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Abstract Domain-Specific Modeling Languages (DSMLs) are getting more
and more attention as a key element of Model Driven Engineering. As any
other software artifact, DSMLs should continuously evolve to adapt to the
changing needs of the domain they represent. Unfortunately, right now
evolution of DSMLs is a costly process that requires changing the DSML
metamodel and re-creating the complete modeling environment.

In this paper we advocate for the use of EMF Profiles, an adaptation
of the UML Profile concept to DSMLs. Profiles have been a key enabler
for the success of UML by providing a lightweight language-inherent exten-
sion mechanism which is expressive enough to cover an important subset
of extension scenarios. We believe a similar concept for DSMLs would
provide a valuable extension mechanism which has been so far neglected
by current metamodeling tools. Apart from direct metamodel profiles, we
also propose reusable profile definition mechanisms whereby profiles are
defined independently of any DSML and, later on, coupled with all DSMLs
that can benefit from these profiles. Our approach has been implemented
in a prototype integrated in the EMF environment.

Keywords language extensions, UML Profiles, language engineering.

1 Introduction

Domain-Specific Modeling Languages (DSMLs) have gained much attention in the
last decade [KT08]. They considerably helped to raise the level of abstraction in
software development by providing designers with modeling languages tailored to their
application domain. However, as any other software artifact, DSMLs are continuously
subjected to evolution in order to be adapted to the changing needs of the domain
they represent. Currently, evolving DSMLs is a time-consuming and tedious task
because not only its abstract and concrete syntax but also all related artifacts as well
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as all DSML-specific components of the modeling environment have to be re-created
or adapted each and every time.

UML has avoided these problems by promoting the use of profiles. Indeed, the
profile mechanism has been a key enabler for the success and widespread use of UML
by providing a lightweight, language-inherent extension mechanism [Sel07]. Many
UML tools allow the specification and usage of user-defined profiles and are often
shipped with various pre-defined UML Profiles. Induced by their widespread adoption,
several UML Profiles have even been standardized by the OMG1.

In the last decade, many debates2 on pros and cons of creating new modeling
languages either by defining metamodels from scratch (with the additional burden of
creating a specific modeling environment and handling their evolution) or by extending
the UML metamodel with UML Profiles (which provide only a limited language
adaptation mechanism) have been going on.

However, in this paper we propose a different solution to combine the best of
both breeds. We advocate for adapting the UML Profiles concept as an extension
mechanism for existing DSMLs. We believe the usage of profiles in the realm of DSMLs
brings the following benefits.

Lightweight language extension. One of the major advantages of UML Profiles
is the ability to systematically introduce further language elements without having
to re-create the whole modeling environment such as editors, transformations, and
model APIs. This also facilitates to test new modeling languages (or new language
constructs) easily. Instead of creating a full new modeling language and a dedicated
modeling environment from the beginning on, one can start with a UML Profile to
validate whether users find the modeling language useful.

Dynamic model extension. In contrast to direct metamodel extensions, also al-
ready existing models may be dynamically extended by additional profile information
without recreating the extended model elements. One model element may be fur-
ther annotated with several stereotypes (even contained in different profiles) at the
same time which is equivalent to the model element having multiple types [AK07].
Furthermore, the additional information introduced by the profile application is kept
separated from the model and, therefore, does not pollute the actual model instances.

Preventing metamodel pollution. Information not coming from the modeling
domain, can be represented by additional profiles without polluting the actual domain
metamodels. Consider for instance annotating the results of a model review (as
known from code reviewing) which shall be attached to the reviewed domain models.
Metaclasses concerning model reviews do not particularly relate to the domain and,
therefore, should not be introduced in the domain metamodels. Using specific profiles
instead helps to separate such concerns from the domain metamodel and keeps the
metamodel concise and consequently, the language complexity small.

Model-based representation. Additional information, introduced to the models
by profile applications, is accessible and processable like ordinary model information.
Consequently, model engineers may reuse familiar model engineering technologies to

1http://www.omg.org/technology/documents/profile_catalog.htm
2Consider for instance the panel discussion “A DSL or UML Profile. Which would you use?” at

MoDELS’05 (http://www.cs.colostate.edu/models05/panels.html)
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process profile applications. Due to their model-based representation, profile applica-
tions may also be validated against the profile definition to ensure their consistency as
it is known from metamodel/model conformance.

Until now, and despite the previous benefits, the notion of profiles has not been
adopted in current metamodeling tools. Thus, the main contribution of this paper is to
adapt the notion of UML Profiles to arbitrary modeling languages, in particular those
residing in the Eclipse Modeling Framework3 (EMF) [SBPM08] which is currently
one of the most popular metamodeling frameworks. Nevertheless, the ideas presented
herein can be reused to add profiles support in other metamodeling platforms. Thereby,
existing modeling languages may easily be extended by profiles in a similar way as it is
known from UML tools. Additionally, we propose two novel techniques to enable the
systematic reuse of profile definitions across different modeling languages. First, we
introduce generic profiles which are created independently of the modeling language
in the first place and may be bound later to several modeling languages. Second, we
propose meta profiles for immediately reusing them for all modeling languages. Finally,
we present how our prototype called EMF Profiles is integrated in EMF.

This article is an extension of a paper presented at the TOOLS 2011 confer-
ence [LWWC11]. Besides incremental advancements of the EMF Profile language, this
article introduces two major extensions over the previous paper. First, a new section
(cf. Section 3) has been added, which highlights the design decisions taken for EMF
Profile and provides a detailed comparison between UML Profiles and EMF Profiles.
Furthermore, Section 5 has been extended significantly. In particular, we introduce
the EMF Profiles API and show how EMF Profiles can be integrated easily with other
EMF technologies, such as the model transformation language ATL.

2 From UML Profiles to EMF Profiles

In this section, we present the standard profile mechanism (as known from UML)
for EMF. Therefore, we disclose our design principles and we discuss how the profile
mechanism may be integrated in EMF in a way that profiles can seamlessly be used
within EMF following our design principles. Finally, we show how profiles as well as
their applications are represented based on an example.

2.1 Design Principles

With EMF Profiles we aim at realizing the following five design principles. Firstly,
annotating a model should be as lightweight as possible, hence, no adaptation of
existing metamodels should be required. Secondly, we aim at avoiding to pollute
existing metamodels with concerns not directly related to the modeling domain.
Thirdly, we aim at separating annotations from the base model to allow importing only
those annotations which are of current interest for a particular modeler in a particular
situation. Fourthly, the annotations shall be conforming to a formal and well-known
specification such as it is known from metamodel/model conformance. Finally, users
should be enabled to intuitively attach annotations using environments and editors
they are familiar with. Consequently, annotations shall be created either on top of
the concrete (graphical) syntax of a model or on top of the abstract syntax using e.g.,
generic tree-based editors.

3http://www.eclipse.org/modeling/emf
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2.2 Integrating Profiles in the EMF Metalevel Architecture

The profile concept is foreseen as an integral part of the UML specification. Therefore,
the UML package Profiles, which constitutes the language for specifying UML Profiles,
resides, in terms of the metamodeling stack [Küh06], at the meta-metalevel M3 [OMGc]
as depicted in Fig. 1. A specific profile (aProfile), as an instance of the meta-
metapackage Profile, is located at the metalevel M2 and, therefore, resides on the same
level as the UML metamodel itself. Thus, modelers may create profile applications
(aProfileApplication on M1) by instantiating aProfile just like any other concept in
the UML metamodel.

