
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Conflict Visualization for Evolving
UML Models

Petra Broscha Martina Seidlb Manuel Wimmerc

Gerti Kappela

a. Business Informatics Group, Vienna University of Technology, Austria,
http://www.big.tuwien.ac.at

b. Inst. of Formal Models and Verification, Johannes Kepler University,
Austria, http://fmv.jku.at

c. Software Engineering Group, Universidad de Málaga, Spain,
http://www.lcc.uma.es

Abstract The urgent demand for supporting teamwork and continuous
evolution of software models triggered intensive research on optimistic
version control systems for models. State-of-the-art model versioning ap-
proaches primarily focus on detecting changes and conflicts between con-
currently evolved versions of a model. However, techniques for conflict
visualization have been hardly investigated yet.

In this paper, we propose to support the visualization of conflicts in
the concrete syntax of UML models. For this purpose, we present an
approach to tentatively merge concurrently evolved versions of one model
featuring all performed changes, yet keeping conformance to the UML
metamodel. Changes and conflicts are visualized in this tentatively merged
model without requiring any editor extensions. Instead, we employ the
powerful profile mechanism of UML to enable modelers to resolve conflicts
within their favorite UML editor.

Keywords model versioning; diagram merging; conflict visualization.

1 Introduction

With the application of model-driven engineering (MDE) techniques, modeling activ-
ities have matured from creating pretty pictures to producing artifacts translatable
to executable code. Whereas models have originally been used for mere documen-
tation purposes to communicate ideas, requirements, and designs, in MDE models
are now lifted to first-class citizens taking an important role in the software devel-
opment process. This upgrowth intrinsically demands tool support for managing
evolution [FR07, SMB09]. Whenever functionalities are added and extended or when
bugs are fixed, the underlying models have to be updated. Consequently, the same

Petra Brosch, Martina Seidl, Manuel Wimmer, Gerti Kappel. Conflict Visualization for Evolving UML
Models. In Journal of Object Technology, vol. 11, no. 3, 2012, pages 2:1–30.
doi:10.5381/jot.2012.11.3.a2

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.big.tuwien.ac.at
http://fmv.jku.at
http://www.lcc.uma.es
http://dx.doi.org/10.5381/jot.2012.11.3.a2
http://dx.doi.org/10.5381/jot.2012.11.3.a2

2 · Petra Brosch et al.

kind of change management as successfully applied for textual code is required. Since
models and code differ in many aspects, the techniques and tools available for textual
code can be hardly reused.

Models are often rendered visually. Further, models provide a higher level of
abstraction than textual code in order to deal with the complexity of modern software.
These features of models explain the attractiveness of applying MDE. In general,
modern software is so huge that it cannot be built by one single engineer, but a team
or teams of engineers are necessary to satisfy the given time constraints [GJM02].
Consequently, for traditional software engineering, several paradigms like pessimistic
and optimistic version control have been proposed for supporting the collaboration
between multiple developers [BKL+12]. Especially, optimistic version control systems
(VCS) gained high popularity by allowing engineers to work independently of other
team members on their personal local copy and changes are merged at a later point in
time. The benefits of working in parallel come at the price of incorporating the isolated
changes of the modified artifact, which is a tedious and error-prone manual task when
changes do not commute. For code, merging works satisfying well in practice. For
models, the situation is different.

The first pragmatic attempts for realizing model evolution support as well as col-
laborative modeling support failed, where text-based versioning systems like Subver-
sion1 and CVS2 were reused. These systems were successfully applied for code before-
hand. However, it quickly turned out that the models’ textual XMI serializations are
neither an appropriate representation for machines to detect conflicts, nor an appropri-
ate representation for humans to understand and resolve conflicts [ABK+09, BE09].
Consequently, dedicated model versioning systems emerged, operating on a graph-
based representation of the model’s abstract syntax [ASW09]. While these approaches
advantage precise conflict detection, the expected boost for manual conflict resolution
is still absent. The main reason is that conflicting changes are visualized in the ab-
stract syntax of the models, while modelers are familiar with the concrete graphical
syntax. For manual conflict resolution, all changes and the resulting conflicts must be
well understood, which represents a huge challenge without the familiar view carrying
the mental map [ELMS91], i.e., the personal view of the modeler on the model. This
mental map is closely related to the arrangement and the layout of the model elements
within diagrams representing the models. Although it seems natural to employ these
diagrams as user interface for accessible conflict resolution, most model versioning
systems totally neglect diagrams. Only a few graphical differencing approaches have
been proposed [MGH05, OWK03] working on the diagram level. They generate a
dedicated difference view by combining and highlighting changes using coloring tech-
niques. However, all these approaches require for specific editor extensions, and thus,
are hard-wired to the specific modeling environments.

We pursue the idea of presenting merge conflicts in the concrete syntax of the
modeling language and present an approach for representing and visualizing merge
conflicts for UML models based on UML profiles [Obj11c]. With this approach,
standard UML modeling environments may be directly reused without adoptions of
the modeling editor or heavy-weight extensions of the UML metamodel. Conflicts are
visualized by the means of special annotations (i.e., stereotypes and tagged values)
within the diagrams. If multiple model elements are involved in one conflict, we
introduce UML collaborations to interlink these elements. To this end, the merge

1http://subversion.tigris.org
2http://cvs.nongnu.org

Journal of Object Technology, vol. 11, no. 3, 2012

http://subversion.tigris.org
http://cvs.nongnu.org
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 3

problems become directly visible to the modeler, because conflict visualization is
performed within the concrete syntax of the modeling language.

In this paper, we first introduce a representative modeling scenario where several
versioning conflicts occur and give an overview how state-of-the-art model versioning
systems detect such conflicts. For the internal representation of conflicts, we use a
conflict model which we shortly present in Section 3. In Section 4, we show how
the information contained in this conflict model is expressed by the means of a UML
profile. We then present a conflict aware merge strategy using this UML profile for the
generation of a Conflict Diagram in Section 5. The concrete implementation of the
approach is discussed in Section 6. Finally, we conclude with a review of the related
work, a critical discussion of our approach as well as an outline to future research
directions.

This article is an extension of [BKL+11b]. The conflict model and the correspond-
ing UML profile have been significantly revised and extended. Furthermore, also the
conflict diagram generation has been improved. The discussion about concrete im-
plementation issues (cf. Section 6) is completely new.

2 Conflicts in Model Versioning

In optimistic model versioning, conflicts occur when the modifications of two or more
models cannot be integrated in one unique and consistent model. The focus of this
paper is merging and visualizing conflicting models, rather than detecting conflicts.
However, as the notion of conflicts is a central prerequisite and conflicts act as input
for the visualization approach presented in this paper, we briefly discuss the various
kinds of conflicts with the help of the example shown in Figure 1 and aim at giving an
intuition how state-of-the-art conflict detection components like [CRP08, KHvWH10,
TELW10, BKL+10] detect and report such conflicts.

The reasons for conflicts are manifold as argued in [BKL+11a, TELW10, Men02].
According to [Men02], there are three main techniques to detect conflicts. (1) Generic
conflict detection approaches like, e.g., [KHvWH10, TELW10, BKL+10], employ ei-
thermerge matrices or the more general technique adopted from graph transformation
theory [EEPT06] called critical pair analysis to determine applied modifications lead-
ing to non-commutative results. (2) Alternatively, to adapt conflicts to a certain do-
main and to allow for context-sensitive conflict detection, combinations of operations
leading to a conflict when merged together may be specified as conflict set. Conflict
detection is then performed by searching for those forbidden change patterns within
all parallel applied operations, as, e.g., done by Cicchetti et al. [CRP08]. (3) Similarly,
semantic conflict detection techniques go beyond generic conflict detection as domain
specific constraints are evaluated. Semantic conflict detection may be applied to the
merged model only and changes causing violations are determined retrospectively.
A first promising approach for semantic conflict detection is presented in [Men99].
However, semantic conflict detection is expensive in terms of processing power and is
therefore not directly supported by state-of-the-art model versioning systems.

For an overview of the conflicts regarded in this work, consider the following
example. The modelers Harry and Sally work together in a project, where an event
management system has to be developed. To support their collaboration, the artifacts
under development are exchanged via the central repository of an optimistic model
versioning system. One day, Harry checks out the model which is named Original
Model in Figure 1 from the repository. This model contains a UML Class Diagram as

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

4 · Petra Brosch et al.

Employee

Original Version

Person

b

Office OnlineStore

xor

:Customer :Ticket :Office :OnlineStore

getInfo()

0..1 0..1

Customer
buys

Ticket
getInfo()
buy()

Event

Concert Exhibition

artist artist

Employee

Harry‘s Version
1

Person

b

Office OnlineStore

xor

:Customer :Ticket :Office :OnlineStore

getTInfo()
2

Class Diagram Changes
update(Customer.superclass, Person);
addAssociation(Employee, Office, 1, 2);
update(Ticket getInfo getTInfo“);

0..1 0..1

Customer
buys

Ticket
getTInfo()
buy()

EventManager

update(Ticket.getInfo, „getTInfo);
delete(Exhibition.artist);
addClass(SoccerMatch);
addClass(EventManager);

buy()

Event

Concert Exhibition SoccerMatch

Sequence Diagram Changes
update(Message1.kind, async);
addMessage(Ticket, Office, sync);
addMessage(Ticket, Customer, async);
addMessage(Customer, Ticket, sync, buy);

manages

artist

Employee

Sally‘s Version
2

Person

b

Office OnlineStore

xor

:Customer :Ticket :Office :OnlineStore

getTicketInfo()
1

Class Diagram Changes
update(Person.superclass, Customer);
addAssociation(Employee, Office, 2, 1);

d t (Ti k t tI f tTi k tI f “)

0..1 0..1

Customer
buys

Ticket
getTicketInfo()
purchase()

update(Ticket.getInfo, „getTicketInfo“);
update(Ticket.buy, „purchase“);
pullUpField(Event, artist);
addClass(EventManager);

Event

artist

EventManager
Sequence Diagram Changes
addMessage(Ticket, OnlineStore, sync);
addMessage(Ticket, Customer, reply);

manages

Concert Exhibition

Merged Version
1

Employee
Class Diagram Conflicts
Update/Update

Person

b

OnlineStore

xor 0..10..1

:Customer :Ticket :Office :OnlineStore

getTicketInfo()

2
1 2

Office

update(Ticket.getInfo, „getTInfo“);
update(Ticket.getInfo, „getTicketInfo“);

Add/Add
addClass(EventManager);
addClass(EventManager);

Customer
buys

Ticket
getTicketInfo() /

getTInfo()
purchase() EventManager

purchase() Constraint Violation
update(Customer.superclass, Person);
update(Person.superclass, Customer);

Constraint Violation
addAssociation(Employee, Office, 1, 2);

Sequence Diagram Conflicts
Constraint Violation
addMessage(Ticket, Office, sync);

ddM (Ti k t O li St)
Event

artist

EventManager
addAssociation(Employee, Office, 1, 2);
addAssociation(Employee, Office, 2, 1);

Operation Contract Violation
delete(Exhibition.artist);
pullUpField(Event, artist);

O ti C t t Vi l ti

addMessage(Ticket, OnlineStore, sync);

Constraint Violation
update(Message1.kind, async);
addMessage(Ticket, Customer, reply);

manages
manages

Concert Exhibition SoccerMatch
Operation Contract Violation
addClass(SoccerMatch);
pullUpField(Event, artist);

Unproblematic Changes
addMessage(Ticket, Customer, async);
addMessage(Customer, Ticket, sync, buy);
update(Ticket.buy, „purchase“);

Figure 1 – Model Versioning Example

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 5

well as a UML Sequence Diagram which specifies some interactions between certain
elements of the Class Diagram.

