
JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011

Online at http://www.jot.fm.

DEEPFJIG
Modular composition of nested

classes
Andrea Corradia Marco Servettob Elena Zuccaa

a. DIBRIS - University of Genova
Via Dodecaneso, 35
16146 Genova, Italy

b. School of Engineering and Computer Science
Victoria University of Wellington
PO Box 600
Wellington 6140, New Zealand

Abstract We present a new language design which smoothly integrates modular
composition and nesting of Java-like classes. That is, inheritance has been
replaced by an expressive set of composition operators, inspired by Bracha’s
Jigsaw framework, and these operators allow to manipulate (e.g., rename or
duplicate) a nested class at any level of depth. Typing is nominal as characteristic
of Java-like languages, so types are paths of the form outern.C1.Ck which,
depending on the class (node) where they occur, denote another node in the
nesting tree. However, paths denoting the same class are not equivalent, since
they behave differently w.r.t. composition operators.

The resulting language, called DEEPFJIG, obtains a great expressive power,
allowing, e.g., to solve the expression problem, encode basic AOP mechanisms,
and bring some refactoring techniques at the language level, while keeping a very
simple semantics and type system which represent a natural extension for, say, a
Java programmer.

Keywords Java, module composition, nested classes

Introduction

Featherweight Jigsaw [LSZ09a, LSZ09b, LSZ12] (FJIG for short) is a simple calculus where
basic building blocks are classes in the style of Featherweight Java (FJ for short) [IPW99],
but inheritance has been replaced by the much more flexible notion originally proposed in
Bracha’s Jigsaw framework [Bra92]. That is, classes play also the role of modules, that can
be composed by a rich set of operators, all of which can be expressed by a minimal core,
composed by: sum, restrict, alias and redirect.

Andrea Corradi, Marco Servetto, Elena Zucca. DEEPFJIG Modular composition of nested classes. In
Journal of Object Technology, vol. 11, no. 2, 2012, pages 1:1–42. doi:10.5381/jot.2012.11.2.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.2.a1
http://dx.doi.org/10.5381/jot.2012.11.2.a1

2 · Andrea Corradi, Marco Servetto, Elena Zucca

In this paper, we describe an extension of FJIG, called DEEPFJIG, where these compo-
sition operators have been generalized to manipulate nested classes. For instance, sum of
two classes is hierarchical in the sense that nested classes with the same name are recursively
summed, similarly to deep mixin composition [Ern99b, OZ05, Hut06] and family polymor-
phism [EOC06, IV07, ISV08], which, however, take an asymmetric approach. Analogously it
is possible to rename or make an alias of a field, method, or a nested class itself, at any depth
level.

Typing is nominal as characteristic of Java-like languages, that is, types are (class) paths,
which are sequences of the form outern.C1.Ck which, depending on the class (node)
where they occur, denote another node in the nesting tree. However, class paths denoting the
same class are not equivalent, since they behave differently w.r.t. composition operators.

The resulting language offers a great expressive power, allowing, e.g., to solve the expres-
sion problem and to encode generics [BOSW98, GJSB05] and MyType [BOW98]. Moreover,
since a whole program can be “packed” into a single class, also the basic AOP mechanisms can
be expressed. Finally, the kind of code manipulation achieved by the composition operators
corresponds to bring some refactoring techniques at the linguistic level. On the other hand,
the generalization of the composition operators to the case with nesting is very natural and
intuitive, and, more generally, the language keeps a simple semantics and type system which
represent a natural extension for, say, a Java programmer.

There are many other proposals allowing class nesting and, hence, some form of paths.
Notably, among real world languages, Java and and C# support nested classes only as a way to
achieve hierarchical organization. In such languages, as well as in Scala, the binding for nested
classes is static, that is, redeclaring a nested class in a subclass has the effect of hiding the
parent’s nested class. On the other hand, in, e.g., gbeta [Ern99a] and Newspeak [BvdAB+10],
as in the literature on family polymorphism [Ern01, EOC06, ISV05, IV07, ISV08], a class
can inherit from a virtual superclass, and this feature provides a great expressive power, at the
price of making typechecking harder. Virtual superclasses can be emulated by C++ templates,
as shown in the work on mixin layers [SB01]. In Scala, abstract types and traits can be used
for a similar, but more involved, emulation.

Our approach comes from a design principle rather different from all those mentioned
above. That is, we replace inheritance by a true language of composition operators, mainly
inspired by the seminal work in [Bra92] and its formalization as module calculus in [AZ02],
and partly by the work on traits [SDNB03], notably the proposals which do not include
inheritance [BDG07, BDG08]. In DEEPFJIG this design principle is “naturally” extended to
handle nested modules (classes), and this enables us to use a type system without dependent
types and without class families, but still powerful enough. This shows a particular trade-off in
the language design space that has a number of useful properties, including better compatibility
with the mainstream than proposals using dependent types. For what concerns our form of
class paths, the closest work is likely [IV07], notably for the formalization aspects. A more
detailed comparison with related work is provided in Section 4.

The rest of the paper is organized as follows. In Section 1 we illustrate DEEPFJIG and
its expressive power. In Section 2 we give the formal syntax and semantics, and in Section 3
the type system and the related results. In Section 4 we summarize the contribution of the
paper and discuss related work, and in Section 5 we conclude outlining some further research
directions. Proofs of results are in the Appendix. This paper is an improved and extended
version of [CSZ10, CSZ11]. Notably, the full formalization of the semantics, the type system
and the soundness results were not included in [CSZ11].

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 3

1 Examples

We illustrate first, in Section 1.1, features which are inherited from FJIG, then we describe
how to declare and refer to nested classes in Section 1.2, and in Section 1.3 the composition
operators. Finally, in Section 1.4 we provide some more interesting examples which show the
expressive power of the language.

1.1 FJIG summary

The following example shows three class declarations.
A = abstract{
abstract int m1();
int m2() { return this.m1() + 1; }

}
B = { int m1() { return 1; } }
C = A

The first two declarations look similar to Java class declarations. However, the syntax is
slightly different, to stress that in FJIG and DEEPFJIG a class declaration just introduces a
name for the expression occurring at the right of the equal symbol, which is called a class
expression and denotes an unnamed class. See also Section 4 for more comments on this
difference. In the first two declarations above, the class expression is a basic class, which is
similar to a Java class body. In the third declaration, the class expression is the class name A,
which denotes the first class, hence the declaration is equivalent, in a sense that will be made
more precise in the last paragraph of this subsection, to the following one:
C = abstract{
abstract int m1();
int m2(){return this.m1() + 1;}

}

Compound class expressions can be constructed using composition operators1. For in-
stance, a new class can be defined by applying the sum operator to those above as follows:
Sum = A [+] B

This declaration is equivalent to the following:
Sum = {
int m1() { return 1; }
int m2() { return this.m1() + 1; }

}

Conflicting definitions for the same field or method are not permitted, whereas abstract
fields or methods with the same name are shared.

The modifier abstract applies to fields as well, as shown by the following example
which also illustrates how constructors work. The class declarations
A1 = abstract{
abstract int f1;
int f2; constructor(int x) { this.f2 = x; }
int m() { return this.f1 + this.f2; }

}
B1 = {
int f1; constructor(int x) { this.f1 = x + 1; }

} [+] A1

are equivalent to

1Each basic class plays the role of a constant (0-ary) composition operator, see the formal syntax in Figure 1.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

4 · Andrea Corradi, Marco Servetto, Elena Zucca

A1 = { /*as before*/ }
B1 = {
int f1, f2;
constructor(int x) { this.f1 = x + 1; this.f2 = x; }
int m() { return this.f1 + this.f2; }

}

A basic class defines one constructor which specifies a sequence of parameters and a
sequence of initialization expressions, one for each non abstract field. We assume a default
constructor with no parameters and empty body for classes having no defined fields. In order
to be composed by the sum operator, two classes should provide a constructor with the same
parameter list. The effect is that the resulting class provides a constructor with the same
parameter list, that executes both of the original constructors.

In order to be able to sum two classes with different constructor headers, FJIG provides
a constructor wrapper operator which allows the programmer to make them equal. In this
paper, we have preferred not to generalize this approach to the nested case, since in any case it
would not be adequate in a realistic language. Indeed, with a naive introduction of full Java
constructors sum would no longer be symmetric, due to the presence of side effects, whereas
symmetric composition is a key feature we want to keep. Replacing constructors with object
creation expressions, as in Javascript, Emerald [RTL+91] or Grace [BBN10], could be an
elegant solution, which we leave to further work.

Note that, analogously to abstract method declarations, abstract field declarations allow a
class to use a field without initializing it. In this way, classes composed by sum can share the
same field, provided it is defined in (at most) one. Note that this corresponds to sharing fields
as in, e.g., [BDNW08]; however, in our framework we do not need an ad-hoc notion.
Flattening versus direct semantics Before introducing nested classes, let us briefly discuss
the notion of “equivalence” we have used above to informally explain the semantics of
DEEPFJIG. This equivalence will be formalized in the next section (see Figure 2) by a relation,
called flattening, which translates DEEPFJIG into a “flat” language where class expressions
are only basic classes (hence there are no longer composition operators). Analogously, the
semantics of inheritance in object-oriented languages can be explained by saying that, roughly,
the effect is the same one would get by duplicating the methods of the parent class in the
heir. However, inheritance can also be explained in a different way, by describing a runtime
procedure called method look-up. In other words, semantics of inheritance can be given either
by translation into a language with no inheritance, or by a direct execution model. In this
paper, we choose to explain the semantics of DEEPFJIG by flattening since this provides a
more simple and intuitive understanding of the effect of the operators. However, a direct
semantics could be provided for DEEPFJIG along the lines of that we have described for FJIG
[LSZ09a, LSZ09b, LSZ12], even though method look-up is much more involved when there
are many composition operators rather than just extends. Note also that an implementation
could be based on one of these two approaches, or more likely adopt some even different or
mixed optimized approach.

1.2 Nested classes

In DEEPFJIG, a basic class can also contain declarations of nested classes, as shown in the
example below.
{
A = { B = { ... }} [+]
{
B = {
C = { <> m() { return new <>(); } }
D = C [+] outer.outer.G

}

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 5

E = B.C [+] outer.G
F = { ... }

}
G = { ... }
H = A.B.C [+] G

}

Hence, a basic class has a tree shape, where the basic class is the root, the children of a basic
class are its nested classes, and the children of a nested class are the basic classes appearing in
its defining expression. For instance, the basic class in the example has three children, A, G,
and H, and nested class A has two children, since it is defined as sum of two basic classes.

In the following, we will informally use “position” to designate a node in the tree which is
either the root or a nested class. Note that, differently from absolute paths in other approaches
supporting nested classes, a position in the tree cannot be identified by just a sequence of class
names, due to the presence of class composition operators, see, for instance, the two nested
classes named B which could be identified by, e.g., A.1.B and A.2.B.

Sequences of the form outern.C1.Ck, with n, k ≥ 0, called (class) paths, denote a
class, and can be used the same way as class names, that is, as types, in new expressions and
as subterms of class expressions, as shown in the example. Class paths can be classified along
two orthogonal dimensions:

• paths with k = 0 denote enclosing basic classes, whereas paths with k > 0 denote
nested classes. In particular, the path Λ (written <> in code), that is, the unique path
where n, k = 0, denotes the directly enclosing basic class. As the reader may have
noted, this path has many analogies with the MyType notion in literature. However,
we prefer the notation <> to stress that it is just a special case of path and that no
sophisticated notion is needed in the type system, see more comments in Section 1.4.

• paths with n = 0, called downward (class) paths, refer to a class in the current scope
(basic class), whereas paths with n > 0 refer to outer levels.

Of course, in a top-level class expression2, all paths are expected to denote existing classes, as
in the example above.

Paths in DEEPFJIG are relative, that is, are computed w.r.t. the current position, whereas,
in most mainstream languages supporting nested classes, paths are absolute, that is, are
computed downward starting from the top-level position, and can be abbreviated by paths
starting from a nested position if there is no shadowing. Symmetrically, a realistic language
based on DEEPFJIG should allow the programmer to omit outers in non ambiguous cases.
Formally, a precompilation phase would add outers in front of paths of shape outern.C.π,
until a scope containing a definition for C is reached. This would lead to a scope resolution
analogous to that of Newspeak [BvdAB+10].

Note that the structural type information associated to a class (formally, the type of the
class), including, e.g., names and types of members, is directly available for an enclosing
basic class, whereas for a nested class, which is defined by a class expression, it is computed
combining the class types of its subexpressions, as shown by the following example.
C = { int m(){ return 1; } }
[+] { int k(){ return new outer.C().m(); } }

Here, class C is defined as the sum of two basic classes. In the latter, the method invocation is
well-typed, since outer.C denotes class C of the outer level, which has a method m provided
by the former basic class. The version below, instead,

2In DEEPFJIG, differently from Java, FJ and FJIG, a program is a top-level class expression rather than a sequence
of class declarations.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

6 · Andrea Corradi, Marco Servetto, Elena Zucca

C = { int m(){ return 1; } }
[+] { int k(){ return new <>().m(); } }

is clearly ill-typed, since the basic class enclosing the invocation does not provide a method m.
As already pointed out, in DEEPFJIG a class declaration just provides a name which

can be used to denote the “semantics” of its right-hand-side class expression. This class
expression may contain path occurrences which “refer to the outside”, that is, play the role of
free variables in the class expression itself. Such path occurrences are called external, whereas
internal path occurrences play the role of bound variables. This difference is reflected when
the (semantics of) the class expression is reused, by means of its class name, in a new position,
as illustrated by the following example.
A = {
<> mInternal(){ return new <>(); }
outer.A mExternal(){ return new outer.A(); }

}
B = A

In the right-hand-side of the declaration of A, which is a basic class, the return type <> is
internal, since it refers to the basic class itself, whereas the return type outer.A is external,
since it refers to the nested class named A of the enclosing scope, whose definition accidentally
is the same basic class. The declaration of B uses the name A as a shortcut for (the semantics
of) the basic class above, hence is equivalent to the following:
A = { /*as before*/ }
B = {
<> mInternal(){ return new <>(); }
outer.A mExternal(){ return new outer.A(); }

}

Note that B.mInternal returns an instance of a new unnamed class, while B.mExternal
returns an A. That is, accordingly with the intuition explained above, when a class is reused
in a new position external paths will still denote the “old” class, whereas internal paths will
denote a new class.

