
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011

Online at http://www.jot.fm.

A Solution for Concurrent Versioning
of Metamodels and Models

Antonio Cicchettia Federico Ciccozzia Thomas Levequeb

a. Mälardalen University, Department of Innovation, Design, and Engi-
neering (IDT), Mälardalens Högskola, 72123, P.O. Box 883, Västerås,
Sweden, http://www.mdh.se

b. Orange Labs, Orange, 21 chemin du vieux chene, BP 98, 38 243 Mey-
lan, France, http://www.orange.com

Abstract Model-Driven Engineering has been widely recognised as a pow-
erful paradigm for shifting the focus of software development from coding
to modelling in order to cope with the rising complexity of modern sys-
tems. Models become the main artefacts in the development process and
therefore undergo evolutions performed in different ways until the final
implementation is produced. Moreover, modelling languages are expected
to evolve too and such evolutions have to be taken into account when deal-
ing with model versioning. Since consistency between models and related
metamodels is one of the pillars on which model-driven engineering relies,
evolution of models and metamodels cannot be considered as independent
events in a model versioning system.

This article exploits model comparison and merging mechanisms to
provide a solution to the issues related to model versioning when consid-
ering metamodel and model manipulations as concurrent and even mis-
aligned. A scenario-based description of the challenges arising from ver-
sioning of models is given and a running example is exploited to demon-
strate the proposed solutions.

Keywords model-driven engineering, model versioning, model coevolution

1 Introduction

Nowadays, software systems pervade all the aspects of our everyday life, ranging
from personal audio devices and mobile phones to air traffic control systems. As
a consequence, complexity of software development is facing a continuous growth
that requires several changes of the realisation approaches in order to reduce the
intricacy of the development. In this respect, Model-Driven Engineering (MDE) has
been proposed to facilitate the system development by creating, maintaining, and
manipulating models, i.e., abstractions of a real phenomenon. These abstractions

Antonio Cicchetti, Federico Ciccozzi, Thomas Leveque. A Solution for Concurrent Versioning of
Metamodels and Models. In Journal of Object Technology, vol. 11, no. 3, 2012, pages 1:1–32.
doi:10.5381/jot.2012.11.3.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.mdh.se
http://www.orange.com
http://dx.doi.org/10.5381/jot.2012.11.3.a1
http://dx.doi.org/10.5381/jot.2012.11.3.a1


2 · Antonio Cicchetti et al.

reduce the complexity of the problem by allowing developers to focus on the aspects
that most matter in the design of the system, and permitting to reason about the
scenario in terms of domain-specific concepts [Bez05]. As the model is an abstraction
of the system in the reality, rules and constraints for building the model have to be
properly stated through a corresponding language definition: a metamodel describes
the set of available concepts and well-formedness rules a model must conform to1.
Moreover, since models become first class citizens exploited for the development, a
system is developed by refining models starting from higher and moving to lower levels
of abstraction; refinement is implemented by transformations over models [Ken02].
A model transformation converts a source model to a target model preserving their
conformance to the respective metamodels [CH06].

In order for MDE to be fully adopted in industrial settings, it is of paramount
importance that developers are provided, at least, with the same level of facilities
available in code-centric approaches. For instance, version control systems (VCSs)
have been proven successful in code versioning, but they are only partially suitable
for handling versioning in the modelling domain. In fact, differences and conflicts be-
tween versions of a same artefact are usually detected at file-level through line-oriented
text comparison. However, even if taking into account model XMI serialisations, the
mismatch between text and model levels of abstraction may lead to erroneous detec-
tion of differences and hence conflicts [AP03, KPP06]. Therefore, in the latest years
a number of research works have been devoted to versioning models and metamodels
at the appropriate level of abstraction, advancing the state of the art in (meta)model
differencing, versioning, and related co-evolution problems.

Although specific techniques for model and metamodel version management ex-
ist, in general metamodel and model evolution issues are considered as independent
from each other. However, real-life version management demands support of these
evolutions in a concurrent way, since manipulation rates of models and metamodels
are often different and not always aligned, disclosing additional problems [Fav05].
For instance, modifications made to the local version of a model could be operated
in conformance to an older version of the metamodel currently stored in the shared
repository, either because the developer did not update her current revision yet, or
because she did not want to migrate to the newer version of the metamodel due to,
e.g., tool availability, licenses, and so forth. We define such phenomena as misalign-
ments between metamodel and model versioning, since in theory each model existing
in local repositories should be first migrated to conform to the newer version of the
metamodel and then edited accordingly. In this way, all the local working copies
would be re-aligned with the metamodel version committed to the shared repository,
and each modification would make sense in the current metamodel revision.

This work introduces solutions for model versioning when considering metamodel
and model manipulations as possibly concurrent and misaligned. As preliminarly
discussed in [CCLP11], developers may opt to work with different versions of a meta-
model. Therefore in this work we provide facilities to support the re-alignment of
their changes with respect to the newest version of the metamodel stored in the
shared repository. In particular, developers can choose to consider their manipula-
tions i) valid in the previous version of the metamodel, ii) to migrate them in the
new version of the metamodel, or iii) to try to apply them to the model revision
resulting from the migration due to the metamodel update. It is worth noting that in

1Even though in general there are differences between the terms metamodel and language, in the
scope of this article they will be used as synonyms

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 3

any case well-formedness issues arise, since neither intended modifications on an older
version of the language could be completely valid in a newer version, nor manipula-
tions operated by means of an older language could be legal in a more recent one. In
this respect, the proposed mechanisms act directly on the modelling artefacts defined
in their related language through model differencing and transformations as main
instruments, and exploit (meta)models merging techniques in order to make manip-
ulations compatible. Eventually, a subset of the available modifications is committed
(updated) to the shared repository (local working copy) by selecting only those com-
patible with the target metamodel. In this respect, we propose an automated filtering
operation able to distinguish the valid changes to be applied.

The remainder of this article is structured as follows. Section 2 presents moti-
vations and contribution in relation to those aspects of the proposed approach that
have already been partially explored in the current state of the art. In Section 3 we
describe the note-worthiest scenarios of misaligned evolutions, while Section 4 illus-
trates corresponding challenges entailed by the language manipulations we consider.
The proposed solution is introduced in Section 5 through a description of the general
approach as well as the involved core artefacts and techniques. A detailed discus-
sion of the techniques which the implementation relies on and the application of the
process to a running example is given in Section 6. An evaluation of the current solu-
tion and the issues that remain still unsolved are presented in Section 7. Eventually,
conclusions and possible future enhancements conclude the article in Section 8.

2 Background & Related Work

The need for adequate support to maintenance activities emerged as soon as soft-
ware development reached the maturity to be employed in real-life applications. In
fact, from the dawn evolution has been recognised as unavoidable to preserve and/or
enhance user’s satisfaction [Leh84]. Thus, the history of source code development
proceeded together with more and more complex techniques to deal with the man-
agement of its evolution. In this respect, state of the art tools provide a repository,
either centralised or distributed, in which the current version of the application is
stored. Then, concurrent development may be controlled in a pessimistic way, mean-
ing that each available artefact is locked whenever it is accessed, and released when
saved back. In general, the efficacy of this solution decreases with the growth of the
development environment due to the increased likelihood of collisions among access
attempts.

In order to allow a more efficient process, in an optimistic approach each devel-
oper has a local workspace where modifications are done and later committed to the
repository in order to update the current version and advertise it to the other devel-
opers. Moreover, whenever other developers want to commit their own changes, they
will first need to update their local workspaces, merge their manipulations and the
ones already committed, and then commit the resulting revision back to repository.
Consequently, locking mechanisms can be avoided (even if still allowed when neces-
sary) at the price of possible conflicts, that is divergences arising among overlapping
modifications, that are typically fixed during the merging phase [ASW09].

The growing adoption of MDE in complex software development entailed the need
of appropriate support for versioning management. Therefore, (meta)model version
management has gained increasing attention within the current research in the MDE
field. In the following, those efforts for achieving corresponding versioning solutions

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


4 · Antonio Cicchetti et al.

are described in order to better clarify the basic concepts and techniques that underpin
the contribution of this article.