Harry performs the following modifications. In the Class Diagram, he introduces
a generalization relationship between the classes Person and Customer, such that Cus-
tomer becomes the subclass of Person. Then he adds an association between the
classes Employee and Office with multiplicities 1 and 2, respectively. He further re-
names the operation getInfo() of class Ticket to getTInfo() and removes the attribute
artist from the class Exhibition. Finally, he adds the two new classes SoccerMatch
and EventManager. The class SoccerMatch gets subclass of Event. In the Sequence
Diagram, Harry changes the message getTInfo() (recall that it was renamed in the
Class Diagram) to an asynchronous message and adds a reply to this message which
is also asynchronous. Between this request and reply messages he adds a message to
an interaction partner of type Office. Furthermore, he introduces the call of operation
buy from Customer to Ticket. He commits his modifications to the repository.

While Harry works on the model, Sally also checks out the Original Model. Unaware
of Harry’s modifications, she does the following. She relates the classes Customer and
Person with a generalization. For her, the Customer is the superclass (everyone is a
customer, also a company can be a customer) and Person is the subclass. She adds
an association with multiplicities 2 and 1 between Employee and Office. She changes
the name of the operation getInfo() to getTicketInfo() and she renames the operation
buy() to purchase(). Then she performs the refactoring pullUpField on the classes
Concert and Exhibition shifting the attribute artist to the class Event. She adds a
class EventManager. In the Sequence Diagram, she adds a message from Ticket to
OnlineStore after which she adds a reply message from Customer to Ticket.

When Sally tries to check in her changes, the model versioning system reports
that an automatic merge is not possible, because her and Harry’s modifications are
partly incompatible. The following problems have to be solved.

1. Contradicting Changes. The probably most common conflict in model version-
ing is a conflict due to contradicting changes, where one modeler modifies a
model element deleted by the other modeler or where both modelers modify the
same model element in different ways. In our example, this conflict occurs for
the renaming of the operation getInfo().

Contradicting changes may be detected either by employing merge matrices or
conflict sets. However, when contradicting changes are reported strongly de-
pends on the granularity level of the conflict detection component, i.e., what
kind of model element is considered to be atomic. For example if a class is
considered as atomic unit of comparison, a conflict is reported when the names
of two different attributes are modified. If the granularity level is set to consider
every single feature of an element as atomic unit, then no conflict is reported
in this case. Most model versioning systems support fine-grained conflict detec-
tion based on single features. In order to adapt the granularity of the conflict
detection algorithms, [KHvWH10, CRP08] allow to customize the unit of com-
parison.

2. Equivalent Changes. Harry and Sally both introduced a class called Event-
Manager. Such a situation may be handled in various ways by the conflict
detection component, depending on the strategy how models are compared be-
forehand. (1) The two elements are considered as different elements, espe-
cially when the comparison relies on universally unique identifiers (UUID) of

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

6 · Petra Brosch et al.

elements. Then this element is inserted twice in the merged model, as, e.g.,
in [OWK03, MGH05, MCPW08]. (2) The two elements are considered as equal
and they are merged, i.e., a model element is included in the merged model
which contains all features of both. (3) A conflict is reported. Possibilities (2)
and (3) depend on the unit of comparison and on the heuristics of the employed
comparison algorithm. While EMF Compare3 for example uses built-in heuris-
tics regarding attribute values and references of model elements, the Epsilon
Comparison Language [Kol09] allows to specify sophisticated comparison rules
for different model elements, e.g., it may be specified, that classes are considered
equal if they have the same name regardless of other attribute values.

3. Constraint Violations. Graphical models and their respective metamodels like,
e.g., the Superstructure [Obj11c] for UML, are usually not precise enough
to provide an unambiguous specification. Therefore, models and metamod-
els may be supplementary restricted by well-formedness rules specified, e.g., by
OCL [Obj12] invariants. In the context of model versioning, even if the two
modelers perform changes which do not impact the conformance of the model
to its well-formedness rules, under certain circumstances the combination of the
modifications of both modelers might result in an invalid model.

(a) Metamodel Constraint Violations. For a metamodel constraint violation
consider for example the introduction of the generalizations in Figure 1,
i.e., the inheritance from Person to Customer for Harry, and the inheritance
from Customer to Person in Sally’s case leading to an inheritance cycle when
applied in combination. Another metamodel constraint violation is shown
in the Sequence Diagram. The message type of getInfo() is changed by
Harry from synchronous to asynchronous. Furthermore, an asynchronous
message is added to model the reply to the request. Sally, in contrast,
added an explicit reply message. In the merged version, this reply message
follows an asynchronous message, what is not allowed.

(b) Model Constraint Violation. Besides specifying constraints for the usage of
modeling languages, constraints may also be specified on the model level
to restrict instances of a model or the model itself. Further, in modeling
languages like UML, models consist of different diagrams. A diagram pro-
vides a specific view on a certain aspect of the model. For example, UML
provides the Class Diagram for describing the structure of a system and
the Sequence Diagram for describing the interactions happening between
certain modeling elements. Within a diagram, constraints may be defined
which hold for the diagram itself or constraints may be defined which re-
strict another diagram. We therefore distinguish Intradiagram Constraints
and Interdiagram Constraints. A violation of an intradiagram constraint
occurs in our example, as Harry and Sally both add an association be-
tween the classes Office and Employee, but with the opposite multiplicities.
When analyzing the multiplicities, it becomes obvious that the model can
never be instantiated, because one object of type Employee would need two
objects of type Office and one object of type Office would need two ob-
jects of Employee. For a violation of interdiagram constraints consider the
xor-constraint, which states that an object of type Ticket is either related

3http://www.eclipse.org/emf/compare/#compare

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.eclipse.org/emf/compare/#compare
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 7

to an object of type Office or an object of type OnlineStore, but not to
both. When we merge the two different versions of the Sequence Diagram,
we have a ticket that communicates with both, i.e., the xor-constraint is
violated.

Current model versioning systems do not directly provide built-in validation
facilities, because such conflicts are often not evident until the merged version
is constructed. They therefore either (1) refer to external validation solutions,
such as EMF Validation4 and [GE10, GDKR+11] or (2) incorporate language
specific conflict sets in their conflict detection, such as Cicchetti et al. [CRP08].

4. Operation Contract Violation. Sally performed the refactoring pullUpField to
shift the common attribute artist of the classes Concert and Exhibition to their
superclass Event. When combined with Harry’s changes, two problems arise.
(1) The newly introduced class SoccerMatch, which is also a subclass of Event,
would inherit the attribute artist in case the refactoring was applied. Usually
few artists are involved in a soccer match, but this knowledge is seldom avail-
able to the conflict detection component. Still, this conflict may be detected
and reported, if the conflict detection component is aware of composite opera-
tions [DMJN08]. A composite operation is a set of atomic changes which are
applied in combination to perform a certain goal, like a refactoring. Composite
operations are usually specified in terms of an operation contract [Mey92] as-
serting pre- and postconditions for their application. In our example, the added
class SoccerMatch violates the precondition of the pullUpField refactoring, stat-
ing that all subclasses have to share the feature which shall be pulled to the
superclass. (2) As Harry removes the attribute artist from class Exhibition, the
refactoring is not applicable to Exhibition anymore, as again the precondition of
the refactoring is not fulfilled for this class.

Such conflicts are only detectable, if the conflict detection component is aware
of composite operations. Therefore, Cicchetti et al. [CRP08] proposed a pat-
tern language for the specification of conflict sets called conflict models in
order to adapt their conflict detection mechanism to specific domains. Re-
cently, a couple of model versioning systems are proposed, which are capable
to reuse existing composite operations specified as model transformation. They
either track the application of such model transformations directly in the ed-
itor [KHvWH10], or retrospectively analyze atomic differences to detect com-
posite changes [KKT11, BKL+10]. In case composite operation specifications
are available in terms of a declarative model transformation, e.g., a graph trans-
formation, this specification may be reused by conflict detection components to
perform a critical pair analysis [LEO06] and report conflicts in a fine-grained
manner. Then, the conflicts occurred in our example are explicated as Add/-
Forbid in case of the added class SoccerMatch and Delete/Use for the deleted
attribute artist in class Exhibition.

The different kinds of conflicts discussed above represent the most common con-
flicts identified in the recent model versioning literature. The detection of these con-
flicts is either provided by state-of-the-art conflict detection components of versioning
systems or may be achieved via external validation tools.

4http://www.eclipse.org/modeling/emf/?project=validation

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.eclipse.org/modeling/emf/?project=validation
http://dx.doi.org/10.5381/jot.2012.11.3.a2

8 · Petra Brosch et al.

ChangeReport

Change
Report

Conflict Report

ConflictReport

leftChange

rightChange

1

1

*

* Change

*

Conflict

*

AtomicChange CompositeChange
ViolationOverlappingChange

*

ViolationOverlappingChange

Add Update Delete

CompositeOperation
Additional
Specification

1

Add
Add

Update
Update

Delete
Update

Equivalent
Change

d

CompositeOperation
Specification

Specification

violatedCondition 1
l OperationContract- *

*

Condition

1violatedConstraint

violatedCondition 1

C t i t

ConstraintViolation OperationContract-
Violation

*

*

Constraint

Figure 2 – Conflict Model

To sum up, in this paper we distinguish two groups of conflicts: conflicts due to
overlapping changes and violations. The former is the result of syntactically over-
lapping changes which may be generically detected by analyzing the performed add,
delete, and update operations, the latter require special knowledge on constraints
of the employed modeling language and are only detectable either by searching for
forbidden conflict sets or by validating the merged version.