M
3

UML
Core Profiles

«import»

M
2 UML aProfile

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

«extend»

M
1 aUML

Model
aProfile

Application
«extend»

Figure 1 – UML Architecture

To embed the profile mechanism into EMF, a language (equivalent to the package
Profiles in Fig. 1) for specifying profiles is needed as a first ingredient. This is easily
achieved by creating an Ecore-based metamodel which is referred to as Profile MM
(cf. column Profile Definition in Fig. 2). Specific profiles, containing stereotypes and
tagged values, may now be modeled by creating instances, referred to as aProfile, of
this profile metamodel. Once a specific profile is at hand, users should now be enabled
to apply this profile to arbitrary models by creating stereotype applications containing
concrete values for tagged values defined in the stereotypes. As already mentioned,
in UML, a stereotype application is an instance—residing on M1—of a stereotype
specification in M2 (cf. Fig. 1).

Unfortunately, in contrast to the UML architecture, in EMF no profile support exists
in M3. The level M3 in EMF is constituted only by the metamodeling language Ecore
(an implementation of MOF [OMGa]) which has no foreseen profile support. Extending
Ecore on level M3 to achieve the same instantiation capabilities for profiles as in UML
is not a desirable option, because this would demand for an extensive intervention with
the current implementation of the standard EMF framework. Therefore, in EMF, our
profile metamodel (ProfileMM in column Profile Definition of Fig. 2) is defined at level
M2 and the user-defined profiles (aProfile) reside on M1. As an unfortunate result,
a defined stereotype in aProfile cannot be instantiated for representing stereotype
applications (as in UML), because aProfile is already located on M1 and EMF does
not allow for instantiating an instance of a metamodel, i.e., EMF does not directly
support multilevel modeling [AK01].

Therefore, more sophisticated techniques have to be found for representing stereo-
type applications in EMF. In particular, we identified two strategies for lifting aProfile
from M1 to M2 in order to make it instantiable and directly applicable to EMF models.
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1. Metalevel Lifting By Transformation. The first strategy is to apply a
model-to-model transformation which generates a metamodel on M2, correspond-
ing to the specified profile on M1. The generated metamodel, denoted as aProfile
as MM in column (a) of Fig. 2, is established by implementing a mapping from
Profile concepts to Ecore concepts. In particular, the transformation generates
for each Stereotype a corresponding EClass and for each TaggedValue a cor-
responding EStructuralFeature. The resulting metamodel is a direct instance
of Ecore residing on M2 and therefore, it can be instantiated to represent profile
applications.

2. Metalevel Lifting By Inheritance. The second strategy allows to directly
instantiate profiles by inheriting instantiation capabilities (cf. «inheritsFrom»
in column (b) of Fig. 2). In EMF, only instances of the meta-metaclass EClass
residing on M3 (e.g., the metaclass Stereotype) are instantiable to obtain an
object on M1 (e.g., a specific stereotype). Consequently, to allow for the di-
rect instantiation of a defined stereotype on M1, we specified the metaclass
Stereotype in Profile MM to be a subclass of the meta-metaclass EClass. By
this, a stereotype inherits EMF’s capability to be instantiated and thus, a stereo-
type application may be represented by a direct instance of a specific stereotype.

( ) M t l l Lifti (b) M t l l Lifti

M
3

(a) Metalevel Lifting
by Transformation Profile Definition (b) Metalevel Lifting

by Inheritance

Ecore
«instanceOf»

«instanceOf»

M
2 aProfile as MM

«instanceOf»

Profile MM
«transformedTo»

«instanceOf»

«inheritsFrom»

M
1

aProfile aProfile
Application

aProfile
Application

«instanceOf»

Figure 2 – EMF Profile Architecture Strategies

We decided to apply the second strategy, because of the advantage of using only
one artifact for both, (1) defining the profile and (2) for its instantiation. This is
possible because by this strategy, a profile is now a dual-faceted entity regarding the
metalevels which is especially obvious when considering the horizontal «instanceOf »
relationship between aProfile and aProfileApplication (cf. Fig. 2). On the one hand, a
profile is located on M1 when considering it as an instance of the profile metamodel
(ProfileMM on M2)). On the other hand, the stereotypes contained in the profile
are indirect instances of EClass and are therefore instantiable which means that a
profile may also be situated on M2. Especially, when taking the latter view-point,
the horizontal «instanceOf » relationship between aProfile and aProfileApplication
shown in Fig. 2 will become the expected vertical relationship as in the UML metalevel
architecture.
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2.3 The EMF Profile Metamodel

The metamodel of our profile definition language is illustrated in package Standard
EMF Profile depicted in Fig. 3. As a positive side effect of choosing the metalevel
lifting strategy 2, the class Stereotype, being a specialization of EClass, may also
contain EAttributes and EReferences, which are reused to represent tagged values.
Thus, no dedicated metaclasses have to be introduced to represent the concept of
tagged values. To specify the applicability of stereotypes to metaclasses, the class
Stereotype comprises a reference to the class Extension. Thereby, users may define
the base metaclass of the stereotype, as well as the lower and upper bound of a
stereotype application. For instance, a lower bound of 1 in an Extension indicates
that the respective stereotype must be applied to each instance of the base metaclass
in order to obtain a valid profile application. Besides the upper and lower bound,
users may redefine or subset extension relationships of superstereotypes by setting the
reference redefined or subsetted, respectively. With these two references, we adopt
the modeling features known from Associations in UML (cf. Section 3.1 for more
details).

Profile

iconPath : EString

Stereotype Profile

Ecore

abstract: EBoolean
eSuperTypes : EClass
…

EClass

nsURI : EString
eClassifiers : EClassifier
…

EPackage

base

1

base

1

Standard EMF Profile

Generic Profile Meta Profile

isMeta : EBoolean

Stereotype
EClass

GenericType

<<merge>> <<merge>>

Complete EMF Profile <<merge>><<merge>>

expr : OCLExpression

Condition

0..*
isMeta : EBoolean

Profile

ProfileApplication

ProfileApplication

0..*

appliedTo : EObject

StereotypeApplication

lowerBound : EInt
upperBound : EInt

Extension
0..*

0..* 0..*
redefined subsetted

Figure 3 – EMF Profile Metamodel

Stereotype applications require to have a reference to the model elements to which
they are applied. Therefore, we introduced an additional metamodel package, namely
ProfileApplication in Fig. 3. This metamodel package contains a class Stereotype-
Application with a reference to arbitrary EObjects named appliedTo. Whenever, a
profile is saved, we automatically add StereotypeApplication as a superclass to each
specified stereotype. To recall, this is possible because each Stereotype is an instance
of EClass, which may have superclasses. Being a subclass of StereotypeApplication,
stereotypes inherit the reference appliedTo automatically. In the following subsection,
we further elaborate on the EMF Profile metamodel by providing a concrete example.
Please note that the so far unmentioned packages Generic Profile and Meta Profile in
Fig. 3 are discussed in Section 4. Furthermore, for presentation purposes, we have
used the package merge [DDZ08] from UML to structure the language features of EMF
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Profiles into different packages. The UML package merge allows to incrementally define
modeling languages. In our example, all language features are finally merged into the
Complete EMF Profile package representing the complete EMF Profile language.