In the simple example above, since the class is reused in exactly the same scope, this is
equivalent to just “copying” code in the new position as it stands. However, in general external
path occurrences in the original code need to be modified to preserve the original semantics.
For example, consider the class declarations
A = {
B = {
C = { ... }
C m1() { ... }
outer.B.C m2() { ... }
outer.outer.A.B.C m3() { ... }

}
}
D = A.B

where the three paths which occur as return types denote the same class, which is denoted by
A.B.C at top level.

At first sight, there is no difference among these three paths, so one could think of
normalizing code by always using the shortest path denoting a given class in a given position,
e.g., C in the example above. However, this makes a difference when code is reused. That is,
this code is equivalent to the following:
A = { /*as before*/ }
D = {
C = { ... }
C m1() { ... }
outer.A.B.C m2() { ... }
outer.A.B.C m3() { ... }

}

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 7

In the definition of D the return type C denotes now a new class, denoted by D.C at top level,
whereas the other two return types have been changed in order to still denote the “old” class.
This will be expressed by the notation c[from cs], formally defined in Figure 3, which returns
the path obtained by “moving” path c from position cs (for “source”) to the current position.

DEEPFJIG keeps the Java nominal approach, that is, types are class paths (a generalization
of class names), and two different paths which denote structurally equivalent classes, or even
the same class, are not considered equivalent. However, the programmer can explicitly declare
a set c1 . . . cn of class paths, introduced by the keyword implements, as supertypes of a
basic class, as shown below.
C = abstract{

abstract int m1();
abstract int m2();

}
D = abstract implements outer.C {
abstract int m1();
int m2() { return 1 + this.m1(); }
outer.C m() { return this; }

}

In this way we can return this as result of method m. The type system checks, for each ci,
that the subtyping relation can be safely assumed, that is, members of ci are members of the
basic class as well (formally, the class type of the basic class is a subtype of the class type of
ci). This check is analogous to that on implemented interfaces in Java.

For instance, removing method m1 from D would make the example ill-typed. Note that,
differently from Java, where they are implicitly inherited, abstract members must be declared
as well, so that it is always possible to compute which are the members provided by a class
only from its defining expression.

1.3 Deep composition operators

In DEEPFJIG, composition operators are deep, in the sense that they allow to manipulate
nested classes at any depth level.

For instance, the sum of two classes “propagates” to their nested classes with the same
name, similarly to deep mixin composition [OZ05], as shown by the following example:
C = {
N = abstract{
abstract int n();
int m(){ return this.n(); }

}
}
D = C [+] {

N = {
int n(){ return 1; }
abstract int m();

}
int k(){ return new N().m(); }

}

Class D is defined as the sum of class C with an unnamed basic class. The effect is that nested
class N of C is summed with nested class N of the unnamed basic class. That is, the declaration
of D is equivalent to the following:
C = { /*as before*/ }
D = {
N = {
int n(){ return 1; }
int m(){ return this.n(); }

}
int k(){ return new N().m(); }

}

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

8 · Andrea Corradi, Marco Servetto, Elena Zucca

In this way, the resulting class N of D inherits the implementation for methods n and m from N

of C and N of the unnamed basic class, respectively.
This example also illustrates the meaning of the modifier abstract. As in Java, the effect

of the modifier is to forbid the creation of instances of a given class. However, here being
abstract is a property of an unnamed class, rather than of a class declaration, accordingly with
the DEEPFJIG design principle that a class declaration just gives a name to a class expression.
Hence, the modifier is applied to a basic class, and the operators act on the kind (abstract/non
abstract) of a class as on other components. Moreover, it is perfectly legal to declare abstract
members inside a non abstract class, as shown by nested class N of the unnamed basic class
above. The meaning is that the class is incomplete, that is, not executable. However, it can
be safely used as a library, since it can be completed by composition with another class, as
actually happens in the example, where method k of D can correctly create an instance of
nested class N of D.

Besides sum, DEEPFJIG provides the following other composition operators, which all
modify a single class, taken as first argument: restrict, alias, class alias, redirect and class
redirect. They are illustrated by the following examples.
E = {
C = abstract{
abstract int n1();
int n2(){ return 2; }
int n3(){ return 3; }

}
K = {
int n1(){ return 10; }
int n2(){ return 20; }

}
int m(){ return new K().n1(); }

}

Restrict = E[restrict n2 in C]
Alias = E[alias n2 to n1 in C]
AliasC = E[alias K to C.K]
AliasCSum = Restrict[alias K to C]
Redirect = E[redirect n1 of K to n2]
RedirectC1 = AliasC[redirect K to C.K]
RedirectC2 = AliasC[redirect K to outer.E.K]

The restrict operator removes a definition in a nested class, making the corresponding
member abstract. Hence we get the following definition:
Restrict = {//E[restrict n2 in C]
C = abstract {
abstract int n1();
abstract int n2();//now abstract
int n3(){ return 3; }

}
K = { /*as before*/ }
int m(){ return new K().n1(); }

}

Note that a restrict operator for classes makes no sense. On the other hand, a derived
operator which recursively makes abstract all fields and methods of a class can be easily
defined.

The alias operator duplicates the declaration of an existing field or method of a nested
class (including <>), for another field or method of the same class. Hence we get the following
definition:
Alias = {//E[alias n2 to n1 in C]
C = abstract {
int n1(){ return 2; }//now implemented
int n2(){ return 2; }
int n3(){ return 3; }

}

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 9

K = { /*as before*/ }
int m(){ return new K().n1(); }

}

where the method C.n1 is now implemented using the implementation of C.n2. The method
body is duplicated, rather than just invoked, so that, in case the implementation of the original
method is changed, the aliased one keeps the original semantics.

The class alias operator adds or modifies a nested class, by duplicating an existing basic
class. More precisely, if there is no nested class in the target position, then a new class
declaration is inserted, as in the AliasC example. Hence we get the following definition:
AliasC = {//E[alias K to C.K]
C = abstract {
abstract int n1();
int n2(){ return 2; }
int n3(){ return 3; }
K = { int n1() { return 10;}

int n2() { return 20;} }
}
K = { /*as before*/ }
int m(){ return new K().n1(); }

}

If, instead, there is already a nested class in the target position, as in the AliasCSum example,
then the duplicated class is summed with the existing class. Hence we get the following
definition:
AliasCSum = {//Restrict[alias K to C]
C = { int n1(){ return 10; }

int n2(){ return 20; }
int n3(){ return 3; } }

K = { /*as before*/ }
int m(){ return new K().n1(); }

}

where nested class C has been obtained by sum, hence has now implementations for n1 and
n2 copied from K.

The redirect operator replaces all the references to a field or method name whose receiver’s
static type is a given nested class by a different name, and removes its declaration. Hence we
get the following definition:
Redirect = {//E[redirect n1 of K to n2]
C = { /*as before*/ }
K = {
//int n1(){ return 10; } //removed
int n2(){ return 20; }

}
int m(){ return new K().n2(); }

}

where the declaration of K.n1 has been removed, and the invocation of K.n1 is now an
invocation of K.n2.

The class redirect operator replaces all the references to a nested class by a different class,
and removes its declaration. Hence we get the following definition:
RedirectC1 = {//AliasC[redirect K to C.K]
C = { /*as before*/ }
//K = //removed
int m(){ return new C.K().n1(); }

}

where nested class K has been removed, and the constructor invocation refers now to class
C.K.

In all the examples above, paths occurring as arguments of operators are downward paths,
that is, they refer to a nested position in the class occurring as first argument of the operator.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

10 · Andrea Corradi, Marco Servetto, Elena Zucca

However, paths referring to outer classes can occur as source path in the class alias operator,
and as target in the class redirect operator. The last example shows the latter case.
RedirectC2 = {//AliasC[redirect K to outer.E.K]
C = { /*as before*/ }
//K = // removed
int m(){ return new outer.E.K().n1(); }

}

Note that in many cases the application of a composition operator can be impossible or
unsafe. For instance, two classes with conflicting definitions for the same member cannot
be summed, and the redirect operator can remove a field or method needed to implement a
supertype. All these ill-formed applications are prevented by the DEEPFJIG type system, as
will be detailed and formalized in Section 3.

Historical excursus The choice of these operators as composition primitives originates from
[AZ02], where it was formally shown how to encode all the operators of the Jigsaw framework
[Bra92] by sum, freeze and reduct. These three operators were, then, taken as primitives
in FJIG [LSZ09a, LSZ09b, LSZ12], where, as in Jigsaw, defined field and methods can be
virtual, frozen or local. In DEEPFJIG, instead, defined field and methods are all implicitly
virtual, hence we do not include the freeze primitive operator which allows to express, e.g.,
hiding. Moreover, the reduct operator, handling maps from names into names, has been
replaced by three operators which handle single names (restrict, alias and redirect), which
provide the same expressive power and are more convenient for the meta-level which we
develop in [Ser11]. The integration of the composition operators with class nesting was never
investigated in previous work.

On top of these composition primitives, we can derive many other useful operators. For
instance, the override operator, a variant of sum where conflicts are allowed and the left
argument has the precedence, can be defined, by a type-driven translation, as follows:
C1[override]C2 ≡
C1[+](C2[restrict n1 in N1] . . . [restrict nk in Nk])

where restrict is applied to all fields or methods with the same name ni defined in a nested
class (at any depth level) Ni in both C1 and C2. Indeed, here override is deep, that is, it
propagates to nested classes analogously to sum.

It is possible to define also a rename operator for nested classes as follows:
C[rename COld to CNew] ≡
C[alias COld to CNew][redirect COld to CNew]

If COld has nested classes, then we need to recursively apply redirect to these classes.
Renaming of methods and fields can be encoded as follow:

C[rename nOld to nNew in N] ≡
C[alias nOld to nNew in N][redirect nOld of N to nNew]

1.4 Expressive power

Expression problem First of all we show the expressive power of DEEPFJIG by considering
as “benchmark” the classical expression problem (or extensibility problem) [Ern04, Tor04,
OZ05].

The expression problem can be formulated as follows: we have a datatype defined by a
set of variants, and we have processors which operate on this datatype. The addition of new
variants and new processors are the two directions along which the system can be extended.
The challenge is to do it in a modular and easy way.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 11

For sake of concreteness, let us consider a Base class, modelling arithmetic expressions,
defined as follows:
Base = {
Expression = abstract{ abstract String toString(); }
Num = implements outer.Expression{
int e; constructor(int e){ this.e = e; }
String toString(){ return ""+this.e; }

}
Sum = implements outer.Expression{
outer.Expression l, r;
constructor(outer.Expression l, outer.Expression r){
this.l = l; this.r = r;

}
String toString(){
return "("+this.l.toString()+
"+"+this.r.toString()+")"; }

}
}

Note that, here and in other examples, the syntactic convention mentioned at page 5 would
allow to omit some outers, e.g., to write just Expression instead of outer.Expression.

Assume that now Adam wants to add a UMinus class. This can be done in this way:
AddUMinus = {
Expression = abstract{ abstract String toString(); }
UMinus = implements outer.Expression{
outer.Expression e;
constructor(outer.Expression e){ this.e = e; }
String toString(){ return "-"+this.e.toString(); }

}
}
BaseWithUMinus = Base [+] AddUMinus

Bob wants to add an eval operator. This can be done in this way:
EvalBase = {
Expression = abstract{ abstract int eval(); }
Num = abstract implements outer.Expression{
abstract int e; constructor(int e){}
int eval(){ return this.e; }

}
Sum = abstract implements outer.Expression{
abstract outer.Expression l, r;
constructor(outer.Expression l, outer.Expression r){}
int eval(){ return this.l.eval()+this.r.eval(); }

}
}
BaseWithEval = Base [+] EvalBase

Charles wants to use the work of Adam and Bob to obtain something with both the UMinus
variant and the eval processor. The first step is to define the behaviour of eval on the UMinus
variant.
EvalUMinus = {
Expression = abstract{ abstract int eval(); }
UMinus = abstract implements outer.Expression{
abstract outer.Expression e;
constructor(outer.Expression e){}
int eval(){ return -this.e.eval(); }

}
}

Now Charles has the following data variants and processors to deal with.

constructor toString eval

Num
Base EvalBase

Sum

UMinus AddUMinus EvalUMinus

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

12 · Andrea Corradi, Marco Servetto, Elena Zucca

He has two legal ways to compose everything together:

• first AddUMinus with EvalUMinus, obtaining a fully fledged UMinus variant, and then
the result with BaseWithEval:
Solution1 = (AddUMinus [+] EvalUMinus) [+] BaseWithEval;

• first EvalBase with EvalUMinus, obtaining a fully fledged eval processor, and then
the result with BaseWithUMinus:
Solution2 = (EvalBase [+] EvalUMinus) [+] BaseWithUMinus.

This solution to the expression problem is very natural and fulfils all the requirements given
in [OZ05], that is: extensibility in both dimensions, strong static type safety, no modification
or duplication of source code3, separate compilation, independent extensibility. Among the
many solutions existing in the literature, ours is very close to the one in [Ern04], however we
use simpler language constructs and type system.

Note that we have no code duplication, in the sense that we do not have any duplication
of method bodies, which can be seen as “real code”. We only need to insert some abstract
declarations for required members, which could be alternatively inferred by a type-checker.