3 Conflict Model

In order to process the conflicts discussed in the previous section, a dedicated data
format for exchanging and representing information on detected conflicts is needed.
To follow the model-driven engineering paradigm and to reuse existing techniques,
our means of choice is a model-based representation of conflicts. The Conflict Model
presented in the following serves as interface to decouple conflict detection and conflict
visualization components. Obviously, the conflict model may be used as mediator to
consolidate various conflict detection components. For example, the information on
overlapping changes may be retrieved from a merge matrix based conflict detection
component like [TELW10], while conflicts due to violated constraints may be collected
from a conflict set based approach like [CRP08].

Thus, the conflict model is agnostic from any specific conflict detection technique
and describes the output of conflict detection components in a structured manner, i.e.,
it precisely represents the context of occurred conflicts, not a conflict pattern. The
context of a conflict is given by the involved model elements, the performed changes
as well as the violated constraints. These constraints are either conformance rules
defined in the model itself and in its metamodel, or pre- or postconditions of a com-

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 9

posite operation. In our conflict model depicted in Figure 2, we therefore access two
sources of information for obtaining a Conflict Report, namely the Change Report,
comprising the applied changes, and Additional Specifications made available to con-
flict detection components beforehand, to improve the quality on detected conflicts.
Additional specifications describe language specific composite operations like refac-
torings as well as conformance rules. All these information are obtained from external
conflict detection components like, e.g., [BKL+10, KHvWH10, TELW10, CRP08] and
validation services [GE10, GDKR+11].

With this conflict model we may profoundly express the kinds of conflicts discussed
in the previous section. Conflicts are either Overlapping Changes or Violations.

• Overlapping Changes. A conflict caused by overlapping changes always refer-
ences two changes which either interfere with each other (Contradicting Change)
or where one change makes the other change obsolete (Equivalent Change). In
the example of Figure 1 the renaming of the operation getInfo() results in a con-
flict due to overlapping changes. The introduction of the class EventManager is
considered equal and is thus automatically merged.

• Violations. For conflicts due to violations we distinguish the following sub-
classes:

– Operation Contract Violation. A conflict due to the violation of an oper-
ation contract always involves at least one composite change like a refac-
toring. This change cannot be performed because another change violates
a precondition, a postcondition, or an invariant specified by the operation
contract. Composite changes may be specified with a tool like EMF Model-
ing Operations as proposed in [BLS+09], in terms of graph transformations
as proposed in [KKT11, TELW10], or as change pattern which is part of
a conflict pattern [CRP08]. We distinguish two cases: a composite change
is either not applicable because a model element violating the change’s
operation contract has been added (e.g., class SoccerMatch in Figure 1) or
an existing model element necessary for the execution has been changed or
deleted (e.g., attribute artist of class Exhibition in Figure 1).

– Constraint Violation. Conflicts may arise if the merged model violates
metamodel constraints or constraints specified within the model. For exam-
ple in Figure 1, the inheritance cycle or the violation of the xor-constraint
defined in the Class Diagram are representatives of this category of con-
flicts.

Note that this conflict representation is not adopted for a certain modeling lan-
guage and may be achieved by various conflict detection components (at least with
the help of a simple adapter). As the OMG standard for diagram interchange [Obj06]
proposes to consider the model’s graphical visualization, i.e., its visual diagrams also
as models, we apply the same conflict model for the representation of layout conflicts.
For example, if two modelers move the shape of a model element to different posi-
tions, we have a conflict due to overlapping changes. In the following, we discuss the
technical realization in more detail and explain how this conflict model serves as basis
for the representation of conflicts within modeling environments.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

10 · Petra Brosch et al.

<<stereotype>><<stereotype>>

Changes<<stereotype>>
Change

- user: Actor
- state: StateKind
- changeElement: EObject

<<enumeration>>
StateKind

- PENDING
- APPLIED
- REVERTED

yp
CompositeChange

yp
AtomicChange

<<stereotype>>
Update

<<stereotype>>
Delete

<<stereotype>>
Add

- feature: Feature
- oldVal: String
- newVal: String<<stereotype>>

MyAdd
<<stereotype>>
TheirAdd

<<stereotype>>
MyDelete

<<stereotype>>
TheirDelete

<<stereotype>>
MyComposite

Change

<<stereotype>>
TheirComposite

Change

<<stereotype>>
MyUpdate

<<stereotype>>
TheirUpdate

Conflicts<<stereotype>>
Conflict

- myChange: Change
- theirChange: Change
- isResolved: boolean

<<stereotype>>
OverlappingChange

<<stereotype>>
Violation

<<stereotype>>
ConstraintViolation

- violatedConstraint: EObject

<<stereotype>>
OperationContractViolation

<<stereotype>>
UpdateUpdate

<<stereotype>>
UpdateDelete

<<stereotype>>
AddAdd

<<stereotype>>
LayoutConflict

<<stereotype>>
ChangeUse

- violatedCondition: EObject

<<stereotype>>
AddForbid

- violatedCondition: EObject

<<stereotype>>
DeleteUse

- violatedCondition: EObject

<<stereotype>>
LayoutConstraint-

Violation

<<metaclass>>
Element

<<extends>><<stereotype>>

Extension Relationship

<<metaclass>>
Collaboration

<<extends>><<stereotype>> <<metaclass>>
Relationship

<<extends>><<stereotype>>
Element Collaboration Relationship

Figure 3 – Versioning Profile

4 A UML Profile for Model Versioning

In the previous sections, we have discussed how to represent the essence of the different
kinds of merge conflicts in terms of a conflict model. However, when it comes to
presenting the conflicts to the user in charge of merging two models, appropriate
visualization techniques are essential. In this section, we elaborate on the supportive
merge visualization of UML models. Our premise for visualizing conflicting UML
models is that the user (1) should remain in her familiar UML tool, (2) should start
with a tentative, automatically merged version comprising unproblematic changes,
and (3) should be able to comprehend and reproduce changes and resulting conflicts.
To this end, we present a dedicated Versioning Profile (cf. Figure 3). The versioning
profile reflects the information of the Conflict Report and enables the visualization
of a model’s evolution, i.e., the performed changes, as well as the merge conflicts
directly in the UML model. Our design rationale for using UML profiles is based on
the following requirements

• User-friendly visualization: Information about performed changes, their respec-
tive users, and resulting merge conflicts shall be presented in the concrete syntax

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 11

of UML. This is an important requirement, because modelers know UML by its
concrete syntax elements, but they are normally not experts on the abstract
syntax of UML.

• Integrated view: All information necessary for the merge of one diagram shall
be visualized within this single diagram to provide a complete overview of its
evolution. This ensures that the mental maps of the modelers can be reused for
model merging, especially, needed for the manual conflict resolution.

• Standard-conform UML models: The models incorporating the merge informa-
tion shall conform to the UML metamodel. This ensures that the models can be
opened by UML modeling editors and processed by UML model manipulation
tools.

• Model-based representation: The merge information shall be explicitly repre-
sented as model elements. Fulfilling this requirements allows to facilitate model
exchange between UML tools as well as postponing or delegating the resolution
of certain conflicts by just saving the models with the conflict annotations.

• Non-intrusive editor extensions: The visualization of the merge information
shall be possible without modifying the graphical editors of UML tools. This
allows to be independent of a concrete UML modeling tool and avoids to provide
proprietary tool extension which may be hard to maintain in the future.

UML profiles define a lightweight extension to the UML metamodel and allow
for customizing UML to a specific domain. UML profiles typically comprise stereo-
types, tagged values, and additional constraints stating how profiled UML models
shall be built. Stereotypes are used to introduce additional modeling concepts which
extend standard UML metaclasses. Once a stereotype is specified for a metaclass, the
stereotype may be applied to instances of the extended metaclass to provide further
semantics. With tagged values, additional properties may be defined for stereotypes.
These tagged values may then be set on the modeling level for applied stereotypes.
Furthermore, syntactic sugar in terms of icons for defined stereotypes may be config-
ured to improve the visualization of profiled UML models. The major benefit of UML
profiles is reflected by the fact that profiled models are still conformant to UML, i.e.,
they are naturally handled by current UML tools.

As shown in Figure 2, the conflict report (1) assembles the change report by
comprising all changes performed to the model and its respective diagrams, and (2),
marks the changes which are overlapping or violating constraints. The versioning
profile reflects this separation by introducing dedicated stereotypes for changes and
conflicts. Like in the conflict report, the change stereotypes comprise the information
about how a specific model element has evolved. Conflict stereotypes are introduced
to annotate merge problems and link to the respective changes. The versioning pro-
file is derived from the previously described conflict report but explicates additional
information, which is only implicitly available beforehand.

Changes. The versioning profile provides stereotypes for each kind of change. To
provide provenance information, each «Change» stereotype has tagged values to make
the responsible user explicit. Additionally, as the stereotypes are not only used for
mere visualization purposes, but also for supporting the merge process in terms of
dedicated tooling (cf. Section 5), status information indicating whether the change
has been already applied, is introduced. To complement tooling related information,

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

12 · Petra Brosch et al.

each change may be traced back to the corresponding change element in the change
report. Changes are either atomic or composite. An «AtomicChange», i.e., add,
delete, or update, may be applied to any concrete UML element, i.e., Class, Gener-
alization, Property, etc., and thus, is defined to extend the UML metaclass Element.
As updates are changes to existing elements, they have additionally tagged values for
pointing to the affected feature of the changed element including its old and new value.
Composite changes like refactorings, incorporate a set of indivisible atomic changes.
To highlight this fact, a new UML collaboration is introduced in the merge process
and annotated with the stereotype «CompositeChange». The collaboration connects
all model elements concerned by the composite change via UML relationships. Each
specific kind of change stereotype is finally defined in the form of «MyChange» and
«TheirChange» to indicate which changes were originally performed by the user in
charge of merging and which changes were applied by the other user.

