eval(greenBottleCtx), base]
11 } // composition: [eval(redBottleCtx), eval(greenBottleCtx), base]
12 redBottleCtx.undeploy(); // composition: [eval(greenBottleCtx), base]
13 }

Listing 4 – Instantiation and activation of two context classes.

constructor of the layer is used. This feature simplifies the declaration of crosscutting
concerns that should be active during the entire execution of an application. At
run-time, an introspection of the composition list (using Composition.current(), see
Appendix) returns at least all static active layers and the base method. To load
and activate static active layers, the JCop run-time needs to be parametrized with
their full qualified names. For that, the JCop compiler offers the option -staticactive
<typenames>. The composition order of static active layers is defined by the order of
the parametrization. Likewise, static active layers can be passed to the JCop launcher
using the same option.

In RetroAdventure, we consider the zooming feature as a crosscutting concern that
should statically extend our application, similar to an class extension. Therefore, we
implement this functionality as a static active layer. The following line compiles
RetroAdventure and uses the ZoomingLayer:
jcopc -sourcepath src -d bin -staticactive gui.zooming.ZoomingLayer main.RetroHeroInit

Context Classes By default, context classes must be initialized and deployed in
the control flow (see Subsection 3.3). In addition, the modifier staticactive declares
that one singleton instance of the context class is implicitly globally active. The
advice of these static contexts potentially affect every running thread in the system.
Note that there is only one instance of a static active context class. In terms of AOP,
a static active context class declaration is comparable to an default singleton aspect
declaration in AspectJ [KHH+01]. With that, a context class is not connected with
particular code fragments or control flows within the code but, instead, serves as
a global context-dependent behavioral adaption affecting the whole application. To
be exposed to the compiler and launcher, static active context classes use the same
mechanism than static active layers.

3.3 Execution Order at Shared Join Points

Declarative layer compositions are evaluated at context class instance level. Hence,
multiple instances of a context class can be active in the same control flow. Context
class instances can be deployed and undeployed, in a similar way to dynamic aspects
languages, such as CaesarJ [AGMO06]. In order to activate the advice of a context
class instance, the method deploy must be called. Likewise, the method undeploy

disables the advice execution of a context class instance. Listing 4 shows an example

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 13

for the initialization of two magic bottles, their binding to a context class instance,
and the activation of the context classes.

It is possible that composition advice of multiple instances — either of the same
or of different context classes — share the same pointcut. In this case we need a well
defined order of composition advice execution.

In COP, the partial method execution order is controlled by the programmer
through the order of explicit with-statements in the code. The same assumption holds
for context classes. Within a context class advice body, the sequence order of with

and without expressions determines the order in which the layers are applied to the
composition, see Subsection 3.1.

The order in which the layer compositions of two distinct context classes are
applied is determined by the deploy order of the instances, which is expressed us-
ing the un-/deploy methods that context classes inherit from their implicit super
type jcop.lang.ContextClass, see Appendix. The last deployed context class instance
is called before the other context classes. In our example in Listing 4, the advice
of the red bottle context is executed first since it is deployed first (Line 7). On the
execution of a layered method, the layer-aware dispatch first evaluates the advice
of greenBottleCtx and adds its layers to the composition. Then, it dispatches to the
base method. The next line of the listing contains an explicit with statement, which
is added to the composition list and would be the first to call. Next, we deploy
redBottleCtx, which, in turn, is moved to the end of the composition. Now, the layer
composition at least contains the rain layer and the base layer. Depending on the
result of the evaluation (the join point matching), redBottleCtx provides layers that
are placed before the rain layer, and greenBottleCtx provides layers between the rain
layer and the base method. In Line 11, the block of the explicit with statement ends.
Thus, the rain layer is removed from the composition, while the two context classes
are still contained.

Context class activation is thread-local but not bound to a dynamic extend like
layer activation. Also note that context activation does not immediately cause any
changes to the composition but adds composition statements for future computations
to an ordered list.

4 Expression of Layer Relationships

In RetroAdventure, some layers provide alternative behavior, are mutually depen-
dent, or exclusive. Similar to alternative subclasses, alternative layer declarations
often share parts of their state or behavior. In such cases, it is convenient if the
programming language provides two features. First, a means to minimize code rep-
etition by code reuse and second, a means to represent relationships between layers.
Since these relationships may be dynamic, a static declaration of them would not be
flexible enough. JCop addresses the former by class-based inheritance for layer types
(Subsection 4.1) and the latter by reflective means that allow to programmatically
specify declare layer relations (Subsection 4.2). For applications that require special
reasoning about layers and their activation, the reflection API provides access to the
required information (Subsection 4.3).

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

14 · Appeltauer, Hirschfeld, Lincke

Figure 4 – Examples for proceed and superproceed in layer compositions (gray boxes).

4.1 Class-based Inheritance

JCop’s layer type declarations come with a class-based layer inheritance mechanism.
The implicit super type of a layer is jcop.lang.Layer, see Appendix B.1. Optionally,
layers can declare a super layer using Java’s extends declaration. Layers may only
inherit from other layers. They cannot inherit from classes.

Scoping The introduction of super layers requires an extension to the scoping mech-
anisms known from Java. The scope of a partial method declaration in a layer type
is the method’s host class. Contrary, the scope of a class member declaration in, or
inherited by a layer type is the entire layer body, including any nested type declara-
tions.

As a consequence, the behavior of Java’s keywords this and super must be specified
for their use within partial method definitions. In partial methods, the this keyword
refers to the host object and the super refers to host object’s super type. For the
explicit access to the enclosing layer within partial methods, we introduce two new
keywords: thislayer refers to the enclosing layer and superlayer refers to the super
type of the enclosing layer.

Member references without an explicit receiver object or a this, thislayer, super,
or superlayer keyword are first looked up in the enclosing layer, then in the scope of
the target object. This lookup order is based on our experience that partial methods
access layer local methods more often than members of their host class.

Partial Method Overriding A partial method mA declared in a layer A overrides
a partial method, mSuperA, declared in layer SuperA if A is a sublayer of SuperA and the
signature of mSuperA is equal to the signature of mA, including all partial method
modifiers (except abstract12). Layers can override partial methods of their super
types. Partial methods do not appear in the interface of layers (since their scope is
the class to be layered). Thus the implementation of a partial method in a super layer
cannot be invoked by a super call like super.m()13. To support super access for partial
methods, JCop provides a variation of the proceed expression, called superproceed.

While proceed calls the next corresponding partial method in a layer composition
chain, superproceed calls the partial method declaration of a super layer. The super
layer does not necessarily have to be an element of the composition chain. Figure 4 (a)
shows a layer composition where a layer A uses superproceed to call its superlayer. Note

12Super and mSuperA may be declared abstract and implemented by mA.
13Otherwise, the same mechanism would allow explicit calls of any partial method of a super layer,

with unclear semantics.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 15

public abstract layer Weather {
// abstract partial methods, define variation points
abstract public void WorldUI.renderMap();
abstract public void Character.talkTo(Character c);
abstract public void Character.move(Direction dir);
// layer local method
public Direction slowDown(Direction dir, int speed) { ...}

}

public layer Rain extends Weather {
public Composition onWith(Composition current) {
return current.withoutAllLayer(Snow.class);

}
// concrete partial methods, implement variation points
public void WorldUI.renderMap() {...}
public void Character.talkTo(Character c) {...}
public void Character.move(Direction dir) {slowDown(dir, 5);}

}

public layer Snow extends Weather {
public Composition onWith(Composition current) {
return current.withoutAllLayer(Rain.class);

}
// concrete partial methods, implement variation points
public void WorldUI.renderMap() {...}
public void Character.talkTo(Character c) {...}
public void Character.move(Direction dir) {slowDown(dir, 10);}

}

Listing 5 – Layer inheritance and implicit layer-based activation.

that in this case the super layer is not part of the composition. A proceed within the
superlayer will call the next layer in the composition, which is B.