EJBProfileApplication

<<stereotype>>
EntityBean

isUserManaged : EBoolean

<<metaclass>>
ER::Entity

<<stereotype>>
IDAttribute

<<metaclass>>
ER::Attribute

<<stereotype>>
SessionBean

isStateful : EBoolean

<<profile>> EJB

: ProfileApplication

: EntityBean
isUserManaged : true

appliedTo
1 : Entity

appliedTo

: SessionBean
isStateful : true

: IDAttribute

2 : Attribute

appliedTo

: IDAttribute

appliedTo

BaseModel

(a)

(c)

ER

<<import>>

(b)

ProfileApplication
0..*

appliedTo : EObject

StereotypeApplication
stereotypeApplications

<<stereotype>>
EntityBean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

<<profile>> EJB

StereotypeApplication

<<merge>>

Entity Attribute0..*

ProfileApplication

<<instanceOf>>

<<instanceOf>>

name : Affiliationname : Person

name : EString name : EString

3 : Attribute

name : RegNo

4 : Entity
name : 
PersonSearchService

5 : Attribute

name : URI
appliedTo

1..1

0..1

<<stereotype>>
Bean

Figure 4 – EMF Profiles by Example: (a) Profile Definition User-View, (b) Internal Profile
Representation, (c) Profile Application

2.4 Applying the EMF Profile Metamodel

To clarify how profiles and profile applications are represented from a technical point
of view, we make use of a small example. In particular, a simplified version of the
well-known EJB profile is applied to an Entity-Relationship (ER) model [Che76].
Fig. 4(a) depicts an excerpt of the ER metamodel and the EJB profile. The EJB
profile contains the abstract stereotype Bean, which extends the metaclass Entity of
the ER metamodel, and two concrete substereotypes of Bean called SessionBean and
EntityBean. Besides, the profile introduces the stereotype IDAttribute extending
the metaclass Attribute to indicate the ID of an Entity.

As already mentioned in the previous subsection, internally, we use the ProfileAp-
plication metamodel (cf. Fig. 4(b)) to weave the necessary concepts for a profile’s
application into a profile model. In particular, the class ProfileApplication acts as
root element for all StereotypeApplications in a profile application model. Further-
more, all Stereotypes inherit the reference appliedTo from StereotypeApplication.
When instantiating (i.e., applying) the EJB profile, a root element of the type Profile-
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Application is created which may contain stereotype applications as depicted in
Fig. 4(c). For determining the applicability of a stereotype s to a particular model
element m, it is checked whether the model element’s metaclass (m.eClass()) is in-
cluded in the list of metaclasses that are extended by the stereotype (s.getBase()).
If so, the stereotype s is applicable to model element m. Each stereotype application is
represented as a direct instance of the respective stereotype (e.g., «EntityBean») and
refers to the model element in the BaseModel to which it is applied by the reference
appliedTo (inherited from the class StereotypeApplication). Please note that the
EJB profile application resides in a separated model file and not in the original ER
model denoted with BaseModel in Fig. 4.

3 Comparing UML Profiles with EMF Profiles

With the introduction of UML 2, the profile mechanism has been tremendously
improved compared to the beginnings of UML. In UML 1.1, stereotypes and tagged
values were represented by String-based values, which could be attached to UML
model elements. With the evolution of UML, specific modeling support has been
included in the UML standard to provide precise definitions of UML Profiles. In
particular, a Profile modeling language has been incorporated in the UML language
family. In this section, we first revisit the modeling concepts of the UML Profile
modeling language by summarizing the key definitions of the UML standard. Next,
we report on experiences gained in evaluating four major UML modeling tools with
respect to the implementation of UML Profiles, and finally, we highlight the differences
between EMF Profiles and UML Profiles according to the UML standard.

3.1 UML Profile Modeling Language Revisited

The Profile package of the UML metamodel (cf. Fig. 5 for an excerpt) defines the
UML Profile modeling language and is based on the packages defining the UML class
diagram language (cf. Classes package in Fig. 5). In particular, the Profile package
introduces four additional classes for defining the modeling concepts of UML Profiles.
The classes Profile and Stereotype are derived from the classes Package and Class,
respectively. For representing the extension relationships between metaclasses and
stereotypes, the class Extension is defined as a subclass of the class Association
with the constraint that instances of the Extension class are only allowed to be binary
relationships, i.e., they must have exactly two association ends. An association end
in UML is represented by the class Property. One of the association ends has to be
of type ExtensionEnd which is a subclass of the class Property and which has to be
linked to stereotypes, only. Extensions may be defined to be required. Thereby, each
instance of the referred metaclass needs a stereotype application assigned to form a
valid model.

To elaborate the representation of extension relationships in UML in more detail,
Fig. 6 introduces an example which is based on the UML standard (cf. page 183
in [OMGc]). In this figure, the extension relationship between the metaclass C1 and
the stereotype S1 is illustrated in the extension notation, as well as in the association
notation, whereas both notations describe the same extension relationship. The
association notation is applicable, because an extension relationship is an association
in the UML metamodel (cf. Fig. 5). In particular, the extension relationship is
represented by an association with two association ends. The association end base_C1

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a8


EMF Profiles · 9

Extension ExtensionEnd

{redefines ownedEnd}
ownedEnd

type 
{redefines type}

1
1

UML

/isRequired : Boolean

abstract : Boolean
superClass : Class
ownedAttribute : 
Property

…

Class

packagedElement : 
PackageableElement

…

Package

ProfileApplication

Stereotype

memberEnd : Property 
ownedEnd : Property 
{subsets memberEnd}

…

Association

type : Type
isComposite : Boolean
lower : Int
upper : UnlimitedNatural
redefinedProperty : Property
subsettedProperty : Property
…

Property

Profile

profileApplicaton

appliedProfile

0..*

1

Profile

Classes

Figure 5 – Excerpt of the UML Profile Package

must have a multiplicity of 1, which means that a stereotype application always must
be linked to exactly one base element. The opposite association end is defined to be
composite. Consequently, the stereotype application is automatically deleted when the
base element is deleted. The extension relationship in this example is not defined as
required, as the multiplicity is 0..1. However, UML also foresees required extension
relationships using a multiplicity of 1..1.

For the introduced modeling concepts of the UML Profile package, several OCL
constraints are defined which restrict the possibilities of the UML Profile modeling
language with respect to UML class diagrams. In particular, the following three OCL
constraints are heavily influencing how stereotypes are defined and applied in profile
applications:

Constraint 1. The multiplicity of ExtensionEnds in UML are 0..1 or 1 (cf. Con-
straint [1] on page 181 in [OMGc]). This constraint implies that a stereotype is only
applicable once to the same base element.

Constraint 2. The aggregation of ExtensionEnd is always composite (cf. Constraint
[2] on page 181 in [OMGc]). This constraint implies that a stereotype application is
deleted when the base element is deleted.

Constraint 3. A stereotype may only generalize or specialize another stereotype
(cf. Constraint [1] on page 198 in [OMGc]). This constraint implies that a stereotype

<<stereotype>> 
S1 

<<metaclass>> 
C1 

<<stereotype>> 
S1 

<<metaclass>> 
C1 0..1 

 
1 
 

base_C1 
 

extension_S1 
 

0..1 
 

1 
 

base_C1 
 

extension_S1 
 

<<stereotype>> 
S1 

<<metaclass>> 
C1 

<<stereotype>> 
S2 

<<stereotype>> 
S3 

c1 : C1 

s1 : S1 

s2 : S2 

s3 : S3 

<<stereotype>> 
S1 

<<metaclass>> 
C1 

<<stereotype>> 
S2 

<<stereotype>> 
S3 

(a) 

(b) 

(c) 

Extension 
Notation 

Association 
Notation 

Figure 6 – Example of an Extension Relationship
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is not allowed to inherit from common metaclasses.

Constraint 4. Stereotype is the only kind of metaclass that cannot be extended by
stereotypes (cf. page 180 in [OMGc]). Thus, it is not possible to apply stereotypes to
existing stereotype applications. Profile applications are considered to be flat models
only covering one level which subsumes all applied stereotypes.