Conflicts. The conflict part of the versioning profile defines stereotypes for the
different conflict types depicted in Figure 2. Accordingly, a «Conflict» may be ei-
ther an «OverlappingChange» or a «Violation». To differ conflicts in the model
and in the visual diagram explicitly, the stereotypes «LayoutConflict» and «Lay-
outConstraintViolation» for annotating conflicts due to overlapping changes in the
diagram and for the violation of special layout constraints, are introduced. «Upda-
teUpdate» and «UpdateDelete» stereotypes extend the UML metaclass Element, as
these conflicts result from two atomic changes on the same model element. Even if a
«LayoutConflict» occurs due to an overlapping change in the diagram, the stereotype
is applied to the model and thus extends the metaclass Element. In this way, the
visualization of layout conflicts is naturally handled by UML editors. In contrast,
Add/Add conflicts and violations comprise different modeling elements. Thus, we
again introduce UML collaborations to hint at the involved changes. «ConstraintVi-
olation» and «LayoutConstraintViolation» further state violated constraints. In case
of an «OperationContractViolation», the UML relationships interlinking the involved
elements to the UML collaboration, are annotated with stereotypes (inspired from
graph transformation theory [LEO06]) indicating how the contract is violated by the
model element. The stereotypes «ChangeUse» and «DeleteUse» are applied on model
elements already existing in the original model, which are involved in a composite op-
eration and changed or deleted by the other user, respectively. «AddForbid» indicates
the addition of a new model element which invalidates the precondition of a composite
operation. Finally, all conflict stereotypes refer via tagged values to the underlying
change stereotypes, what makes understanding and reproducing the conflicts possible.

5 Conflict Aware Merging of UML Models

Resolving conflicts by manually exploring the common ancestor model as well as the
two changed models in combination with the change and conflict reports shows to
be cumbersome and error-prone in practice. Thus, we generate a dedicated Conflict
Diagram visualizing the merged model comprising all relevant changes and detected
conflicts at a single glance (cf. Figure 4 for the running example). The conflict diagram
provides a tentative, automatically merged version of the model and all associated
diagrams. Thus, for our motivating example, two conflict diagrams are generated,
i.e., one for the Class Diagram and one for the Sequence Diagram.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 13

Legend

Changes Conflicts

dd l d d / d ll flAdd Delete Update Composite Operation Update/Update OperationContractViolationViolation LayoutConflict

Figure 4 – Conflict Diagram for the Running Example

Generating Conflict Diagrams

Although the conflict diagram is enriched with change and conflict information, it
provides a familiar view, which the user in charge of merging, in our case Sally, can
recognize as her diagram. It is obtained as follows:

1. All additions and non-overlapping atomic updates are applied to the common
ancestor model. Deletions are skipped in order to allow annotating deleted ele-
ments with the respective stereotype (e.g., artist in class Exhibition in Figure 4).
All composite changes are left out in this step since they are handled in Step 5.
This allows for incorporating all atomic changes in the composite change (e.g.,
a refactoring) [DMJN08]. More precisely, if the class SoccerMatch added by
Harry had an attribute artist, which was shifted to the superclass by Sally with
the pullUpField refactoring, a re-execution of the refactoring would also include
the new class and shift the attribute.

2. All changed elements are annotated with the corresponding change stereotypes
defined by the type of change and the respective user. A link to the correspond-
ing user and to the underlying Change of the change report are stored in tagged

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

14 · Petra Brosch et al.

values. The Change element is later needed to execute or undo the change in the
manual merge phase. The tagged value state shows if a change is already ap-
plied, what is only the case for non-overlapping additions and updates. Deleted
elements are just marked as deleted, but not yet deleted. This allows for visu-
alizing and possibly preserving deleted elements. For updates, also the updated
feature together with its old and new values are persisted. For an inserted ele-
ment of Harry, cf. class SoccerMatch, annotated with «TheirAdd» as Sally did
the later check-in and has now the burden of merging the models. Please note
that the textual and graphical visualization of stereotypes varies for different
modeling elements and editors. Thus the concrete peculiarity of «MyChange»
and «TheirChange» may be visible not until visiting the property view, like in
case of purchase in class Ticket in Figure 4.

3. Contradicting changes are annotated by applying the appropriate «Update-
Update» and «DeleteUpdate» stereotypes to the concerned element. The ac-
tual changes are stored in tagged values by referencing to the respective change
stereotypes.

4. Whenever equivalent changes occur, which cannot be reduced to one change,
UML collaborations are added to connect the respective modeling elements.
An «AddAdd» stereotype is attached to these collaborations and again, both
corresponding changes are stored in tagged values. As the class EventManager
inserted by Harry and Sally independently is deep equal, i.e., all features and
references are equal, no conflict is reported by our conflict detection component.
Thus, only one class is added to the model. However, two possibilities for placing
the corresponding shape in the diagram exist. As the conflict diagram shall
provide a familiar view to Sally, because she is merging the model, the position
of her version is applied. However, a stereotype indicating a «LayoutConflict»
is added to point her attention to Harry’s different position for that shape.

5. As several modeling elements are involved in composite changes like in the
pullUpField refactoring in Figure 4, we interlink them by introducing a UML
collaboration for each distinct composite change. Before integrating composite
changes, their preconditions are checked. If the preconditions are still valid,
they are re-executed on the merged model. If the preconditions do not hold, an
operation contract violation is at hand and the composite operation is not exe-
cuted. Then the added collaboration is annotated with an «OperationContract-
Violation» stereotype and relationships to the elements, which do not longer
fulfill the precondition, are marked with dedicated stereotypes. In our example,
the relationship to the attribute artist is annotated with a «DeleteUse» stereo-
type, as the deletion of the property violates the precondition of the pullUpField
refactoring, i.e., every subclass must have the field to be pulled up. Similarly,
the relationship to the added class SoccerMatch is marked as «AddForbid». This
is also due to the missing property artist. Please note, as deleted elements like
the attribute artist in class Exhibition are only marked as deleted but temporarily
preserved, conflicts arising due to their non-existence may be visualized.

6. Finally, the merged model is validated. All applied additions and updates are in-
corporated for validation, as well as pending deletions. Violated constraints are,
again, marked by adding UML collaboration elements, interlinking the involved

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 15

model elements and applying «ConstraintViolation» stereotypes. Their tagged
value states the violated OCL constraint (e.g., Inheritance Cycle in Figure 4).

Making Conflicts Accessible

The tentative, automatically merged conflict diagram provides support for manually
merging the models. The algorithm described above generates a Neutral View of all
non-overlapping changes. Based on this conflict diagram, two supplementary views
are supported. My View automatically privileges changes of the user in charge of
merging the model. Thus, instead of skipping overlapping updates, the value of
my change is used. Their View provides the opposite view, to allow the person
who performs the merge to immerse herself in the situation of the other modeler.
Additionally to applying values of their changes, also the layout information of the
other user’s diagram is used. In our example, this would affect the class EventManager,
which was introduced by both modelers, but treated as equal by the conflict detection
component. In their view, the class is visualized on the right of class Event. Violations
are handled in my and their view as in the neutral conflict diagram, because currently
we do not trace back to the exact change causing the violation. Thus, atomic changes
dominate composite operations, and in case of constraint violations, both changes are
applied and marked with the help of the collaboration. The three conflict diagram
views may be seamlessly transformed into each other and act as sandbox for checking
various scenarios to better understand and resolve all conflicts.

The conflict diagram provides several benefits concerning the resolution of the
conflicts. First of all, necessary information to resolve the occurred conflicts is pro-
vided at a single glance. Furthermore, different diagram filters may be employed on
top of the stereotypes. With the help of these filters, specific kinds of stereotypes, i.e.,
conflicts, may be hidden enabling the user to focus on a specific conflict scenario. For
example, a conflict resolution process can be supported such as firstly representing
contradicting changes, subsequently, operation contract violations, and finally, con-
straint violation conflicts. Based on the user and state information of the stereotypes,
the modeler responsible for the merge may switch between the two supplementary
views my view and their view to analyze different scenarios. The stereotypes enable
additional mechanisms for visualizing conflicts directly supported by state-of-the-art
UML modeling tools. As depicted in Figure 4, special icons are used for stereotyped
elements. However, in case of loads of changes, the icons may quickly overwhelm the
diagram. For example, the operation getInfo in class Ticket of Figure 4 is decorated
with three icons, i.e., the change of Harry, the change of Sally, and the resulting
Update/Update conflict. In such cases, information hiding would be helpful, e.g.,
suppressing change icons, as the conflict stereotypes incorporate change information
anyway.

Going beyond visualizing the conflict diagram, extensions to the UML editor in
form of dedicated Merge Actions may be implemented to interact with the stereo-
types. Then, pending changes may be applied or reverted to resolve conflicts. Conflict
stereotypes are then deactivated by setting them to isResolved. However, this needs re-
execution of conflict detection after each change. When checking in, elements marked
for deletion are eventually deleted. Stereotypes for applied and reverted changes, as
well as for resolved conflicts are removed. Pending changes and unresolved conflicts
may be temporarily tolerated and checked in with the model for later processing, or
may be handed over to another modeler as issue report.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

16 · Petra Brosch et al.

6 Implementation

In the first part of this paper, we proposed to report merge conflicts in the concrete
syntax of UML [Obj11c] by annotating the model elements with additional decorations
and generating conflict diagrams for each corresponding diagram. Hence, it does not
suffice to merge changes to the model only, but it is necessary to also merge diagrams.
As diagrams are in accordance to OMG’s UML diagram interchange standard [Obj06]
and to the upcoming diagram definition standard [Obj11a] also models adhering to a
dedicated diagram interchange metamodel, generic differencing and conflict detection
facilities may be reused. Nevertheless, special care is necessary in the merge phase
to keep model changes and diagram changes in sync. In this section, we therefore
discuss some challenges we met while implementing the prototype of the presented
merge algorithm and outline open issues.

We demonstrate our conflict aware merge strategy for the generation of conflict
diagrams for evolving UML models, as UML is the predominant standard for visually
modeling of software systems. However, OMG’s diagram interchange and definition
standards [Obj06, Obj11a] are not restricted to describe UML diagrams, but to de-
scribe diagrams for any MOF [Obj11b] based domain-specific modeling language. Fur-
ther, alternative approaches lifting the required UML profile mechanism to the area
of domain-specific modeling, are already proposed in [LWWC11, MD10, KRDM+10].
Thus the presented approach may be applied to arbitrary modeling languages, whereas
we exemplary show how to use EMF Profiles [LWWC12] for this purpose later in this
section.