If both the layer and its super layer are elements of the composition chain, they
are treated like two distinguished layers and executed in the order of their activation.
If the sublayer is called before the superlayer, proceed and superproceed have the same
behavior, see Figure 4 (b). If the superlayer is called before the sublayer, superproceed
calls the superlayer a second time. Note that lookup cycles cannot occur, since proceed

is evaluated dynamically. A proceed within the sublayer calls the next layer in the
composition, which is the base layer, see Figure 4 (c).

The declaration of superproceed is statically checked. Therefore, if no super layer
implements a corresponding partial declaration its use causes a compile-time error.

Abstract Layers Layer declarations can be declared abstract. In combination with
partial method declarations, this feature can be used to separate the specification of
adaptation points from their implementation. Abstract layers may contain concrete
members, similar to abstract classes. Typically, the identification of adaptation points
in a large systems requires deep domain knowledge. Once these adaptation points
are identified, the implementation of behavioral variations may be more independent
of the system internals and therefore easier to implement by developers with less
experience of these internals. This use of abstract layers is similar to the use of
abstract aspects in AspectJ [KHH+01].

Listing 5 illustrates how we separate identification and implementation of adapta-
tion points using layer hierarchies. The example shows the layers Rain and Snow that
adapt the system at the same layered methods. Because of this similarity, we intro-
duce an abstract layer as a common superlayer of the two layers. The abstract layer
Weather implements some auxiliary methods that can be used by its concrete sublayers.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

16 · Appeltauer, Hirschfeld, Lincke

public layer Rain extends Weather {
public Composition onWith(Composition current) {
if (World.finalQuestRunning()) {
if (!current.contains(Snow.class))
return current.withoutLayers(new Snow());

}
else
return current.withoutAllLayer(Snow.class);

}
}

Listing 6 – Different implicit layer activation strategies.

In addition, this abstract layer defines abstract partial methods to be implemented
by concrete weather layers. The sublayers Rain and Snow can be implemented without
identifying these adaptation points. Instead, the compiler tells the developer which
partial methods have to be implemented. This way, we can use abstract layers to
declare a simple crosscutting interface [GSS+06].

4.2 Composition Event Handlers

Some application-specific dependencies of layers may also impact their composition.
For example, in RetroAdventure, the layer Rain must not be composed with the layer
Snow (sleet does not exist in our fantasy world). JCop allows the expression of such
layer-based composition rules through an event-handler mechanism that allows layers
to manipulate the run-time composition on activation and deactivation. For that pur-
pose, the interface of jcop.lang.Layer —the implicit superclass of all layers—provides
the two event handler methods onWith and onWithout that can be overwritten by con-
crete layers (see Appendix B). The handlers are called for explicit and declarative layer
composition (with statements and context classes). However, they are not called for
reflective layer activation (see Subsection 4.3), which could lead to infinite loops since
it could be used within the event handlers themselves. The handlers are called right
after layer activation and right before layer deactivation. The current composition is
passed as an argument to the method so that it can be analyzed and manipulated
using reflection as described in the previous paragraph. The handler methods return
a composition object that is activated instead of the input composition.

Listing 5 shows the implementation of such rules for the two layers Rain and Snow.
To assure that instances of both layers are never active at the same time, we override
onWith. Here, we could either throw a JCopCompositionExeception that indicates the
illegal layer composition. In our example however, we decide to solve the conflict by
mutual deactivation. On activation of each of the two layers, its composition handler
method takes care that any instance of the other one is removed from the list.

For the special case of mutual exclusion, one could also think about a rule-like
syntax extension that is more explicit than our above implementation using compo-
sition event handlers. The EventCJ language (see Subsection 6.1.1) provides such a
rule engine to switch between layers. Our approach is more flexible since it evaluates
the rules at run-time and also takes dynamic changes to relations into account. If,
for example, some quests our RetroAdventure hero has to solve allow for more dra-
matic weather conditions, we could extend our rules by run-time checks to change the
dependency. Listing 6 presents an alternative behavior of the rain layer composition
handler if the final quest of RetroAdventureis running. It checks if a snow layer is

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 17

public void m() {
with(new Rain()) {
final Composition compOfOtherThread = Composition.current();
new Thread() {
public void run() {

with(compOfOtherThread.getLayers()) { ... } }
}.start();

}

Listing 7 – Using reflection to instrument new threads with a layer composition.

part of the composition. If not, it activates a new layer instance. The implementation
of the snow layer handler method is similar.

4.3 Reflective Layer Composition

The constructs presented so far support most common scenarios for layer composition.
For situations requiring special reasoning about layers and their composition, JCop
provides a reflection API. It gives access to inspect and manipulate layers, their
composition and their partial methods at run-time.

The complete reflection API is documented in the Appendix B. Its class Composition
contains an ordered list of composed layers. It provides access and navigation through
the composition’s layers. The methods withLayers, withoutLayers, and withoutAllLayers

correspond to the composition statements with, without, and withoutall and return
a new instance representing the modified composition. Note that the methods do
not activate the composition object. For activation, the composition’s layers can be
passed to a composition function. Listing 7 presents the usage of the reflection API. In
JCop, a new thread does not inherit the composition of its creating thread. However,
using reflection we can easily initialize the new thread with the old layer composition
and also add new layers to the new composition. The run-time composition is ac-
cessed via the Composition interface. Using the withLayer method, a new composition
object containing the old composition plus an instance of Rain is generated. An array
containing the composition’s layers is then used as an argument of the with statement.

5 Evaluation

We observed the issue of crosscutting layer compositions not only in the RetroAd-
venture case study, but also in several other case studies that we conducted and
presented in previous work. In this section, we give a brief overview of these projects
(Subsection 5.1) and describe the results of our refactoring to JCop (Subsection 5.2).

5.1 Case Studies

CJEdit [AHM+10, AHHM11] is a simple graphical source code editor that pro-
vides two modes of user operation: programming and documenting. The programming
mode is supported by syntax highlighting, an outline view, and a compilation/exe-
cution toolbar. The documenting mode allows formatting Java compilation units
with rich text comments. Both operation modes, require separate graphical elements
(menus, views, and toolbars) and functionality that require changes at several parts
of the application. Moreover, the switch between the operation modes depends on

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

18 · Appeltauer, Hirschfeld, Lincke

public void onCursorPositionChanged() {
if (blockTypeChanged()) {
with (getLayersOfCurrentBlock()) { drawWidgets(); }

} }
public void onSave() {
if (blockTypeChanged()) {
with (getLayersOfCurrentBlock()) { saveDocument(); }

} }
public void onPrint() {
if (blockTypeChanged()) {
with (getLayersOfCurrentBlock()) { printDocument(); }

} }
public void onFileNew() {
if (blockTypeChanged()) {
with (getLayersOfCurrentBlock()) { createDocument(); }

} }

Listing 8 – Redundant layer composition in CJEdit’s event handlers.

dynamic properties. Therefore, we decided to implement the operation modes by
layers and the switch between them by layer composition blocks.

The text editor’s core is implemented using Java and the Qt Jambi GUI Frame-
work [NC09]. It consists of 33 classes (approximately 3500 lines of code), where
most parts are written using plain Java constructs. The implementation of the user
operation modes consists of 6 layers (approximately 330 lines of code).

Some characteristics of GUI-based programming led to additional challenges for
the layer implementation similar to what we experimented during the development
of RetroAdventure. User interaction with GUI behavior is event-driven rather than
activated by control flow. The main event-loop is hidden in the framework’s internal
implementation, which is inaccessible for the adaptation by with statements. Hence,
we have to declare composition statements redundantly within our application source
code instead of within the framework’s event loop.