The afore presented modeling concepts together with the mentioned constraints are
implemented by most of the currently available UML tools. We have surveyed four
of the major players in this field, namely Magic Draw4, UML2 Eclipse project5,
EnterpriseArchitect6, and Papyrus7. However, while testing these UML modeling tools
regarding the specification and application possibilities for UML Profiles several issues
have been identified that are enumerated and exemplified in the following. It has to be
emphasized that these issues are not explicitly treated by the current UML standard.

Issue 1. Stereotypes cannot contain complex data in form of new objects which are
directly possessed by a profile application. Stereotypes can only refer to elements in
the base model and to other stereotypes, but cannot act as containers for specifying
their own internal object structure. The UML standard does not explicitly treat this
issue. Only one sentence in the standard can be found (cf. page 190 in [OMGc])
giving a hint that a profile may actually contain classes. However it is not mentioned
if the instances of these classes should be contained by the base model or by the profile
application. Therefore, the example shown in Fig. 7 is ambiguous. The surveyed
modeling tools do not allow to define instances of the class C2 in the profile application.
The only way to instantiate this class is to create objects in the base model.

<<stereotype>>
S1

<<metaclass>>
C1

<<stereotype>>
S2

<<stereotype>>
S3

<<metaclass>>
C2

<<stereotype>>
S1

<<metaclass>>
C1

<<metaclass>>
C2

«redefines»

0..*

c2

Figure 7 – Issue 1: Stereotype as Container

Issue 2. The association semantics, more specifically the multiplicities, of extension
relationships discussed before are not always fulfilled by current UML tools when
inheritance hierarchies among stereotypes are defined. For example, consider the
profile definition in Fig. 8(a). In current UML tools, the profile application model
depicted in Fig. 8(c) is a valid instance of the defined UML Profile shown in Fig. 8(a).
However, when we consider the equivalent association representation of the extension
relationship illustrated in Fig. 8(b), we see that instances of class C1 are only allowed
to have one link to stereotypes of kind of S1.

Issue 3. Extension relationships are defined as associations in the UML standard.
Thus, advanced modeling features for associations, such as refinements of properties
(cf. features redefinedProperty and subsettedProperty in the UML metamodel
shown in Fig. 5), may also be used in profile specifications. However, the surveyed
UML modeling tools disallow or ignore these features when applying the specified
profiles to the base models. For example, Fig. 9 shows two extension relationships,
whereas the extension relationship between C2 and S2 is a refinement of the extension

4https://www.magicdraw.com
5http://www.eclipse.org/uml2
6http://www.sparxsystems.com
7http://www.eclipse.org/papyrus
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Substereotypes: (a) Profile Example, (b) Profile Example shown in Association Nota-
tion, (c) Profile Application (Valid in current UML Tools, Invalid w.r.t (b))
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Figure 9 – Issue 3: Advanced Features of Extension Relationships

relationship between C1 and S1. Thus, only the stereotype S2 should be applicable to
instances of the class C2. In the surveyed UML tools, however, instances of class C2
may be annotated by all kinds of S1 stereotypes in addition to the stereotype S2.

3.2 Commonalities and Differences between UML Profiles and EMF Profiles

In the following, we compare the EMF Profiles implementation with the UML standard,
as well as with existing implementations of profiles in UML modeling tools. In
particular, we focus on highlighting differences due to the retroactive integration with
EMF as well as intended differences of EMF Profiles and UML Profiles based on the
previously discussed constraints and issues.

The basic structure of EMF Profiles and UML Profiles is very similar. As in UML,
the modeling concepts in EMF Profiles for specifying profiles are also contained in a
package called Profile (cf. Fig. 3) and largely correspond to the modeling concepts in
the package Profile in UML. Moreover, as in UML, the class Profile in EMF Profiles
is a subclass of the class EPackage, the class Stereotype is a subclass of EClass, and
tagged values are modeled in terms of properties of an EClass.

However, there are also differences between EMF Profiles and UML Profiles. Some
of these differences stem from the fact that the profile support has been integrated
into EMF retroactively, others are intended differences in order to enhance the expres-
siveness of the profile modeling language.
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3.2.1 Differences due to retroactive integration in EMF

As profiles are tightly integrated into UML and foreseen in UML editors, stereotype
applications may directly be included in the model to which a profile is applied. In
EMF Profiles, stereotype applications have to be stored in a separate model, because
EMF-based editors are not capable of handling stereotype applications in a model
natively. Therefore, the class ProfileApplication acts as a root container for
stereotype applications in a separate model. The class ProfileApplication in the
UML metamodel, however, plays a different role; it is only used for indicating that a
profile is applied to a specific package and does not contain applied stereotypes.

Another difference concerns the representation of the extension relationship. In
UML, an extension’s association end at the side of the metaclass is defined to be
composite. As a result, the deletion of the extended model element causes the deletion
of the stereotype application (cf. Constraint 2 in Section 3.1). This, however, is not
possible in EMF Profiles, because containment references (being EMF’s equivalent
to composition in UML) are owned by the metaclass. As we may not add such
additional containment references to an existing metaclass that should act as base
class for a stereotype, we may only refer from the stereotype application to the
extended model element (and not vice versa). Thus, if an extended model element
is deleted, the stereotype application still exists without being applied to any model
element. To address this issue, we provide a clean-up function, which deletes stereotype
applications, if their base elements has been deleted. Please note that this might
also be an advantage in certain scenarios, because stereotype applications may be
detached from their base model elements temporarily and attached to another base
model element again at a later time. This is not foreseen in UML.

3.2.2 Intended differences

Besides the differences stemming from the retroactive integration of profiles into EMF,
there are also intended differences between UML Profiles and EMF Profiles. In the
following, we discuss these differences with respect to the constraints of UML Profiles
in the UML standard and issues in the UML modeling tools discussed in Section 3.1.

Multiple stereotype applications on one model element. According to Con-
straint 1 in Section 3.1, one stereotype may only be applied once to the same model
element, because of the dictated multiplicity of 0..1 or 1..1 of ExtensionEnds. This
is a reasonable design decision as long as profiles are only used as an additional classi-
fication mechanism [AKHS03] for existing model elements. However, if stereotypes
are used as annotation mechanism [FGT+10], it might thoroughly be necessary to
assign the same stereotype more often. An example for such a requirement is a model
review profile for documenting the result of the examination of a model (cf. Section 4.2
for a concrete example). To enable a multiple application of one stereotype to the
same model element, we decided to allow the same possibilities for lower and upper
bounds in extension relationships of stereotypes as for associations. Thereby, a higher
expressiveness of the profile specification language is achieved, as users may assign
multiplicities different to 0..1 and 1..1.

Stereotype may inherit from classes. As discussed in the Constraint 3 in Sec-
tion 3.1, UML does not allow stereotypes to inherit from common metaclasses. In
EMF Profiles, we refrain from adopting this restriction. Thus, users may specify
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stereotypes that are a subclass of common metaclasses (i.e., EClasses) in order to let
the stereotype inherit the modeling features of existing or newly created metaclasses.

Containments in stereotype applications. The UML standard does not make
an explicit statement whether stereotypes are allowed to contain complex data in
the form of new objects. The surveyed UML modeling tools, however, do not enable
users to specify metaclasses being contained by stereotypes (cf. Issue 1 in Section 3.1).
Nevertheless, we believe that this is a valuable feature because it facilitates to introduce
also more complex data structures to existing models than only simple tagged values.
Thus, EMF Profiles allows to create containment references in stereotypes. However,
please note that EMF Profiles adopts the restriction of UML that stereotypes cannot
be applied again to stereotype applications (cf. Constraint 4 in Section 3.1).