2.1 Model versioning

MDE promotes models as first class citizens exploited to generate code, perform
analysis of system’s properties, and so forth [Bez05]. Therefore, the need of model
versioning support arises as soon as an MDE approach is adopted. Due to the rel-
evant expertise coming from source code management, model versioning has been
initially dealt with by relying on text-based mechanisms, such as Subversion [Tig]
and CVS [CVS]. These are based on the concept of differences: in general, the latest
version of the model is stored completely to be ready to use, whereas each of the past
revisions is memorised in terms of differences with respect to its successor (or anal-
ogously predecessor). In this way the repository size can be optimised since usually
the amount of changes is considerably smaller than the number of elements existing
in the whole model.

In order to make models compatible with those techniques they are serialised in
a more-or-less structured format ranging from plain text to XML documents. In
this way, their versioning can be reduced to source code management, and compari-
son, conflict detection and resolution are operated line-by-line or through tree-based
approaches. However, these solutions suffer an abstraction level mismatch, i.e., text-
based techniques cannot grasp manipulations rationale at modelling level [KPP06].
For instance, serialisation procedures could produce textually different artefacts that
however contain the same information [AP03]. Consequently, a number of techniques
have been introduced for detecting, storing, and visualising [BP08] the evolution at
modelling level. Approaches like the solutions proposed in [OWK03, XS05] are tai-
lored for a certain modelling language as the UML; such restriction allows hypotheses
to be made and constraints to be used for a better recognition of manipulations.
Other mechanisms are language independent and can be applied to any kind of mod-
els [LGJ07, CDP07, RV08]; typically, these approaches have to face the intrinsic
complexity of element matching [KDPP09].

Similarly to what illustrated for source code, models are edited locally and then
committed to the repository. When updating the local workspace with the latest
revision conflicts can occur that need to be solved; in this respect, dealing with models
discloses a number of additional problems due to their intrinsic nature, as the issue
of collisions at semantics level that are not detectable syntactically [AK09, CDP08].

There exist also mechanisms to document model histories by storing snapshots at
corresponding points in time of the development life-cycle, that can hence be seen as
an orthogonal representation of model evolution with respect to the differencing-based
versioning [TDD00, Obj07]. For a more extensive survey on model versioning tools,
related methodologies, and raising difficulties the reader is referred to [ASW09]; for
the purpose of this article it is worth mentioning that the problem of model migrations
due to metamodel adaptations is considered as a separate issue, or, in other words,
there are no traces about model manipulations because of co-evolutionary side effects.

2.2 Metamodel versioning

The MDE vision prescribes the use of models in all aspects of the software develop-
ment life cycle. In this respect, Domain-Specific Languages can be exploited to provide
an abstraction level tailored to the domain experts by providing them with concepts

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 5

closer to their expertise and to improve automation of derived artefacts [Bez05, KT08].
Due to their specificness, modelling languages are typically designed and subsequently
maintained in an incremental manner; in this way, their expressiveness can be manip-
ulated to add, fix, and/or refine available concepts [Fav05]. Versioning metamodels
poses a twofold issue: metamodel evolution has to be detected and stored (as for
models), and its side effects with respect to existing models have to be analysed and
(possibly automatically) fixed. For the former problem, since metamodels are mod-
els themselves, the techniques dealing with model versioning can be transferred also
to metamodelling settings [CDP09]. However, for the latter whenever a metamodel
evolves, corresponding migrations have to be operated since existing model instances
could not be well-formed any more [SK04]. This problem is known as co-evolution
or co-adaptation, and a relevant number of research works propose solutions ranging
from manual co-adaptation [RKPP10, SK04], to semi-automatic migration through
re-use of recurring strategies [HBJ08, Wac07, DIP11] and automatic co-evolution di-
rectly generated from the manipulations made to the metamodel [CDP09, DV07].

Analogously to model versioning, metamodel evolution and the corresponding
model co-evolution are managed as happening instantaneously, meaning that they
are supposed to be operated at the same time and with no misalignment between
metamodel revisions and model manipulations. In the following, we illustrate the
problem of managing the concurrent modification of models and metamodels, that
not necessarily happen at the same time and in a coordinated way. On the contrary,
it is normal practice to edit models by means of, e.g., an older version of a mod-
elling language in order to avoid licensing and/or tooling problems entailed with the
migration to the latest version of the language [CCLP11].

3 Contribution

As discussed so far, model and metamodel versioning has been widely recognised as
relevant problem demanding for adequate support in order to improve the adoption of
MDE in industrial software development. Nonetheless, metamodel and model manip-
ulations have been considered as happening in separate worlds and not overlapping
each other; on the contrary, in this work we claim that they have to be considered as
concurrently participating in version management. Since the contemporary revision
of both languages and models carries further problems that have to be considered, the
discussion contained in this article is based on the assumption that the language is ex-
plicitly versioned, meaning that in the repository both model and metamodel revisions
are available. Moreover, due to memory and performance costs the evolution is stored
in terms of differences between subsequent versions, whereas (as typically happens for
source code) only the newest is kept as the (meta)model as a whole [CDP07].

In order to better clarify the mentioned evolution scenario, in Figure 1 it is depicted
a general development situation in which at a first stage the metamodel MMa is checked
out through an update operation from the repository into the local workspace together
with the current version of the model, i.e., Ma2.

Metamodel and model manipulations happen at different rates with respect to
the time line of the development process: in fact, after a major stabilisation of the
language in which metamodel refinements can be more frequent, model modifications

2For the sake of readability conformance relations have been omitted and they are given implicitly
through the model name.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


6 · Antonio Cicchetti et al.

Figure 1 – Differences between metamodels and models evolution rates and arising issues

happen at more-or-less regular cadence due to the normal development and main-
tenance tasks, while metamodel adaptations are seldom operated in order to meet
unforeseen requirements. For example, in Figure 1 Ma is modified in Workspace1 and
committed as the revision M1a into the repository.

The evolution pattern drawn so far can proceed smoothly until a metamodel adap-
tation happens: in fact, users could still be editing their models by means of the old
version of the language in Workspace1, hence modifications can become inconsistent
with respect to the current language version in the repository. For instance, in Fig-
ure 1 an evolution is operated on MMa in order to obtain MMb: while M1a in the repository
is migrated to Mb to restore its well-formedness with MMb, in the local workspaces there
exist pending updates performed as conforming to MMa, i.e., M2a in Workspace1. As
a consequence the following issues arise: should developers first try to migrate local
models to MMb and then merge the migrated manipulations with the revision in the
repository? Or alternatively should they retrieve the latest version in the repository
before the co-evolution, merge the local changes, and then migrate the result to MMb?
For instance, while M2a has been obtained from the latest version before the migration
“missed” modifications made within Workspace1 and updating directly from Mb could
cause loss of information.

At this point it is worth noting that, as explained in detail later on in the article,
developers do not always work with the latest version of the used modelling language
(and they will continue to use the old version of the language even when notified of
available updates) due to licensing problems or tool chaining stability, to mention
just a few. Of course, an ideal development process would entail a synchronised
environment in which all the developers are using the same set of tools and the same
version of each of them. Unfortunately, in industrial settings such assumption does
not hold, not only among sites located in different regions of the world, but even
across several departments placed in the same building.

In the following sections, we first illustrate in details a set of challenges that have
to be faced when metamodels and model evolutions are considered as concurrent;
then, in Section 5 we describe the solutions we propose to tackle these challenges.

4 Challenges

According to the MDE vision, models are expressed through a language which is
formally defined in terms of a metamodel. In fact, as source code files are compatible

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 7

Figure 2 – Commit changes without metamodel update

only with a subset of corresponding language versions, a model is generally conforming
to and compatible with a subset of metamodel versions. Managing possible evolutions
of the language in terms of versions, and consequently models conforming to them,
is a challenging task that is crucial in order to maintain a fully synchronised and
consistent modelling environment especially, though not only, in case of distributed
development.