Listing 8 presents the event handler methods and their redundand with statements.
We addressed that problem by context classes. CJEdit also contains layers with

overlapping functionality, as shown in Listing 914. Both RTFWidgets and CodeWidgets

share extend the same layered methods and require similar auxiliary methods. To
get rid of this redundant declaration, we used layer inheritance for their JCop-based
implementation.

WhenToDo [RAL+11] is a mobile todo application that helps to prioritize tasks
depending on the current working environment and situation. For example, specific
tasks require Internet access, or can only be accomplished at a specific location. If
the required resources are available, the application reminds the user to complete the
respective task. Instead of implementing context management and analysis ourselves,
we base our application on an existing system [RAL+11, RSC06]. This system allows
the specification of context-sources (such as a NearbyContact service) and provides a
rich context query language. Queries can be executed using the context management
interface in two ways: Either, the query is directly evaluated and returns whether
the context is active. Or, an observer is registered for each query and notifies the
application on any future context change.

14Note, that these declarations are layer declaration extensions and declared inside their host class
TextEditor, which is why they are able to extend private methods.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 19

public class TextEditor {
layer RTFWidgets {
//partial methods
after private void drawMenus() { ... }
after private void drawToolBars() { ...}
// auxiliary members
private QMenu formatMenu;
private FormatToolBar formatToolBar;
private CodeToolBar createToolBar() {...}
private Menu createMenu() {...}

}

layer CodeWidgets {
// partial methods
after private void drawToolBars () {...}
after private void drawMenus () {...}
// auxiliary members
private CodeToolBar codeToolBar;
private Menu codeMenu;
private CodeToolBar createToolBar() {...}
private Menu createMenu() {...}

}
}

Listing 9 – Code repetition in CJEdit’s layers.

The implementation consists of the actual WhenToDo application which is inte-
grated into a simple mobile device simulator. WhenToDo is implemented by 9 classes
(approximately 400 lines of code). The simulator consists of 14 classes (approximately
1000 lines of code)15.

In this application, layer composition depends on external context change events
that may occur anytime. To anticipate this asynchronous context change during
program execution, we have to introduce a layer composition block guarded by a
condition at each relevant source code location. To avoid these redundancies, we
implemented a context class to deal with this crosscutting concern. For example, we
use the context class NearbyContacts to manage context changes. Context queries are
then passed to the context class that handles the query’s result and composes new
layers when the context changes.

AstroPic [SAH11] is an image gallery application for the mobile device platform
Android platform [Ope]. AstroPic automatically downloads and displays the cur-
rent astronomy picture of the day with a short descriptive text. The application is
implemented for Android as a simple graphical user interface that asynchronously
downloads the current image from the Web. Its download strategy depends on the
network availability, for which several layers provide alternatives.

The AstroPic Android application consists of nine classes and two layers for net-
work bandwidth-specific behavior (approximately 320 lines of code).

The application programmer’s control over the threads and callbacks in Android
is limited, which complicates explicit layer activation and again causes redundant
layer composition blocks. Therefore, we employed a context class for a declarative
specification of layer composition. However, this does not entirely solve the problem
of thread control but shifted it from layer activation to context activation. Now, the
application code that may be executed by different threads potentially uses different
active context classes and with that different layer compositions. As a solution, we
used the staticactive declaration of context classes. These static contexts potentially
affect every running thread in the system. Thus, the context class is not connected
with particular code fragments or control flows within the code but, instead, serves
as a global context-dependent behavioral adaption affecting the whole application.

MyBook [AH12] is a simple Web service-based book shop, whose client and ser-
vices are implemented using COP. It offers a book search that considers user-profile

15We omitted the implementation of a GUI for the mobile phone and its applications.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

20 · Appeltauer, Hirschfeld, Lincke

Figure 5 – Overview of the ContextJ/JCop implementations of layer composition in
framework-based applications.

information such as age and visual defects. If, for example, a juvenile customer per-
forms a book search, the result is filtered and inappropriate books and advertisements
(banners) are not listed; if a customer has visual problems reading the Web page, it
is rendered with larger font size and images.

The MyBook Web shop is implemented using Enterprise Java Beans and the
JBossWS Web service framework [Red11], which we extended to attach layer com-
position information to remote method calls. The frontend consists of 14 classes and
3 layers, the backend contains 12 classes and 3 layers (approximately 4500 lines of
code).

5.2 Results

Figure 5 gives an overview of these case studies. We first implemented the applications
using our plain COP language ContextJ [AHHM11]. ContextJ supports simple layer
declaration – not capable of event handlers, global activation, and inheritance – and
explicit layer composition – using the with block. As the table shows, layer composition
is scattered over up to 33% of the user code classes. In three applications exist layers
that are semantically related contain up to 85% code duplication.

We then refactored the applications to JCop and used the features described pre-
viously. In all case studies, layer composition could be fully encapsulated by context
classes and static active layers. Layer inheritance allowed us to reduce almost any
code duplication within the layers, so that the modularization of the behavioral vari-
ations has been advanced. For example, the layer composition within CJEdit’s event
handlers (see Listing 8) is now represented by a context class, see Listing 10. The wid-
get layers now inherit the partial methods to be implemented by their new superlayer
UserModeWidget, see Listing 11.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 21

public contextclass UserActivityChange {
private CJEditWindow win;
public UserActivityChange(CJEditWindow win) {
this.win = win;

}
pointcut eventHandlerCall :
on(void CJEditWindow.onPrint()) || on(void CJEditWindow.onSave()) ||
on(void CJEditWindow.onFileNew()) || on(void CJEditWindow.drawWidgets());

eventHandlersCall && this(win) : with(win.getLayersOfCurrentBlock());
}

Listing 10 – A context class declaring the composition at CJEdit’s event handlers.

public abstract layer UserModeWidget {
protected QMenu formatMenu ;
protected FormatToolBar formatToolBar ;
protected CodeToolBar createToolBar() {...}
protected Menu createMenu() {...}

}
public class TextEditor {
layer UserModeWidget {
abstract after private void drawToolBars();
abstract after private void drawMenus();

}
layer RTFWidgets { /*implement the abstract partial methods */ }
layer CodeWidgets { /*implement the abstract partial methods */ }

}

Listing 11 – The abstract layer UserModeWidget declares auxiliary methods and abstract
pointcuts.

6 Related Work

In this section, we look at programming languages that are related to JCop. We dis-
cuss related approaches along JCop’s language features for layer composition (Sub-
section 6.1) and layer declaration (Subsection 6.2). Finally, we present language
approaches related to COP (Subsection 6.3).

6.1 Layer Composition

We first discuss the language design and implementation of related COP languages
with respect to their layer composition constructs. Figure 6 presents an overview
of the COP languages mentioned in this section and summarizes their features and
implementation.

6.1.1 Pointcut-based Declaration

The EventCJ [KAM11] language is closely related to JCop16. Both languages are
based on ContextJ [AHHM11] and extend it with a domain-specific pointcut language

16The first paper mentioning EventCJ [KAM10] was published, shortly after our first publication
describing JCop [AHM+10].

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

22 · Appeltauer, Hirschfeld, Lincke

for declarative layer activation. However, they use different built-in pointcuts and
advice semantics.

EventCJ inherits the entire AspectJ join point model and supports all pointcuts
of the AspectJ language. Pointcuts are used to declare events. These events can be
handeled by layer transistion rules to manage layer composition. The following listing
(taken from [KAM11]) presents the declaration of an event GPSEvent and a transition
rule that switches the activation of two layers WifiNavi and GPSNavi.

declare event SwitchDevice(Navigation navi):
after call(void Navigation.onStatusChanged(..)) && target(navi): sendTo(navi);

transition GPSEvent: WifiNavi switchTo GPSNavi

Like JCop, EventCJ uses pointcuts to express the join points of a layer activation.
However, JCop restricts its join point model to method executions and dynamic con-
ditions. Furthermore, the layer composition within the advice is different in both
languages. Declarative layer activation in EventCJ is defined by transition rules that
can express conditional layer activation.