Exact interpretation of association semantics. In contrast to existing UML
modeling tools, we rigorously implemented the association semantics in EMF Profiles
(cf. Issue 2 in Section 3.1). For instance, consider the example shown in Fig. 8(a): if
an upper bound of 1 is assigned to an extension of a stereotype, the stereotype or
one of its substereotypes may only be applied once to the same model element; it is
disallowed to apply the stereotype and one of its substereotypes at the same time to
the same model element. If this would be intended, users may redefine the extension
in a substereotype as discussed in the following or increase the upper bound.

Advanced modeling features for extensions. Another aspect of the association
semantics that is not properly covered by current UML modeling tools is the possibility
to redefine inherited extensions of superstereotypes in substereotypes (cf. Issue 3 in
Section 3.1). Redefining the extension, however, is a valuable feature, because it allows
stereotypes to inherit tagged values but specify their own specialized applicability.

Summary. In this section, we presented the differences between EMF Profiles and
UML Profiles, as well as existing UML modeling tools that implement the profile
mechanism. We described the differences that stem from the retroactive integration
of the profile mechanism into EMF and discussed the intended deviations from the
UML standard. In particular, we highlighted the aspects that are not covered in
existing UML modeling tools but rigorously implemented in EMF Profiles according to
the UML standard. Thereby, users are empowered to fully exploit the expressiveness
of profiles. We believe that the taken design decisions lead to more precise profile
definitions by using well-known concepts available in current metamodeling languages.

4 Inter-Language Profile Reuse

Originally, the profile mechanism was specifically developed for UML. Hence, profiles
could only extend the UML metamodel. In the previous sections, we showed how
this lightweight extension mechanism is ported to the realm of DSMLs. However, in
this realm a whole pantheon of different DSMLs exists which are often concurrently
employed in a single project. As a result, the need arises to reuse existing profiles and
apply them to several DSMLs. Thus, we introduce two dedicated reuse mechanisms
for two different scenarios:

1. Metamodel-aware Profile Reuse. The first use case scenario is when users
aim to apply a profile to a family of DSMLs sharing similar modeling concepts.
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Being aware of these modeling concepts, the user wants to take control of the
applicability of stereotypes to a manually selected set of metaclasses.

An example for this scenario is a profile for annotating models defined with
structural modeling languages, such as Ecore, ER, or UML class diagrams,
with platform specific information. Assume we have a stereotype for marking
transient classes, i.e., their objects are not stored persistently in the database.
Thus, this stereotype should be applicable on instances of Ecore::EClass,
ER::EntityType, and UML::Class, but the stereotype should be of course not
be applied on other elements such as attributes or associations.

2. Metamodel-agnostic Profile Reuse. In the second use case scenario, users
intend to use a profile for all DSMLs without the need for further constraining
the applicability of stereotypes. Therefore, a stereotype shall—agnostic of the
DSMLs’ metamodels—be applicable to every existing model element.

An example for this scenario would be a profile for marking model elements
which require a revision. Thus, a RevisionRequired stereotype may be defined to
be applicable to every model element, irrespectively of the type of the model
element and the used modeling language.

To address scenario (1), we introduce generic profiles allowing to specify stereotypes
that extend so-called generic types. These generic types are independent of a concrete
metamodel and may be bound to specific metaclasses in order to reuse the generic
profile for several metamodels. For supporting scenario (2), we propose meta profiles
which may immediately be applied to all DSMLs implemented by an Ecore-based
metamodel.

4.1 Generic Profiles

The goal behind generic profiles is to reuse a profile specification for several “user-
selected” DSMLs. Therefore, a profile should not depend on a specific metamodel.
Inspired by the concepts of generic programming [MS89], we use the notion of so-called
generic types instead. In particular, stereotypes within a generic profile do not extend
concrete metaclasses as presented in the previous section, they extend generic types
instead. These generic types act as placeholders for concrete metaclasses in the future.
Once, a user decides to use a generic profile for a specific DSML, a binding is created
which connects generic types to corresponding concrete metaclasses contained in the
DSML’s metamodel. For one generic profile there might exist an arbitrary number of
such bindings. Consequently, this allows to reuse one generic profile for several DSMLs
at the same time. Furthermore, it enables users to first focus on the development of
the profile and reason about the relationship to arbitrary DSMLs in a second step.

As example, consider the same EJB profile which has been specified in terms of a
concrete profile in Section 2. Now, we aim at specifying the same profile in a generic
way to enable its use also for other DSMLs. In particular, we show how the EJB
profile may first be specified generically and we subsequently illustrate the binding of
this generic profile again for ER models. We get the same modeling expressiveness as
before but now in a way that allows us to reuse the EJB profile when using other data
modeling languages. The original EJB profile for ER extends two metaclasses, namely
the stereotypes SessionBean and EntityBean extend the metaclass Entity through
the abstract stereotype Bean, and the stereotype IDAttribute extends Attributes
(cf. Fig. 4). To turn this concrete profile into a generic one, we now use two generic
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Figure 10 – Generic EJB Profile and its Binding to the ER metamodel

types, named Container and Property in Fig. 10, instead of the two concrete types
Entity and Attribute.

Before we describe how generic profiles may be bound to concrete DSMLs, we first
discuss conditions constraining such a binding. When developing a concrete profile, the
extended DSML is known and consequently only suitable metaclasses are selected to
be extended by the respective stereotypes. For instance, in the concrete EJB profile for
ER, the class Entity may be annotated with the stereotype EntityBean. For marking
the Entity’s ID attribute, the EJB profile introduces the stereotype IDAttribute
which extends the class Attribute. This is reasonable, because we are aware of the
fact that instances of the class Entity contain instances of the class Attribute in
the ER metamodel, otherwise it obviously would not make any sense to extend the
metaclass Attribute in this matter. However, generic profiles are developed without
a concrete DSML in mind. Hence, profile designers possibly need to specify conditions
enforcing certain characteristics to be fulfilled by the (up to this time) unknown
metaclasses to which a generic type might be bound in future.

Therefore, EMF Profiles allows to attach constraints to generic profiles, which
limit the metaclasses that may be bound to the respective generic types. To realize
these constraints, OCL invariants are generated for each generic type, whereas the
name of the generic types are masked using curly brackets in the OCL code (e.g.,
{Container}). When a user intends to bind an arbitrary metaclass to a generic type,
the occurrences of the masked generic type name in the OCL constraint are replaced
with the actual name of the arbitrary metaclass. If the resulting OCL constraint
is fulfilled for a metaclass, the metaclass can be bound to the generic type. The
bodies of the invariants can be specified either manually or semi-automatically. The
semi-automatic specification of constraints is done by simply adding references or
attributes to the generic types in the generic profile. When a reference or attribute is
added to a generic type, a profile designer indicates implicitly that there must be a
corresponding reference or attribute in the metaclass that is bound to the generic type.
To realize these implicit constraints in OCL, for each reference or attribute added
to the generic type, a dedicated expression is added automatically to the invariant,
which specifies that the respective reference or attribute must exist. Therefore, we
use the semi-automatic OCL condition generation process that has been introduced
in [BLS+09]. This process allows to derive OCL conditions from model elements
automatically. The derived OCL conditions reflect each feature value that has been
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1 context {Container} inv:
2 self.eReferences−>exists(r | r.eType = {Property})
3 context {Property} inv:
4 self.eAttributes−>exists(a | a.name = "name" and a.eType = EString)

Listing 1 – OCL Constraints generated for Container and Property

set in the analyzed model elements, as well as their references to each other. As these
generated conditions may not always reflect the intended conditions exactly, users may
fine-tune these conditions by adding or deactivating certain parts of the generated
conditions using a dedicated user interface.