We base our prototype on the Eclipse Modeling Framework (EMF)5, more pre-
cisely on the EMF based reference implementation of the UML standard6. For the
visualization, we employ UML2 Tools7, which provide graphical editors for UML
models based on the Graphical Modeling Framework (GMF)8. GMF in turn provides
an implementation of a graphical notation metamodel close to the upcoming OMG
standard for diagram definition [Obj11a], which interchange was successfully demon-
strated in [EL11]. A prototypical implementation showcasing the conflict diagram
generation for UML models is available at our project website9.

Considering Model and Diagram Changes together. Whenever changes to
the abstract syntax model are merged, the respective diagram changes have to be
made to the conflict diagram. As there is usually not a one-to-one correspondence
between the model elements of the abstract syntax and the elements shown in the
concrete syntax, dependent changes have to be determined in order to treat them as
composite unit.

Consider again the example shown in Figure 1. When switching from the concrete
syntax to the abstract syntax of the diagram created with Eclipse’s Class Diagram
Editor (cf. Figure 5), we see that the diagram consists of several elements describing
graphical elements, such as Shape, Connector, and Compartment. The concrete design
rules how an element is rendered by the editor are not interchanged by the editors but
persisted separately in a diagram definition model. This information is therefore only
referenced via the type attribute of the diagram’s elements. Further, primary view

5http://www.eclipse.org/modeling/emf/
6http://wiki.eclipse.org/MDT-UML2
7http://wiki.eclipse.org/MDT-UML2Tools
8http://www.eclipse.org/modeling/gmp/?project=gmf-notation
9http://modelevolution.org/prototypes/conflictvisualization

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.eclipse.org/modeling/emf/
http://wiki.eclipse.org/MDT-UML2
http://wiki.eclipse.org/MDT-UML2Tools
http://www.eclipse.org/modeling/gmp/?project=gmf-notation
http://modelevolution.org/prototypes/conflictvisualization
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 17

: Class

name = “Event”

: Generalization
specificgeneral

Abstract Syntax Model

element elementname = “Concert”

: Class

artist

Event : Attribute

name = “artist”

element

Concert
: Shape

type = CLASS
x = 460

: Shape

type = CLASS
x = 400

Concrete Syntax Model

: Connector

type =
GENERALIZATION

target source

x = 460
y = 385

x = 400
y = 520

GENERALIZATION
bendpoints = [..][..]

: Compartment

type = 7001

: Compartment

type = 7001
type 7001

: DecorationNode

type = 5003

: DecorationNode

type = 5003

Figure 5 – Models Representing Abstract Syntax and Concrete Syntax

elements are mapped to elements of the abstract syntax model. Compartments and
decoration nodes link only implicitly to the model elements and are part of a shape
regardless of whether attributes or operations exist in the model or not. In contrast,
decoration nodes for multiplicities of associations are optional and are only set by
the editor for multiplicities different to 1, which is the default value. Thus, even if
the concrete syntax model is described by a standard conform model, the outcome
highly depends on the modeling editor rendering a perfect generic merge solution all
but impossible. To overcome this limitation, our prototype implementation offers
an adaptation point to plug in a custom dependency calculation for concrete syntax
models of specific editors.

Applying Stereotypes. Even though UML allows to apply stereotypes to every
model element, applying change and conflict stereotypes is not straight forward and
additional editor related information is needed. For example, when the multiplicity of
an association is changed, the stereotype indicating that change should not be applied
on the association’s end property, but on the association, because stereotypes on the
property are not visualized in the UML2 Tools Class Diagram Editor. In contrast,
the commercial UML tool Enterprise Architect10 has no such restrictions.

Class A

60° ½ distance

Class B
Collaboration

Figure 6 – Placing Collaborations

Placing Collaborations. As several new
UML collaboration elements and connectors are
added to the conflict diagram, a fitting position
has to be found in order to keep the diagram
understandable. According to [WS06], the aes-
thetics of UML diagrams affected by the spatial
layout of nodes is crucial for understanding a

10http://www.sparxsystems.eu

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.sparxsystems.eu
http://dx.doi.org/10.5381/jot.2012.11.3.a2

18 · Petra Brosch et al.

model. To foster model comprehension, the collaborations should therefore be placed
as near as possible by the connected elements, whereas connectors should have ap-
proximately the same length [WS06, CP96]. Thus we calculate the position of new
collaborations by rotating the coordinates of the leftmost shape by 60 degrees, taking
the center of the shapes to be connected as anchor, as depicted in Figure 6. We
insert the collaboration on the calculated corner of the resulting triangle. In order
to preserve the mental map, we do not change the layout of the existing elements.
Currently, it is up to the editor to avoid crossing edges and element overlaps due to
the merge and the new collaborations. However, a mental map preserving algorithm
similar to the work of Jucknath et al. [JJGT06], where element overlaps are avoided
by rearranging younger nodes and retaining the position of senior nodes, would be
appreciated.

Handling Layout Conflicts. Like on the abstract syntax of the model, also on
the concrete syntax of the model may occur conflicts. For example, if both modelers
move a class in different directions, a conflict on the diagram occurs, even without any
change to the model itself. Such kind of layout conflicts are currently automatically
resolved, as the conflict diagram is generated using the layout of MyUser by default.
Additionally, a «LayoutConflict» stereotype is applied. Similar to violations of the
model, additions or moves of different shapes may also result in (partly) hidden shapes
or crossing edges in the merged model. Layout constraints may be stated like meta-
model constraints in terms of OCL and detected by external validation components.
Violated constraints may again be indicated by introduced collaborations annotated
with «LayoutConstraintViolation» stereotypes.

Supporting other technologies and languages. Until now, we have shown the
implementation of our approach for the UML2 Tools which represent the current UML
reference implementation. To show the applicability of our approach for other tools
outside Eclipse, we have additionally implemented the versioning profile for the com-
mercial UML tool Enterprise Architect. Important lessens learned are: (1) stereotype
applications are shown for every model element type in the diagram, (2) powerful
filtering techniques are possible and easy to configure by just stating the stereotypes
which should be used as filtering criteria, (3) visualization rules for model elements
may be defined again based on which stereotype is applied, e.g., the stereotype appli-
cation can effect the background color of the model element.

Another implementation of the versioning profile has been achieved for EMF mod-
els in general. By using the concept of meta-profiles supported by EMF Profiles, we
are able to define the versioning profile independent from the metamodels, compute
the change and conflict annotations for any EMF-based model, and store them as
profile applications. The annotations may be either shown in the abstract syntax in
case no GMF-based modeling editor is available or in the concrete graphical syntax
if a GMF-based modeling editor is available for the modeling language.

7 Related Work

Regarding our goal of computing conflict diagrams for evolving UML models managed
by optimistic model versioning systems, we identify four, partly orthogonal threads of
related work. First, we analyze strategies for integrating isolated changes in general.
Second, we consider how changes and conflicts are detected and presented to the user

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 19

in model versioning approaches and review specific model merging approaches. Third,
we elaborate on approaches for ensuring the mental map [ELMS91] across different
diagram versions. Fourth, we present more widely related work, namely collaborative
ontology engineering, where similar issues arise as in collaborative modeling.

General Merge Strategies. In order to deal with conflicts when merging arti-
facts, several strategies are conceivable. Versioning systems for code like Subversion
and CVS typically employ a manual merge strategy when it comes to integrating
conflicting changes. Then, the two parallel evolved versions of an artifact are shown
to the user side by side, conflicting changes are highlighted. The user has to analyze
the evolution of the artifact and to decide which changes shall be integrated into the
merged version. For sequential artifacts like text files, merging works satisfactory well
in practice. However, applied to the textual serialization of graph-based artifacts like
models, this approach fails [BKL+11a].

As manual conflict resolution is error-prone and cumbersome, it seems naturally,
that avoiding conflicts is a preferable goal. Munson and Dewan present a flexible
framework for merging arbitrary objects, which may be configured in terms of merge
policies [MD94]. Merge policies may be tailored by users to their specific needs and
include rules for conflict detection and rules for automatic conflict resolution. Actions
for automatic conflict resolution are defined in merge matrices and incorporate the
kinds of changes made to the object and the users who performed those changes. Thus,
it may be configured, e.g., that changes of specific users always dominate changes of
others, or that updates outpace deletions.

In contrast, nearly as long as collaborative systems exist, several works have been
published, arguing that inconsistencies are not always a negative result of collabo-
rative development. They propose to tolerate inconsistencies at least temporarily
for several reasons [NER01]. Inconsistencies may identify areas of a system, where
the developers’ common understanding has broken down, and where further analysis
is necessary. Another reason for tolerable inconsistencies arise when changes to the
system are so large, that not all dependent changes can be performed at once. Fur-
ther, fixing inconsistencies may be more expensive than their impact and risk costs.
Tolerating inconsistencies requires the knowledge of their existence and careful man-
agement. Undetected inconsistencies in contrast, should be avoided as they cause
problems. Schwanke and Kaiser [SK88] proposed as one of the first an adapted pro-
gramming environment for identifying, tracking, tolerating, and periodically resolving
inconsistencies. Similarly, Balzer [Bal91] allows to tolerate inconsistencies by relax-
ing consistency constraints and annotating inconsistent parts with so called pollution
markers.

Even if several merge strategies for textual artifacts are capable of automatically
resolving or tolerating conflicts to a certain extent, carrying those ideas to merging
models is challenging. Merged models have to obey the rules of their graph-based
structure at any point in time. Otherwise, the merged model cannot be opened in
modeling editors for further processing.

Merging in Model Versioning. In the following we discuss model versioning
systems with special emphasis on the merge phase, i.e., how changes and conflicts are
detected and presented to the user.

According to Mens [Men02], state-based approaches and change-based approaches
may be distinguished. While state-based approaches, e.g., [MCPW08, BP08, CRP08,

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

20 · Petra Brosch et al.