EventCJ also provides layer activation handlers that can execute additional func-
tionality on layer composition. The handlers are declared by special keywords, activate
and deactivate:

class A { ... layer Alpha { activate{ ... } deactivate{ ... } } }

In contrast, JCop layer activation handlers do not require a syntax extension but are
implemented as methods. In addition, they can influence the method composition, as
described in Section 4.2.

Except for declarative compositions, EventCJ does not support other features that
were added to JCop in addition to the ContextJ features. Thus, EventCJ does not
support top-level layer declaration, layer hierarchies, and layer instantiation.

6.1.2 Instance-specific and Object Structure-based Layer Composition

The JavaScript extension ContextJS [LASH11] addresses the need for additional scop-
ing strategies, such as instance-specific and structural scoping, and proposes an open
implementation for COP layer composition. This open implementation allows devel-
opers to define domain-specific scoping strategies. With JCop, we cannot directly
define such new scopes. ContextJS, in turn, cannot concisely encapsulate scattered
composition statements.

6.1.3 Event-based Layer Composition

An important difference between event-based programming and event-based context
(de)activation needs to be highlighted. Event-based programming supports the syn-
chronous or asynchronous trigger of an immediate action as events are signaled. Con-
versely, event-based context (de)activation triggers recomposition, which causes the
binding of actions at interfaces that may be executed in the future. Obviously, layer
composition events have a certain influence on action characteristics, but this is ex-
pressed only in terms of bindings of actions to interfaces; their actions are not imme-
diate (synchronous or asynchronous) results of events.

The CaesarJ extension ECaesarJ [NNG09] supports the definition of context as a
class which implements two events that represent context entry and exit. Unlike JCop,
ECaesarJ does not provide a layer-like representation and composition mechanism of

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 23

behavioral variations. Furthermore, objects must explicitly handle context change,
whereas event-based context implicitly changes the composition.

EventJava [EJ09] models events as asynchronous methods and compound events
by correlation patterns. Event-specific behavior is encapsulated in the method bodies
of correlation patterns that allow access to application-specific data and to implicit
context information of the event. This can then be customized for application-specific
purposes. The execution of event methods can be restricted through predicates spec-
ified in a when clause. Contrary, JCop’s when pointcut specifies the constraints under
which an event is triggered.

In Ptolemy [RL08], code blocks are bound to events, similar to pointcut-advice
binding in AOP. Classes can contain binding definitions to such events or to com-
positions of multiple events. Events are explicitly announced, in contrast to JCop’s
implicitly evaluated when. Ptolemy’s event handling mechanism provides the option
for the immediate execution of functionality on event announcement. Contrary, event-
based layer compositions in JCop do not immediate execute functionality but rather
activate their corresponding layers on their next execution. That indirection assures
that layer compositions wait until the execution stack has reached a safe point for
recomposition, namely the execution of a layered method.

6.1.4 Reflective Layer Composition

Some situations require access to the currently active layers at run-time, as well
as common layer definition and activation. A few COP languages, such as Con-
textL [CH05] and ContextS [HCH08] offer a reflective API that specifically allows the
introspection of the current layer composition. Other languages, such as the Python-
based implementations PyContext [vLDN07], ContextPy [HPSA10], and ContextJS
offer access to the layer composition though the reflective API of their host language.
However this functionality is not provided by an API but requires the use of internal
functions of the COP implementations17.

Moreover, ContextL’s reflective API supports reflective layer activation that offers
means to manipulate the run-time layer composition. JCop’s reflective API presented
in the appendix provides explicit access to layer composition, allows to modify compo-
sitions via composition handlers, and offers some auxiliary methods for the convenient
expression of include and exclude relationships.

6.1.5 Dynamic Deployment of Context Classes

The CaesarJ [AGMO06] language is based on an alternative module concept by
unifying classes, aspects, and packages. CaesarJ aspects can be deployed at run-
time using different kinds of dynamic scope, much like context classes. CaesarJ also
supports virtual classes [MMPN93]. This enables dynamic class extension, depending
on the scope of the calling object. The ability of virtual classes to extend modules
is similar to that of layers. However, class extension with layers is not bound on the
caller’s module but differs depending to the current layer composition.

6.2 Layer Declaration

In the following, we compare the properties of layer declarations of JCop to those of
related languages.

17In Figure 6, we denote this reflective access with (x).

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

24 · Appeltauer, Hirschfeld, Lincke

6.2.1 Adaptation of Framework Code

The Objective-C based language Subjective-C [GCM+10] allows for the definition of
partial methods whose base method source code is not accessible. Therefore, it can be
used to adapt framework code with partial methods. Subjective-C does not provide
control-flow based layer composition. Instead, layers are globally activated and deac-
tivated. Because of this global activation, the problem of crosscutting layer composi-
tion, i.e., different control flows that need to be adapted with the same composition
statement, does not occur in Subjective-C. We believe that global layer activation can
only be applied to scenarios where the interruption of the current execution by an
adaptation does not lead to inconsistent state.

The implementation of the layer composition makes use of the ability of Objective-C
to change the virtual lookup tables at run-time. This implementation strategy for
COP has been first proposed by the cj language [SHHJ09] and also implemented for
JCop (using the dynamic invocation feature of Java 7) [AHH10].

6.2.2 Layer Guards and Implicit Layer Activation

The activation of a partial method might not only depend on one layer being active.
Instead, there might be scenarios in which the activation of a partial method is only
possible when a certain combination of layers is active. To declare such layer relation-
ships, ContextPy provides the concept of guards. Guards are functions that receive
the list of currently active layers and return a Boolean value indicating whether the
partial method this guard was assigned to is to be activated.

Similarly, PyContext supports a kind of implicit layer activation that is designed
to deal with the issue of scattered layer activations. Implicit layer activation factors
out layer composition from the main program logic and, instead, defines a method
returning whether the layer is active or not. Each time a layered method is called
and the layer is registered for implicit activation, the active method is executed and
its corresponding partial method, if necessary, contributes to the final composition.

Both approaches are similar to layer composition handlers in JCop. However,
composition handlers can control and modify the entire layer composition list, whereas
guards and implicit activation can only decide about their own participation.

6.2.3 Layer Relationships

ContextL provides a feature description language library [CD08] that supports the
declaration of relationships between layers. Layer composition consistency with regard
to the feature description is checked by an algorithm that computes valid composition
combinations. If, at run-time, a layer composition violates the feature description, the
conflict is solved interactively by the end-user. Therefore, a window dialog asks the
end-user which feature should be selected (i.e, which layer should be activated). This
approach is useful as long as a system’s layers and the semantics of their composition
are comprehensible for end-users. If layers are declared at a more technical level, end-
users may not be able to decide about the composition. Furthermore, an interactive
selection—and its interruption of the program execution—is not acceptable for some
application domains.

The reflective API of JCop allows the declaration of ’include’ and ’exclude’ rela-
tions. These methods are implemented in two ways. First, a violation of a feature
description throws a run time exception. In this case, the exception may be used to
handle the inconsistency. Second, the include method can be parameterized with lay-
ers that should be activated. Similarly, exclude is allowed to deactivate the layer that

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 25

should not be part of the composition. With these methods, it is possible to define
an API with similar behavior as the feature description implementation in ContextL.
However, the ContextL implementation is more declarative than the imperative ap-
proach.