What we have done is to “patch” some already existing code. It is possible to do even better
if the software is written from the beginning in a fully modular way, that is: for each Variant
of a DataType, we define a class ConstrVariant, containing field initializations.
ConstrVariant = {
DataType = abstract{}
Variant = implements DataType{
// field declarations
constructor(...) { ... }
}

}

For each Variant and processor we define the corresponding processor implementation in
a class ProcessorVariant.
ProcessorVariant = {
DataType = abstract{ abstract processor(); }
Variant = abstract implements DataType{
// abstract field declarations required by processor
processor(){...}

}
}

Now we have a full grid of processors and variants. For example, for improving modularity,
we could have split the Base class defined before into four pieces: ConstrNum, ConstrSum,
ToStringNum, ToStringSum. Analogously, EvalBase can be split in EvalNum and EvalSum,
and AddUMinus in ConstrUMinus and ToStringUMinus.

constructor toString eval

Num ConstrNum ToStringNum EvalNum

Sum ConstrSum ToStringSum EvalSum

UMinus ConstrUMinus ToStringUMinus EvalUMinus

This allows the user to take any coherent (that is, where all existing processors are defined
over all existing variants) subset of the cells of the grid, and extending the grid is also very

3However, code would be expanded by a pre-processor implementing flattening, whereas code expansion could be
delayed at invocation time by an implementation generalizing dynamic method look-up, as discussed at the end of
Section 1.1.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 13

natural. Analogously, the extension must be coherent, that is, the type system requires to add
an entire row or column, to ensure that we are not leaving unmanaged cases.

This possibility of taking only a subset of the classes composing a program nicely imple-
ments the concept of scalable-down architecture [Par78], that is, a software architecture which
can be not only easily extended, but also contracted when less functionalities are needed. Note
that this means that code size is truly reduced, not just that some functionality is hidden as in
other approaches.

Generics and MyType In DEEPFJIG we can encode generics. Indeed, at the foundational
level it has been proved since long time [WV00, AZ02] that module calculi can encode
lambda-calculus, and thanks to nesting DEEPFJIG classes play the role of modules with class
components, similarly, e.g., to JAVAMOD [AZ01], a module layer for Java classes where an
analogous encoding was possible. However, here the encoding is much more natural and does
not require additional notions, as shown by the example below.
OList = {
Elem = abstract{ abstract boolean geq(<> other); }
List = abstract{ abstract <> insert(outer.Elem e); }
EmptyList = implements outer.List{
outer.List insert(outer.Elem e){ return new outer.NonEmptyList(e,this); }

}
NonEmptyList = implements outer.List{
outer.Elem e; outer.List tail;
constructor(outer.Elem e, outer.List tail){ this.e=e; this.tail=tail; }
outer.List insert(outer.Elem e){
if(this.e.geq(e))return new <>(e,this);
return new <>(this.e,this.tail.insert(e));

}
}

}
MyElem = {
int e; constructor(int e){this.e=e;}
boolean geq(<> other){ return this.e>=other.e; }

}
MyElemOList = OList[redirect Elem to outer.MyElem]

The class OList.List models an ordered list of Olist.Elem, that offers a binary method
geq. By the redirect operator it is possible to produce an instantiation of OList which
represents a list of MyElem.

The example also shows the binary method geq where, as already mentioned, the path <>

plays the same role of MyType [BOW98], or ThisClass of LOOJ [BF04]. MyType can be
used inside a method of a class to refer to the class itself, and, similarly to what happens with
this, is redirected to the proper subclass when the method is inherited. Again, MyType was
already expressible in a previous work on a module layer for Java classes [ALZ06], but here it
is smoothly integrated with the overall language design, being just a special case of path.

Note that in both cases there is no true polymorphism, since, as already mentioned, code
for each different instantiation is obtained by expanding generic code by flattening. The
advantage is that we can keep a standard Java-like type system.

One powerful feature of our approach, that we share with package templates [KMPS09],
but not supported by many other proposals, is that we can use the same class more than once
in a single class expression. For instance, with the OList class we can define a list of lists in
the following way:
OListOfList=
OList[rename Elem to InnerList]
[+](
OList
[+]
{
List=abstract{abstract boolean geq(<> other); }
EmptyList={boolean geq(outer.List){...}}

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

14 · Andrea Corradi, Marco Servetto, Elena Zucca

NonEmptyList={boolean geq(outer.List){...}}
}
)[rename List to InnerList]
[rename EmptyList to InnerEmptyList]
[rename NonEmptyList to InnerNonEmptyList]

Refactoring Refactoring tools allow one to perform useful code transformations, notably
renaming. When working with a library, it can be useful to keep refactoring operations in the
code, so that when the next version of the library is released, it can be seamlessly integrated
with the program. For instance, using the rename operator
A = { ... C = { ... } }[rename C to D]
B = { ... }

allows class B to use A.D instead of A.C.
The code transformation which moves a class up or down in the nesting hierarchy can also

be encoded as a renaming. For instance:
A = { B = { C = { ... } } }[rename B.C to C]
E = { ... }

allows class E to use A.C instead of A.B.C.
This approach is different from conventional refactoring, where the tool simply produces

the new source. This is a non invasive operation, allowing rollback by simply removing the
refactoring code.

AOP Class composition languages and aspect-oriented programming take a different ap-
proach: the former construct new classes from existing ones, while the latter modifies the
whole program at once. Since in DEEPFJIG “the whole program” is a class expression, we
can use composition operators to modify the whole program as well. In this way, the effect is
analogous to AOP in many respects: flattening is a code expansion as weaving, anonymous
basic classes play the role of advices and composition operators individuate the pointcuts,
even though the latter can be specified by a richer language.

Two relevant code modifications allowed by aspects are execution-around and call-
around [KHH+01]: the former replaces execution of a given method, determined by the
receiver’s dynamic type, the latter replaces invocation of a given method, determined by the
receiver’s static type.

Consider for instance the following basic class b:
{
A = { int foo(){return 1; } }
B = implements outer.A{ int foo(){ return 2; } }
int bar(A a){ return a.foo(); }
String main(){ return new B().foo()+" "+

this.bar(new B())+" "+this.bar(new A()); }
}

Here a call of main produces "2 2 1". Execution-around can be easily emulated by our
operators; for example, this AspectJ-like code:
int around(): execution(int A.foo()){ return 10; }

can be encoded by
b[restrict foo in A] [+]{ A = { int foo(){return 10;} }}

Now main produces "2 2 10" since we changed the result of the third call, which is the only
one whose receiver has dynamic type A. Note that, instead of writing an A class with a foo
method, we could have used an arbitrary named class with an arbitrary named method, and
then the rename operator, to stress that basic classes and composition operators correspond to
advices and pointcuts, respectively. However, we find this solution more readable.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 15

Emulating call-around code like
int around(): call(int A.foo()) { return 10; }

requires a little more effort:
(b [+]
{ A = { int foo2(){return 10; } } }[alias A to B]

) [redirect foo of A to foo2]

Now main produces "2 10 10" since we changed the behaviour of all invocations of foo
whose receiver has static type A. The call of B.foo is not affected. Note that the alias is
needed to keep B subtype of A. As in the AOP tradition, this approach does not require to
change the source, that is, it is “non invasive”. The operation proceed can be encoded using
the same pattern one can use to emulate super calls, that is, as calls to an alias of the original
method. After and before can be encoded by around and a call to proceed. Other operations,
like dynamic pointcuts, are much more complex to express (essentially, the same encoding
used by the AspectJ implementation is needed).

2 Formalization

Syntax The syntax of the language is given in Figure 1.
ce ::= class expression

b basic class
| c (class) path
| ce1[+]ce2 sum
| ce[restrict i inπ] restrict
| ce[alias is to i t inπ] alias
| ce[alias cs toπt] class alias
| ce[redirect is ofπ to i t] redirect
| ce[redirectπs to ct] class redirect

b ::= ch{ k d} basic class
ch ::= µ implements c class header
k ::= kh{ fe} constructor
kh ::= constructor(c x) constructor header
fe ::= this.f = e; field expression
d ::= fd | md | cd (member) declaration
fd ::= µ c f ; field declaration
md ::= abstract mh; | mh{ return e;} method declaration
cd ::= C = ce class declaration
mh ::= c m(c x) method header
µ ::= ε | abstract abstract modifier
n ::= i | C (member) name
f ,m ::= i field name, method name
c ::= outer.π (class) path
π ::= C downward (class) path
e ::= x | e.[c]f | e.[c]m(e) | new c(e) expression (conventional)

| c(fe) expression (pre-object)
v ::= c(fv) value
fv ::= this.f = v; field value
cv ::= ch{ k fd md C = cv} class value
σ ::= b environment (enclosing classes)

Figure 1 – Syntax

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

16 · Andrea Corradi, Marco Servetto, Elena Zucca

We assume infinite disjoint sets of class names C , instance member names i (that is,
names for field or methods, since nested classes are static members instead), and variables x .
As in FJ, variables include the special variable this. We use the bar notation for sequences,
e.g., d is a sequence of declarations d . We decorate by the “s” (respectively, “t”) superscript a
metavariable occurrence, e.g., cs, πt, to suggest that this occurrence plays the role of a source
(respectively, target). The syntax is designed to keep a Java-like flavour as much as possible.

Class expressions are basic classes, (class) paths, or are constructed by composition
operators.

A basic class consists in an optional abstract modifier, a sequence of supertypes, a
constructor, and a sequence of (member) declarations.

There is no overloading, hence a class has only one constructor. However, differently from
FJ, where this unique constructor has a canonical form, there is no a priori relation among the
parameter list and the constructor body, which is a sequence of field expressions associating
(initialization) expressions to field names.

Field and method declarations are in the style of FJ.
Sequences of supertypes, field expressions, and declarations are considered as sets, that is,

order and repetitions are immaterial.
In a well-formed basic class, no instance member name or class name can be declared

twice. Hence a sequence of declarations is a map from names into declarations. This implies
that, differently from Java, there is no method overloading, and there is no overloading between
field and method names. However, for better readability, we will use the metavariable f when
a name is used for a field, m for a method. A parameter name cannot be declared twice in a
constructor or method header. Finally, a field name cannot appear twice in a sequence of field
expressions, hence a sequence fe is a map from field names into field expressions. Moreover,
there is exactly one field expression in the constructor for each non abstract field.

Since a sequence of declarations d is a map, we can use the standard notations dom(d),
d(n), and d\n , and analogously for other sequences which are maps. .

Expressions in method bodies are similar to those of FJ. We omit cast for simplicity
since it is not relevant for our technical treatment. Moreover, field accesses and method
invocations are annotated with the static type of the receiver. These annotations can be added
during typechecking. However, for simplicity we do not model here two different languages
and assume that they are already in source code. This is needed for the redirect operator,
see in the following. Finally, expressions include pre-objects c(fe), runtime expressions
which cannot be written in programmer’s code, but are obtained by reducing a constructor
invocation. Indeed, since the constructor has no canonical form, we need two different
syntactic forms [LSZ09a, LSZ09b, LSZ12], differently from FJ.

Values are objects, that is, pre-objects where all field expressions are (recursively) values.
Class values are basic classes where all nested class definitions are (recursively) class

values. Indeed, since operators are deep, they can be applied only to basic classes where all
nested class definitions are (recursively) basic classes.

We assume that, in a well-formed top-level class expression, all paths refer to existing
classes.

Flattening rules Figure 2 contains the rules defining the flattening relation. The relation is
of the form ce1 → ce2, where the unique rule (CTX) reduces the whole program (top-level
class expression) by applying a reduction step to either the top-level class expression, or to
a class expression appearing as right-hand side of a nested class declaration, at any level of
depth. This is formally expressed by the contexts for flattening CE f , defined in terms of the
conventional contexts CE .

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 17

CE ::= � | CE[+]ce | ce[+]CE | CE[restrict i inπ] | CE[alias is to i t inπ] | CE[alias cs toπt]
| CE[redirect is ofπ to i t] | CE[redirectπs to ct]

CE f
::= CE | CEJ_{ _ _C =CE f

}K

ce1 → ce2

(CTX)
ce1 →σ ce2

CE fJce1K → CE fJce2K
σ = env(ce1,CE f

)

ce1 →σ ce2

(CLASS-PATH)
c →σ cv

cv = cBody(σ, c)[from c] (SUM)
cv1[+]cv2 →σ cv1⊕cv2

(RESTRICT)
cv[restrict i inπ] →σ cv 	π i ⊕π abs(d)

d = dec(cv , π, i)

(ALIAS)
cv[alias is to i t inπ] →σ cv ′⊕π named(i t, d)

constr(cv , π) = kh{ fe}

cv ′ =

{
cv ⊕π this.i t = e; if fe(is) = e

cv if is /∈ dom(fe)

d = dec(cv , π, is)

(C-ALIAS)
cv[alias cs toπt.C] →σ cv ⊕πt (C = cv ′)

cv ′ = cBody(cv · σ, cs)[from cs[in πt]]

(REDIRECT)
cv[redirect is ofπ to i t] →σ (cv 	π is)[is

[π]
i t]

is∈names(cv , π)
is 6= i t

(C-REDIRECT)
cv[redirectπs.C to ct] →σ (cv 	πs C)[πs.C ct]

noNested(cv , πs.C)
πs.C 6= ct

Figure 2 – Flattening rules

The flattening relation for class expressions is of the form ce1 →σ ce2. Indeed, reduction
of a class expression takes place in an environment σ = b0 · . . . · bn which is the stack of
all its enclosing basic classes, starting from the directly enclosing, needed to give semantics
to external paths. We denote by env(ce,CE f

) the stack of basic classes enclosing the hole in
CE fJceK, formally:

• env(ce,CE) = ∅
env(ce,CEJch{ k d C =CE f

}K) = env(ce,CE f
) · ch{ k d C =CE fJceK}

Operational versus denotational semantics Before illustrating flattening clauses in detail,
let us briefly discuss the style of our formalization. Flattening is an operational (small step)
semantics of class expressions which reduces a class expression to a class value (a basic class
whose nested classes, at any inner level, are basic classes as well). This corresponds to a
“syntactic” interpretation where a class value is interpreted as the class value itself (in the same
way as a function declaration can be interpreted as a closure). This syntatic interpretation
makes sense in Java-like calculi, where runtime expressions are evaluated in the context of a
(syntactic) class table, where the code of the various methods is available. A more “semantic”
interpretation of class expressions would be along the lines of the classical denotational model
of inheritance introduced in the thesis of William Cook [Coo89], whose extension to Jigsaw
operators has been described in Bracha’s thesis [Bra92] and formally modeled in detail by

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

18 · Andrea Corradi, Marco Servetto, Elena Zucca

Ancona and Zucca [AZ98]. In this model, roughly, a class is interpreted as a “generator”, that
is, a function from a (hierarchical in our case) record of functions to a (hierarchical) record of
functions. The input record corresponds to abstract and defined methods (considering only
methods for simplicity), whereas the output record corresponds to defined methods. The fact
that also defined methods are modeled in the input record models the fact that they are virtual.
This is the “open” semantics of a class, to be used when classes are combined by composition
operators. The “closed” semantics of a class (with no abstract methods) can then be obtained
as the least fixed point of the open semantics, and this closed semantics is used as context for
evaluating runtime expressions.