In the following, we describe three common scenarios in which the challenges
related to concurrent versioning usually arise:

• Scenario 1: Changes to a model that conforms to an old metamodel version
are committed without updating metamodel version in the user workspace (see
Figure 2);

• Scenario 2: Changes to a model conforming to an old metamodel version are
committed and the metamodel version is updated in the user workspace (see
Figure 3);

• Scenario 3: A model version designed according an old metamodel version is
retrieved while metamodel version in the user workspace is not downgraded (see
Figure 4).

In Scenario 1 (Figure 2), concurrent modifications of a model Ma are performed in con-
formance to metamodel MMa starting from the same model version in both Workspace1
and Workspace2. A new metamodel version MMb is then created and updated to
Workspace1; then, in the same workspace, Ma is co-adapted to conform to MMb re-
sulting in Mb. Mb is modified and subsequently committed to the repository and such
operation leads to the creation of version M1b . Eventually, in Workspace2 modifica-
tions to Ma, resulting in M1a, must be saved without updating metamodel version in
Workspace2 to the latest available in the repository (i.e., MMb) for two possible reasons:
(i) forcing the usage of MMb is costly since it implies updating of tooling related to the
metamodel and time consuming since the current model version has to be migrated to
the new metamodel version, and (ii) there could be tool licensing issues (e.g., in tool
chains) for different users using different language versions. Moreover, consistency
is supposed to be guaranteed among the version committed on the repository and

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


8 · Antonio Cicchetti et al.

Figure 3 – Commit changes with metamodel update

the local revisions possibly conforming to different metamodels. A solution is needed
for exchanging updates between workspaces, especially with different language ver-
sions, without losing information along the way from one language version to another.
Committing to the repository is a complex versioning operation, involving model dif-
ferencing and changes propagation among different versions of both metamodels and
models, that has to be properly handled.

It is worth noting that the changes made on both Ma to obtain M1a and on Mb
to obtain M1b conform to their corresponding metamodels, i.e., MMa and MMb; in this
respect, some modifications make sense for both the metamodels, while others are
specific for either one or the other. Therefore modifications made on the repository
may not be completely propagated to Workspace1 and the other way around. In
Scenario 2 (Figure 3), unlike Scenario 1, we assume that there are no issues preventing
the update of metamodel version among workspaces and repository. Therefore, the
first operation is to update the metamodel MMa in the Workspace2 to version MMb
and then changes operated to Mb in Workspace1 and committed to the repository
can be propagated to M1a, in Workspace2, resulting in M1b . Updating from repository
to workspace is also a complex versioning operation involving model differencing and
changes propagation among different versions of both metamodels and models that has
to be properly handled. Versioning challenges do not only arise when going forward
to newer versions of the metamodel. In fact, in Scenario 3, we depict how consistency
may be undermined also when trying to go backwards to a previous version of a model
which conforms to an older metamodel version, while keeping the current metamodel
version in the workspace (Figure 4). Such operation may be needed when bugs in
an old software version have to be fixed and the tooling related to the old language
version is no longer available.

As the file-based, model VCSs save only differences between versions in order to
reduce the repository size, retrieving an old model version is performed by composing
all the related differences that led to the current revision. While file version differ-
ences are usually expressed as line differences, model version differences conform to
a specific difference metamodel (see Section 5.2). As a result, model difference repre-
sentations depend on the metamodel version taken into account. Therefore, retrieving

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 9

Figure 4 – Retrieve old version without its related metamodel version.

a model version may involve the composition of model evolutions expressed in differ-
ent languages. In this respect, representing differences between two model versions
conforming to different metamodels represents a non-trivial challenge for which we
provide a possible solution in Section 5.2.

5 Proposed Solution

As discussed so far, challenges arise when managing the concurrent evolution of models
and metamodels; therefore, let us suppose that in the repository there is the last
version of the model as migrated by the co-evolution transformation. Moreover, in
the workspaces there exist documents storing differences between the latest version
updated from the repository and the current one. In this respect we propose to exploit
model differences to support evolution storage: they are used for representing both
metamodel and model manipulations.

5.1 Assumptions

Our approach is based on the following assumptions:

1. Model versions are stored in a shared repository and users work on a copy in
isolation in their workspace. In this way we are able to optimise concurrent
modifications and minimise loss in changes propagation;

2. Each model element is uniquely identified by a set of its attribute values and
those of its container (recursively). Two elements are considered as versions of
each other when they share a common information part. In order to distinguish
if two elements are different versions of the same element or simply two different
objects, we consider that two elements are versions of each other when the values
assumed by their identifying attributes match;

3. A relationship is considered as a specific attribute type. Its value represents the
destination model element identifiers;

4. A model always references to its corresponding metamodel. This ensures the
ability to identify which is the corresponding metamodel for achieving a correct
application of model comparison mechanisms;

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


10 · Antonio Cicchetti et al.

5. There should be a root metamodelling level where the language is defined by
means of itself in order to ensure the absence of infinite evolution levels.

5.2 Core Artefacts and Techniques

In this section we present a detailed description of the main modelling artefacts and
techniques the proposed solution relies on.

Model Differences Metamodel and model versioning is achieved through a model-
based representation to store the differences between an old and a new (meta)model re-
vision. Such representation is based on an enriched version of an existing work [CDP07]
which introduced a technique for the storage of model evolution relying on the par-
titioning of the manipulations into three basic operations: additions, deletions, and
updates of model elements. Since a metamodel is a model itself, it is possible to adopt
the same mechanism also for the representation of metamodel evolution, as already
clarified in [CDP09]; therefore, we will generically write about metamodels and mod-
els taking into account that in the case of metamodel evolutions the metamodel plays
the role of the model and its metamodel is the metametamodel.

A differences language is obtained through the automated extension of the meta-
model the models conform to: for instance, developers working with metamodel MMa
will modify models and produce new instances conforming to it, as described in Sec-
tion 4. Therefore, the language able to represent model manipulations will be gen-
erated by means of an appropriate extension of MMa, called DiffMMa. More specifi-
cally, each non-abstract metaclass MC in the metamodel induces three specialisations,
namely AddedMC, DeletedMC, and ChangedMC, which are exploited to represent the
additions, deletions, and changes, respectively, of such metaclass. Moreover, an up-
datedElement association connects an updated metaelement with its corresponding
new version3.

In order to be able to apply differences in the sense of added and deleted elements,
a reference to their containing element must be maintained; therefore a reference,
namely containedBy, is introduced to point to the container of the corresponding
AddedMC or DeletedMC. In the same way, MMb metamodel is extended to obtain the
corresponding DiffMMb difference language; an appropriate extension of the Ecore
metamodel is generated to represent revisions of metamodel, e.g., to store differences
between MMa and MMb.

As discussed in [CDP07], the differences representation approach enjoys a num-
ber of interesting properties that allow the appropriate versioning of models and the
retrieval of previous revisions; nonetheless, as an immediate consequence of dealing
with a mixture of models conforming to different metamodels a problem arises be-
cause of the incomparability between concurrent revisions. In particular, by recalling
the scenarios described in Section 4, manipulations made on the repository and the
ones locally operated may pertain to different languages, i.e., DiffMMa and DiffMMb,
respectively. In this respect, we propose a general solution based on a difference meta-
models merging technique able to produce a merged difference metamodel including
concepts from both the versions. It is worth mentioning that this comparability prob-
lem is quite common when facing metamodel evolution and trying to represent the
modifications of the migrated models. In this sense, relaxing language constraints to
build-up a sort of lingua franca is an accepted practice [HBJ08, WKS+10]. It is also

3For further details on the representation approach and the motivations underlying some design
choices the reader is referred to [CDP07].

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 11

important to notice that in general current metamodelling environments do not allow
to use models that do not strictly conform to corresponding metamodels. Therefore,
even if metamodel agnostic approaches for differences detection and representation
may perform better at the beginning, in the long run they could entail several ineffi-
ciencies and accuracy issues (please refer to Section 7 for a detailed discussion of this
problem).

The adopted differences representation technique discloses the possibility to exploit
automated (and precise) co-evolution mechanisms, as detailed in the next paragraph.