Layer relationships can also be expressed in EventCJ by its layer transition rules
[KAM11]. For example, the following EventCJ code expresses that, if a layer Rain is
active, it should be deactivated and replaced by a layer Snow:

direction SwitchWeather {
declare event Snowfall() : after call(* *.snow());
transition Snowfall : Rain switchTo Snow;

}

Note that the event Snowfall triggers the transition whenever the method (here: snow)
is called. Contrary, JCop does not use this generic events approach but only accepts
layer composition events. Layer transition rules also consider dynamic change to
these rules. For example, to change this rule if the hero is solving the final quest
(see Subsection 4.2), one can declare a second rule and event that implements the
alternative behavior.

6.2.4 Abstract Partial Method Declarations

PyContext defines layers by a class inheriting from a class Layer. Therefore, partial
methods that are meant to be abstract could throw a TypeError exception telling that
they should be implemented by a subtype. However, this error would occur at run-
time. In JCop as in Java, abstract methods and classes are checked at compile time,
which is more convenient for the developer.

6.2.5 Static Active Layers

The maintenance and development of software product-lines is addressed by feature-
oriented programming [BSR03] (FOP). Its Java-based implementation AHEAD [Bat04]
tool suite supports the Jakarta language that extends Java with constructs such as
class refinements for static feature-oriented composition. Layers in Jakarta are dis-
tinct files describing static class refinements. The modularization concepts of FOP
and COP are similar: Both introduce new or alternative program behavior through
features (FOP) or layers (COP), respectively. However, FOP applies compile-time
composition of feature variations, while COP applies run-time composition of layers.
Static active layers in JCop have the same semantics than to layers in FOP as they
extend a system at compile time.

6.3 Related Language Approaches

Some other programming language approaches have been proposed which are closely
related to COP. In the following, we introduce the most important ones.

6.3.1 Aspect-oriented Programming

AspectJ The AOP language AspectJ [KHH+01] established the notion of join
points (events during the execution of a program) that can be described by pointcuts
and can be adapted by advice blocks. AspectJ’s execution pointcut is similar to JCop’s
on pointcut, except that the method patterns of on are restricted to public methods
to preserve encapsulation.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

26 · Appeltauer, Hirschfeld, Lincke

AspectJ’s if pointcut contains an expression that is evaluated at a join point. It
is of use only when concatenated with other pointcuts that provide the set of join
points on which if is evaluated. JCop’s when predicate is similar to AspectJ’s if

as it dynamically evaluates a condition. However, when uses an implicit set of join
points (all executions of layered methods). AspectJ’s aspects are woven at compile or
load time and are globally scoped in contrast to JCop’s instantiable and dynamically
deployable context classes.

The usage of this and args is different in JCop and AspectJ. In AspectJ, they can
bind new join points, which makes sense as the AspectJ pointcut model is more generic
than the JCop pointcut model. However, for the specific purpose of declarative layer
composition, the AspectJ implementation would be more complicated. For example,
the following pointcut uses a reference of type A to restrict the join points collected
by on to method executions within myA.

contextclass Ctx {
A myA = A();
on (int pckg.A.x()) && this(myA) : ...

}

A similar expression in AspectJ would require the declaration of a second variable as
advice parameter:

aspect Ctx {
A myA = A();
int around(A thisA) :
execution (int pckg.A.x()) && this(thisA) && if(thisA == myA) {...}

}

The main distinction between AOP and COP is that the former allows for a joint
specification of when during program execution (composition) whatkind of function-
ality (adaptation) should be used. COP separates composition (e.g., using explicit
with statement) from adaptation (e.g., using layers and partial methods).

Aspect-based COP Implementations Two COP approaches implement the con-
text-aware dispatch by an aspect that expects special join point hooks in the program.
ContextLogicAJ [AH08] is implemented based on the LogicAJ [KRH04] aspect lan-
guage, while JavaCtx [SGP11] uses AspectJ. In both approaches, layers are repre-
sented by subclasses of a special layer class. Partial method declarations are imple-
mented as Java methods in their host class that follow a specific naming convention.
In ContextLogicAJ, the first partial method parameter represents the corresponding
layer. In JavaCtx, the partial method name contains the corresponding layer name
as suffix. Layer composition uses in both cases two methods that express the begin
and the end of the composition scope. The actual context-aware method dispatch
is implemented by an aspect that intercepts calls to layered methods and delegates
them to the partial methods using the naming conventions. Both approaches require
to consider some idioms (declaring a layer class that only serves as an identifier, ad-
hering to the partial method naming conventions). Moreover, they do not provide a
scoped layer composition. Instead, layer activation and deactivation must be explic-
itly expressed by an activation and deactivation method. Hence, layer composition is
not scoped to the dynamic extent, which may lead to state inconsistencies.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 27

6.3.2 Context-aware Programming

Us [SU96] supports subjective programming where message lookup depends not only
on the receiver of a message, but also on a second object, called the perspective.
The perspective allows for layer activation similar to ContextL. Us does not support
implicit activation of layers.

The Ambience language is another approach to context-orientation, based on the
Ambient Object System (AmOS) [GMC08]. AmOS is a prototype-based object sys-
tem built on top of Common Lisp that supports behavioral adaptations with partial
method definitions and context objects, which correspond to COP layers. It sup-
ports the implementation of behavioral variations by two language constructs, partial
method definitions and context objects (which correspond to COP layers). Ambience
does not support implicit context activation based on the evaluation of an expression
as supported by JCop’s when predicate.

The Flute language [BVDR+12] addresses the specification of interruptible context-
de-pendent executions. In this model, any method execution can be interrupted or
resumed at any type, e.g. by a context switch. Besides variations of procedures
(procedure modes) for each context, Flute allows variables to contain different state
in different contexts (variable modes). Modes can be grouped by modals. Context
change is triggered by value changes of context sources, that are represented as re-
active values. A reactive value employs a push-driven model, which means that any
computation using that value is recomputed. This recomputation then uses the ap-
propriate mode corresponding to the new value of the context source.

Context-aware aspects [TGDB06] can adapt the advice execution depending on
the program’s run-time state. This approach comes with a Java-based context model;
context can be described by a pointcut-like API.

CSLogicAJ [RSC06] features context-sensitive service aspects to adapt service
behavior. The extensible join point model supports context change. Special point-
cuts can be used to describe context. An asynchronous advice type executes service
adaptation triggered by these context-aware pointcuts. The service interception and
adaptation is done by Ditrios, an OSGi-based middleware. In the current version,
CSLogicAJ is restricted to local OSGi service bundles. Server-side services can not
be intercepted.

7 Conclusions

Context-oriented programming (COP) addresses the representation of context-de-
pendent behavioral variations, which often crosscut other concerns of an application.
COP proposes layers as a way to support the adaptation of crosscutting behavioral
variations. Contemporary implementations of COP provide the explicit composition
of layers per control flow [CH05].

In previous experiments with COP languages and case studies, we identified ap-
plication scenarios where not only the modularization of adaptations but also the
adaptations’ run-time composition are crosscutting concerns. As a consequence, we
propose to separate both the adaptation and the composition code from the base.

Currently, in context-oriented languages, the modularization of adaptation code
is achieved by layers. However, modularization of composition code has not been
addressed. Instead, explicit composition statements (with, without) are defined in the
base code and can tangle the core concerns of the base code. Moreover, a layer
composition may be required at different source code location leading to a scattered

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

28 · Appeltauer, Hirschfeld, Lincke

implementations. Therefore, we argue that layer composition may be a homogeneous
crosscutting concern that deserves dedicated language support. Our JCop language
design addresses crosscutting layer composition by aspect-oriented mechanisms called
context classes.

In order to support modularization not only by layers but also within their decla-
ration, layers offer inheritance mechanisms that are similar to that of Java classes. To
access layer types, we created new keywords to access a layer instance (thislayer), a su-
per layer instance (superlayer), and the partial method of a super layer (superproceed).