Rule (CLASS-PATH) can be applied when the class expression occurring in position c
in σ is a class value (DEEPFJIG has a call-by-value semantics). The notation cBody(σ, c) is
formally defined by:

• cBody(b0 · . . . · bn, outeri.π) = cBody(bi, π) 0 ≤ i ≤ n
cBody(ch{ k d (C = b)} ,C.π) = cBody(b, π)
cBody(b,Λ) = b

In this case, c is replaced by cv , a class value obtained from cBody(σ, c), which is in position
c w.r.t. the current position, by “moving” all the occurrences of external paths so that they still
denote the same class.

The notations cv [from cs] and e[from cs], where s stands for “source”, meaning “moving
class value cv from cs to the current position”, and “moving expression e from cs to the
current position”, respectively, are defined in Figure 3. They are defined by an accumulation
parameter j, initially set to 0, corresponding to the nesting level.

cv [from cs] e[from cs]

cv [from cs] = cv [from cs \ 1]0
e[from cs] = e[from cs]0
ch{ k d} [from cs]j = ch[from cs]j+1{ k [from cs]j+1 d [from cs]j+1}

c[from cs]j =

{
outerj.(c′[from cs]) if c = outerj.c′

c otherwise

c[from cs]

outern.π[from outerm.π′] = outerm.(π′\n).π where

C1.Ck\n =

{
C1 . . .Ck−n if n ≤ k
outern−k if n > k

Figure 3 – Auxiliary definitions for moving paths

For simplicity, we omit all trivial propagation clauses, and only report the clauses for a
basic class and for a path.

The clause for a basic class simply propagates the operation inside all class components,
keeping trace that one nesting level has been added.

The clause for a path is the base case. When a path occurrence is found at some nesting
level j, it needs to be moved only if it is external, that is, has form outerj.c′. In this case, c′

is replaced by c′[from cs], defined in the lower section of the figure. Here, π′rn is obtained
by removing from π′, from right to left, n elements, adding outers if there are not elements
enough. For instance, in the example in Section 1.4,

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 19

A = {
B = {
C = { ... }
C m1() { ... }
outer.B.C m2() { ... }
outer.outer.A.B.C m3() { ... }

}
}
D = A.B

paths outer.B.C and outer.outer.A.B.C are “moved” from position A.B, where they are
nested at level 0, hence they are external. Applying the definition we obtain outer.(B.C[from A])
and outer.(outer.A.B.C[from A]), respectively, hence we get two times outer.A.B.C.

The other rules model composition operators.
In rule (SUM), when the arguments of the sum operator are two class values, the operator

can be applied, obtaining the sum of the class values, denoted by cv1⊕cv2. This sum is
well-defined only if the arguments have the same constructor header and, for each field or
method i declared in both arguments, the two declarations have the same kind (field or method)
and type, and at most one is non abstract. In this case, the resulting class value has modifier
abstract only if both the class values are abstract; the union of the supertypes, the same
constructor header, the (necessarily disjoint) union of the field expressions, and the union of
the declarations, where two declarations for the same name are merged by keeping the non
abstract, if any. Nested classes with the same name are recursively summed. Formally:

• If cv i = µi implements ci{ kh{ fei} d i} , then
cv1⊕cv2 = µ implements c1 c2{ kh{ fe1 fe2} d1⊕d2}

where:

– µ = abstract iff µ1 = µ2 = abstract

– d1⊕d2 is defined by:

* dom(d1⊕d2) = dom(d1)∪dom(d2)

* (d1⊕d2)(n) =

d1(n) if n∈dom(d1)\dom(d2)

d2(n) if n∈dom(d2)\dom(d1)

d1(n)⊕d2(n) if n∈dom(d2)∩dom(d2)

* abstractmh;⊕abstractmh; = abstractmh;

* abstractmh;⊕mh{ return e;} = mh{ return e;}⊕abstractmh; =
mh{ return e;}

* abstract c f ;⊕µ c f ; = µ c f ;⊕abstract c f ; = µ c f ;

* (C = cv1)⊕(C = cv2) = C = (cv1⊕cv2)

In rule (RESTRICT), the operator replaces the definition of member i by the corresponding
abstract declaration. We denote by cv 	π n the class value obtained from cv by removing
member n of class π (if n is a field, then its initialization expression is removed as well), by
cv ⊕π d the class value obtained from cv by adding declaration d in class π, by abs(d) the
abstract version of the declaration d , by dec(cv , π,n) the declaration for name n in nested
class π in cv , by named(n, d) the declaration equal to d except that the declared name is n .
Formally:

• ch{ k d (C = cv)} 	C.π n = ch{ k d (C = cv 	π n)}

ch{ kh{ fe} d} 	Λ n = ch{ kh{ fe\n} d\n}

• ch{ k d (C = cv)} ⊕C.π d = ch{ k d (C = cv ⊕π d)}

ch{ k d} ⊕Λ d = ch{ k d⊕d}

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

20 · Andrea Corradi, Marco Servetto, Elena Zucca

• abs(µ c f ;) = abstract c f ;
abs(abstractmh;) = abs(mh{ return e;}) = abstractmh;

• dec(ch{ k d (C = cv)} ,C.π,n) = dec(cv , π,n)

dec(ch{ k d d} ,Λ,n) = d with d = named(n, _)

• named(i , µ c f ;) = µ c i;
named(i , abstract c m(c x);) = abstract c i(c x);
named(i , c m(c x){ return e;}) = c i(c x){ return e;}
named(C ,C ′ = ce) = C = ce

In rule (ALIAS), the operator adds a definition for field or method i t, for “target”, in class
π, by duplicating that existing for is, for “source”, in the same class. If is is a field, then the
initialization expression is duplicated as well. We denote by constr(cv , π) the constructor of
class π in cv , and by cv ⊕π fe the class value obtained from cv by adding field expression fe
in the constructor of π. Formally:

• constr(cv , π) = k if cBody(cv , π) = _{ k _}

• ch{ k d (C = cv)} ⊕C.π fe = ch{ k d (C = cv ⊕π fe)}

ch{ kh{ fe} d} ⊕Λ fe = ch{ kh{ fe fe} d}

In rule (C-ALIAS), the operator adds a definition for nested class C in class πt, by
duplicating that existing for cs, which must be a class value. If in position πt there is already a
nested class C , then the duplicated class value is summed with the existing class. Analogously
to rule (CLASS-PATH), the duplicated class value needs to be modified by “moving” all the
occurrences of external class paths from the source position cs to the target position. However,
here the target position is a descendant πt of the current position (Λ), rather than the current
position itself. Hence, the movement must take place from cs[in πt], the (shortest) path which
denotes in πt the class denoted by cs in the current position, or “cs as seen in position πt”.
Formally:

• cs[in Λ] = cs

C.πs[in C.πt] = πs[in πt]
cs[in C.πt] = (outer.cs)[in πt] if cs 6= C._.

To see a path in a descendant C.πt of the current position, if the path is a descendant of child
node C as well, that is, of form C.πs, then we only have to see πs in πt (second clause).
Otherwise, this corresponds to take child node C as current position, and to see outer.cs in
πt (third clause).

Note that c[in πt] = c′ implies c′[from πt] = c; anyway, there can be many c′′ such
that c′′[from πt] = c. For example C.D.A[in C.D] = A and A[from C.D] = C.D.A but also
outer.D.A[from C.D] = C.D.A.

Note also that the source can be an outer class, that is, code to be duplicated can be taken
from the outside, whereas of course the target, being code to be modified, cannot. The converse
situation takes place for the class redirect operator, see below.

In rule (REDIRECT), the operator replaces references to existing field or method is of class
π by references to i t. The declaration of is is removed, so is and i t have to be different. We
denote by names(cv , π) the set of names declared in nested class π of cv , and by cv [is

[π]
i t]

the class value obtained from cv by replacing is with i t in field accesses/method invocations
whose receiver has static type π. Formally:

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 21

• names(cv , π) = dom(d) if cBody(cv , π) = _{ _ d}

• cv [is
[π]
i t] = cv [is

[π]
i t]Λ

(C = cv)[is
[π]
i t]π′ = C = (cv [is

[π]
i t]π′.C)

.[c]i [is
[π]
i t]π′ =

{
.[c]i t if c[from π′] = π and i = is

.[c]i otherwise

In rule (C-REDIRECT), the operator replaces references to existing nested class C of class πs

by references to ct. The declaration of C is removed, so πs.C and ct have to be different.
Redirect is only defined from a class that contains no nested classes (that is, noNested(cv , πs.C)
holds), hence can be safely removed. It is trivial to define a derived operator which redirects a
class with nested classes by performing a sequence of redirect applications. Here cv [πs ct]
is the class value obtained from cv by replacing πs with ct in type annotations and new
expressions. Formally:
cv [πs ct] = cv [πs ct]Λ
(C = cv)[πs ct]π = C = (ce[πs ct]π.C)

c[πs ct]π =

{
ct[in π] if c[from π] = πs

c otherwise
The notations cv [is

[π]
i t] and cv [πs ct] are defined by an accumulation parameter π

corresponding to the nested class where the occurrence (of field or method name and path,
respectively) is found. For simplicity, we omit all trivial propagation clauses, and only report
the clauses for a basic class and for the base case.

The clause for a basic class simply propagates the operation inside all class components,
keeping trace that one more nested class has been entered.

The base case for cv [is
[π]
i t] takes place when a field access/method invocation (here

generically indicated by.[c]i) is encountered where i is the member name is to be and the
annotation c (receiver’s static type) denotes π from the current position π′. In this case is is
replaced by i t.

The base case for cv [πs ct] takes place when a path occurrence π is encountered which
denotes πs from the current position π. In this case πs is replaced by ct as seen in the current
position π.

Dependency relation In order to prevent flattening to get stuck, we must forbid, informally,
cyclic reuse of code. In inheritance-based languages, this corresponds to require the inheritance
relation to be acyclic. In our framework, this requirement is formalized as follows. We denote
by nested(ce) the set of pairs consisting of an environment and a class name which correspond
to a nested class in ce , formally:

• σ,C ∈ nested(ce) iff
ce = CE fJbK and σ = b · env(b,CE f

) with b = _{ _ _C = _}

In a well-formed class expression ce, the relation dep−→ , defined in Figure 4, over
nested(ce), is required to be acyclic. Informally, σ1,C1

dep−→ σ2,C2 holds if, in order to
reduce nested class σ1,C1, we need (a nested class of) nested class σ2,C2, which has not been
reduced to a class value yet. Hence, a cyclic dependency would make reduction stuck. We
use the following notation:

• σ[in c] is the environment σ “as seen in position c”. Formally:
(b · σ)[in outer.c] = σ[in c]
(b · σ)[in C.π] = (b(c) · b · σ)[in π]
σ[in Λ] = σ

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

22 · Andrea Corradi, Marco Servetto, Elena Zucca

σ1,C1
dep−→ σ2,C2

(DIRECT-DEP)
σ,C dep−→ σ[in c],C1

σ = _{ _ _ C =CEJc.C1 . . .CkK} · _ or
σ = _{ _ _ C =CEJ_[alias outer.c.C1 . . .Ck to _]K} · _

cBody(σ, c.C1) 6= cv
cBody(σ, c.C1.C2) not defined or k = 1

(PROP-DEP)
σ1[in C1], _ dep−→ σ2,C2

σ1,C1
dep−→ σ2,C2

(TRANS-DEP)
σ1,C1

dep−→ σ2,C2 σ2,C2
dep−→ σ3,C3

σ1,C1
dep−→ σ3,C3

Figure 4 – Dependency relation

Reduction Reduction models execution of a main expression e in an environment σ. For-
mally, the reduction arrow has form e1 →σ e2. This models the fact that a main method could
belong to an arbitrarily nested class.

e1 →σ e2

(FIELD-ACCESS)

c(fv).f →σ v
fv(f) = v

(INVK)

c(fv).m(v) →σ e[from c][v/x][c(fv)/this]
mBody(σ, c,m) = 〈x , e〉

(OBJ-CREATION)

new c(v) →σ c(fe[from c][v/x])
kBody(σ, c) = 〈x , fe〉
nonAbs(σ, c)

Figure 5 – Reduction rules

Reduction rules are straightforward, and formally defined in Figure 5. The only significant
difference w.r.t. FJ is that in rule (INVK) expression e is found in position c, so class paths
inside e must be moved to denote the same class value in the current position, and analogously
in rule (OBJ-CREATION). We use straightforward functions mBody, kBody and nonAbs which,
for a given class, return parameters and body of methods and of the constructor, and check
whether the class is abstract. Formally:
if cBody(σ, c) = µ implements _{ k d}

• mBody(σ, c,m) = 〈x1 . . . xn, e〉 if d(m) = c m(c1 x1, . . . , cn xn){ return e;}

• kBody(σ, c) = 〈x1 . . . xn, fe〉 if k = constructor(c1 x1, . . . , cn xn){ fe}

• nonAbs(σ, c) holds iff µ 6= abstract.