In our example in Fig. 10, the profile designer created a reference in the generic type
Container, as well as an attribute name in Property. After applying the automatic
constraint generation process to this generic profile and fine-tuning the generated
conditions by the user, we may obtain the OCL constraints in Listing 1.

Once the stereotypes and generic types are created, the profile is ready to be bound
to concrete DSMLs. This is simply achieved by selecting suitable metaclasses of a
DSML for each generic type. In our example depicted in Fig. 10, the generic types
Container and Property are bound to the metaclasses Entity and Attribute in the
ER metamodel, respectively, in order to allow the application of the generic EJB profile
to ER models. When the binding is established, it can be persisted in two different
ways. The first option is to generate a concrete profile out of the generic profile for
a specific binding. This concrete profile may then be applied like a normal EMF
profile as discussed in Section 2. Although this seem to be the most straightforward
approach, the explicit trace between the original generic profile and the generated
concrete profile is lost. Therefore, the second option is to persist the binding directly
in the generic profile definition. Whenever a user intends to apply a generic profile
to a concrete DSML, the EMF Profile framework searches for a persisted binding for
the concrete DSML’s metaclasses within the profile definition. If a binding exists, the
user may start to apply the profile using this persisted binding. Otherwise, the user is
requested to specify a new binding.

To support generic profiles, we extended the EMF Profile metamodel by the
class GenericType (cf. Fig 3). Generic types inherit from EClass and may contain
Conditions representing more complex constraints going beyond the aforementioned
enforced references and attributes for bound metaclasses.

4.2 Meta Profiles

With meta profiles we tackle a second use case for reusing profiles for more than one
DSML. Instead of supporting only a manually selected number of DSMLs, with meta
profiles we aim at reusing a profile for all DSMLs without the need of defining an
explicit extension for each DSML. This is particularly practical for profiles enabling
general annotations which are suitable for every DSML. In other words, stereotypes
within a meta profile must be agnostic of a specific metamodel and shall be applicable
to every model element irrespectively of its metaclass, i.e., its type.

In EMF, every model element is an instance of a metaclass. Each metaclass is
again an instance of Ecore’s EClass. Therefore, meta-stereotypes in a meta profile
do not extend metaclasses directly. Instead, they are configured to be applicable to
all instances of instances of EClass and, consequently, to every model element (as
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Figure 11 – Meta Profile Example: The Model Review Profile

an instance of an instance of EClass). This approach is inspired by the concept of
potency known from multilevel metamodeling [AK01]. Using the notion of potency,
one may control on which metamodeling level a model element may be instantiated.
By default, the potency is 1 which indicates that a model element may be instantiated
in the next lower metamodeling level. By a potency p ≥ 1 on a metamodeling level n,
a model element may be configured to be also instantiable on the level n− p instead
of the next lower level only. In terms of this notion of potency, a meta-stereotype has
a potency of p = 2.

Meta profiles are created just like normal profiles. However, a new attribute, namely
isMeta, is introduced to the profile metamodel for indicating whether a stereotype is
a meta-stereotype (cf. Fig. 3). The Boolean value of this attribute is considered by
EMF Profiles when evaluating the applicability of stereotypes. In particular, if isMeta
is true, a stereotype is always considered to be applicable to every model element,
irrespectively of its metaclass.

Our example for presenting metaprofiles is a model review profile (cf. Fig. 11). The
goal of this profile is to allow for annotating the results of a systematic examination
of a model. Since every model irrespectively of its metamodel can be subject to a
review, this profile is suitable for every DSML. For simplicity, we just introduce three
stereotypes in the review profile, namely Approved, Rework, and Declined, which
shall be applicable to every kind of element in every DSML. Therefore, these three
stereotypes extend the class EClass and are marked as meta-stereotypes (indicated
by meta-stereotype in Fig. 11). By this, the applicability of these stereotypes is
checked by comparing the meta-metatypes of model elements with the metaclasses
extended by the stereotypes. As a result, the metaprofile in our example is applicable
to every element in every DSML.

In the example shown in Fig. 11, we depicted the Object Diagram of two separate
applications of the same metaprofile to two models conforming to different metamodels.
In the first Object Diagram, an Event and one LogicalConnector within an Event-
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driven Process Chain (EPC) model have been annotated with the meta-stereotype
Approved and Rework, respectively. This is possible because both instances in the
EPC model are an instance of a metaclass which is again an instance of EClass. The
same metaprofile may be also applied to any other modeling language. Of course, also
UML itself is supported by EMF Profiles. Therefore, the model review profile may be
also applied to, for example, a UML Use Case Diagram (cf. Fig. 11). In this figure, the
stereotype Approved has been assigned to the UseCase named “Order Goods” and
the stereotype Declined has been applied to the Includes relationship.

4.3 Summary

Both techniques for enabling the reuse of profiles for several DSMLs have their
advantages and disadvantages depending on the intended use case. Meta profiles are
immediately applicable to all DSMLs without further user intervention. However, with
meta profiles no means for restricting the use of such profiles for concrete DSMLs
exist. If this is required, generic profiles are the better choice. When specifying generic
profiles, explicit conditions may be used to control a profile’s usage for concrete DSMLs.
On the downside, this can only be done with additional efforts for specifying such
conditions in the generic profile and creating manual bindings from generic profiles to
concrete DSMLs.

5 A Tour on EMF Profiles

In this section, we present our prototypical implementation of EMF Profiles which
is realized as Eclipse plug-in on top of the Eclipse Modeling Framework (EMF) and
Graphical Modeling Framework8 (GMF). Please note that we refrained from modifying
any artifact residing in EMF or GMF. EMF Profiles only uses well-defined extension
points provided by these frameworks for realizing profile support within the EMF
ecosystem. For a screencast of EMF Profiles, we kindly refer to our project homepage9.

Figure 12 – EJB Profile defined with EMF Profiles Diagram Editor

Profile Definition. To define a profile, modelers may apply either the tree editor
automatically generated from the Profile Metamodel or our graphical EMF Profiles
Diagram Editor which is realized with GMF (cf. Fig. 12 for a screenshot). The graphical

8http://www.eclipse.org/gmf
9http://www.modelversioning.org/emf-profiles
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notation used in this editor takes its cue from the UML Profiles syntax. With these
editors, modelers may easily create stereotypes containing tagged values and set up
inheritance relationships between stereotypes and extension relationships to meta-
classes of arbitrary DSML’s metamodels. Metaclasses may be imported using a custom
popup menu entry, which shows when right-clicking the canvas of the editor, and are
visualized using the graphical notation from Ecore.