Metamodels Evolution and Models Co-Evolution As stated above, metamod-
els are models themselves, therefore the reasoning made for model versioning tech-
niques is completely applicable in this case too. However, for differencing purposes
it could be worth to declaratively state the evolution metamodels were subjected to
(i.e., by avoiding automated detection mechanisms), since the order of magnitude of
metamodels is in general much smaller than their model instances, and an erroneous
metamodel evolution detection can cause unpredictable side-effects on the correspond-
ing model migrations [CDP09]. Once the metamodel evolution is properly stored
through the differences representation approach, (semi-)automated mechanisms are
enabled to migrate instances conforming to the previous version of the metamodel
toward the newer version. In particular, the method introduced in [CDP09] takes as
input the differences between two metamodel versions and generates a corresponding
co-evolution transformation migrating the existing model instances. Alternatively, the
approach proposed in [DIP11] declaratively prescribes the co-evolution operations to
be performed as corresponding to metamodel manipulations described by a textual
form of the adopted metamodel independent differences representation.

At this point, it is important to notice that, in our approach, based on the mech-
anisms introduced in [CDP09], model migrations due to metamodel evolution and
model manipulations cannot conflict with each other, since the two evolutions hap-
pen sequentially and the latest (in terms of application time) always overwrites the
previous. Therefore, if modifications are compatible across different revisions of the
metamodel, they are committed accordingly, even after migration steps. If manipula-
tions are not compatible, e.g., because an entity has been removed, the changes will
stay valid in the local working copy. Subsequently, whenever a migration step would
be operated those modifications would lose their meaning and therefore ignored; a
further discussion concerning these issues is given in Section 7.

In the following, we first describe the mechanism to merge difference metamodels
and hence allow a common representation of ongoing changes by the different lan-
guages; then, we explain how such a method can help in solving the issues arising in
the scenarios presented in Section 4.

Merging Metamodels Migrating models across different metamodel versions is
made possible by the adoption of a lingua franca, as aforementioned. In our case,
such bridging language derives from a merging operation on the involved difference
metamodels (i.e., previously introduced DiffMMa and DiffMMb) that results into a new
merged difference metamodel DiffMM which is capable to represent all the information
conforming to both DiffMMa and DiffMMb.

The algorithm for creating DiffMM resembles the one proposed in [WKS+10] and
consists of two main steps:

1. Identification and merge of mergeable metaclasses: in this first step, the classes

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


12 · Antonio Cicchetti et al.

Figure 5 – Repository metamodel

of DiffMMa and DiffMMb are compared and, if they have same name, they will be
merged into one single class in DiffMM. The new class will get the union of the
features (i.e., attributes and references) and superclasses of both DiffMMa and
DiffMMb; in fact, while for classes the merge condition is sameness in their name,
for merging features a total sameness in terms of, for instance, multiplicity, type,
unique constraint is needed;

2. Inclusion of the non-mergeable metaclasses from DiffMMa and DiffMMb: the
metaclasses in DiffMMa that do no have a correspondent in DiffMMb and vice
versa are directly included to DiffMM with their own features.

The merging operation is carried out by a model-to-model transformation defined in
Operational QVT4 which takes as input the two difference metamodels and generates
the merged difference metamodel. The interested reader can refer to Appendix A
where the QVTo transformation is depicted.

Model Versions In order to describe how we represent the different model versions
three assumptions have to be clarified: (i) all model versions are stored in a shared
model repository, (ii) a model is identified without analysing its content but rather
using, for instance, a global unique identifier and, similarly, (iii) a model version is
identified by a revision number that we automatically assign to it together with the
model unique identifier. In Figure 5 the repository metamodel used to represent
model versions is depicted. While branching and merging of concurrent versions is a
useful feature of a model repository, our main objective is to manage concurrent model
and metamodel evolution thus focusing on merging and leaving branching support as
desirable future enhancement of the current solution (as discussed in Section 7).

4http://wiki.eclipse.org/M2M/Operational_QVT_Language_(QVTO)

Journal of Object Technology, vol. 11, no. 3, 2012

http://wiki.eclipse.org/M2M/Operational_QVT_Language_(QVTO)
http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 13

Besides revision number, standard metadata such as committer name and commit
date are associated to model revisions in order to allow their ordering in the repository.
As described in the previous section, we use a model-based differences representation
to individuate and represent the performed changes between two model versions. As
a result, each model revision is associated to its corresponding difference model which
describes differences between the current and previous versions.

Moreover our approach introduces the novel solution of tracking the metamodel
version related to each model version in order to correctly achieve concurrent version-
ing; this means that no assumptions are made about the metamodel which is, in fact,
versioned as any other model. Thanks to such solution, the model repository is able
to manage a non fixed, though finite, number of metamodelling levels while still being
able to track conformance between models and metamodels.

Additionally, the metamodel placed at the root of the metamodelling hierarchy is
defined as conforming to itself in order to avoid infinite hierarchy levels. The reposi-
tory itself is in turn a model which conforms to the presented repository metamodel
and such characteristic allows to take advantage of standard model databases such as
Teneo5 to implement the repository.

5.3 General Approach

Our approach aims at managing concurrent versioning of metamodels and models
without jeopardising abstract and concrete syntax of models as well as local saving
formats. The whole process is meant to be transparent to the model management
tools. While providing solutions for addressing the three scenarios presented in Sec-
tion 4, attention is also paid into possible optimisations of the repository size. When
evolving metamodels, part of the old information might disappear in the newer ver-
sion; even in such cases, the versioning approach aims at preserving such information
in order to be able to move backwards to older metamodel versions when requested.
To this end, our approach is based on computing (meta)model differences between
(meta)model versions and tracking compatibility links between model and metamodel
versions. Such differences are stored in the repository in terms of difference mod-
els as well as the difference metamodels they conform to. Regarding the notation
that we will use to distinguish these artefacts: DiffMxy will represent the differences
(model) between models Mx and My, EvoMMxy the differences between metamodels MMx
and MMy, DiffMM the merged difference metamodel to which DiffMxy conforms to,
while DiffMMM the difference metametamodel to which EvoMMxy conforms to. Each
(meta)model conforms to the root language MMM (e.g., Ecore, MOF, EMOF, etc.).
The ability of managing traceability links is a prerequisite to be able to merge con-
current modifications made on different metamodel versions. Our versioning approach
aims at supporting the standard versioning actions (i.e., Commit, Update, Revert and
Checkout) on both models and metamodels. The commit process depicted in Figure 6
where the Me has evolved into Mf (and MMe into MMf ) in the workspace and then such
evolution is stored in the repository, is composed by the following steps:

1. First, metamodels (e.g., DiffMMe and DiffMMf ) in charge of representing model
differences are derived from the original metamodels (e.g., MMe, MMf ). Since
there has been a metamodel evolution (either user has modified the metamodel
or a new metamodel is available in the repository), two difference metamodels
have been generated. If the destination metamodel version is not present in the

5http://wiki.eclipse.org/Teneo

Journal of Object Technology, vol. 11, no. 3, 2012

http://wiki.eclipse.org/Teneo
http://dx.doi.org/10.5381/jot.2012.11.3.a1


14 · Antonio Cicchetti et al.

Figure 6 – Overview of the commit process

workspace, it is retrieved from the repository. We assume that the base6 model
version and its corresponding metamodel version are in the user workspace.

2. The generated difference metamodels are merged in a single difference meta-
model (DiffMM) able to represent differences in conformance with both DiffMMe
and DiffMMf ;

3. A model transformation (Computes DiffM) which computes model differences
is generated from the merged difference metamodel (DiffMM);

4. This differences computation is performed on the two model versions (Me, Mf ). It
produces a difference model (DiffMef ) which conforms to the merged difference
metamodel (DiffMM);

5. In case of metamodel evolution, the commit process is applied to the metamodels
(base and new versions) in the same way as for the models. More specifically
an evolution model EvoMMef is generated in the workspace in the same way as
for DiffMef and stored in the repository;

6. At this point we use the information brought by DiffMM to upgrade the difference
metamodel used to represent model differences (DiffMM) in the repository;

7. Now we can store the difference model DiffMef in the repository as well as the
related model version metadata and the traceability link to the corresponding
metamodel version.