XS05, LGJ07] compute the changes between two model versions by matching and dif-
ference algorithms, change-based approaches, e.g., [SZN04, KHvWH10, OS05] record
the changes directly in the modeling editor as they are applied. Concerning the visu-
alization of changes and merge conflicts, state-based approaches present the common
ancestor model, the two revised models, the difference reports as well as the conflict
report. In contrast, change-based approaches show the initial model, the two sets
of changes from both modelers, respectively, and an optional conflict report stating
dependencies between changes. Another possibility for change-based approaches is to
show the initial model with applied non-conflicting changes and only the conflicting
changes are outstanding. However, the aforementioned approaches neither consider
to represent only one integrated model and tolerate inconsistencies during the merge
phase, nor enrich the integrated model with annotations for showing the changes
and conflicts explicitly to the user. Only two approaches allow to compute a single,
conflict-free merged model. Ehrig et al. [EET11] produce a pre-merged version by
giving updates a higher priority as deletions. By this, a first version of the merged
model is generated and subsequently the user has to reason about if deletion should
have actually a higher priority. Cicchetti et al. [CRP08] adopt an automatic merg-
ing approach for models by defining dedicated reconciliation strategies specifying the
applicable set of change operations within their conflict patterns. In the context of a
co-evolution scenario where the metamodel of a modeling language evolves, Cicchetti
et al. [CRP09] present an approach where they are able to analyze the dependencies
between changes and support the resolution of certain dependencies. This allows for
a scheduling of the modifications. An approach for fixing inconsistencies between
different diagrams is proposed in [ELF08] which uses then information on the impact
of the change. All aforementioned versioning approaches neglect the concrete syntax
of models, thus, no attempts are made to show changes and conflicts in the concrete
syntax of models.

Finally, dedicated approaches for visualizing differences between diagram versions
have been proposed by Mehra et al. [MGH05] and Ohst et al. [OWK03] by using
different coloring and highlighting techniques for changed model elements shown in so
called unified diagrams incorporating all changes of both users. The implementation of
the approach of Ohst et al. has been presented in [Nie04], but solely considers two-way
merges. Three-way merges are only mentioned as subject to future work. Thus, only
Update/Update conflicts for attribute values and element moves are marked explicitly
in the unified diagrams. Furthermore, tool-specific extensions have to be implemented
for modeling editors in order to use this approach. In contrast to Ohst et al., Mehra
et al. consider tree-way merges. Although conflicting changes are detected by their
differentiation algorithm, no attempt is made to indicate to the user that accepting
one change may invalidate another, as explicitly stated in their paper. Concerning
the concrete syntax changes, a diagram with many overlapping highlighted model
elements is generated in cases where a large number of changes occurred. This is
because, for each movement, the origin as well as the new place of each element
with a line as connector is shown. The approach has been implemented for the
meta-CASE tool Pounamu [ZGH+07] for providing generic visualization support for
modeling languages defined in Pounamu, but for UML modeling environments there
is no support available.

The presented approach of this paper is built on top of existing model versioning
systems and aims at unifying ideas from the fields of tolerating inconsistencies and
the visualization of model differences. However, our approach is also related to works

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 21

regarding preserving the mental map and collaborative development in other modeling
domains.

Preserving the Mental Map between Diagrams. There is a number of works
focusing on preserving the mental map across sequences of diagrams. In general, the
sequences of diagrams are created by transforming the underlying model and adjusting
the diagram to the evolved model. When the mental map shall be preserved, the goal
is to keep changes of the layout at a minimum such that the modeler needs not to
spend much effort in realignment. This aspect is the particular focus of previous work
by Jucknath-John et al. [JJGT06], Pilgrim [vP07], Johannes and Gaul [JG09], and
Grimm et al. [GBPV07].

Jucknath-John et al. [JJGT06] aim at layout graphs that are transformed by
a sequence of endogenous graph transformations. Their goals are: (1) achieve an
optimal quality for each single graph layout, (2) retain the mental map of a graph
layout, and (3) allow to identify of the changes between two succeeding graph layouts
by visually emphasizing the differences. To achieve these goals, the authors introduce
the concept of node aging and protection of the layout of senior nodes, i.e., nodes
that have been introduced earlier than others are less likely to be repositioned by the
algorithm than younger nodes.

The focus of Pilgrim [vP07] is to retain the mental map in exogenous model trans-
formations. The proposed algorithm takes the transformed input model, the input
diagram layout, the output model, and the transformation trace as input to create
a new diagram layout for the generated output model. Nodes representing elements
in the output model are placed according to the position of nodes representing input
model elements linked by the transformation trace in order to retain the mental map.
The output diagram layout is optimized by scaling and adjusting the nodes to avoid
overlaps.

Johannes and Gaul [JG09] considered the diagram layout when composing domain-
specific models. In their approach, the layout composition information is delivered
through a graphical model composition script, which specifies how models should be
composed. After the composed model is created, the diagrams of the composed model
are merged into a new composed diagram according to the positions in the graphical
model composition script. Finally, Johannes and Gaul also apply some algorithms to
adjust the final layout to remove overlaps.

Grimm et al. [GBPV07] presented an approach for tackling the challenge of pre-
serving the mental map when UML class diagrams have to be merged. Their approach
is based on using one of the concurrently edited diagrams as so called base diagram,
in which all modifications done for creating the other diagram, the so called fitting
diagram, are included. For merging in a metal map preserving manner, the neighbor-
hood of model elements in the fitting diagram has to be ensured also in the merged
diagram as good as possible.

The first two mentioned approaches, Jucknath-John et al. and Pilgrim, particu-
larly focus on retaining the mental map for transformation scenarios different from
merging. Johannes and Gaul consider the composition of diagrams, but they only con-
sider two-way merging as well as merging heterogeneous models, i.e., models which
do not have the same origin model and therefore only small overlaps between the
models exists. The most related approach is Grimm et al., however, they totally ne-
glect abstract syntax conflicts and thus they do not represent conflicts in their merged
diagrams. We preserve the mental map by prioritizing one view and use annotations
for marking contradicting changes as well as violations of the concrete syntax within

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

22 · Petra Brosch et al.

the concrete syntax. However, we have to admit that some further means for pre-
serving the mental map across diagram versions should be integrated in the future in
our approach, e.g., for providing automatic resolutions to remove overlaps of diagram
elements. Especially, the concept of node aging seems to be well-suited to be reused
for merging diagrams. However, in this respect, we have to further explore if the
modelers prefer the automatic resolution of concrete syntax conflicts by employing
layout algorithms or if they want full control over the layout by resolving the conflicts
manually.

Collaborative Ontology Development. Ontologies are represented by structural
models which may be specified with UML class diagrams [GDD09]. Thus, we con-
sider the collaborative development of ontologies as widely related work to model
versioning. In the last years, the ontology engineering community reported needs for
collaboratively developing ontologies [SNTM08]. In fact, ontologies are becoming so
large that they cannot be built by a single person. Furthermore, ontologies have the
requirement to be an accepted terminology and model for a particular community,
so the community should be involved in the ontology development—so to speak to
gain acceptance by participation. To tackle these issues, several approaches have been
proposed. First, several Wiki-based environments supporting the collaborative devel-
opment of ontologies have been proposed. For instance, LexWiki11 supports to extend
and refine terminologies by making comments and proposing change in a text-based
manner by annotations. These annotations are later examined by curators which
are editing the ontologies in standard ontology editors separated from LexWiki. A
step further goes OntoWiki [ADR06] which allows to change and rate ontology defini-
tions via a Web-based interface. However, OntoWiki does not support capabilities for
representing conflicting changes explicitly. Finally, Collaborative Protégé [TNTM08]
allows, as the name suggests, for the collaborative ontology development by using
annotations similar as is done in the presented approach of this paper. In particular,
Collaborative Protégé allows to annotate ontology changes, proposals, votings, as well
as discussions. Although, in the papers of Collaborative Protégé, the need for syn-
chronous and asynchronous development is mentioned as one of the main requirements
for ontology engineering, currently only synchronous development is supported. Thus
the visualization of detected conflicts is not treated by these approaches in contrast
to this paper. Furthermore, ontologies are developed directly in the abstract syntax
using a tree editor, thus no concrete syntax conflicts are considered.

8 Conclusion

We presented an approach for the visualization of merge conflicts in the context of
optimistic model versioning. In contrast to most state-of-the-art model versioning
systems, we do not report conflicts on the abstract syntax of a model, but in the
concrete syntax as used by the modelers. By using the powerful profile mechanism of
UML, we presented a solution which does not require any adoptions of the modeling
environment. This allows the modelers to stick to their familiar notation when they
are forced to resolve merge conflicts. Then the modeler in charge of conflict resolution
may focus on the integration of the changes by interpreting only the changes of the
others. In the abstract syntax representation, it would first be necessary to identify

11http://biomedgt.org

Journal of Object Technology, vol. 11, no. 3, 2012

http://biomedgt.org
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 23

the own changes because the mental map, i.e., the personal view of the modeler on
the model, is destroyed.

We comprehensively discussed the technical realization of the proposed approach
by introducing a UML profile for representing conflicts and we showed how the infor-
mation about conflicts may be directly incorporated into any UML diagram. In fact,
(semi-)automatic conflict resolution may be offered. Furthermore, we demonstrated
that our approach is suitable for reporting various kinds of conflicts.

Our hypothesis is that with this approach the model merging needs less time
and is less error prone than model merging on the abstract syntax. The framework
presented in this paper provides the technical basis for verifying our hypothesis. We
plan to conduct extensive user studies where we will compare the user behavior in
different merge scenarios where the conflicts are presented in various styles and the
conflict resolution is supported at different levels.

Although we think that our support will result in substantial relaxation of the
merge process, we see that there is the potential danger of overloading the model
with too much additional information. Therefore, we intend to develop methods in
future work for information filtering in order to avoid confusion and disorientation.
Additionally, we want to consider dependencies between conflicts in order to realize
an assistant for the conflict resolution process which offers precise suggestions how to
resolve the conflicts. By this means, we intend to make conflict resolution easier and
safer.

References

[ABK+09] Kerstin Altmanninger, Petra Brosch, Gerti Kappel, Philip Langer,
Martina Seidl, Konrad Wieland, and Manuel Wimmer. Why Model
Versioning Research is Needed!? An Experience Report. In Proceed-
ings of the Joint MoDSE-MCCM 2009 Workshop @ MoDELS’09,
2009.

[ADR06] Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki -
A Tool for Social, Semantic Collaboration. In Proceedings of the 5th
International Semantic Web Conference (ISWC’06), volume 4273 of
LNCS, pages 736–749. Springer, 2006. doi:10.1007/11926078_53.

[ASW09] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A
Survey on Model Versioning Approaches. International Journal
of Web Information Systems, 5(3):271–304, 2009. doi:10.1108/
17440080910983556.

[Bal91] Robert Balzer. Tolerating Inconsistency. In Proceedings of the 13th
International Conference on Software Engineering (ICSE’91), pages
158–165. IEEE, 1991. doi:10.1109/ICSE.1991.130638.