In addition, JCop is equipped with a feature-rich reflection API that enables
reasoning about layers and their composition. It also supports the expression of layer
dependencies, whereby layers can control their own activation and may add or remove
other layers to or from a composition.

We evaluated JCop’s new language constructs in application domains where pre-
vious COP approaches suffered from redundant composition statements. In particu-
lar, we applied JCop to framework-based applications such as RetroAdventure where
source code modules affected by adaptations are relieved from composition code.
Hence, the coupling between the base code and its adaptations is reduced. Therefore,
behavioral variations can be represented in a concise and modular way.

References

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies,
Mark Smith, and Pete Steggles. Towards a Better Understanding of
Context and Context-Awareness. In Proceedings of the 1st Interna-
tional Symposium on Handheld and Ubiquitous Computing, HUC ’99,
pages 304–307, Berlin, Heidelberg, Germany, 1999. Springer-Verlag.
doi:10.1007/3-540-48157-5_29.

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
Overview of CaesarJ. Lecture Notes in Computer Science : Transac-
tions on Aspect-Oriented Software Development I, 3880:135–173, 2006.
doi:10.1007/11687061_5.

[AH08] Malte Appeltauer and Robert Hirschfeld. Explicit Language and In-
frastructure Support for Context-aware Services. In Beiträge der 38.
Jahrestagung der Gesellschaft für Informatik, volume INFORMATIK
2008 - Beherrschbare Systeme dank Informatik of Lecture Notes in In-
formatics, pages 164–170, München, Germany, 2008. Gesellschaft für
Informatik.

[AH12] Malte Appeltauer and Robert Hirschfeld. Declarative Layer Compo-
sition in Framework-based Environments. In Proceedings of the 4th
International Workshop on Context-Oriented Programming, COP’12,
New York, NY, USA, 2012. ACM Press. doi:10.1145/2307436.
2307437.

[AHH10] Malte Appeltauer, Michael Haupt, and Robert Hirschfeld. Layered
Method Dispatch with INVOKEDYNAMIC - An Implementation
Study. In Proceedings of the 2nd International Workshop on Context-
Oriented Programming, COP’10, New York, NY, USA, 2010. ACM
Press. doi:10.1145/1930021.1930025.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/11687061_5
http://dx.doi.org/10.1145/2307436.2307437
http://dx.doi.org/10.1145/2307436.2307437
http://dx.doi.org/10.1145/1930021.1930025
http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 29

[AHHM11] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko
Masuhara. ContextJ - Context-oriented Programming for Java. Com-
puter Software of The Japan Society for Software Science and Technol-
ogy, 28(1):272–292, 2011.

[AHM09] Malte Appeltauer, Robert Hirschfeld, and Hidehiko Masuhara. Im-
proving the Development of Context-dependent Java Applications
with ContextJ. In Proceedings of the 1st International Workshop on
Context-Oriented Programming, COP’09, New York, NY, USA, 2009.
ACM Press. doi:10.1145/1562112.1562117.

[AHM+10] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael
Haupt, and Kazunori Kawauchi. Event-based Software Composition in
Context-oriented Programming. In Proceedings of the 9th International
Conference on Software Composition, Lecture Notes in Computer Sci-
ence, pages 50–65, Berlin, Heidelberg, Germany, 2010. Springer-Verlag.

[ALS08] Sven Apel, Thomas Leich, and Gunter Saake. Aspectual feature mod-
ules. IEEE Transactions on Software Engineering, 34(2):162–180, 2008.
doi:10.1109/TSE.2007.70770.

[Bat04] Don Batory. Feature-Oriented Programming and the AHEAD Tool
Suite. In Proceedings of the 26th International Conference on Soft-
ware Engineering, ICSE ’04, pages 702–703, Washington, DC, USA,
2004. IEEE Computer Society Press. doi:10.1109/ICSE.2004.
1317496.

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software Engineering,
30(6):355–371, 2003. doi:10.1109/TSE.2004.23.

[BVDR+12] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lom-
bide Carreton, and Wolfgang De Meuter. Interruptible Context-
dependent Executions: A Fresh Look at Programming Context-aware
Applications. In Proceedings of the ACM international symposium on
New ideas, new paradigms, and reflections on programming and soft-
ware, Onward! ’12, pages 67–84, New York, NY, USA, 2012. ACM.
doi:10.1145/2384592.2384600.

[CD08] Pascal Costanza and Theo D’Hondt. Feature Descriptions for Context-
oriented Programming. In Proceedings of the 12th International Con-
ference on Software Product Lines, SPLC’08, pages 9–14. Lero Int.
Science Centre, University of Limerick, Ireland, 2008.

[CH05] Pascal Costanza and Robert Hirschfeld. Language Constructs for
Context-oriented Programming: An Overview of ContextL. In Pro-
ceedings of the 2005 Symposium on Dynamic Languages, DLS’05,
pages 1–10, New York, NY, USA, 2005. ACM Press. doi:10.1145/
1146841.1146842.

[Dey01] Anind K. Dey. Understanding and Using Context. Personal Ubiquitous
Computing, 5(1):4–7, 2001. doi:10.1007/s007790170019.

[EJ09] Patrick Eugster and K. R. Jayaram. EventJava: An Extension of Java
for Event Correlation. In Proceedings of the 23rd European Confer-
ence on Object-Oriented Programming, ECOOP’09, Lecture Notes in

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1145/1562112.1562117
http://dx.doi.org/10.1109/TSE.2007.70770
http://dx.doi.org/10.1109/ICSE.2004.1317496
http://dx.doi.org/10.1109/ICSE.2004.1317496
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1145/2384592.2384600
http://dx.doi.org/10.1145/1146841.1146842
http://dx.doi.org/10.1145/1146841.1146842
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.5381/jot.2013.12.2.a4

30 · Appeltauer, Hirschfeld, Lincke

Computer Science, pages 570–594, Berlin, Heidelberg, Germany, 2009.
Springer-Verlag. doi:10.1007/978-3-642-03013-0_26.

[Gal06] Ben Galbraith. Developing Swing Applications. Sun Microsystems
Technical Articles, 2006.

[GCM+10] Sebastián González, Nicolas Cardozo, Kim Mens, Alfredo Cádiz, Jean-
Christophe Libbrecht, and Julien Goffaux. Subjective-C: Bringing
Context to Mobile Platform Programming. In Proceedings of the 3rd
International Conference on Software Language Engineering, SLE’10,
Lecture Notes in Computer Science, pages 246–265, Berlin, Heidelberg,
2010. Springer-Verlag. doi:10.1007/978-3-642-19440-5_15.

[GMC08] Sebastián González, Kim Mens, and Alfredo Cádiz. Context-Oriented
Programming with the Ambient Object System. Journal of Uni-
versal Computer Science, 14(20):3307–3332, 2008. doi:10.3217/
jucs-014-20-3307.

[GSS+06] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle,
Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular Software
Design with Crosscutting Interfaces. IEEE Software, 23(1):51–60, 2006.
doi:10.1109/MS.2006.24.

[HCH08] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An Intro-
duction to Context-Oriented Programming with ContextS. In Pro-
ceedings of the International Summer School on Generative and Trans-
formational Techniques in Software Engineering, GTTSE 2007, Re-
vised Papers, Lecture Notes in Computer Science, pages 396–407,
Berlin, Heidelberg, Germany, 2008. Springer-Verlag. doi:10.1007/
978-3-540-88643-3_9.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented Programming. Journal of Object Technology, 7(3):125–151,
2008. doi:10.5381/jot.2008.7.3.a4.

[HHM07] Stefan Herrmann, Christine Hundt, and Marco Mosconi. ObjectTeam-
s/Java Language Definition - Version 1.0. Technical Report 3, TU
Berlin - Fakultät IV, 2007.