A novelty brought by our approach is the derivation of the differences computation
algorithm from the involved base and new metamodels (as discussed in Section 6).
The update process is shown in Figure 7. It moves from a source model version
in the workspace (i.e., Mc), to a destination model version available in the repository
(given for instance by the difference models DiffMcd and DiffMde). Moreover, possible

6For base (meta)model is meant the original version while with new (meta)model is meant an
evolution of the base version.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 15

Figure 7 – Overview of the update process

update of the workspace metamodel (from MMc to MMd) is included in flow. The update
process is composed by the following steps:

1. First, the metamodel (DiffMM) in charge of representing model differences is
retrieved from the repository;

2. The difference models (DiffMcd, DiffMde) representing modifications applied
somewhere else to Mc are retrieved into the workspace;

3. Such difference models are merged into one difference model (DiffMcde);

4. If the metamodel needs also to be updated, the update process is applied to it
in the same way as for the models but using, e.g., EvoMMcd for evolving from the
current workspace version MMc to the latest repository version MMd);

5. At this point the merged difference model is filtered to only account the modi-
fications relevant for the metamodel version present in the workspace which are
then applied to the workspace model version (Mc).

The revert action is a specific update case where the destination version is the base
version. The checkout action is also a specific case of the update process where source
version represents an empty model; therefore we assume that the first model version
is represented by an empty model.

Assuming that exchange of updates only happens via repository, which contains
the complete history of difference metamodels and models, allows us to minimise the
loss of information especially when propagating changes among workspaces working
on models conforming to different language versions.

Differences Filtering and Application Both in the commit and the update pro-
cesses the application of differences, in particular when dealing with different meta-
model versions, has to be filtered in order to consider only those differences that,
conceiving a given metamodel version, can be applicable to the models conforming to

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


16 · Antonio Cicchetti et al.

it. In fact, by merging difference (meta)models, the whole set of represented differ-
ences is available yet not fully applicable to any (meta)model version. Let us consider
again the artefacts depicted in Figure 1, the difference metamodels DiffMMa and
DiffMMb and the merged difference metamodel DiffMM which is capable to represent
the union of the information conforming to DiffMMa and DiffMMb. Let us suppose we
want to commit Ma2 to the repository, differences between Ma1 and Ma2 are represented
in a model DiffMx which conforms to DiffMM. Some of the differences represented in
DiffMx are applicable to Mb since they involve metaelements of DiffMMb (and there-
fore MMb); the filtering operation detects such applicable differences and ignores the
ones regarding metaelements present in DiffMMa but not in DiffMMb. The filtering
mechanism is achieved by construction since the differences application transforma-
tion is automatically generated ad-hoc for the target metamodel (e.g., DiffMMb) as
described in Section 6.4. That is to say that the generated transformation will be
only composed by rules applicable to those metaelements contained in DiffMb and
thereby be able to apply only the differences concerning them. While the filtering is
achieved by construction when generating the differences application transformation,
the actual changes application is achieved by navigating the difference model DiffMx
and apply modifications represented in terms of AddedMC, DeletedMC, and ChangedMC
to Mb by:

• Adding AddedMC elements: new model elements introduced in Ma2 are created
in Mb with particular attention to containments for correct placing of the new
elements;

• Deleting DeletedMC elements: models deleted in Ma2 are removed (if still present)
from Mb with particular attention to containments for correct deletion of the ele-
ments and eventual propagation of the deletion procedure to contained elements;

• Modifying ChangedMC elements: modifications applied to elements Ma2 are ap-
plied to Mb, if the involved elements are still in place.

6 Implementing the Concurrent Versioning

In this section a detailed description of the implementation for the proposed solution
is given and applied to the School language example. The considered scenario is the
update of a workspace model from an evolved repository model conforming to different
versions of the language (Figure 2). In this example we will consider one workspace
and a repository since the number of workspaces does not affect the proposed process;
in fact, evolutions are not propagated directly among workspaces but always via the
common repository. The solution has been implemented on the Eclipse Modeling
Framework (EMF) and a prototype is available as a set of plugins7.

6.1 A Running Example: the School Metamodel

In order to describe and validate the proposed approach we will take advantage of a
running example defined using EMF: the School metamodel. In Figure 8 we depict the
workspace version of the School metamodel, referred to as School workspace version,
and an evolved version of it which is the current version in the repository, namely

7For the interested reader the implemented prototype plugins are available for download at http:
//www.mrtc.mdh.se/~acicchetti/concurrentVersioning.php

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.mrtc.mdh.se/~acicchetti/concurrentVersioning.php
http://www.mrtc.mdh.se/~acicchetti/concurrentVersioning.php
http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 17

Figure 8 – School workspace version (A) and repository version (B)

School repository version (evolved metaelements are marked with a star in the latter).
The School workspace version language allows to model a simple school system in
which we have the following main elements:

• Institution: it represents the school and contains elements of type Program,
Teacher and Student. InstitutionID is considered the unique identifier;

• Program: it represents a program offered by the school and has references to
both teachers and students involved in it. ProgramID is the attribute acting as
unique identifier;

• Teacher: it represents a teacher employed by the school and may contain an
element of type Employment representing his contract. Teacher specialises the
abstract metaclass Person, inheriting the attribute socialNo which acts as
unique identifier;

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


18 · Antonio Cicchetti et al.

• Student: it represents a student enrolled in the school and may contain an
element of type FinancialRecord representing the annual fee to be paid to be
enrolled. As well as Teacher, Student also specialises the abstract metaclass
Person, inheriting the attribute socialNo which again acts as unique identifier.

The modifications making the language to evolve in the repository version are (i) the
introduction of a new element TranscriptOfRecords contained by Student, (ii) the
deletion of FinancialRecord replaced by AnnualFee, and (iii) the addition of a new
attribute, namely otherTitle, in Teacher. In the remainder of the article we rely
on these two different versions of the School language for describing our versioning
approach.

6.2 Model Repository

Our concurrent versioning system is built on top of the MORSA [EPSCGM11] EMF
model repository; it stores models into a Mongo database which does not rely on
relational schemas. This characteristic increases flexibility in managing metamodel
evolutions. The choice of EMF, which defines the Ecore language by means of itself,
allows us to satisfy the assumption of a finite metamodelling hierarchy. As previously
mentioned, our approach only stores the model version differences. The repository
content is an EMF model which conforms to the repository metamodel depicted in
Figure 5. While model elements are singularly loaded on demand during the naviga-
tion in order to only load selected model version metadata, difference models content
is always loaded as a whole. Since metamodels are in turn models, the nature (be-
ing a metamodel) of the model is transparent to the versioning mechanism and such
characteristic enables the ability by our system to manage versioning for a non fixed,
though finite, number of metamodeling levels. Transparency of the versioning process
to other modelling tools is achieved by storing the version metadata in a separated file
to which the model file does not have any reference. In order to improve performance,
a copy of the base model version is also stored in a local hidden directory in a similar
way as done by Subversion. During a model version update, if the destination model
version relies on a different metamodel revision than the current, the user is asked to
choose if the metamodel version must be updated.