3 Type system

Types and type environments are defined in Figure 6.
Analogously to what happens for flattening, all typing judgements have on the left a class

type environment, which is a stack of class types ct0 · . . . · ctn, where ct0 is the type of the
directly enclosing class, ct1 the type of the outer class, and so on. A class type is a tuple
consisting of the kind (abstract or non abstract), the supertypes, the constructor type, and a

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 23

∆ ::= ct class type environment
ct ::= [µ | c | kt | dt] class type
kt ::= c constructor type
dt ::= i :µ it | C :ct declaration type
it ::= c | c→c field or method type

Γ ::= x :c parameter type environment

Figure 6 – Types and type environments

map from field/method names to their kinds (abstract or non abstract) and types, and from
class names to class types.

Typing rules for environments, basic classes and well-formedness of class types are given
in Figure 7. They are straightforward. The typing judgment for environments is used in
Theorem 11 and Theorem 18.

Note that in rule (BASIC-T) the constructor body, the method bodies and the nested classes
are typechecked in the class type environment obtained by pushing the type of the basic class
on the stack of class types. The judgement ∆ ` ct , see rule (WF-CLASS-TYPE), means that ct
is well-formed w.r.t. ∆, that is, the subtyping relation induced by the supertypes in (all nested
class types) in ct can be safely assumed. Note that we have to move cType(ct ·∆, ci) from ci
to properly check structural subtyping, defined by rule (STRUCTURAL-S) in Figure 9.

We use the following notations:

• exists(∆, c1 . . . cn) holds if , for all i ∈ 1..n, ci denotes an existing class in ∆, formally
cType(∆, ci) is defined

• defFields(∆, c) are the declaration types corresponding to non abstract fields of class c
in ∆, formally:
defFields(∆, c) = f :c
if cType(∆, c) = [_ | _ | _ | f :c f :abstract c m:µ c→c C :ct]

• cType(∆, c) and ct [from c] are analogous to cBody(σ, c) and cv [from c], respectively, but
work over class types.

Typing rules for composition operators are given in Figure 8. They are similar to corre-
sponding flattening rules.

In some cases, to check that an operator can be safely applied it is necessary to check
for well-formedness of the resulting type, since the application of the operator can break the
subtyping relation, notably: sum, alias and class alias can add a field or method to a nested
class declared as supertype, redirect can remove a field or method needed to implement a
supertype, and class redirect can replace a nested class declared as supertype with another one
with more fields or methods.

Besides the checks performed in rule (C-REDIRECT), in (C-REDIRECT-T) additional
checks need to be performed to ensure that the class path ct can safely replace the class
denoted by πs.C . This is formally expressed by the subtyping relation ∆ ` ct � cts, defined
in Figure 9.

We use the following notations:

• ct1⊕ct2, ct 	π n and ct ⊕π dt are analogous to cv1⊕cv2, cv 	π n and cv ⊕π d , respec-
tively, but work over class types

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

24 · Andrea Corradi, Marco Servetto, Elena Zucca

` σ : ∆

(ENV-T)
ct i+1 · . . . · ctn ` bi : ct i ∀i ∈ 0..n

` σ : ∆
σ = b0 · . . . · bn
∆ = ct0 · . . . · ctn

∆ ` ce : ct

(BASIC-T)
ct ·∆ ` k : kt ct ·∆ ` d : dt ct ·∆ ` ct

∆ ` µ implements c{ k d} : ct

exists(ct ·∆, c)

ct = [µ | c | kt | dt]

∆ ` k : kt

(CONS-T)

∆; x1:c′1, . . . , xn:c′n ` ei : c′′i ∀i ∈ 1..k
∆ ` c′′i ≤ci ∀i ∈ 1..k

∆ ` kh{ this.f1 = e1; . . . this.fk = ek;} : c′1 . . . c
′
n

exists(∆, c′i) ∀i ∈ 1..n
kh = constructor(c′1 x1, . . . , c

′
n xn)

defFields(∆,Λ) = f1:c1, . . . , fk:ck

∆ ` d : dt

(FIELD-T)
∆ ` (µ c f ;) : (f :µ c)

exists(∆, c)

(ABS-METHOD-T)
∆ ` (abstractmh;) : (m:abstract c1 . . . cn→c0)

mh = c0 m(c1 x1, . . . , cn xn)
exists(∆, ci) ∀i ∈ 0..n

(METHOD-T)
∆; this:Λ, x1:c1, . . . , xn:cn ` e : c ∆ ` c≤c0

∆ ` mh{ return e;} : (m:c1 . . . cn→c0)
mh = c0 m(c1 x1, . . . , cn xn)
exists(∆, ci) ∀i ∈ 0..n

(CLASS-T)
∆ ` ce : ct

∆ ` (C = ce) : (C :ct)

∆ ` ct

(WF-CLASS-TYPE)

ct ·∆ ` ctj ∀j ∈ 1..k
ct ≤ (cType(ct ·∆, ci)[from ci]) ∀i ∈ 1..n

∆ ` ct
ct = [_ | c1 . . . cn | _ | dt]
dt = fd md C1:ct1 . . .Ck:ctk

Figure 7 – Typing rules for environments, basic classes and well-formed class types

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 25

∆ ` ce : ct

(CLASS-PATH-T)
∆ ` c : ct

ct = cType(∆, c)[from c]

(SUM-T)
∆ ` ce1 : ct1 ∆ ` ce2 : ct2 ∆ ` ct1⊕ct2

∆ ` ce1[+]ce2 : ct1⊕ct2

(RESTRICT-T)
∆ ` ce : ct

∆ ` ce[restrict i inπ] : ct 	π i ⊕π abs(dt)
dt = decType(ct , π, i)

(ALIAS-T)
∆ ` ce : ct ∆ ` ct ⊕π named(i t, dt)

∆ ` ce[alias is to i t inπ] : ct ⊕π named(i t, dt)
dt = decType(ct , π, is)

(C-ALIAS-T)
∆ ` ce : ct ∆ ` ct ⊕πt (C :µ ct ′)

∆ ` ce[alias cs toπt.C] : ct ⊕πt (C :µ ct ′)
ct ′ = cType(ct ·∆, cs)[from cs[in πt]]

(REDIRECT-T)
∆ ` ce : ct ∆ ` ct 	π is

∆ ` ce[redirect is ofπ to i t] : ct 	π is
mType(ct , π, is) = mType(ct , π, i t)
is 6= i t

(C-REDIRECT-T)

∆ ` ce : ct ∆ ` (ct 	πs C)[πs.C ct]
(ct ·∆)[in πs] ` ct[in πs] � cType(ct , πs.C)[πs.C ct]

∆ ` ce[redirectπs.C to ct] : (ct 	πs C)[πs.C ct]
πs.C 6= ct

noNested(ct , πs.C)

Figure 8 – Typing rules for composition operators

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

26 · Andrea Corradi, Marco Servetto, Elena Zucca

• decType(ct , π,n), abs(dt) and named(n, dt) are analogous to dec(cv , π,n), abs(d) and
named(n, d), respectively, but work over declaration types

• mType(∆, c, i) is the type of field or method i in class c in ∆. Formally:
mType(∆, c, i) = it if cType(∆, c) = [_ | _ | _ | dt i :µ it]

• ct [πs ct] and noNested(ct , π) are analogous to cv [πs ct] and noNested(cv , π), re-
spectively, but work over class types

• ∆[in c] is analogous to σ[in c], but works over class type environments.

Rules for subtyping relations are given in Figure 9.
The subtyping relation ∆ ` ct � cts, defined by rule (REDIRECT-T), holds if a path

denoting a class whose type is cts can be safely redirected to ct, that is, ct can be used by
clients all the ways the source class is used. That is: ct is a nominal subtype of the declared
supertypes, the class type denoted by ct is a structural subtype of cts, and if the source class
is non abstract, then the target is non abstract as well, and the constructor types are the same.

∆ ` ct � cts

(REDIRECT-S)

∆ ` ct≤ci ∀i ∈ 1..n

[µt | ct | kt t | dt t] ≤ [µs | cs | kts | dts]
∆ ` ct � [µs | cs | kts | dts]

cType(∆, ct)[from ct] = [µt | ct | kt t | dt t]
ct = outer.c1 . . . outer.cn
µs = ε implies µt = ε and kt t = kts

∆ ` c1≤c2

(DIRECT-S)
∆ ` c≤(ci[from c])

impl(∆, c) = c1 . . . cn

(REFL-S)
_ ` c≤c

(TRANS-S)

∆ ` c1≤c2

∆ ` c2≤c3

∆ ` c1≤c3

ct1 ≤ ct2

(STRUCTURAL-S)
ct1 ≤ ct2

ct1 = [_ | _ | _ | (i1:_ it1) . . . (in:_ itn)C :ct]

ct2 = [_ | _ | _ | (i1:_ it1) . . . (in:_ itn)dt]

Figure 9 – Subtyping rules

The other subtyping relations are conventional nominal subtyping among paths and width
structural subtyping among class types, respectively. We use the notation impl(∆, c), that
denotes the declared supertypes of class c in type environment ∆. Formally:
impl(∆, c) = c if cType(∆, c) = [_ | c | _ | _],

Straightforward typing rules for expressions are given in Figure 10. We use notations
nonAbs(∆, c) and kType(∆, c), that are analogous to nonAbs(σ, c) and constr(σ, c), respectively.

Note that in order to use a type c′ as declared in position c, we need to use c′[from c].
The type system is sound w.r.t. flattening, that is, a well-typed top-level class expression

ce always reduces in some steps to a well-typed class value.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 27

∆; Γ ` e : c

(VAR-T)
_; Γ ` x : c

Γ(x) = c (FIELD-ACCESS-T)
∆; Γ ` e : c

∆; Γ ` e.f : c′[from c]
mType(∆, c, f) = c′

(INVK-T)

∆; Γ ` e : c
∆; Γ ` e : c

∆ ` c≤(c′[from c])

∆; Γ ` e.m(e) : c′[from c]
mType(∆, c,m) = c′→c′

(NEW-T)

∆; Γ ` e : c
∆ ` c≤(c′[from c])

∆; Γ ` new c(e) : c
nonAbs(∆, c)
kType(∆, c) = c′

(OBJ-T)

∆; Γ ` ei : ci ∀i ∈ 1..n
∆ ` ci≤(c′i[from c]) ∀i ∈ 1..n

∆; Γ ` c(fe) : c

nonAbs(∆, c)

fe = this.f1 = e1; . . . this.fn = en;
defFields(∆, c) = f1:c′1, . . . , fn:c′n

Figure 10 – Typing rules for expressions

Theorem 1 (Soundness w.r.t. flattening). If Λ ` ce : ct , then ce ?→ cv , and Λ ` cv : ct .

In order to express soundness of the type system w.r.t. (expression) reduction, we need to
introduce two notations:

• σv is an environment value, that is, a stack of class values

• isComplete(∆) holds if the class type environment ∆ is complete, that is, non abstract
class types (at any depth level) do not contain abstract fields or methods. Formally:

isComplete(ct1 . . . ctn) iff for all i ∈ [1..n]isComplete(ct i)
isComplete([µ | _ | _ | dt]) iff dt(i) = i :abstract _ implies µ = abstract,
and dt(C) = C :ct implies isComplete(ct).

The type system is sound w.r.t. (expression) reduction, that is, given a well-typed en-
vironment σ with a complete class type environment, the reduction of a closed expression
well-typed w.r.t. σ never goes stuck. Class values with an incomplete class type can be safely
used as a library, but are not executable.

Theorem 2 (Soundness). If ` σ : ∆, isComplete(∆), ∆; ∅ ` e1 : c and e1
?→σ e2 then either

e2 is a value or e2 →σ _.

Proofs of the results are in the Appendix.

4 Discussion and related work

In the following, we will stress the distinguishing features of our approach w.r.t other proposals
in the literature.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

28 · Andrea Corradi, Marco Servetto, Elena Zucca

True language of class expressions Perhaps the most important difference between our
work and most other mechanisms for building new classes from existing ones is that DEEPFJIG,
as FJIG, provides a true language of class expressions. Note once again the difference between
our declaration:
B = { /*some class expression*/}
A = B

and the analogous in Java and most existing proposals:
class A extends B {}

The meaning of our declaration is just
B = { /*some class expression*/}
A = { /*some class expression*/}

whereas in the Java-like declaration the use of name B is relevant, not only since inheritance
implies nominal subtyping, but also, e.g., in case B has static members.

That is, the semantics and the type system of our language fully achieve the substitutivity
principle: a class expression can be replaced by an equivalent one in any context without
affecting the overall semantics or well-typedness.

For this reason, in DEEPFJIG two different class paths which denote the same class are
incompatible types. In this way the meaning of a class expression is fully context-independent.
For instance, in the following example, types of f3 and f4 are incompatible, even though both
denote, in this context, class A.A. Indeed, they could denote different classes if the definition
of A.A.A would occur in an arbitrary context.
{
A = {
A = {
A = {
A = {} ...
A f1; <> f2; outer f3; outer.outer.A f4;

}
}

}
}

This example also shows that, thanks to “outer” types, we can refer to all enclosing classes.
In other proposals, like Jx [NCM04] discussed below, the type This corresponds to our
empty path <>, and A corresponds to our A, but there is no type corresponding to outer and
outer.outer.A.

No virtual superclasses Many languages provide some mechanism to declare classes inside
other classes, that is, support nested classes. In such languages, a (nested) class name can be
either directly used, that is, as type annotation or instance generator, or used for building new
classes, that is, for code reuse. In the following example (written with Java syntax and scoping
rules)
class A{
class B{ int mb(){return 1;} }
class C extends B{}
int ma1(){ return new B().mb();}
int ma2(){ return new C().mb();}

}
class AA extends A{
class B{ int mb(){return 2;} }

}

new B() and new C() are examples of the former kind of use, whereas extends B is an
example of the latter. Both kinds of use can be either virtual or not. Notably, the invocation
new AA().ma1() will evaluate to 2 if the former kind of use is virtual, otherwise to 1, and

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 29

the invocation new AA().ma2() will evaluate to 2 if both kinds of use are virtual, otherwise
to 1.

Different choices make sense for a language design, in detail:

• In order to see nested classes as virtual members, in the sense of the Jigsaw framework,
that is, exactly as methods are virtual members, both kinds of use should be virtual.

• In Java nested classes have static binding, as fields and static methods. That is, nested
classes are not virtual.