Figure 13 – EJB Profile Applied to Ecore Instance

Profile Application. Defined profiles may also be applied using any EMF-generated
tree-based editor or any GMF-based diagram editor. The screenshot depicted in
Fig. 13, shows the afore presented EJB profile applied to an example Ecore diagram.
To apply profiles, our plug-in contributes a popup menu entry (cf. Fig. 13 (1)) which
appears whenever a model element is right-clicked. With this menu, users may apply
defined profiles (i.e., creating new profile application) or load already existing profile
applications. Once a profile application is created or loaded, stereotypes may be
applied using the same popup menu. When a stereotype is applied, the defined
stereotype icon is attached to the model element (cf. Fig. 13 (2)). For this purpose
we used the GMF Decoration Service, which allows to annotate any existing shapes
by adding an image at a pre-defined location. Furthermore, we created a Profile
Applications view, which shows all applied stereotypes of the currently selected model
element (cf. Fig. 13 (3)). The currently selected model element is retrieved using the
ISelectionProvider interface which is implemented by every EMF or GMF-based
editor. For assigning the tagged values of an applied stereotype, we leverage the
PropertyView (cf. Fig. 13 (4)) which generically derives all defined tagged values
from the loaded profile‘s metamodel. The separate file resource which contains the
profile applications is added to the EditingDomain of the modeling editor. Hence, as
soon as the model is saved, all profile applications are saved as well. Finally, profile
applications can be unloaded and reloaded at any time without loosing the application
information.
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1 // Load the model to be annotated
2 Resource modelResource = ...;
3 Entity anEntity = ...;
4
5 // Load the profile
6 Resource profileResource = ...;
7 Profile ejbProfile = (Profile) profileResource.getContents().get(0);
8
9 // Create the resource that contains the profile application

10 Resource profileApplicationResource = ...;
11
12 // Initialize the profile facade
13 IProfileFacade profileFacade = new ProfileFacadeImpl();
14 profileFacade.setProfileApplicationResource(profileApplicationResource);
15 profileFacade.loadProfile(ejbProfile);
16
17 // Apply stereotype
18 Stereotype sessionBean = ejbProfile.getStereotype("SessionBean");
19 StereotypeApplication application = null;
20 if (profileFacade.isApplicable(sessionBean, anEntitiy)) {
21 application = profileFacade.apply(sessionBean, anEntity);
22 }
23
24 // Set tagged values
25 EStructuralFeature isStateful = sessionBean.getTaggedValue("isStateful");
26 profileFacade.setTaggedValue(application, isStateful, Boolean.TRUE);
27
28 // Query and remove stereotype applications
29 EList<StereotypeApplication> applications =
30 profileFacade.getAppliedStereotypes(sessionBean);
31 profileFacade.removeStereotypeApplication(applications.get(0));

Listing 2 – Example for Using the EMF Profiles API

Using the EMF Profiles API. Profile definitions may also be created program-
matically using the application programming interface (API) that is shipped with
EMF (cf. [SBPM08] for more information on the EMF API). The same is true for
profile applications. However, to ease the programmatic application of profiles, EMF
Profiles provides a dedicated API, alongside the graphical user interfaces presented
above. In the following, we briefly elaborate the usage of this API in terms of an
example. In this example, we show how the EJB profile (cf. Fig. 4) is programmatically
applied to an ER model. The corresponding Java code is depicted in Listing 2. In
line 2 and line 3 of this listing, the resource containing the model to be annotated and
an exemplary instance of Entity is loaded, respectively. Before we may apply the
EJB profile, we first have to load the resource containing the corresponding profile
definition (cf. line 6) and retrieve the instance of Profile representing the EJB profile
from this resource (cf. line 7). To ease the application of stereotypes, EMF Profiles
provides the interface IProfileFacade and an implementation of this interface called
ProfileFacadeImpl, which is instantiated in line 13. Next, we specify a resource to
which the profile application shall be saved and load the profile to be applied using
the facade (cf. line 14–15). Please note that users may load multiple profiles to be
applied at the same time with one profile facade instance. Now, we are set up to apply
stereotypes. Therefore, a specific stereotype is obtained from the profile as shown in
line 18. Using the method isApplicable(Stereotype, EObject) of the facade, we
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may check whether the stereotype is applicable to the specified model element (cf.
line 20). If this is the case, we may use the facade to apply the stereotype using the
method apply(Stereotype, EObject) as depicted in line 21. This method returns
the created instance of StereotypeApplication. The facade may also be used to set
tagged values in a stereotype application. Therefore, we first obtain the tagged value
from the stereotype (cf. line 25) and assign a specific value for this tagged value at a
stereotype application using the method setTaggedValue(StereotypeApplication,
EStructuralFeature, EObject) (cf. line 26). Finally, the facade provides methods
for querying and removing stereotype applications (cf. line 29–31).

EMF Profiles and EMF-based Technologies. Profiles are common metamodels
and profile applications are common instances of this metamodel. Thus, EMF-based
technologies may easily be used to process profile applications. However, profile
applications conform to a different metamodel than the annotated model and stereotype
applications refer to model elements that are located in a different model resource.
Thus, the prerequisite to directly process models and applied profiles using an EMF-
based technology is that the technology has to be capable of processing multiple
models conforming to multiple metamodels. The Atlas Transformation Language
(ATL) [JABK08] is such a technology that meets these prerequisites. In the following,
we show how ATL can be used to process profile applications and, subsequently, we
discuss some possibilities to also enable using EMF-based technologies that are not
capable of processing multiple metamodels and models.

EMF Profiles and ATL. In the following, we discuss a small excerpt of a model
transformation defined in ATL. Please note that for using UML Profiles in ATL trans-
formations (i.e., retrieving/instantiating stereotype applications and retrieving/setting
tagged values), method calls from ATL to a Java-based API are necessary which
leads to verbose transformation code as reported by Wimmer and Seidl [WS09]. In
contrast, the meta-level architecture of EMF Profiles allows for a native support of
EMF profiles in ATL transformations. In particular, EMF profiles may be used in
ATL transformations as any other pure EMF-based model.

The example transformation is a so-called copier transformation [TJF+09] for
duplicating an Ecore model which is annotated with an EJB profile application. Of
course, not only the base model is supposed to be copied by the transformation, but
also the annotations. In ATL transformations, it is possible to define an arbitrary
number of input models and output models. Thus, profile applications may be
loaded/produced as additional input/output models, respectively. The input models
and output models for the copier transformation are specified in the header definition
introduced by the module keyword (cf. line 1-3 in Listing 3). In addition to the
input/output models of type Ecore, an additional input/output model of type EJB is
specified. These additional models conform to the EJB profile which can be used in
ATL as any other standard EMF-based model. As the class StereotypeApplication
is derived from the class EClass (cf. Fig. 2), instances of Stereotypes may be treated
in ATL transformation like common EClasses. Please note that in order to link
profile applications with model elements residing in the base model (i.e., setting the
appliedTo reference), the option “allow for inter-model links” has to be activated in
the ATL execution engine before executing the model transformation.

Although the copier transformation is one of the simplest model transformations, it
illustrates the most important aspects of using EMF profiles in ATL transformations.
First, the profile application for the input model is queried in the input pattern (intro-
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1 module Ecore2Ejb;
2 create OM : Ecore, OM : EJB
3 from IM : Ecore, IM : EJB;
4
5 rule copyEClass {
6 from
7 class : Ecore!EClass,
8 bean : EJB!Bean (bean.appliedTo.includes(class))
9 to

10 class_c : Ecore!EClass (
11 name <− class.name
12 ),
13 bean_c : EJB!Bean (
14 appliedTo <− class_c,
15 capacity <− bean.capacity,
16 ...
17 )
18 }
19 ...

Listing 3 – Copier transformation for Ecore models with EBJ annotations (excerpt)

duced by the keyword from, cf. line 6 in Listing 3) of the copyEClass transformation
rule. This input pattern matches not only for an element of type EClass, but also
for an element of type Bean. Furthermore, the input pattern has a filter assigned
which is needed to check if the matched Bean stereotype application has been applied
on the matched EClass. Second, stereotype applications may be instantiated as for
example needed to produce a corresponding Bean stereotype application in the target
model for the copier transformation example. As can be seen in the output pattern
(introduced by the keyword to in line 9 in Listing 3) of the copyEClass transformation
rule, stereotypes are instantiated like standard metaclasses and the tagged values are
set as features of common metaclasses. The output pattern element class_c which
instantiates a metaclass is equally defined as the output pattern element bean_c which
actually instantiates the stereotype Bean. This small example illustrates that, for
transformation engineers, it makes no difference when an input model or output model
is actually a profile application.