6.3 Model Differences Detection

The computation of the differences between model versions is based on transforma-
tions specified in terms of the Epsilon comparison, merge and transformation lan-
guages8 in a similar way as done in [CCL11]. A set of rules defined using the Epsilon
Comparison Language (ECL) is applied to two different revisions of the model. These
rules are in charge of identifying matching elements between the two models by com-
paring their elements through their unique identifier; once a match is found, possible
changes among the revisions are also caught and stored. Using identifiers allows to
correctly find the two corresponding elements between initial and modified version of
the model and explore their properties to detect possible changes. Once the matching
phase has been completed, a set of rules defined using the Epsilon Merge Language
(EML) are in charge of transparently taking the ECL transformation results and
thereby generate the difference model in terms of changed/original element pairs. If
the ECL result structure contains information about a modification which affected the

8http://eclipse.org/gmt/epsilon/

Journal of Object Technology, vol. 11, no. 3, 2012

http://eclipse.org/gmt/epsilon/
http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 19

element, the changed element is created and linked to the original within the rule’s
body by using EOL expressions. As well as modified elements, deleted and added el-
ements have to be identified too in order to produce a complete difference model; this
step is performed through specific rules defined using the Epsilon Transformation Lan-
guage (ETL). The results of the differences computation operations are finally stored
in a difference model, conforming to the merged difference metamodel automatically
generated as described in Section 5.2, ready to be used for the differences application
to the model version to be updated. In Figure 9 we depict an excerpt of the merged
difference metamodel representing the possible changes applicable to both workspace
and repository revision on the elements contained by Student. In Figure 10 original

Figure 9 – Excerpt of the merged difference metamodel for the School languages

(Figure 10A) and modified (Figure 10B) versions of the School repository model are
depicted together with the computed difference model (Figure 10C). The operated
changes, properly represented in the difference model, are:

1. element Student Ann is deleted;
2. element AnnualFee AF01 is deleted;
3. element TranscriptOfRecords TR94 is deleted;
4. element TranscriptOfRecords TR22 is deleted;
5. element TranscriptOfRecords TR00 is added;
6. element Program Software Engineering is modified through the its reference

attendedBy that from pointing to Student Ann, Student Bill in the original
repository version, points to Student John in the modified repository version.

The Epsilon transformations for differences calculation and difference model creation
are generated by a higher-order transformation (HOT), defined in the Acceleo model-
to-text transformation language9, which creates the ad-hoc differences calculation
transformations starting from any metamodel defined in Ecore and in which each
metaclass has at least one specified metaattribute acting as unique identifier. In

9http://www.acceleo.org

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.acceleo.org
http://dx.doi.org/10.5381/jot.2012.11.3.a1


20 · Antonio Cicchetti et al.

Figure 10 – School repository versions (A-B) and difference model (C)

Appendix B an excerpt of the HOT is given (left-hand side) as well as the EML rules
for detecting changed elements to that result from its execution (right-hand side).

6.4 Model Differences Application

Once changes operated in the repository have been properly detected and represented,
they have to be applied to the current model revision in the local workspace conform-
ing to a different metamodel version. Since the difference model conforms both to
the local difference metamodel and to the merged difference metamodel, the changes
it represents can be applied to any of the model revisions. In fact model changes
that would not have sense in the local metamodel version are not considered in the
differences application transformation. This is possible by a HOT, defined by means
of Acceleo, that generates the QVTo differences application transformation starting
from the merged difference metamodel and the local (target) metamodel. In this way,

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 21

Figure 11 – Difference model (A) and School workspace model before (B) and after (C) the
differences application

the resulting transformation will only consider differences regarding metaelements
proper of the School Local metamodel given as input to the HOT; the filtering mech-
anism is therefore automatically achieved when generating the differences application
transformation.

The generated QVTo transformation is able to apply the changes described in
Section 6.3 and represented in the Repository difference model, given in input, to the
School workspace model by means of in-place modifications. More specifically, the
applied changes are (1) the deletion of element Student Ann and (6) modification of
element Program Software Engineering while changes (2), (3), (4) and (5) are not
applied since AnnualFee and TranscriptOfRecords are not part of the workspace
metamodel version. Difference models and School workspace model before and after
the differences application are depicted depicted in Figure 11. In Appendix C an
excerpt of the HOT is given (left-hand side) as well as the QVTo transformation for
differences application that results from its execution (right-hand side) concerning the
metaclass Program in the School metamodel.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


22 · Antonio Cicchetti et al.

7 Discussion

This section discusses relevant issues related to the proposed solution and the lessons
learnt by applying it to a set of case-studies.

In file-based versioning, the branching and merging technique allows to isolate
changes into separate development lines, called branches, within the same workspace.
Changing files on a branch does not propagate those changes to other branches. In-
stead, changes can be moved on demand from one branch to another by merging
operations. In our approach we propose a similar process if considering the differ-
ent workspaces as single branched; in fact the developers keep on working on their
own branch (with respect to the metamodel version) and when they decide to ei-
ther commit or update, merging operations allow the partial propagation of changes.
Moreover, branches are unified whenever metamodel revisions are re-aligned to the
latest version available in the shared repository, i.e., when the metamodel is updated
in the local working copy and the existing models are migrated. An interesting future
step could be to add an additional local versioning by enabling branching and merging
within each single workspace and then use the same process as the one presented for
versioning across different workspaces. In this respect a fundamental difference with
respect to the traditional branching and merging techniques is that, in our approach,
model migrations due to metamodel evolution cannot conflict with model manipu-
lations since they happen sequentially. Therefore, either the model is first migrated
and then modifications are applied to it or vice versa. In any case, due to metamodel
evolution loss of information might happen. For instance, if a certain metaclass has
been removed, any operation performed on its instances will be lost after the migra-
tion operation. A possible solution to this issue could be to exploit model patching
methods available with the adopted difference representation technique [CDP10] for
attempting the propagation of lost changes, whenever meaningful.

Additional considerations to be done on the migration step are related to meta-
model evolutions for which user intervention is unavoidable. They are defined as
unresolvable changes [SK04] and make automated model co-evolution not feasible:
e.g., the addition of a mandatory metaattribute can require not only its creation
in all the existing model instances, but also the choice of a corresponding value for
it [CDP09]. As a consequence, manual migration decisions could cause inconsisten-
cies between local copies and the repository version, since different users could make
different choices. Nonetheless, those inconsistencies would be discovered at the first
commit or update attempt and required to be fixed.

The adoption of the differences representation mechanism in [CDP07] discloses
the opportunity to exploit a set of existing utilities, notably automated co-evolution
and model patching. It is important to notice that there exist additional tech-
niques based on a metamodel tailored representation of differences allowing for a
more general co-evolution support (though not automated), including transforma-
tions and editing tools [DIP11]. Nonetheless, an alternative approach could have
been the adoption of a metamodel agnostic differences detection and representation,
as adopted in model comparison (e.g., [LGJ07, Tou]) and model differences represen-
tation (e.g., [RV08]). Despite such approaches would have avoided the issue of merging
metamodels, (meta)model versioning would have resulted less efficient and accurate.
In fact, current techniques typically adopt “tagging” mechanisms of model elements
(notably added, updated, deleted) that do not make differences context-independent.
In other words, the approaches need to carry extra-information about the involved
artefacts to allow an appropriate interpretation of the evolution [CDP07]. Such need

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 23

hinders, for instance, the exploitation of patching techniques, since differences are dif-
ficult to abstract from the detection context. Moreover, comparison methods have to
rely on structural similarity measures that tend to be less efficient and accurate when
addressing differences among different metamodels [KDPP09]. Finally, the problem
of which metamodel to adopt to represent the current model version should be solved,
since current metamodelling frameworks, like EMF, do not allow to work with models
which are not strictly conforming to a corresponding metamodel.

The proposed approach has been validated against small to medium sized (up to
50 elements for metamodels and 100 for models) (meta)models built using different
modelling languages expressed using EMF. The complexity of the process requires an
industrial sized validation for verifying possible scalability issues that did not arise
in our experiments. In order to allow evaluation of a possible applicability of the
approach to the reader’s specific case-study, we provide the limit behaviour of each
involved transformation in relation to the input (meta)model elements (n=number of
elements of the biggest model, m=number of metaelements of the biggest metamodel)
in Table 1.

Transformation Language Complexity
Metamodels Merging QVTo O(n2)

HOT Differences Calculation Acceleo O(n2)
HOT Differences Application Acceleo O(n2)

Generation Difference Metamodel ATL O(n)
Differences Calculation QVTo O(m2)
Difference Application QVTo O(m)

Table 1 – Limit behaviour of the involved transformations

8 Conclusions and Future Work

In this article we addressed the problem of concurrent versioning of models and meta-
models. These tasks are often seen independent of each other and hence addressed sep-
arately; our claim is that they affect and eventually hinder each other thus demanding
a concurrent management. Through a scenario-driven description, the issues arising
when attacking the problem of concurrent versioning of models and metamodels are
shown; then, for each specific scenario, a solution is proposed. The implementation of
the versioning system is described step-by-step exploiting the scenario 1 and taking
advantage of the School language example, although the validation of the solution
has been performed on several different languages.