[HPSA10] Robert Hirschfeld, Michael Perscheid, Christian Schubert, and Malte
Appeltauer. Dynamic Contract Layers. In Proceedings of the 25th
Symposium on Applied Computing, SAC’10, New York, NY, USA,
2010. ACM DL. doi:10.1145/1774088.1774546.

[JF88] Ralph E. Johnson and Brian Foote. Designing Reusable Classes. Jour-
nal of Object-oriented Programming, 1(2):22–35, 1988.

[KAM10] Tetuso Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Designing
Event-based Context Transition in Context-oriented Programming. In
Proceedings of the 2nd International Workshop on Context-Oriented
Programming, COP’10, New York, NY, USA, 2010. ACM Press. doi:
10.1145/1930021.1930023.

[KAM11] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
A Context-oriented Programming Language with Declarative Event-
based Context Transition. In Proceedings of the Tenth International
Conference on Aspect-oriented Software Development, AOSD ’11,

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1007/978-3-642-03013-0_26
http://dx.doi.org/10.1007/978-3-642-19440-5_15
http://dx.doi.org/10.3217/jucs-014-20-3307
http://dx.doi.org/10.3217/jucs-014-20-3307
http://dx.doi.org/10.1109/MS.2006.24
http://dx.doi.org/10.1007/978-3-540-88643-3_9
http://dx.doi.org/10.1007/978-3-540-88643-3_9
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.1145/1774088.1774546
http://dx.doi.org/10.1145/1930021.1930023
http://dx.doi.org/10.1145/1930021.1930023
http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 31

pages 253–264, New York, NY, USA, 2011. ACM. doi:10.1145/
1960275.1960305.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An Overview of AspectJ. In Pro-
ceedings of the 15th European Conference on Object-Oriented Pro-
gramming, ECOOP’01, Lecture Notes in Computer Science, pages
327–354, Berlin, Heidelberg, Germany, 2001. Spinger-Verlag. doi:
10.1007/3-540-45337-7_18.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
Programming. In Proceedings of the 11th European Conference on
Object-Oriented Programming, ECOOP’97, Lecture Notes in Computer
Science, pages 220–242, Berlin, Heidelberg, Germany, 1997. Springer-
Verlag. doi:10.1007/BFb0053381.

[KRH04] Günter Kniesel, Tobias Rho, and Stefan Hanenberg. Evolvable Pattern
Implementations need Generic Aspects. Research report C-196, Dept.
of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, Tokyo, Japan, 2004.

[LASH11] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An Open Implementation for Context-oriented Layer Com-
position in ContextJS. Science of Computer Programming, 76:1194–
1209, 2011. doi:10.1016/j.scico.2010.11.013.

[MMPN93] Ole Lehrmann Madsen, Birger Mø-Pedersen, and Kristen Nygaard.
Object-oriented Programming in the BETA Programming Language.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
1993.

[NC09] Nokia Corporation. Qt 4.6 Whitepaper, 2009. http://qt.nokia.com/
files/pdf/qt-4.6-whitepaper (visited: 2013-06-01).

[NNG09] Angel Núñez, Jacques Noyé, and Vaidas Gasiũnas. Declarative Defi-
nition of Contexts with Polymorphic Events. In Proceedings of the 1st
International Workshop on Context-Oriented Programming, COP’09,
New York, NY, USA, 2009. ACM Press. doi:10.1145/1562112.
1562118.

[Ope] Open Handset Alliance. Android Developers Platform. http:
//developer.android.com (visited: 2013-06-01).

[RAL+11] Tobias Rho, Malte Appeltauer, Stephan Lerche, Armin B. Cremers,
and Robert Hirschfeld. A Context Management Infrastructure with
Language Integration Support. In Proceedings of the 3rd International
Workshop on Context-oriented Programming., COP’11, New York, NY,
USA, 2011. ACM Press. doi:10.1145/2068736.2068739.

[Red11] RedHat inc. JBoss, 2011. http://www.jboss.com (visited: 2013-06-01).

[RL08] Hridesh Rajan and Gary T. Leavens. Ptolemy: A Language with
Quantified, Typed Events. In Proceedings of the 22nd European con-
ference on Object-Oriented Programming, ECOOP ’08, pages 155–
179, Berlin, Heidelberg, Germany, 2008. Springer-Verlag. doi:
10.1007/978-3-540-70592-5_8.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1145/1960275.1960305
http://dx.doi.org/10.1145/1960275.1960305
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1016/j.scico.2010.11.013
http://qt.nokia.com/files/pdf/qt-4.6-whitepaper
http://qt.nokia.com/files/pdf/qt-4.6-whitepaper
http://dx.doi.org/10.1145/1562112.1562118
http://dx.doi.org/10.1145/1562112.1562118
http://developer.android.com
http://developer.android.com
http://dx.doi.org/10.1145/2068736.2068739
http://www.jboss.com
http://dx.doi.org/10.1007/978-3-540-70592-5_8
http://dx.doi.org/10.1007/978-3-540-70592-5_8
http://dx.doi.org/10.5381/jot.2013.12.2.a4

32 · Appeltauer, Hirschfeld, Lincke

[RSC06] Tobias Rho, Mark Schmatz, and Armin B. Cremers. Towards Context-
Sensitive Service Aspects. In Proceedings of the Workshop on Ob-
ject Technology for Ambient Intelligence and Pervasive Computing,
OT4AmI’06, Berlin, Heidelberg, Germany, 2006. Springer-Verlag.

[SAH11] Christopher Schuster, Malte Appeltauer, and Robert Hirschfeld.
Context-oriented Programming for Mobile Devices: JCop on An-
droid. In Proceedings of the 3rd International Workshop on Context-
Oriented Programming, COP’11, New York, NY, USA, 2011. ACM
Press. doi:10.1145/2068736.2068741.

[SGP11] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. JavaCtx:
Seamless Toolchain Integration for Context-oriented Programming. In
Proceedings of the 3rd International Workshop on Context-Oriented
Programming, COP’11, New York, NY, USA, 2011. ACM. doi:
10.1145/2068736.2068740.

[SHHJ09] Hans Schippers, Michael Haupt, Robert Hirschfeld, and Dirk Janssens.
An Implementation Substrate for Languages Composing Modularized
Crosscutting Concerns. In Proceedings of the 24th Symposium on Ap-
plied Computing, SAC’09, New York, NY, USA, 2009. ACM Press.
doi:10.1145/1529282.1529716.

[SU96] Randall B. Smith and David Ungar. A Simple and Unifying Ap-
proach to Subjective Objects. Theory and Practice of Object Systems,
2(3):161–178, 1996. doi:10.1002/(SICI)1096-9942(1996)2:
3<161::AID-TAPO3>3.0.CO;2-Z.

[TGDB06] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware Aspects. In Proceedings of the 5th International Sym-
posium on Software Composition, SC’06, Lecture Notes in Computer
Science, Berlin, Heidelberg, Germany, March 2006. Springer-Verlag.
doi:10.1007/11821946_15.

[vLDN07] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-
oriented Programming: Beyond Layers. In Proceedings of the Inter-
national Conference on Dynamic Languages, ICDL’07, pages 143–156,
New York, NY, USA, 2007. ACM Press. doi:10.1145/1352678.
1352688.