• In the first versions of BETA [MMPN93] only the former kind of use is virtual.

• In the literature on family polymorphism (also known as virtual classes) [Ern01, EOC06,
ISV05, IV07, ISV08], deep mixin composition [OZ05, Hut06] usually also the latter
kind of use is virtual, and this feature is called “supporting virtual superclasses”. Virtual
superclasses can also be emulated by C++ templates, as shown in the work on mixin
layers [SB01].

• In DEEPFJIG, only the former kind of use is virtual, that is, we do not support virtual
superclasses, since flattening removes all the information about the way a class was de-
fined, that is, (in a class expression) references to other classes (formally, subexpressions
which are paths) are all implicitly frozen.

This approach allows us to keep a simple type system, while keeping, as our examples show,
the main advantages. Indeed, supporting virtual superclasses would require the type of A to
maintain information about the fact that C extends B. This exposes the inheritance hierarchy
and, as Bracha pointed out [Bra92], breaks modularity. This problem is already present in all
the proposals supporting virtual superclasses (that usually offer only the extends operator)
and would be even worse in our (richer) composition language. A compositional type system
should likely use constraints and type variables as in [MW05].

On the other hand, providing virtual semantics for the former kind of use fits very well
flattening and substitutivity principle. For example, in
A = { B = {...} B m(){ return new B(); } }
AA = A [+] { B = {...} }

class AA is a subclass of class A, and expression new B() in AA clearly refers to the resulting
class AA.B. Note that this semantics is sound since our composition operators never remove
members from a class, except for the redirect operator, which, however, also replaces references
to the removed member.

Subclassing is different from subtyping Another design choice concerns the interaction
between virtual classes and inheritance. In proposals where subtyping and subclassing coincide,
a naive approach is unsound. Consider for instance the following code, written in .FJ
syntax [ISV05, ISV08].
class A{
static class B{int f1;}
int k(.B x){ return x.f1;}

}
class AA extends A{
static class B{int f2;}
int k(.B x){return x.f2+new .B().f2; }

}

The notation .B stands for a relative path, that is, B as visible in the current scope. Whereas in
Java declaring in a subclass a nested class with the same name of a nested of the superclass

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

30 · Andrea Corradi, Marco Servetto, Elena Zucca

has only the effect of hiding parent’s declaration, in [ISV05, ISV08], as in other approaches
[NQM06, EOC06, BOW98, IV07], class AA.B further extends [IV07] A.B, that is, is implicitly
considered a subclass of A.B, adding the field f2. This is analogous to the behavior of our
deep sum operator. Consider now the following code:
new AA().k(new AA.B())//well-typed
new A().k(new A.B())//well-typed
A a=new AA(); //well-typed assuming AA subtype of A
a.k(new A.B())//runtime error: A.B.f2 does not exist

To ensure soundness, in .FJ, indeed, the last method invocation is considered ill-typed, even
though AA.B is a subtype of A.B. This example can be rewritten, with minor syntactical
changes, in the other approaches [NQM06, EOC06, BOW98, IV07]. That is, many authors
recognize the need to break the coincidence of subtyping and subclassing in some controlled
way. In these works, this means that subtyping and subclassing coincide whenever this does not
directly lead to unsoundness, and this is ensured by additional checks on method invocations.
This choice allows to be closer to the Java extends relation.

As in package templates [KMPS09], we choose a more radical approach, that is, sub-
classing and subtyping are totally unrelated and the latter should be explicitly declared by
the programmer (as explained at page 7), hence in the example there is no a priori subtyping
relation between A and AA.

Many approaches offering implicit subtyping relation impose that the extends relation
can only be declared between nested classes of the same outer class (i.e., family), while here
we have no such limitation.

Nested classes are class members Another criterion that can be used to classify proposals
on nested classes is whether they are members of instances [Ern01, OZ05, Hut06, CDNW07,
BvdAB+10] or members of classes [ISV05, IV07, ISV08, NCM04, NQM06]. The former
choice is more expressive, but requires a complex type system usually involving dependent
types. Our model follows the latter choice, mainly resembling nested classes of C++ and C#,
and static nested classes of Java.

Jigsaw-like operators We are not aware of any previous language or calculus supporting
both Jigsaw-like operators and nesting. Anyway, some works go in a similar direction, for
example Nystrom et al. develop Jx [NCM04], a language providing an expressive power simi-
lar to our deep override operator, defined at page 10. They also introduce an “hypothetical
extension of Jx with abstract types” allowing an encoding of generics very similar to ours with
the redirect operator. However, in our work redirect can be applied to any type, not only
to ad-hoc “abstract types”, not to be confused with abstract classes.

J& [NQM06] is an extension of Jx with a composition mechanism similar to our sum
operator; however, it still misses the expressiveness required to encode the examples of
generics, AOP and refactoring.

More advanced mechanisms are provided by package templates [KMPS09], which are
collections of classes. However, differently from standard Java packages where an import
clause only provides a shorter name for a class which is in any case part of the current class
table, here importing a package template has the effect of adding its classes, either as they
stand or with some modification, to the class table, by a precompilation step analogous to our
flattening. That is, package templates are a generative way to build new classes. It is also
possible to import a package template into another one. This provides an easy and modular
way to construct complex package templates. When two package templates are imported at
the same time, classes with the same name are merged in a way similar to our hierarchical
sum. Moreover, many other operators similar to ours can be used: it is possible to rename

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 31

classes and methods, to manually select an implementation for a method in case of conflict, as
we do by the restrict operator, and generic types can be fixed, similarly to what we have shown
in the example about emulating generics. In the original proposal generic types offer fixed
generic constraints, while our encoding is more flexible, since it transparently uses a nested
class. In recent work [AK12] they extend the original proposal in order to provide generic
constraints as first class entities of the template, in the same way that classes and interfaces are.
Finally, as in our approach, there is a complete separation between code reuse and subtyping.
In summary, using a very different technique, package templates provides an expressive power
very similar to the one of DEEPFJIG. However, they do not support nesting of classes, but
only provides a sort of first level nesting.

As already mentioned, sum operator in DEEPFJIG is similar to deep mixin composi-
tion [Ern99b, OZ05, Hut06], also supported by the Scala language, and family polymor-
phism [EOC06, ISV05, IV07, ISV08]. However, our sum is symmetric, with a more flexible
explicit conflict resolution, whereas implicit precedence rules for method invocation become
hard to maintain in the case of mixin chains, and even more complex for deep mixin com-
position. This is effectively shown in [Sch05], where Schärli performs a refactoring of the
Smalltalk library using traits, that offer only symmetric composition.

No dependent types Both Jx [NCM04] and the virtual classes of Ernst [EOC06] make
uses of dependent types. As in ^FJ [IV07], instead, we do not need sophisticated types. In
the following example (a simplified version of an example from [NCM04], rephrased in our
syntax):
A = { B = {...} int m(B b){...} }
A2 = A [override] {
B = { ... int y;}
int m(B b){ ... b.y ... }

}

A2 is not a subtype of A, and cannot be declared to be a subtype of A (that is, it would be a
type error to write A2 = implements A ...), since the parameter types of method m are
non compatible (they denote the classes A.B and A2.B, respectively). In other words, we have
no notion of “family”. However, code which works uniformly over “families”, for instance a
method invocation x.m(y) which works with x and y of (static) type A, A.B and A2, A2.B,
can be obtained as shown below:
C = {
X = abstract{ abstract int m(Y y);}
Y = abstract{}
int k(){ return new X().m(new Y()); }

}
CA=C[redirect Y to outer.A.B][redirect X to outer.A]
CA2=C[redirect Y to outer.A2.B][redirect X to outer.A2]

In ^FJ [IV07], functionalities which work uniformly over families can be obtained using
generics.

Compositional type analysis Finally, we stress that our approach to type checking is very
different from, e.g., C++ templates, where type checking is deferred until after template
instantiation, at which moment the whole code resulting from the instantiation is analyzed
by the standard C++ type checker. On the contrary, we are able to entirely type check a
DEEPFJIG program (top-level expression) before flattening. More precisely, as base step we
type check (by a standard Java-like type checker) all the basic classes occurring in the program
(as formally expressed by rules in Figure 7). By these checks, we detect all Java standard
errors, such as, e.g., invoking a non existing method or passing an argument of the wrong
type. On top of this, each application of a composition operator, e.g., a sum, is analyzed

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

32 · Andrea Corradi, Marco Servetto, Elena Zucca

with additional checks. By these checks, we only detect errors due to the application of the
operator (not to intrinsic ill-formedness of the arguments), for instance, in the case of a sum,
that there are two conflicting definitions for the same member. In summary, our type analysis
is compositional.

5 Conclusion

We have defined the language DEEPFJIG, which smoothly integrates operators for modular
composition of classes with nesting, achieving a great expressive power by simple ingredients:
essentially, Java-like (nested) classes where inheritance has been replaced by a powerful set
of operators (sum, restrict, alias and redirect) inspired by Bracha’s Jigsaw framework and
trait-based languages. In this way, a single class becomes an adequate unit of reuse, since,
embodying a whole hierarchy of classes which can be manipulated by the operators, it plays
also the role of a module (or a component if you wish).

There are many possible directions for further research.
Since the first submission of this paper, an extension we have already developed [Ser11] is

that with a meta-level, analogously to what has been done for FJIG in [SZ10]. The expressive
power of the meta-level, together with the capability of representing a whole component as a
single class, allows one to encapsulate a library within a single meta-expression. Moreover, the
possibility offered by the meta-level to write classes whose structure depends on an external
source, like a database table, having nested classes is generalized to a whole hierarchy, as one
can extract from a whole database or XML schema.

We have already mentioned at page 4 an open research direction towards a realistic
language, that is, the design of a mechanism for object initialization which can be smoothy
integrated with symmetric composition, notably in presence of side effects. As mentioned
there, object creation expressions, as in Javascript, Emerald [RTL+91] or Grace [BBN10]),
could be a possible solution.

Another important, partly related, issue are visibility levels. The language FJIG [LSZ09a,
LSZ09b, LSZ12] also includes frozen and private members, and, correspondingly, operators
such as freeze and hide, as in the original Jigsaw framework [Bra92]. However, the interaction
of hiding with nesting is not trivial. Consider, for instance, the following two classes:
C = {
A = { int ma(){return 1;}}
B = { int mb(){return new outer.A().ma();}}
}

D = C [hide ma in A]

We could expect this code to reduce by flattening to:
C = //as before
D = {
A = { private int ma(){return 1;}}
B = { int mb(){return new outer.A().ma();}}
}

But this would be unsound, since D.B would call the private method D.A.ma. A possible
solution could be a “many level” private modifier, where a private[n] member is visible
only in the first n enclosing classes.

Other interesting issues concern adding static members and annotations.

Acknowledgments Partially supported by MIUR DISCO - Distribution, Interaction, Specifi-
cation, Composition for Object Systems. We warmly thank the anonymous referees of FOOL,
PPPJ and JOT for many useful comments on previous versions of this work.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 33

References

[AK12] Eyvind W. Axelsen and Stein Krogdahl. Adaptable generic programming
with required type specifications and package templates. In Robert Hirschfeld,
Éric Tanter, Kevin J. Sullivan, and Richard P. Gabriel, editors, AOSD’12
- Aspect-oriented software development, pages 83–94. ACM Press, 2012.
doi:10.1145/2162049.2162060.

[ALZ06] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Flexible type-safe
linking of components for Java-like languages. In JMLC’06 - Joint Modular
Languages Conference, volume 4228 of Lecture Notes in Computer Science,
pages 136–154. Springer, 2006. doi:10.1007/11860990_10.

[AZ98] Davide Ancona and Elena Zucca. A theory of mixin modules: Basic and
derived operators. Mathematical Structures in Computer Science, 8(4):401–
446, August 1998. doi:10.1017/S0960129598002576.

[AZ01] Davide Ancona and Elena Zucca. True modules for Java-like languages. In
J.L. Knudsen, editor, ECOOP’01 - European Conference on Object-Oriented
Programming, volume 2072 of Lecture Notes in Computer Science, pages
354–380. Springer, 2001. doi:10.1007/3-540-45337-7_19.

[AZ02] Davide Ancona and Elena Zucca. A calculus of module systems. Journ.
of Functional Programming, 12(2):91–132, 2002. doi:10.1017/
S0956796801004257.

[BBN10] Andrew Black, Kim B. Bruce, and James Noble. Panel: designing the next
educational programming language. In William R. Cook, Siobhán Clarke, and
Martin C. Rinard, editors, SPLASH/OOPSLA Companion - Object-Oriented
Programming, Systems, Languages, and Applications, pages 201–204. ACM
Press, 2010. doi:10.1145/1869542.1869574.

[BDG07] Viviana Bono, Ferruccio Damiani, and Elena Giachino. Separating type,
behavior, and state to achieve very fine-grained reuse. In 9th Intl. Workshop
on Formal Techniques for Java-like Programs, 2007. Available from: http:
//www.di.unito.it/~damiani/papers/ftfjp07.html.

[BDG08] Viviana Bono, Ferruccio Damiani, and Elena Giachino. On traits and types
in a Java-like setting. In TCS’08 - IFIP Int. Conf. on Theoretical Computer
Science. Springer, 2008. doi:10.1007/978-0-387-09680-3_25.

[BDNW08] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts.
Stateful traits and their formalization. Computer Languages, Systems and
Structures, 34(2-3):83–108, 2008. doi:10.1016/j.cl.2007.05.003.