Our main contribution is a solution for managing misaligned evolution of models
and their respective metamodels. The proposed approach allows the user to decide
when to switch to the most recent metamodel version; that is to say that in any case,
even before upgrading to the most recent version, the user can make use of the model
versioning system.

The common denominator of the proposed solutions is the exploitation of model
comparison mechanisms for calculating changes between different model and meta-
model versions as well as applying such changes to local or remote versions to be
committed or updated. The proposed solution takes advantage of the concept of a
merged difference metamodel that enables the contemporary representation of ma-
nipulations coming from both different language versions. Moreover, thanks to the
differences representation mechanisms and the generation of differences calculation

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


24 · Antonio Cicchetti et al.

and application transformations by means of generic (in the sense that any Ecore
metamodel can be fed as input) higher-order transformations, the versioning system
is able to deal with any language defined in Ecore as well as with a non-fixed, yet
finite, number of metamodelling levels.

The proposed solution poses a number of technical difficulties, mainly due to the
intrinsic characteristics of co-evolution problems. In fact, in general some migration
cases cannot be fully automated and require user intervention. Additionally, in order
to ensure the consistency between modifications and the correctness of commit/up-
date operations, migration transformations have to be reproduced each time it is
needed. In other words, migrations between different revisions of a metamodel have
always to perform the same co-evolution operations. Therefore, whenever user’s in-
put would be needed in the migration phase, it should be stored and replicated when
the co-evolution is re-applied. Moreover, the downgrading transformation should
be the exact inverse mapping of the upgrading one, thus posing additional prob-
lems to the consistency and correctness of the process. Further enhancements of
the mechanisms adopted for evolution and migration are already ongoing. Moreover,
the proposed approach will be applied (adapted and extended if needed) to other
metamodel-dependent artefacts such as transformations and graphical editors.

The approach has been validated against examples built by means of different mod-
elling languages coming from our experience in industrial projects [ART09, MRT06].
Nonetheless, the complexity of the process requires a thorough validation against in-
dustrial sized scenarios; in particular, we are interested in verifying whether scalability
issues would arise when dealing with large development groups and a particularly high
number of model elements.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 25

A QVTo transformation for Merging Difference Metamodels

Figure 12 – QVTo for merging difference metamodels

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


26 · Antonio Cicchetti et al.

B Higher-Order Transformation for Model Differences Compu-
tation

Figure 13 – Higher-order transformation for model differencing and resulting transforma-
tion

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 27

C Higher-Order Transformation for Model Differences Applica-
tion

Figure 14 – Higher-order transformation for differences application

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a1


28 · Antonio Cicchetti et al.

References

[AK09] K. Altmanninger and G. Kotsis. Towards Accurate Conflict Detec-
tion in a VCS for Model Artifacts: A Comparison of Two Semanti-
cally Enhanced Approaches. In Conceptual Modelling 2009, 6th Asia-
Pacific Conf. on Conceptual Modelling (APCCM 2009), volume 96 of
CRPIT, pages 139–146. Australian Computer Society, 2009.

[AP03] M. Alanen and I. Porres. Difference and Union of Models. In UML
2003 - The Unified Modeling Language, volume 2863 of LNCS, pages
2–17. Springer-Verlag, 2003. doi:10.1007/978-3-540-45221-8_2.

[ART09] ARTEMIS-JU-216682. CHESS. http://chess-project.ning.com/,
February 2009.

[ASW09] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model
versioning approaches. International Journal of Web Informa-
tion Systems (IJWIS), 5(3):271 – 304, 2009. doi:10.1108/
17440080910983556.

[Bez05] J. Bezivin. On the Unification Power of Models. Journal on Software
and Systems Modeling (SoSyM), 4(2):171–188, 2005. doi:10.1007/
s10270-005-0079-0.

[BP08] C. Brun and A. Pierantonio. Model Differences in the Eclipse Model-
ing Framework. UPGRADE, The European Journal for the Informat-
ics Professional, April-May 2008.

[CCL11] A. Cicchetti, F. Ciccozzi, and T. Leveque. Supporting Incremental
Synchronization in Hybrid Multi-View Modelling. In Procs of the
14th Int. Conf. on Model Driven Engineering Languages and Systems
(MoDELS), MODELS ’11. Springer-Verlag, 2011. doi:10.1007/
978-3-642-29645-1_11.

[CCLP11] A. Cicchetti, F. Ciccozzi, T. Leveque, and A. Pierantonio. On the
concurrent Versioning of Metamodels and Models: Challenges and
possible Solutions. In Procs of the 2nd Int. Workshop on Model
Comparison in Practice. ACM SIGSOFT, June 2011. doi:10.1145/
2000410.2000414.

[CDP07] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Inde-
pendent Approach to Difference Representation. Journal of Object
Technology, 6(9):165–185, October 2007. doi:10.5381/jot.2007.6.
9.a9.

[CDP08] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Model
Conflicts in Distributed Development. In MoDELS ’08: Procs of the
11th Int. Conf. on Model Driven Engineering Languages and Sys-
tems, pages 311–325, 2008. doi:10.1007/978-3-540-87875-9_23.

[CDP09] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing De-
pendent Changes in Coupled Evolution. In Procs of the 2nd Int.
Conf. on Model Transformation (ICMT’09), volume 5563 of LNCS,
pages 35–51, Zurich, Switzerland, 2009. Springer. doi:10.1007/
978-3-642-02408-5_4.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://chess-project.ning.com/
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/978-3-642-29645-1_11
http://dx.doi.org/10.1007/978-3-642-29645-1_11
http://dx.doi.org/10.1145/2000410.2000414
http://dx.doi.org/10.1145/2000410.2000414
http://dx.doi.org/10.5381/jot.2007.6.9.a9
http://dx.doi.org/10.5381/jot.2007.6.9.a9
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-642-02408-5_4
http://dx.doi.org/10.1007/978-3-642-02408-5_4
http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 29

[CDP10] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Model Patches
in Model-Driven Engineering. In Models in Software Engineer-
ing, Workshops and Symposia at MODELS 2009, Denver, CO,
USA, October 4-9, 2009, Reports and Revised Selected Papers, vol-
ume 6002 of LNCS, pages 190–204. Springer, 2010. doi:10.1007/
978-3-642-12261-3_19.

[CH06] K. Czarnecki and S. Helsen. Feature-based Survey of Model Trans-
formation Approaches. IBM Systems J., 45(3), June 2006. doi:
10.1147/sj.453.0621.

[CVS] CVS Project. CVS web site. http://www.nongnu.org/cvs.

[DIP11] D. Di Ruscio, L. Iovino, and A. Pierantonio. What is needed for
managing co-evolution in mde? In Procs of the 2nd Int. Workshop
on Model Comparison in Practice, IWMCP ’11, pages 30–38, New
York, NY, USA, 2011. ACM. doi:10.1145/2000410.2000416.

[DV07] M. D. Del Fabro and P. Valduriez. Semi-automatic Model Integration
using Matching Transformations and Weaving Models. In The 22th
ACM SAC - MT Track, pages 963–970. ACM, 2007. doi:10.1145/
1244002.1244215.

[EPSCGM11] J. Espinazo Pagan, J. Sanchez Cuadrado, and J. Garcia Molina.
Morsa: A Scalable Approach for Persisting and Accessing Large
Models. In Model Driven Engineering Languages and Sys-
tems, volume 6981 of Lecture Notes in Computer Science, pages
77–92. Springer Berlin / Heidelberg, 2011. doi:10.1007/
978-3-642-24485-8_7.

[Fav05] J-M. Favre. Languages evolve too! Changing the Software Time
Scale. In Procs of the 8th Int. Workshop on Principles of Software
Evolution (IWPSE 2005), 5-7 September 2005, Lisbon, Portugal,
pages 33–44. IEEE Computer Society, 2005. doi:10.1109/IWPSE.
2005.22.