[BE09] Lars Bendix and Pär Emanuelsson. Collaborative Work with Software
Models–Industrial Experience and Requirements. In Proceedings of the
2nd International Conference on Model Based Systems Engineering
(MBSE’09), pages 2–6, 2009. doi:10.1109/MBSE.2009.5031721.

[BKL+10] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad
Wieland, Manuel Wimmer, and Horst Kargl. Adaptable Model Ver-
sioning in Action. In Proceedings of Modellierung 2010, volume 161 of
LNI, pages 221–236. GI, 2010.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1007/11926078_53
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1109/ICSE.1991.130638
http://dx.doi.org/10.1109/MBSE.2009.5031721
http://dx.doi.org/10.5381/jot.2012.11.3.a2

24 · Petra Brosch et al.

[BKL+11a] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad
Wieland, and Manuel Wimmer. The Past, Present, and Future of
Model Versioning. In Emerging Technologies for the Evolution and
Maintenance of Software Models, chapter 15, pages 410–443. IGI
Global, 2011. doi:10.4018/978-1-61350-438-3.ch015.

[BKL+11b] Petra Brosch, Horst Kargl, Philip Langer, Martina Seidl, Konrad
Wieland, Manuel Wimmer, and Gerti Kappel. Conflicts as First-Class
Entities: A UML Profile for Model Versioning. In Models in Software
Engineering - Workshops and Symposia at MODELS 2010, Reports
and Revised Selected Papers, volume 6627 of LNCS, pages 184–193.
Springer, 2011. doi:10.1007/978-3-642-21210-9.

[BKL+12] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad
Wieland, and Manuel Wimmer. An Introduction to Model Ver-
sioning. In Advanced Lectures of 12th International School on For-
mal Methods for the Design of Computer, Communication, and
Software Systems - Formal Methods for Model-Driven Engineering
(SFM’12), volume 7320 of LNCS, pages 336–398. Springer, 2012.
doi:10.1007/978-3-642-30982-3_10.

[BLS+09] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland,
Manuel Wimmer, Gerti Kappel, Werner Retschitzegger, and Wieland
Schwinger. An Example Is Worth a Thousand Words: Compos-
ite Operation Modeling By-Example. In Proceedings of the 12th
International Conference on Model Driven Engineering Languages
and Systems (MoDELS’09), pages 271–285. Springer, 2009. doi:
10.1007/978-3-642-04425-0_20.

[BP08] Cédric Brun and Alfonso Pierantonio. Model Differences in the Eclipse
Modeling Framework. UPGRADE, The European Journal for the
Informatics Professional, 9(2):29–34, 2008.

[CP96] Michael K. Coleman and D. Stott Parker. Aesthetics-based Graph
Layout for Human Consumption. Software: Practice and Experience,
26(12):1415–1438, 1996. doi:10.1002/(SICI)1097-024X(199612)26:
12<1415::AID-SPE69>3.0.CO;2-P.

[CRP08] Antonio Cicchetti, Davide Ruscio, and Alfonso Pierantonio. Man-
aging Model Conflicts in Distributed Development. In Proceedings
of the 11th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’08), volume 5301 of LNCS, pages
311–325. Springer, 2008. doi:10.1007/978-3-540-87875-9_23.

[CRP09] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Man-
aging dependent changes in coupled evolution. In Proceedings of the
2nd International Conference on Theory and Practice of Model Trans-
formations (ICMT’09), volume 5563 of LNCS, pages 35–51. Springer,
2009. doi:10.1007/978-3-642-02408-5_4.

[DMJN08] Danny Dig, Kashif Manzoor, Ralph E. Johnson, and Tien N. Nguyen.
Effective Software Merging in the Presence of Object-Oriented Refac-
torings. IEEE Transactions on Software Engineering, 34(3):321–335,
2008. doi:10.1109/TSE.2008.29.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.4018/978-1-61350-438-3.ch015
http://dx.doi.org/10.1007/978-3-642-21210-9
http://dx.doi.org/10.1007/978-3-642-30982-3_10
http://dx.doi.org/10.1007/978-3-642-04425-0_20
http://dx.doi.org/10.1007/978-3-642-04425-0_20
http://dx.doi.org/10.1002/(SICI)1097-024X(199612)26:12<1415::AID-SPE69>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-024X(199612)26:12<1415::AID-SPE69>3.0.CO;2-P
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-642-02408-5_4
http://dx.doi.org/10.1109/TSE.2008.29
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 25

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2006.
doi:10.1007/3-540-31188-2.

[EET11] Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer. A Formal
Resolution Strategy for Operation-Based Conflicts in Model Version-
ing Using Graph Modifications. In Proceedings of the 14th Interna-
tional Conference on Fundamental Approaches to Software Engineer-
ing (FASE’11), volume 6603 of LNCS, pages 202–216. Springer, 2011.
doi:10.1007/978-3-642-19811-3_15.

[EL11] Maged Elaasar and Yvan Labiche. Diagram Definition: A Case Study
with the UML Class Diagram. In Proceedings of the 14th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS’11), volume 6981 of LNCS, pages 364–378. Springer,
2011. doi:10.1007/978-3-642-24485-8_26.

[ELF08] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Gen-
erating and Evaluating Choices for Fixing Inconsistencies in UML De-
sign Models. In Proceedings of the 23rd International Conference on
Automated Software Engineering (ASE’08), pages 99–108. IEEE, 2008.
doi:10.1109/ASE.2008.20.

[ELMS91] Peter Eades, Wei Lai, Kazuo Misue, and Kozo Sugiyama. Preserving
the Mental Map of a Diagram. In Proceedings of the 1st International
Conference on Computational Graphics and Visualization Techniques,
pages 34–43. ACM, 1991.

[FR07] Robert France and Bernhard Rumpe. Model-driven Development
of Complex Software: A Research Roadmap. In Proceedings of the
Workshop on Future of Software Engineering @ ICSE’07, pages 37–54.
IEEE, 2007. doi:10.1109/FOSE.2007.14.

[GBPV07] Frank Grimm, Georg Beier, Keith Phalp, and Jonathan Vincent. To-
wards Semi-Automatic, Mental Map Preserving Visual Merging of
UML Class Models. In Proceedings of the International Conference
on Applied Computing, pages 655–660, 2007.

[GDD09] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven
Engineering and Ontology Development (2. ed.). Springer, 2009.

[GDKR+11] Antonio García-Domínguez, Dimitrios Kolovos, Louis Rose, Richard
Paige, and Inmaculada Medina-Bulo. EUnit: A Unit Testing Frame-
work for Model Management Tasks. In Proceedings of the 14th Inter-
national Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS’11), volume 6981 of LNCS, pages 395–409. Springer,
2011. doi:10.1007/978-3-642-24485-8_29.

[GE10] Iris Groher and Alexander Egyed. Selective and Consistent Undoing of
Model Changes. In Proceedings of the 13th International Conference
on Model Driven Engineering Languages and Systems (MoDELS’10),
volume 6395 of LNCS, pages 123–137. Springer, 2010. doi:10.1007/
978-3-642-16129-2_10.

[GJM02] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, 2002.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-3-642-19811-3_15
http://dx.doi.org/10.1007/978-3-642-24485-8_26
http://dx.doi.org/10.1109/ASE.2008.20
http://dx.doi.org/10.1109/FOSE.2007.14
http://dx.doi.org/10.1007/978-3-642-24485-8_29
http://dx.doi.org/10.1007/978-3-642-16129-2_10
http://dx.doi.org/10.1007/978-3-642-16129-2_10
http://dx.doi.org/10.5381/jot.2012.11.3.a2

26 · Petra Brosch et al.

[JG09] Jendrik Johannes and Karsten Gaul. Towards a Generic Layout Com-
position Framework for Domain Specific Models. In Proceedings of 9th
Workshop on Domain-Specific Modeling (DSM) @ OOPSLA’09, 2009.

[JJGT06] Susanne Jucknath-John, Dennis Graf, and Gabriele Taentzer. Evolu-
tionary Layout of Graph Transformation Sequences. Electronic Com-
munications of the EASST, 1, 2006.

[KHvWH10] Maximilian Kögel, Markus Herrmannsdoerfer, Otto von Wesendonk,
and Jonas Helming. Operation-based Conflict Detection. In Proceed-
ings of the 1st International Workshop on Model Comparison in Prac-
tice @ TOOLS’10, pages 21–30. ACM, 2010. doi:10.1145/1826147.
1826154.

[KKT11] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A Rule-Based Ap-
proach to the Semantic Lifting of Model Differences in the Context of
Model Versioning. In Proceedings of the 26th International Conference
on Automated Software Engineering (ASE’11), pages 163–172, 2011.
doi:10.1109/ASE.2011.6100050.

[Kol09] Dimitrios Kolovos. Establishing Correspondences between Models
with the Epsilon Comparison Language. In Proceedings of the 5th
European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA’09), volume 5562 of LNCS, pages 146–157.
Springer, 2009. doi:10.1007/978-3-642-02674-4_11.

[KRDM+10] Dimitrios Kolovos, Louis Rose, Nikolaos Drivalos Matragkas, Richard
Paige, Fiona Polack, and Kiran Fernandes. Constructing and Nav-
igating Non-invasive Model Decorations. In Proceedings of the 3rd
International Conference on Theory and Practice of Model Transfor-
mations (ICMT’10), volume 6142 of LNCS, pages 138–152. Springer,
2010. doi:10.1007/978-3-642-13688-7_10.

[LEO06] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict Detec-
tion for Graph Transformation with Negative Application Conditions.
In Proceedings of the 3rd International Conference on Graph Trans-
formations (ICGT’06), volume 4178 of LNCS, pages 61–76. Springer,
2006. doi:10.1016/j.tcs.2012.01.032.

[LGJ07] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation Tool for
Domain-specific Models. European Journal of Information Systems,
16(4):349–361, 2007. doi:10.1057/palgrave.ejis.3000685.

[LWWC11] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot.
From UML Profiles to EMF Profiles and Beyond. In Proceedings of
the 49th International Conference on Objects, Models, Components,
Patterns (TOOLS’11), volume 6705 of LNCS, pages 52–67. Springer,
2011. doi:10.1007/978-3-642-21952-8_6.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot.
Emf profiles: A lightweight extension approach for emf models. Jour-
nal of Object Technology, 11(1):1–29, 2012. doi:10.5381/jot.2012.
11.1.a8.