[BF04] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into Java.
In ECOOP’04 - Object-Oriented Programming, volume 3086 of Lecture
Notes in Computer Science, pages 389–413, 2004. doi:10.1007/
978-3-540-24851-4_18.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutmire, and Philip Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java programming
language. In ACM Symp. on Object-Oriented Programming: Systems, Lan-
guages and Applications 1998, pages 183–200. ACM Press, October 1998.
doi:10.1145/286936.286957.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative
to virtual types. In ECOOP’98 - European Conference on Object-Oriented

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1145/2162049.2162060
http://dx.doi.org/10.1007/11860990_10
http://dx.doi.org/10.1017/S0960129598002576
http://dx.doi.org/10.1007/3-540-45337-7_19
http://dx.doi.org/10.1017/S0956796801004257
http://dx.doi.org/10.1017/S0956796801004257
http://dx.doi.org/10.1145/1869542.1869574
http://www.di.unito.it/~damiani/papers/ftfjp07.html
http://www.di.unito.it/~damiani/papers/ftfjp07.html
http://dx.doi.org/10.1007/978-0-387-09680-3_25
http://dx.doi.org/10.1016/j.cl.2007.05.003
http://dx.doi.org/10.1007/978-3-540-24851-4_18
http://dx.doi.org/10.1007/978-3-540-24851-4_18
http://dx.doi.org/10.1145/286936.286957
http://dx.doi.org/10.5381/jot.2012.11.2.a1

34 · Andrea Corradi, Marco Servetto, Elena Zucca

Programming, volume 1445 of Lecture Notes in Computer Science, pages
523–549, 1998. doi:10.1007/BFb0054106.

[Bra92] Gilad Bracha. The Programming Language JIGSAW: Mixins, Modularity and
Multiple Inheritance. PhD thesis, Department of Comp. Sci., Univ. of Utah,
1992. Available from: http://www.bracha.org/jigsaw.ps.

[BvdAB+10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. Modules as objects in Newspeak. In Theo
D’Hondt, editor, ECOOP’10 - Object-Oriented Programming, volume 6183
of Lecture Notes in Computer Science, pages 405–428. Springer, 2010. doi:
10.1007/978-3-642-14107-2_20.

[CDNW07] Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. Tribe:
a simple virtual class calculus. In Brian M. Barry and Oege de Moor, editors,
AOSD’07 - Aspect-oriented software development, volume 208, pages 121–
134. ACM Press, 2007. doi:10.1145/1218563.1218578.

[Coo89] William R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Dept.
Comp. Sci., Brown University, 1989. Available from: http://www.cs.
utexas.edu/~wcook/papers/thesis/cook89.pdf.

[CSZ10] Andrea Corradi, Marco Servetto, and Elena Zucca. DeepFJig - Modular
composition of nested classes. In FOOL 2010 - Intl. Workshop on Foundations
of Object-Oriented Languages, 2010. Available from: http://ecee.
colorado.edu/~siek/FOOL2010/corradi.pdf.

[CSZ11] Andrea Corradi, Marco Servetto, and Elena Zucca. DeepFJig - Modular
composition of nested classes. In Christian Wimmer and Christian W. Probst,
editors, PPPJ’11 - Principles and Practice of Programming in Java, ACM
International Proceedings Series, pages 101–110. ACM Press, 2011. doi:
10.1145/2093157.2093172.

[EOC06] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus.
In J. Gregory Morrisett and Simon L. Peyton Jones, editors, ACM Symp. on
Principles of Programming Languages 2006, volume 41, pages 270–282.
ACM Press, 2006. doi:10.1145/1111037.1111062.

[Ern99a] Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Department of Computer
Science, University of Århus, Denmark, 1999. Available from: http://cs.
au.dk/~eernst/papers/thesis.ps.

[Ern99b] Erik Ernst. Propagating class and method combination. In ECOOP’99 -
European Conference on Object-Oriented Programming, volume 1628 of
Lecture Notes in Computer Science, pages 67–91. Springer, 1999. doi:
10.1007/3-540-48743-3_4.

[Ern01] Erik Ernst. Family polymorphism. In J.L. Knudsen, editor, ECOOP’01 -
European Conference on Object-Oriented Programming, number 2072 in
Lecture Notes in Computer Science, pages 303–326. Springer, 2001. doi:
10.1007/3-540-45337-7_17.

[Ern04] Erik Ernst. The expression problem, scandinavian style. In MASPEGHI
2004 - Mechanisms for specialization, generalization and inheritance, 2004.
Available from: http://www.i3s.unice.fr/maspeghi2004/
final-version/e_ernst.pdf.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/BFb0054106
http://www.bracha.org/jigsaw.ps
http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://dx.doi.org/10.1145/1218563.1218578
http://www.cs.utexas.edu/~wcook/papers/thesis/cook89.pdf
http://www.cs.utexas.edu/~wcook/papers/thesis/cook89.pdf
http://ecee.colorado.edu/~siek/FOOL2010/corradi.pdf
http://ecee.colorado.edu/~siek/FOOL2010/corradi.pdf
http://dx.doi.org/10.1145/2093157.2093172
http://dx.doi.org/10.1145/2093157.2093172
http://dx.doi.org/10.1145/1111037.1111062
http://cs.au.dk/~eernst/papers/thesis.ps
http://cs.au.dk/~eernst/papers/thesis.ps
http://dx.doi.org/10.1007/3-540-48743-3_4
http://dx.doi.org/10.1007/3-540-48743-3_4
http://dx.doi.org/10.1007/3-540-45337-7_17
http://dx.doi.org/10.1007/3-540-45337-7_17
http://www.i3s.unice.fr/maspeghi2004/final-version/e_ernst.pdf
http://www.i3s.unice.fr/maspeghi2004/final-version/e_ernst.pdf
http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 35

[GJSB05] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java language
specification. The Java series. Addison-Wesley, third edition, 2005.

[Hut06] DeLesley Hutchins. Eliminating distinctions of class: using prototypes to
model virtual classes. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA 2006), pages
1–20. ACM Press, 2006. doi:10.1145/1167473.1167475.

[IPW99] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In ACM Symp. on Object-Oriented
Programming: Systems, Languages and Applications 1999, pages 132–146.
ACM Press, 1999. doi:10.1145/320384.320395.

[ISV05] Atsushi Igarashi, Chieri Saito, and Mirko Viroli. Lightweight family
polymorphism. In Kwangkeun Yi, editor, APLAS 2005 - Asian Sym-
posium on Programming Languages and Systems, volume 3780 of Lec-
ture Notes in Computer Science, pages 161–177. Springer, 2005. doi:
10.1017/S0956796807006405.

[ISV08] Atsushi Igarashi, Chieri Saito, and Mirko Viroli. Lightweight family poly-
morphism. Journ. of Functional Programming, 18(3):285–331, 2008.
doi:10.1017/S0956796807006405.

[IV07] Atsushi Igarashi and Mirko Viroli. Variant path types for scalable extensibility.
In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2007), pages 113–132. ACM Press,
2007. doi:10.1145/1297027.1297037.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. In Jørgen Lindskov
Knudsen, editor, ECOOP’01 - European Conference on Object-Oriented
Programming, number 2072 in Lecture Notes in Computer Science, pages
327–353. Springer, 2001. doi:10.1007/3-540-45337-7_18.

[KMPS09] Stein Krogdahl, Birger Møller-Pedersen, and Fredrik Sørensen. Exploring the
use of package templates for flexible re-use of collections of related classes.
Journ. of Object Technology, 8(7):59–85, 2009. doi:10.5381/jot.2009.
8.7.a1.

[LSZ09a] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight Jigsaw
- a minimal core calculus for modular composition of classes. In Sophia
Drossopoulou, editor, ECOOP’09 - Object-Oriented Programming, volume
5653 of Lecture Notes in Computer Science. Springer, 2009. doi:10.1007/
978-3-642-03013-0_12.

[LSZ09b] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Flattening versus
direct semantics for Featherweight Jigsaw. In FOOL’09 - Intl. Workshop on
Foundations of Object-Oriented Languages, 2009. Available from: http:
//www.cs.cmu.edu/~aldrich/FOOL09/lagorio.pdf.

[LSZ12] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight Jigsaw -
replacing inheritance by composition in Java-like languages. Information and
Computation, 214:86–111, 2012. doi:10.1016/j.ic.2012.02.004.

[MMPN93] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the Beta Programming Language. Addison-Wesley,
1993.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1145/1167473.1167475
http://dx.doi.org/10.1145/320384.320395
http://dx.doi.org/10.1017/S0956796807006405
http://dx.doi.org/10.1017/S0956796807006405
http://dx.doi.org/10.1017/S0956796807006405
http://dx.doi.org/10.1145/1297027.1297037
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.5381/jot.2009.8.7.a1
http://dx.doi.org/10.5381/jot.2009.8.7.a1
http://dx.doi.org/10.1007/978-3-642-03013-0_12
http://dx.doi.org/10.1007/978-3-642-03013-0_12
http://www.cs.cmu.edu/~aldrich/FOOL09/lagorio.pdf
http://www.cs.cmu.edu/~aldrich/FOOL09/lagorio.pdf
http://dx.doi.org/10.1016/j.ic.2012.02.004
http://dx.doi.org/10.5381/jot.2012.11.2.a1

36 · Andrea Corradi, Marco Servetto, Elena Zucca

[MW05] Henning Makholm and J. B. Wells. Type inference, principal typings, and let-
polymorphism for first-class mixin modules. In Olivier Danvy and Benjamin C.
Pierce, editors, Intl. Conf. on Functional Programming 2005, pages 156–167.
ACM Press, 2005. doi:10.1145/1086365.1086386.

[NCM04] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable ex-
tensibility via nested inheritance. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA
2004), pages 99–115. ACM Press, 2004. doi:10.1145/1028976.
1028986.

[NQM06] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: nested intersection for
scalable software composition. SIGPLAN Not., 41(10):21–36, October 2006.
doi:10.1145/1167515.1167476.

[OZ05] Martin Odersky and Matthias Zenger. Independently extensible solutions
to the expression problem. In FOOL’05 - Intl. Workshop on Foundations of
Object-Oriented Languages, 2005. Available from: http://homepages.
inf.ed.ac.uk/wadler/fool/program/final/10/10_Paper.
pdf.

[Par78] David L. Parnas. Designing software for ease of extension and contraction.
In ICSE ’78: Proceedings of the 3rd international conference on Software
engineering, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press. doi:
10.1109/TSE.1979.234169.

[RTL+91] Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Andrew P. Black, Nor-
man C. Hutchinson, and Eric Jul. Emerald: A general-purpose program-
ming language. Software - Practice and Experience, 21(1):91–118, 1991.
doi:10.1002/spe.4380210107.

[SB01] Yannis Smaragdakis and Don S. Batory. Mixin-based programming in C++.
In Gregory Butler and Stan Jarzabek, editors, GCSE’00 - Generative and
Component-Based Software Engineering, volume 2177 of Lecture Notes
in Computer Science, pages 163–177. Springer, 2001. doi:10.1007/
3-540-44815-2_12.

[Sch05] Nathanael Schärli. Traits — Composing Classes from Behavioral Build-
ing Blocks. PhD thesis, University of Bern, February 2005. Avail-
able from: http://www.iam.unibe.ch/~scg/Archive/PhD/
schaerli-phd.pdf.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable units of behaviour. In ECOOP’03 - Object-Oriented
Programming, volume 2743 of Lecture Notes in Computer Science, pages
248–274. Springer, 2003. doi:10.1007/978-3-540-45070-2_12.

[Ser11] Marco Servetto. MetaFJig - A Meta-Circular Composition Language
for Java-like Classes. PhD thesis, Dipartimento di Informatica e Scienze
dell’Informazione, Università di Genova, 2011. Available from: http://
bart.disi.unige.it/bibliography/files/servettoMarco.
pdf.

[SZ10] Marco Servetto and Elena Zucca. MetaFJig - A meta-circular composition
language for Java-like classes. In William R. Cook, Siobhán Clarke, and
Martin C. Rinard, editors, ACM SIGPLAN Conference on Object-Oriented

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1145/1086365.1086386
http://dx.doi.org/10.1145/1028976.1028986
http://dx.doi.org/10.1145/1028976.1028986
http://dx.doi.org/10.1145/1167515.1167476
http://homepages.inf.ed.ac.uk/wadler/fool/program/final/10/10_Paper.pdf
http://homepages.inf.ed.ac.uk/wadler/fool/program/final/10/10_Paper.pdf
http://homepages.inf.ed.ac.uk/wadler/fool/program/final/10/10_Paper.pdf
http://dx.doi.org/10.1109/TSE.1979.234169
http://dx.doi.org/10.1109/TSE.1979.234169
http://dx.doi.org/10.1002/spe.4380210107
http://dx.doi.org/10.1007/3-540-44815-2_12
http://dx.doi.org/10.1007/3-540-44815-2_12
http://www.iam.unibe.ch/~scg/Archive/PhD/schaerli-phd.pdf
http://www.iam.unibe.ch/~scg/Archive/PhD/schaerli-phd.pdf
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://bart.disi.unige.it/bibliography/files/servettoMarco.pdf
http://bart.disi.unige.it/bibliography/files/servettoMarco.pdf
http://bart.disi.unige.it/bibliography/files/servettoMarco.pdf
http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 37

Programming, Systems, Languages and Applications (OOPSLA 2010), pages
464–483. ACM Press, 2010. doi:10.1145/1869459.1869498.

[Tor04] Mads Torgersen. The expression problem revisited. In Martin Odersky, editor,
ECOOP’04 - Object-Oriented Programming, number 3086 in Lecture Notes
in Computer Science, pages 123–143. Springer, 2004. doi:10.1007/
978-3-540-24851-4_6.

[WV00] J. B. Wells and René. Vestergaard. Equational reasoning for linking with
first-class primitive modules. In ESOP 2000 - European Symposium on
Programming 2000, number 1782 in Lecture Notes in Computer Science,
pages 412–428. Springer, 2000. doi:10.1007/3-540-46425-5_27.

About the authors

Andrea Corradi Contact him at andreac@unstable.it.

Marco Servetto Contact him at marco.servetto@ecs.vuw.ac.nz, or visit http:
//ecs.victoria.ac.nz/Main/MarcoServetto.