[HBJ08] M. Herrmannsdoerfer, S. Benz, and E. Jürgens. Automatability of
Coupled Evolution of Metamodels and Models in Practice. In Procs
of the 11th Int. Conf. MoDELS 2008, Toulouse (France), volume
5301 of Lecture Notes in Computer Science, pages 645–659. Springer,
2008. doi:10.1007/978-3-540-87875-9_45.

[KDPP09] D. S. Kolovos, D. Di Ruscio, R.F. Paige, and A. Pierantonio. Dif-
ferent Models for Model Matching: An Analysis of Approaches to
Support Model Differencing. In Procs of the 2nd CVSM’09, ICSE09
Workshop, Vancouver, Canada, 2009. doi:10.1109/CVSM.2009.
5071714.

[Ken02] S. Kent. Model Driven Engineering. In Integrated Formal Methods,
3rd Int. Conf., IFM, volume 2335 of Lecture Notes in Computer Sci-
ence, pages 286–298. Springer, 2002. doi:10.1007/3-540-47884-1_
16.

[KPP06] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model Comparison: a
Foundation for Model Composition and Model Transformation Test-
ing. In Procs of the Int. Workshop on Global integrated model man-

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1007/978-3-642-12261-3_19
http://dx.doi.org/10.1007/978-3-642-12261-3_19
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://www.nongnu.org/cvs
http://dx.doi.org/10.1145/2000410.2000416
http://dx.doi.org/10.1145/1244002.1244215
http://dx.doi.org/10.1145/1244002.1244215
http://dx.doi.org/10.1007/978-3-642-24485-8_7
http://dx.doi.org/10.1007/978-3-642-24485-8_7
http://dx.doi.org/10.1109/IWPSE.2005.22
http://dx.doi.org/10.1109/IWPSE.2005.22
http://dx.doi.org/10.1007/978-3-540-87875-9_45
http://dx.doi.org/10.1109/CVSM.2009.5071714
http://dx.doi.org/10.1109/CVSM.2009.5071714
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.5381/jot.2012.11.3.a1


30 · Antonio Cicchetti et al.

agement (GaMMa ’06), Shanghai (China), pages 13–20, New York
(NY, USA), 2006. ACM Press. doi:10.1145/1138304.1138308.

[KT08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley-IEEE Computer Society Press, March 2008.
doi:10.1002/9780470249260.

[Leh84] M. M. Lehman. Program evolution. Journal of Inf. Process. Manage.,
1984. doi:10.1016/0306-4573(84)90037-2.

[LGJ07] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation Tool for
Domain-Specific Models. European Journal of Information Systems,
16(4):349–361, August 2007. (Special Issue on Model-Driven Systems
Development). doi:10.1057/palgrave.ejis.3000685.

[MRT06] MRTC. PROGRESS Webpage. http://www.mrtc.mdh.se/
progress/, 2006.

[Obj07] Object Management Group (OMG). MOF Versioning and Devel-
opment Lifecycle Specification, v2.0, May 2007. OMG Document:
formal/07-05-01.

[OWK03] D. Ohst, M. Welle, and U. Kelter. Differences between versions of
UML diagrams. In Procs of ESEC/FSE, pages 227–236. ACM Press,
2003. doi:10.1145/940071.940102.

[RKPP10] L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model
Migration with Epsilon Flock. In Procs of the 3rd Int. Conf. on
Theory and Practice of Model Transformations, ICMT’10, pages
184–198, Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/
978-3-642-13688-7_13.

[RV08] J.E. Rivera and A. Vallecillo. Representing and Operating with
Model Differences. In Procs of the 46th Int. Conf. TOOLS EUROPE
2008, 2008. doi:10.1007/978-3-540-69824-1_9.

[SK04] J. Sprinkle and G. Karsai. A Domain-specific Visual Language for
Domain Model Evolution. Journal of Visual Languages & Comput-
ing, 15(3-4):291–307, 2004. doi:10.1016/j.jvlc.2004.01.006.

[TDD00] S. Tichelaar, S. Ducasse, and S. Demeyer. FAMIX and XMI. In
Procs of WCRE 2000 Workshop on Exchange Formats, pages 296–
299, 2000.

[Tig] Tigris.org. Subversion version control system.
http://subversion.tigris.org/.

[Tou] A. Toulmé. The EMF Compare Utility.
http://www.eclipse.org/modeling/emft/.

[Wac07] G. Wachsmuth. Metamodel Adaptation and Model Co-adaptation.
In Procs of the 21st ECOOP, volume 4069 of Lecture Notes
in Computer Science. Springer-Verlag, 2007. doi:10.1007/
978-3-540-73589-2_28.

[WKS+10] M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger,
W. Schwinger, and G. Kappel. On using Inplace Transformations
for Model Co-evolution. In Procs of the 2nd Int. Workshop on Model
Transformation with ATL (MtATL 2010). INRIA & Ecole des Mines
de Nantes, 2010.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/1138304.1138308
http://dx.doi.org/10.1002/9780470249260
http://dx.doi.org/10.1016/0306-4573(84)90037-2
http://dx.doi.org/10.1057/palgrave.ejis.3000685
http://www.mrtc.mdh.se/progress/
http://www.mrtc.mdh.se/progress/
http://dx.doi.org/10.1145/940071.940102
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1007/978-3-540-69824-1_9
http://dx.doi.org/10.1016/j.jvlc.2004.01.006
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.5381/jot.2012.11.3.a1


A Solution for Concurrent Versioning of Metamodels and Models · 31

[XS05] Z. Xing and E. Stroulia. UMLDiff: an algorithm for object-oriented
design differencing. In Procs of the 20th IEEE/ACM ASE, pages
54–65. ACM, 2005. doi:10.1145/1101908.1101919.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/1101908.1101919
http://dx.doi.org/10.5381/jot.2012.11.3.a1


32 · Antonio Cicchetti et al.

About the authors

Antonio Cicchetti is a Senior Lecturer at Mälardalen Univer-
sity in Västerås (Sweden), at the Innovation, Design and Engi-
neering Department. He is part of the Malardalen Research and
Technology Centre (MRTC) and active in the Industrial Soft-
ware Engineering and Model-Based Development of Embedded
Systems research groups. His interests include MDE, model ver-
sioning, metamodeling, model weaving, generative techniques in
Web engineering and methodologies for Web development. Addi-
tionally, he is working on the application of MDE techniques to
the component-based development field, with respect to system
modelling, generation of code, and Verification&Validation activ-
ities.
antonio.cicchetti@mdh.se.

Federico Ciccozzi is a Ph.D. student at the Institute of Innova-
tion, Design and Engineering of Mälardalen University, Västerås
(Sweden). He focuses on Model-Driven Engineering for embed-
ded real-time systems. His interests range among MDE, CBSE,
model transformations, model versioning, automatic code gener-
ation, generation and maintainance of traceability information,
back-propagation of data among different artefacts (i.e., models
and code) and multi-paradigm modelling. Additional interests
include global software engineering and Verification&Validation
activities.
federico.ciccozzi@mdh.se.

Thomas Leveque is a post doc researcher at Orange Labs. He
made scientific contributions in the area of Model-Driven Engi-
neering, Component-Based Software Architecture and dynamic
adaption of human computer interfaces. His main research area
is focused on model versioning and Model-Driven Development.
His research interests also include Dynamic Service-Oriented Ar-
chitecture and Real Time software.
thomas.leveque@orange.com.

Journal of Object Technology, vol. 11, no. 3, 2012

mailto:antonio.cicchetti@mdh.se
mailto:federico.ciccozzi@mdh.se
mailto:thomas.leveque@orange.com
http://dx.doi.org/10.5381/jot.2012.11.3.a1

	Introduction
	Background & Related Work
	Model versioning
	Metamodel versioning

	Contribution
	Challenges
	Proposed Solution
	Assumptions
	Core Artefacts and Techniques
	General Approach

	Implementing the Concurrent Versioning
	A Running Example: the School Metamodel
	Model Repository
	Model Differences Detection
	Model Differences Application

	Discussion
	Conclusions and Future Work
	QVTo transformation for Merging Difference Metamodels
	Higher-Order Transformation for Model Differences Computation
	Higher-Order Transformation for Model Differences Application
	About the authors