EMF Profiles and One-(meta)model-only Technologies. If EMF-based tech-
nologies are not capable of processing multiple metamodels and models, they may
not be employed directly. However, there are still several ways to enable also using
such technologies. Basically, we therefore have to generate a new metamodel, which
combines the profile definition and the metamodel that is extended by the profile and
translate the annotated model and the stereotype applications to the newly generated
combined model. Ultimately, we obtain one model conforming to one metamodel,
which now can be processed by any EMF-based technology. Admittedly, this approach
has its disadvantages. Besides having to generate a new metamodel and translate
models before they can be processed, depending on the use case, we also might have to
worry about propagating changes among the generated model and the original model.

One very compelling alternative to the aforementioned technique is to employ
VirtualEMF [CJC11] for this task. Using this technology it is possible to compose
several models (e.g., the annotated model and the profile application model) into
one virtual model; that is, a composed view on multiple models. This virtual model
behaves just as a normal model. Thus, every EMF-based technology may be used to
process it. Another major advantage of this technology is that the virtual model may
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even be modified and the combined models are kept in sync.

6 Related Work

One alternative to profiles as an annotation mechanism is to use weaving models
(e.g., by using Modelink10 or the Atlas Model Weaver11 [FBJ+05, VdCFM10]). Model
weaving enables to compose different separated models, and thus, could be used to
compose a core model with a concern-specific information model in a non-invasive
manner. For instance, in [FGT+10] the Atlas Model Weaver has been applied to
represent automatically generated annotations for models by using transformations.
However, although weaving models are a powerful mechanism, manually annotating
models with weaving models is counter-intuitive. Since this is not the intended purpose
of weaving models, users cannot annotate models using their familiar environment
such as a diagramming editor which graphically visualizes the core model. Current
approaches only allow to create weaving models with specific tree-based editors in which
there is no different visualization of the core model and the annotated information.
Not least because of this, weaving models may quickly become very complex and
challenging to manage.

Recently, Kolovos et al. [KRDM+10] presented an approach called Model Deco-
rations addressing a very similar goal as EMF Profiles. Kolovos et al. proposed to
attach (or “decorate”) the additional information in terms of text fragments in GMF’s
diagram notes. To extract or inject the decorations from or into a model, hand-crafted
model transformations are employed which translate the text fragments in the notes
into a separate model and vice versa. Although their approach is very related to
ours, there also are major differences. First, for enabling the decoration of a model,
an extractor and injector transformation has to be manually developed which is not
necessary with EMF Profiles. Second, since Kolovos et al. exploit GMF notes, only
decorating GMF-based diagrams is possible. In contrast to our approach, models for
which no GMF editor is available cannot be annotated. Third, the annotations are
encoded in a textual format within the GMF notes. Consequently, typos or errors in
these textual annotations cannot be automatically identified and reported while they
are created by the user. Furthermore, users must be familiar with the textual syntax
as well as the decoration’s target metamodel (to which the extractor translates the
decorations) to correctly annotate a model. In EMF Profiles, stereotypes may only be
applied if they are actually applicable according to the profile definition and editing
the tagged values is guided by a form-based property sheet. Consequently, invalid
stereotype applications and tagged values can be largely avoided.

EMF Facet12, a spin-off of the MoDisco subproject [BCJM10] of Eclipse, is another
approach for non-intrusive extensions of Ecore-based metamodels. In particular, EMF
Facet allows to define additional derived classes and features which are computed from
already existing model elements by model queries expressed, e.g., in Java or OCL.
Compared to EMF Profiles, EMF Facet targets on complementary extension direction,
namely the dynamic extension of models with additional transient information derived
from queries. In contrast, EMF Profiles allow to add new (not only derived) information
and is able to persist this additional information in separate files. Nevertheless, the
combination of both complementary approaches is worth to be subject for future work.

10http://www.eclipse.org/gmt/epsilon/doc/modelink
11http://www.eclipse.org/gmt/amw
12http://www.eclipse.org/modeling/emft/facet
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For example, this would allow to automatically extend or complete models based on
EMF Facet queries and persist this information with EMF Profiles.

The concept of meta-packages has been proposed in [CESW04] for the lightweight
extension of the structural modeling language XCore which is based on packages,
classes, and attributes. New modeling concepts are defined by extending the base
elements of XCore and can be instantly used in the standard XCore editor. Compared
to meta-packages, EMF Profiles are more generic, because not only one modeling
language may be extended, but any Ecore-based modeling language.

Besides extensibility, we also discussed reusability aspects in this paper by intro-
ducing the notion of genericity for profiles. Genericity has been also subject for other
investigations in the area of model-driven engineering. In [dLG10], genericity has
been introduced for metamodels to define model simulators for a family of languages
sharing the same semantics. Another kind of generic in-place transformations has
been discussed in [MMBJ09]. In particular, the authors presented generic model
refactorings which can be reused for different metamodels sharing similar modeling
elements. Finally, generic out-place transformations have been proposed in [CGdL11]
for the model transformation language ATL. In contrast to these works, we are not
focusing in this paper on how to implement reusable transformations for generic
profiles. Instead, our aim is to define generic profiles which can be bound to and used
for concrete metamodels which have to fulfill some properties.

7 Conclusions and Future Work

In this paper, we adapted the notion of UML Profiles to the realm of DSMLs residing
in the Eclipse Modeling Framework. Using our prototype EMF Profiles, DSMLs may
be extended easily in a non-invasive manner by defining profiles in the same way as
done in UML tools. Therefore, we surveyed the UML standard concerning the profile
mechanism, as well as existing UML modeling tools. The results of this survey acted
as input for designing and developing EMF Profiles. The resulting design decisions in
EMF Profiles are clearly in line with the UML standard; however, some constraints
of UML profiles have been omitted consciously to increase the expressive power of
profiles. Moreover, we introduced two novel mechanisms, namely generic profiles and
meta profiles, for reusing defined profiles with several DSMLs. Although, the presented
approach has been presented based on EMF, the general procedure is also applicable
for other metamodeling frameworks which comprise a similar metalevel architecture
as EMF. Furthermore, the presented metalevel lifting strategies may also be adopted
for other scenarios in which model elements on M1 need to be instantiated.

We applied EMF Profiles successfully in the context of our model versioning system
AMOR13. In particular, we created and applied a change profile for annotating changes
performed on models. Moreover, we also used EMF Profiles for marking conflicts caused
by concurrent changes of the same model artifact using a conflict profile. Both profiles
have been defined as meta profiles to build change detection and conflict detection
components, which are generically applicable to all EMF-based modeling languages.

In the future, we plan to elaborate on more sophisticated restriction mechanisms
to allow constraining the application of stereotypes (e.g. with OCL conditions) and
composing several independent profiles which are not mutually complementary in
one profile application as proposed by [NGTS10]. A consistent mix of several profiles

13http://www.modelversioning.org
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requires a mechanism to specify conditions constraining applicability across more
than one profile. For instance, one may need to specify that a stereotype of profile A
may only be applied after a stereotype of profile B, holding a specific tagged value,
has been applied. Next, we plan to implement code generators for deriving a profile-
specific application programming interfaces (API) allowing to create, modify, and
access applications of a profile. So far, we only provide a generic API, which offers no
static type checking and which might be not as convenient to use as a dedicated API
generated for a specific profile. Furthermore, we aim at integrating EMF Profiles with
the EMF Facet project to combine their complementary features. Thereby, a synergy
of the extension mechanism of EMF Profiles for additional persisted information and
of EMF Facet‘s for derived information can be accomplished.

Last but not least, we want to explore how EMF Profiles fit into the scope of the
Metamodel Extension Facility request for proposal [OMGb] recently published by the
OMG.
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