About the authors

Malte Appeltauer is a researcher and developer at the SAP In-
novation Center. He received a Ph.D. in Computer Science at the
Hasso-Plattner-Institute, University of Potsdam as a member of
the HPI Research School on Service-Oriented Systems Engineer-
ing. He can be reached at malte.appeltauer@sap.com. See also
www.hpi.uni-potsdam.de/swa/publications.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1145/2068736.2068741
http://dx.doi.org/10.1145/2068736.2068740
http://dx.doi.org/10.1145/2068736.2068740
http://dx.doi.org/10.1145/1529282.1529716
http://dx.doi.org/10.1002/(SICI)1096-9942(1996)2:3<161::AID-TAPO3>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1096-9942(1996)2:3<161::AID-TAPO3>3.0.CO;2-Z
http://dx.doi.org/10.1007/11821946_15
http://dx.doi.org/10.1145/1352678.1352688
http://dx.doi.org/10.1145/1352678.1352688
mailto:malte.appeltauer@sap.com
www.hpi.uni-potsdam.de/swa/publications
http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 33

Robert Hirschfeld is a Professor of Computer Science at the
Hasso-Plattner-Institut at the University of Potsdam. He re-
ceived a Ph.D. in Computer Science form the Technical Univer-
sity of Ilmenau, Germany. He can be reached at hirschfeld@hpi.
uni-potsdam.de. See also www.hpi.uni-potsdam.de/swa/people/
hirschfeld.

Jens Lincke is a research assistant at the Hasso-Plattner-
Institute, University of Potsdam. He can be reached at jens.
lincke@hpi.uni-potsdam.de. See also www.hpi.uni-potsdam.de/
swa/people/lincke.

Journal of Object Technology, vol. 12, 2013

mailto:hirschfeld@hpi.uni-potsdam.de
mailto:hirschfeld@hpi.uni-potsdam.de
www.hpi.uni-potsdam.de/swa/people/hirschfeld
www.hpi.uni-potsdam.de/swa/people/hirschfeld
mailto:jens.lincke@hpi.uni-potsdam.de
mailto:jens.lincke@hpi.uni-potsdam.de
www.hpi.uni-potsdam.de/swa/people/lincke
www.hpi.uni-potsdam.de/swa/people/lincke
http://dx.doi.org/10.5381/jot.2013.12.2.a4

34 · Appeltauer, Hirschfeld, Lincke

A Comparison of COP Languages

Figure 6 – Feature comparison of several COP languages.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 35

Figure 7 – Extension of the Java reflection API.

B JCop Reflection API

The reflective API is integrated with Java’s API java.lang.reflect. It consists of three
classes of the jcop.lang package, namely Layer, Composition, and PartialMethod. Layer

provides reflective access to its partial method definitions. Composition objects allow
access to their layers and the (de-)activation of layers. PartialMethod is the meta-class
of partial methods, corresponding to Java’s java.lang.reflect.Method class. As Method,
it inherits from AccessibleObject and implements the Member interface, which are both
defined in the package java.lang.reflect, see Figure 7.

B.1 jcop.lang.Layer

public Composition onWith(Composition current)

Returns the current thread-local composition. The method can be overridden for specific com-
position handling.

public Composition onWithout(Composition current)

Returns the current thread-local composition. The method can be overridden for specific com-
position handling.

public static Composition onWithoutAll(Composition current)

Returns the current thread-local composition. The method can be overridden for specific com-
position handling.

public void include(Layer toBeIncluded, boolean stopOnConflict)

Specifies that on layer activation toBeIncluded must be part of the composition. The rule
is checked right after the activation of the layer by the default implementation of onWith in
jcop.lang.Layer. If stopOnConflict is true, onWith will throw a CompositionException. If
stopOnConflict is false, onWith will activate toBeIncluded.

public void exclude(Layer toBeExcluded, boolean stopOnConflict)

Specifies that on layer activation toBeExcluded must not be part of the composition. The rule
is checked right after the activation of the layer by the default implementation of onWith in
jcop.lang.Layer. If stopOnConflict is true, onWith will throw a CompositionException. If
stopOnConflict is false, onWith will remove toBeExcluded from the composition.

public void excludeAll(Class<Layer> toBeExcluded, boolean stopOnConflict)

Specifies that on layer activation no instance of the Layer toBeExcluded is part of the composition.
public Composition getComposition()

Returns the enclosing layer composition.
public boolean isActive()

Returns true if the layer is activated in the current thread.
public boolean providesPartialMethodFor(String)

Determines if the layer provides a partial definition for a method with signature represented by
the parameter

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

36 · Appeltauer, Hirschfeld, Lincke

public PartialMethod[] getPartialMethods()

Returns an array of PartialMethod objects reflecting all the partial methods provided by the
layer.

public PartialMethod getPartialMethod(String)

Returns a PartialMethod object representing a partial method of the layer with the signature
specified by the parameter.

B.2 jcop.lang.ContextClass

public void deploy()

Activates the context class. Multiple activation is ignored.
public void undeploy()

Deactivates the context class. Multiple deactivation is ignored.
public boolean isDeployed()

Returns true it the context class is active.

B.3 jcop.lang.Composition

public static Composition current()

Returns the current thread-local composition.
public Composition withLayers(Layer... layers)

Activates a layer in the current composition. Returns a clone of the old composition before the
activation.

public Composition withoutLayers(Layer... layers)

Deactivates a layer in the current composition. Returns a clone of the old composition before
the activation.

public Composition withoutAllLayers(Class<Layer>... layers)

Deactivates a all instances of a layer type in the current composition. Returns a clone of the old
composition before the activation.

public Layer firstLayer()

Returns the first layer of the composition.
public Layer next(Layer currentLayer)

Returns the successor of currentLayer in the composition. Returns null, if currentLayer is not
part of the composition.

public boolean contains(Layer aLayer)

Returns true if the layer is part of the composition.
public boolean contains(Class<Layer> aLayer)

Returns true if the composition contains at least one instance of the layer.
public Layer[] getLayers()

Returns the composition’s layers as array.

B.4 jcop.lang.ContextComposition

public static ContextComposition current()

Returns the thread-local context composition.
public ContextClass[] getContextClasses()

Returns the deployed context class instances.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

JCop · 37

B.5 jcop.lang.PartialMethod

public Layer getDefiningLayer()

Returns the layer defining this partial method
public Class getDeclaringClass()

Returns the declaring class of the partial method
public Class[] getExceptionTypes()

Returns an array of the exception types
public String getName()

Returns a string representation of that method
public Class getReturnType()

Returns the return type of the method
public int getModifiers()

Returns the Java language modifiers for the method represented by this Method object, as an
integer

public Object invoke(Object target, Object... args)

Invokes the underlying partial method on the specified object with the specified parameters

B.6 jcop.lang.ILayerProvider (Interface)

public Composition onLayeredExecution(Composition current)

Objects can implicitly activate layers on execution of their layered methods by implementing this
event handler method. Therefore, even if the composition does not contain a layer for a layered
method A.x, on execution of A.m, A can decide to activate a layer to execute a partial method
of x.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a4

	Introduction
	Context-oriented Programming by Example
	Example: Crosscutting Behavioral Variations in a Computer Game
	Context-oriented Programming with JCop
	Problems
	Crosscutting Layer Compositions
	Inexpressible Relationships between Layers

	Declarative Expression of Crosscutting Layer Compositions
	Context Classes
	Static Active Compositions
	Execution Order at Shared Join Points

	Expression of Layer Relationships
	Class-based Inheritance
	Composition Event Handlers
	Reflective Layer Composition

	Evaluation
	Case Studies
	Results

	Related Work
	Layer Composition
	Pointcut-based Declaration
	Instance-specific and Object Structure-based Layer Composition
	Event-based Layer Composition
	Reflective Layer Composition
	Dynamic Deployment of Context Classes

	Layer Declaration
	Adaptation of Framework Code
	Layer Guards and Implicit Layer Activation
	Layer Relationships
	Abstract Partial Method Declarations
	Static Active Layers

	Related Language Approaches
	Aspect-oriented Programming
	Context-aware Programming

	Conclusions
	References
	About the authors
	Comparison of COP Languages
	JCop Reflection API
	jcop.lang.Layer
	jcop.lang.ContextClass
	jcop.lang.Composition
	jcop.lang.ContextComposition
	jcop.lang.PartialMethod
	jcop.lang.ILayerProvider (Interface)