Elena Zucca Contact her at zucca@disi.unige.it, or visit http://www.disi.
unige.it/person/ZuccaE/.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1145/1869459.1869498
http://dx.doi.org/10.1007/978-3-540-24851-4_6
http://dx.doi.org/10.1007/978-3-540-24851-4_6
http://dx.doi.org/10.1007/3-540-46425-5_27
mailto:andreac@unstable.it
mailto:marco.servetto@ecs.vuw.ac.nz
http://ecs.victoria.ac.nz/Main/MarcoServetto
http://ecs.victoria.ac.nz/Main/MarcoServetto
mailto:zucca@disi.unige.it
http://www.disi.unige.it/person/ZuccaE/
http://www.disi.unige.it/person/ZuccaE/
http://dx.doi.org/10.5381/jot.2012.11.2.a1

38 · Andrea Corradi, Marco Servetto, Elena Zucca

A Results

Soundness w.r.t. flattening follows from termination, progress, and subject reduction theorems
below. Note that progress relies on the assumption that the dependency relation dep−→ is
acyclic.

In order to prove termination of flattening, we formally define the dimension of a class
expression:
dim(_{ _ fd md cd}) = dim(cd)
dim(cd1 . . . cdn) = dim(cd1) + . . .+ dim(cdn)
dim(_ = ce) = dim(ce)
dim(ce1[+]ce2) = dim(ce1) + dim(ce2) + 1
dim(ce[restrict _ in _]) = dim(ce) + 1
. . .
dim(c) = 1

Lemma 3. If ce1 →σ ce2 then dim(ce1) > dim(ce2).

Proof. By cases on the flattening rules. We show only one case:
Case (SUM)

cv1[+]cv2 →σ cv1⊕cv2

dim(cv1[+]cv2) = 1 and dim(cv1⊕cv2) = 0.

The other cases are analogous.

Theorem 4 (Termination of flattening). If ce1 → ce2 then dim(ce1) > dim(ce2).

Proof. Only rule (CTX)
ce1 →σ ce2

CE fJce1K → CE fJce2K
σ = env(ce1,CE f

)

reduces a top-level class expression. By Lemma 3, we have that dim(ce1) > dim(ce2).
We can conclude by definition of dim.

The following lemmas are needed to prove progress w.r.t. flattening.

Lemma 5. If ` CE fJceK : ct and σ = env(ce,CE f
), then ` σ : ∆ and ∆ ` ce : _.

In the next lemma we use the following definition of redex.

r ::= c | cv1[+]cv2 | cv[restrict i inπ] | cv[alias is to i t inπ]
| cv[alias cs toπt] | cv[redirect is ofπ to i t] | cv[redirectπs to ct]

Lemma 6 (Progress w.r.t. ce1 →σ ce2). If ` σ : ∆ and ∆ ` r : ct then either r →σ _ or
σ = _{ _ _C =CEJrK} · _ and σ,C dep−→ _, _.

Proof. By cases. We show only two cases:
Case r = cv1[+]cv2

typed by (SUM-T)
∆ ` cv1 : ct1 ∆ ` cv2 : ct2 ∆ ` ct1⊕ct2

∆ ` cv1[+]cv2 : ct1⊕ct2

We get the thesis by application of rule (SUM)
cv1[+]cv2 →σ cv1⊕cv2

, since cv1⊕cv2

is well-defined. Indeed, since ∆ ` cv1 : ct1 and ∆ ` cv2 : ct2 are typed using (BASIC-
T) and ct1⊕ct2 is well-defined, we know that the constructor of cv1 is equal to the
constructor of cv2, and by definition of dt1⊕dt2 we know that also d1⊕d2 is well-
defined, where d i are the declarations of cv i and dt i are the declaration types of ct i.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 39

Case r = c

typed by (CLASS-PATH-T)
∆ ` c : ct

ct = cType(∆, c)[from c]

In this case either cv = cBody(σ, c)[from c] holds, and we get the thesis by application
of (CLASS-PATH)

c →σ cv
cv = cBody(σ, c)[from c] , or not, and we get the thesis since σ dep−→ _.

Theorem 7 (Progress w.r.t. flattening). If ∅ ` ce : ct then either ce is a class value or ce → _.

Proof. If ce is not a class value, then ce = CE fJrK. Set σ = env(CE f
, r). By Lemma 5 we

know that r is well-typed. If σ is empty, then the thesis hold by Lemma 6. Otherwise by
construction σ = _{ _ _C =CEJrK} · _. Since dep−→ is acyclic, we can choose CE f in such a
way that σ,C dep−→ _, _ does not hold.Hence, the thesis holds by Lemma 6.

The following lemmas are needed to prove subject-reduction w.r.t. flattening.

Lemma 8 (CE f substitution). If ∆ ` ce1 : ct , ∆ ` ce2 : ct , and ∆ ` CE fJce1K : ct ′, then
∆ ` CE fJce2K : ct ′.

Proof. By straightforward structural induction on CE f .

Lemma 9 (Subject reduction w.r.t. ce1 →σ ce2). If ` σ : ∆, ∆ ` ce1 : ct and ce1 →σ ce2

then ∆ ` ce2 : ct .

Proof. By cases on the flattening rules. We show only one case:
Case (SUM)

cv1[+]cv2 →σ cv1⊕cv2

typed by (SUM-T)
∆ ` cv1 : ct1 ∆ ` cv2 : ct2 ∆ ` ct1⊕ct2

∆ ` cv1[+]cv2 : ct1⊕ct2

We get the thesis since ∆ ` cv1 : ct1 and ∆ ` cv2 : ct2 are typed using (BASIC-T),
and ct1⊕ct2 is analogous to cv1⊕cv2.

Theorem 10 (Subject reduction w.r.t. flattening). If ` ce1 : ct and ce1 → ce2 then ` ce2 : ct .

Proof. Only rule (CTX)
ce1 →σ ce2

CE fJce1K → CE fJce2K
σ = env(ce1,CE f

)

reduces a top level class expression. By Lemma 5 we know that ce1 is well-typed. We
get the thesis by Lemma 9 and Lemma 8.

Soundness w.r.t. (expression) reduction follows from progress and subject reduction
theorems below.

Theorem 11 (Progress). If ` σ : ∆, isComplete(∆), and ∆; ∅ ` e : c then either e is a value
or e →σ _.

Proof. By induction over the expression typing rules. We show only one case:

Case (INVK-T)

∆; ∅ ` e : c
∆; ∅ ` e : c

∆ ` c≤(c′[from c])

∆; ∅ ` e.m(e) : c[from c]
mType(∆, c,m) = c′→c

Assume e = e1 . . . en. From the premises by inductive hypothesis we have two cases:

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

40 · Andrea Corradi, Marco Servetto, Elena Zucca

• e →σ _, or ei →σ _ for some i ∈ 1..n. We can apply (CTX) to reduce the whole
term.

• e is a value of form c(fv), and e = v . Hence, we have applied typing rule

(OBJ-T)

∆; ∅ ` vi : ci ∀i ∈ 1..n
∆ ` ci≤(c′i[from c]) ∀i ∈ 1..n

∆; ∅ ` c(fv) : c

nonAbs(∆, c)

fv = this.f1 = v1; . . . this.fn = vn;
defFields(∆, c) = f1:c′1, . . . , fn:c′n

We can apply rule
(INVK)

c(fv).m(v) →σ e[from c][v/x][c(fv)/this]
mBody(σ, c,m) = 〈x , e〉

Indeed:
– mBody(σ, c,m) = 〈x , e〉 holds by mType(∆, c,m) = c→c and nonAbs(∆, c),

– | v | = | x | holds, since by second premise we have | v | = | c |, by
∆ ` c≤(c′[from c]) we have | c | = | c′ |, and by (BASIC-T), (METHOD-
T) and definition of
mType we have | x | = | c′ |.

In order to prove subject reduction w.r.t. (expression) reduction we state the following
interesting lemmas.

Lemma 12.

1. c1[from outer.c2] = c′1[from outer.c′2] iff c′1[from c′2] = c′1[from c′2]

2. c1.C [from c2] = c′1.C [from c′2] iff c1[from c2] = c′1[from c′2]

Proof. The thesis trivially holds by definition of _[from _].

Lemma 13. c[from c1][from c2] = c[from c1[from c2]]

Proof. Let us denote by πn a path of length n, and by πn−j , well-formed only if 0 ≤ j ≤ n,
and the path composed by the first n− j elements of πn.

By definition of _[from _] we have that
outern.πk[from outern1.πk1][from outern2.πk2] = (outern1.(πk1\n).πk)[from outern2.πk2]
and
outern.πk[from outern1.πk1 [from outern2.πk2]] = outern.πk[from outern2.(πk2\n1).πk1].
By Lemma 12, we have to show only that:
(outern1.(πk1 \ n))[from πk2] = outern[from (πk2 \ n1).πk1]
By cases:

n ≥ k1 and n1 ≥ k2

outern1+n−k1 [from πk2] = outern[from outern1−k2.πk1]
πk2 \ n1 + n− k1 = outern1−k2 .(πk1 \ n)
outern1+n−k1−k2 = outern1−k2+n−k1

n < k1 and n1 ≥ k2

(outern1.πk1−n)[from πk2] = outern[from outern1−k2.πk1]
(πk2 \ n1).πk1−n = outern1−k2.(πk1 \ n)
outern1−k2.πk1−n = outern1−k2.πk1−n

n ≥ k1 and n1 < k2

outern1+n−k1 [from πk2] = outern[from πk2−n1.πk1]
πk2 \ n1 + n− k1 = (πk2−n1.πk1) \ n
πk2−n1 \ n− k1 = πk2−n1 \ n− k1

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

DEEPFJIG Modular composition of nested classes · 41

n < k1 and n1 < k2

outern1.πk1−n[from πk2] = outern[from πk2−n1.πk1]
(πk2 \ n1).πk1−n = (πk2−n1.πk1) \ n
πk2−n1.πk1−n = πk2−n1.πk1−n

The following lemma states that the type of an expression is preserved (modulo moving
paths) when the expression is copied into a new position.

Lemma 14 (Moving paths preserves typing). If ∆[in c]; Γ ` e : c then
∆; Γ[from c] ` e[from c] : c[from c].

Proof. By induction over the typing rules. We show only one case, the others are either similar
or trivial.

(FIELD-ACCESS-T) We have

(a) ∆[in c]; Γ ` e : c′ from the premise,

(b) mType(∆[in c], c′, f) = c from the side condition, and

(c) ∆; Γ[from c] ` e[from c] : c′[from c] from the inductive hypothesis and (a).

We have to prove that
∆; Γ[from c] ` e.f [from c] : c[from c′][from c].
By (b), (BASIC-T) and definition of _[in _] we know that
mType(∆, c′[from c], f) = c.
By definition e.f [from c] = e[from c].f , which is typed by
rule (FIELD-ACCESS-T), with premise (c), in this way:
∆; Γ[from c] ` e[from c].f : c[from c′[from c]].
Finally, by Lemma 13 we have that c[from c′[from c]] = c[from c′][from c].

Lemma 15 (Moving paths preserves subtyping). If ∆[in c] ` c1≤c2 then
∆ ` c1[from c]≤c2[from c]

Proof. Analogous to the previous lemma.

Lemma 16 (Substitution). If ∆; Γ, x :c1 ` e : c′1, ∆; ∅ ` v : c2 and ∆ ` c2≤c1,
then ∆; Γ ` e[v/x] : c′2 and ∆ ` c′2≤c′1.

Lemma 17 (E substitution). If ∆ ` c2≤c1 then:

1. If ∆; ∅ ` e1 : c1, ∆; ∅ ` e2 : c2, and ∆; ∅ ` E rJe1K : c′1
then ∆; ∅ ` E rJe2K : c′2 and ∆ ` c′2≤c′1.

2. If ∆; Γ, x :c1 ` e : c1, ∆ ` c1≤c2. ∆; ∅ ` e : c2

then ∆; Γ ` e[e/x] : c2 and ∆ ` c1≤c2.

Theorem 18 (Subject reduction). If ` σ : ∆, isComplete(∆), ∆; Γ ` e1 : c1 and e1 →σ e2,
then ∆; Γ ` e2 : c2 and ∆ ` c2≤c1.

Proof. By induction over the reduction rules. We show only one case, the others are either
similar or trivial.
Case (INVK)

c(fv).m(v) →σ e[from c][v/x][c(fv)/this]
mBody(σ, c,m) = 〈x , e〉

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

42 · Andrea Corradi, Marco Servetto, Elena Zucca

typed by (INVK-T)

∆; Γ ` c(fv) : c
∆; Γ ` v : c

∆ ` c≤(c′[from c])

∆; Γ ` c(fv).m(v) : c0[from c]
mType(∆, c,m) = c′→c0

c′ = c1 . . . cn

In this case, c(fv) is typed by rule

(OBJ-T)

∆; Γ ` vi : ci ∀i ∈ 1..n
∆ ` ci≤(c′i[from c]) ∀i ∈ 1..n

∆; Γ ` c(fv) : c

nonAbs(∆, c)

fv = this.f1 = v1; . . . this.fn = vn;
defFields(∆, c) = f1:c′1, . . . , fn:c′n

By definition of nonAbs(∆, c) and isComplete(ct), we know that all methods of c are not
abstract. By definition of mType(∆, c,m) we know that cType(∆, c) contains a (non
abstract) method m with body e .
Since ` σ : ∆, all classes in σ are typed by rule (BASIC-T). So we know that

(METHOD-T)
∆[in c]; Γ ` e : c ∆[in c] ` c≤c0

∆[in c] ` mh{ return e;} : (m:c1 . . . cn→c0)

Γ = this:Λ, x1:c1, . . . , xn:cn
mh = c0 m(c1 x1, . . . , cn xn)
exists(∆, ci) ∀i ∈ 0..n

holds. By Lemma 14 ∆; Γ[from c] ` e[from c] : c[from c] holds.
By Lemma 17-(2) we know that ∆; Γ[from c] ` e[from c][v/x][c(fv)/this] : c′ and
∆ ` c′≤c[from c]. From ∆[in c] ` c≤c0, by Lemma 15 we know that
∆ ` c[from c]≤c0[from c], and the proof is concluded by subtyping rule (TRANS-S).

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a1

	Examples
	FJig summary
	Nested classes
	Deep composition operators
	Expressive power

	Formalization
	Type system
	Discussion and related work
	Conclusion
	Bibliography
	About the authors
	Results