[MCPW08] Leonardo Murta, Chessman Corrêa, Joao Gustavo Prudêncio, and
Cláudia Werner. Towards Odyssey-VCS 2: Improvements over a

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/1826147.1826154
http://dx.doi.org/10.1145/1826147.1826154
http://dx.doi.org/10.1109/ASE.2011.6100050
http://dx.doi.org/10.1007/978-3-642-02674-4_11
http://dx.doi.org/10.1007/978-3-642-13688-7_10
http://dx.doi.org/10.1016/j.tcs.2012.01.032
http://dx.doi.org/10.1057/palgrave.ejis.3000685
http://dx.doi.org/10.1007/978-3-642-21952-8_6
http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 27

UML-based Version Control System. In Proceedings of the 2nd Inter-
national Workshop on Comparison and Versioning of Software Mod-
els @ ICSE’08, pages 25–30. ACM, 2008. doi:10.1145/1370152.
1370159.

[MD94] Jonathan P. Munson and Prasun Dewan. A Flexible Object Merging
Framework. In Proceedings of the International Conference on Com-
puter Supported Cooperative Work (CSCW’94), pages 231–242. ACM,
1994. doi:10.1145/192844.193016.

[MD10] Frédéric Madiot and Grégoire Dupé. EMF Facet: A Non-Intrusive
Tooling to Extend Metemodels. http://www.eclipse.org/modeling/
emft/facet/, 2010.

[Men99] Tom Mens. A Formal Foundation for Object-Oriented Software Evolu-
tion. PhD thesis, Vrije Universiteit Brussel, 1999.

[Men02] Tom Mens. A State-of-the-Art Survey on Software Merging. IEEE
Transactions on Software Engineering, 28(5):449–462, 2002. doi:10.
1109/TSE.2002.1000449.

[Mey92] Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–
51, 1992. doi:10.1109/2.161279.

[MGH05] Akhil Mehra, John Grundy, and John Hosking. A Generic Approach
to Supporting Diagram Differencing and Merging for Collaborative
Design. In Proceedings of the 20th International Conference on Au-
tomated Software Engineering (ASE’05), pages 204–213. ACM, 2005.
doi:10.1145/1101908.1101940.

[NER01] Bashar Nuseibeh, Steve M. Easterbrook, and Alessandra Russo.
Making Inconsistency Respectable in Software Development. Jour-
nal of Systems and Software, 58(2):171–180, 2001. doi:10.1016/
S0164-1212(01)00036-X.

[Nie04] Jörg Niere. Visualizing Differences of UML Diagrams With Fujaba. In
Proceedings of the International Fujaba Days 2004, 2004.

[Obj06] Object Management Group. UML Diagram Interchange, Version 1.0.
http://www.omg.org/spec/UMLDI/1.0/, April 2006.

[Obj11a] Object Management Group. Diagram Definition (DD). http://www.
omg.org/spec/DD/1.0/Beta2/, July 2011.

[Obj11b] Object Management Group. OMG Meta Object Facility (MOF) Core
Specification V2.4.1. http://www.omg.org/spec/MOF/2.4.1/, August
2011.

[Obj11c] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure V2.4.1. http://www.omg.org/spec/UML/2.4.
1/, August 2011.

[Obj12] Object Management Group. OMG Object Constraint Language
(OCL). http://www.omg.org/spec/OCL/2.3.1/, January 2012.

[OS05] Takafumi Oda and Motoshi Saeki. Generative Technique of Version
Control Systems for Software Diagrams. In Proceedings of the 21st
IEEE International Conference on Software Maintenance (ICSM’05),
pages 515–524. IEEE, 2005. doi:10.1109/ICSM.2005.49.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/1370152.1370159
http://dx.doi.org/10.1145/1370152.1370159
http://dx.doi.org/10.1145/192844.193016
http://www.eclipse.org/modeling/emft/facet/
http://www.eclipse.org/modeling/emft/facet/
http://dx.doi.org/10.1109/TSE.2002.1000449
http://dx.doi.org/10.1109/TSE.2002.1000449
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1145/1101908.1101940
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://www.omg.org/spec/UMLDI/1.0/
http://www.omg.org/spec/DD/1.0/Beta2/
http://www.omg.org/spec/DD/1.0/Beta2/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://dx.doi.org/10.1109/ICSM.2005.49
http://dx.doi.org/10.5381/jot.2012.11.3.a2

28 · Petra Brosch et al.

[OWK03] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between Ver-
sions of UML Diagrams. In Proceedings of the 9th European Soft-
ware Engineering Conference (ESEC’03), pages 227–236. ACM, 2003.
doi:10.1145/949952.940102.

[SK88] Robert W. Schwanke and Gail E. Kaiser. Living With Inconsistency
in Large Systems. In Proceedings of the International Workshop on
Software Version and Configuration Control, pages 98–118. Teubner
B.G. GmbH, 1988. doi:10.1109/32.310667.

[SMB09] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Chal-
lenges in Model-Driven Software Engineering. In Models in Software
Engineering - Workshops and Symposia at MODELS 2009, Reports
and Revised Selected Papers, volume 6002 of LNCS, pages 35–47.
Springer, 2009. doi:10.1007/978-3-642-01648-6_4.

[SNTM08] Abraham Sebastian, Natalya Fridman Noy, Tania Tudorache, and
Mark A. Musen. A Generic Ontology for Collaborative Ontology-
Development Workflows. In Proceedings of the 16th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW’08), volume 5268 of LNCS, pages 318–328. Springer, 2008.
doi:10.1007/978-3-540-87696-0_28.

[SZN04] Christian Schneider, Albert Zündorf, and Jörg Niere. CoObRA—A
Small Step for Development Tools to Collaborative Environments. In
Proceedings of the Workshop on Directions in Software Engineering
Environments @ ICSE’04, 2004.

[TELW10] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wim-
mer. Conflict Detection for Model Versioning Based on Graph Modifi-
cations. In Proceedings of the 5th International Conference on Graph
Transformations (ICGT’10), volume 6372 of LNCS, pages 171–186.
Springer, 2010. doi:10.1007/978-3-642-15928-2_12.

[TNTM08] Tania Tudorache, Natalya Fridman Noy, Samson W. Tu, and Mark A.
Musen. Supporting Collaborative Ontology Development in Pro-
tégé. In Proceedings of the 7th International Semantic Web Confer-
ence (ISWC’08), volume 5318 of LNCS, pages 17–32. Springer, 2008.
doi:10.1007/978-3-540-88564-1_2.

[vP07] Jens von Pilgrim. Mental Map and Model Driven Development. Elec-
tronic Communications of the EASST, 7, 2007.

[WS06] Kenny Wong and Dabo Sun. On Evaluating the Layout of UML
Diagrams for Program Comprehension. Software Quality Control,
14(3):233–259, 2006. doi:10.1109/WPC.2005.26.

[XS05] Zhenchang Xing and Eleni Stroulia. UMLDiff: an algorithm for
object-oriented design differencing. In Proceedings of the 20th Inter-
national Conference on Automated Software Engineering (ASE’05),
pages 54–65. ACM, 2005. doi:10.1145/1101908.1101919.

[ZGH+07] Nianping Zhu, John Grundy, John Hosking, Na Liu, Shuping Cao,
and Akhil Mehra. Pounamu: A Meta-Tool for Exploratory Domain-
Specific Visual Language Tool Development. Journal of Systems and
Software, 80(8):1390–1407, 2007. doi:10.1016/j.jss.2006.10.028.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/949952.940102
http://dx.doi.org/10.1109/32.310667
http://dx.doi.org/10.1007/978-3-642-01648-6_4
http://dx.doi.org/10.1007/978-3-540-87696-0_28
http://dx.doi.org/10.1007/978-3-642-15928-2_12
http://dx.doi.org/10.1007/978-3-540-88564-1_2
http://dx.doi.org/10.1109/WPC.2005.26
http://dx.doi.org/10.1145/1101908.1101919
http://dx.doi.org/10.1016/j.jss.2006.10.028
http://dx.doi.org/10.5381/jot.2012.11.3.a2

Conflict Visualization for Evolving UML Models · 29

About the authors

Petra Brosch is a post-doc researcher at the Business Informat-
ics Group of the Vienna University of Technology. Her research
interests include various topics in the area of model-driven engi-
neering, especially model evolution, model versioning, and model
transformation. In her PhD thesis, she worked on conflict resolu-
tion in model versioning with special emphasis on enabling merge
support directly in the concrete syntax of models and recommend-
ing conflict resolution patterns.

Martina Seidl holds a PhD in computer science and works at
the Business Informatics Group of the Vienna University of Tech-
nology and the Institute for Formal Models and Verification of the
Johannes Kepler University Linz. Her research interests include
various topics from the area of model evolution and model ver-
sioning, automated reasoning with special focus on the evaluation
of quantified Boolean formulas as well as software verification.

Manuel Wimmer is working as a post-doc researcher at the
Business Informatics Group of the Vienna University of Technol-
ogy. His research interests comprise Web engineering and model
engineering; in particular model transformations based on formal
methods, generating transformations by-example as well as ap-
plying model transformations to deal with model (co-)evolution.
Currently, he is on leave working as visiting researcher at the
Software Engineering Group of the University of Málaga (Spain),
where his research focuses on model-driven evolution support for
Web applications.

Gerti Kappel is a full professor at the Institute of Software Tech-
nology and Interactive Systems at the Vienna University of Tech-
nology, heading the Business Informatics Group. Until 2001, she
was a full professor of computer science and head of the Depart-
ment of Information Systems at the Johannes Kepler University
of Linz. She received the Ms and PhD degrees in computer sci-
ence and business informatics from the University of Vienna and
the Vienna University of Technology in 1984 and 1987, respec-
tively. From 1987 to 1989 she was a visiting researcher at the
Centre Universitaire d’Informatique, Geneva, Switzerland. Her
current research interests include model engineering (model trans-
formation, model versioning), Web engineering (ubiquitous Web
technologies, model-driven Web engineering), as well as process
engineering (business process modeling and transformation).

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

30 · Petra Brosch et al.

Acknowledgments This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT10-018, by the Austrian Science Fund
(FWF) under grant J 3159-N23, and by the fFORTE WIT Program of the Vienna
University of Technology and the Austrian Federal Ministry of Science and Research.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a2

	Introduction
	Conflicts in Model Versioning
	Conflict Model
	A UML Profile for Model Versioning
	Conflict Aware Merging of UML Models
	Implementation
	Related Work
	Conclusion
	Bibliography
	About the authors

