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Abstract New programming languages supporting advanced modulariza-
tion mechanisms are often implemented as transformations to the im-
perative intermediate representation of an already established language.
But while their core constructs largely overlap in semantics, re-using the
corresponding transformations requires re-using their syntax as well; this
is limiting. In the ALIA4J approach, we identified dispatching as funda-
mental to most modularization mechanisms and provide a meta-model
of dispatching as a rich, extensible intermediate language. Based on this
meta-model, one can modularly implement the semantics of dispatching-
related constructs. From said constructs a single execution model can
then be derived which facilitates interpretation, bytecode generation, and
even optimized machine-code generation. We show the suitability of our
approach by mapping five popular languages to this meta-model and find
that most of their constructs are shared across multiple languages. We
furthermore present implementations of the three different execution strate-
gies together with a generic visual debugger available to any ALIA4J-based
language implementation. Intertwined with this paper is a tutorial-style
running example that illustrates our approach.

Keywords Dispatching mechanisms; multiple dispatching; predicate dis-
patching; pointcut-advice; advanced dispatching; modular language imple-
mentation; virtual machines; just-in-time compilation; debugging

1 Introduction
To increase the modularity of programs, research in the field of programming languages
has introduced different abstraction mechanisms, where one concrete program module
does not refer to another concrete module, but only abstractly specifies the functionality
or data to be used. The mechanisms for resolving such abstract references at runtime
are manifold; they include traditional receiver-type polymorphism and reach up to,
e.g., multiple and predicate dispatching [CC99], pointcut-advice in aspect-oriented
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programming [MK03], or layered methods in context-oriented programming [HCN08].
While many of these language mechanisms overlap in their execution semantics, they
typically differ syntactically. Compiler frameworks [EH07, ACH+06], alas, only support
re-using the implementation of a language’s execution semantics if that language is
extended syntactically.

1.1 Background & Terminology
Dispatching is the process of resolving abstractions and binding concrete functionality
to their usage. In the following, we thus use the term dispatch site for those locations
in a program that refer to an abstraction. Consequently, dispatch happens whenever
such code locations are executed. We call this execution join point, a term borrowed
from aspect-oriented programming. A well-known example of dispatching is receiver-
type polymorphism: Its dispatch sites are method call sites, with dispatch choosing
the applicable method implementation based on the dynamic type of the receiver
object. We call languages that go beyond such classic receiver-type polymorphism
advanced-dispatching languages, as they compose functionality in different, more
powerful ways (e.g., before/after advice) and can act on additional runtime state (e.g.,
argument values/types).

We have identified advanced dispatching as the mechanism suitable to express
the majority of language constructs for increased modularity [BHM06]. However,
dispatching is a dynamic process; thus, mechanisms that aim at modularly extending
the static program structure cannot be satisfactorily realized with it. For example,
AspectJ’s inter-type declarations can influence the type hierarchy, e.g., by adding
interfaces, methods, and fields to a class. While the dynamic semantics of these
constructs, namely executing the added methods or accessing the added fields, can be
phrased as dispatch, their static semantics cannot; adding an interface changes the
type hierarchy and, thus, also impacts the language’s type system and the compiler’s
type checker. Whether this impact may be mitigated by making type checkers aware
of advanced dispatching is beyond the scope of this paper.

The implementation of any programming language, advanced-dispatching or not,
typically consists of two parts, a front-end and a back-end, which are decoupled by
means of an intermediate language. The front-end processes source code and compiles
it into the intermediate language. The back-end either executes this intermediate
representation (IR) directly or further compiles it into a machine-executable form.

1.2 Problem Statement
Typically, implementations of new languages build on the back-ends of already es-
tablished languages, thereby re-using the implementation of the constructs in that
intermediate language. But not all constructs of the new languages have a trivial
mapping to the established intermediate language (e.g., Java bytecode), which was
tailored to a different source language (e.g., Java). The resulting semantic gap between
source and intermediate language, i.e., the inability of the intermediate language to
directly express the new language’s mechanisms, requires compiling that language’s
high-level concepts down to low-level imperative code.

Compiler frameworks assist in this task, and even enable to re-use the non-trivial
code generation for language constructs that have no direct counterpart in the target
intermediate language. But this re-use requires the new language to be a syntactic
extension of an existing one. Moreover, while code transformations defined on the
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common intermediate language are shared among all language extensions, they cannot
exploit knowledge about new source language constructs; this knowledge is invariably
lost during the transformation to the intermediate language. This implies that, while
re-use of existing tools like debuggers is possible due the re-use of the intermediate
language, the tools’ usefulness is greatly reduced. The developer has to observe the
program execution in terms of the generated, imperative code in the intermediate
language rather than in terms of the new language’s source-level abstractions.

1.3 Our Contribution
In this article, we present the ALIA4J approach1 for implementing advanced-dispatching
languages. It offers a meta-model consisting of just a small number of well-defined,
language-independent abstractions commonly found in advanced-dispatching languages.
This meta-model acts as a declarative intermediate language for dispatching-related
constructs and removes the existing semantic gap between such source languages and
the intermediate language. During language design and implementation, the meta-
model has to be extended with the concrete constructs or sub-constructs used in a
language. This allows re-using the resulting implementation of a construct’s execution
semantics without constraining the syntax by which a language exposes this construct.
The same is true for any intermediate language: The execution environment of the
intermediate language can be re-used without any constraints on the syntax of the
source language. The novelty in our approach is the declarativeness of the intermediate
language, its dedication to advanced dispatching, and its extensibility. Extensions
of the language-independent meta-model can handle intermediate representations in
terms of the language-independent meta-model and, conversely, implementations of
such extensions do not depend on the execution environment.

To execute code defined in the intermediate language, we provide several back-ends,
including platform-independent ones. These back-ends instantiate a framework that
automatically derives an execution model from the advanced-dispatch’s intermediate
representation, acting as Meta-Object Protocol (MOP) of advanced dispatching. As the
MOP retains the IR’s declarative nature, the back-end is free to chose from different
execution strategies, ranging from interpretation to (machine) code generation. Fur-
thermore, it makes implementing tools and analyses for compiled advanced-dispatching
programs viable, as we will show by a debugger for advanced-dispatching languages.

The goal of ALIA4J is to ease the burden of programming-language implementation
resting upon researchers of new abstraction mechanisms; also several domain-specific
programming languages can be mapped to a dispatching problem. It should be noted,
however, that our approach is only concerned with the execution semantics of the
different mechanisms and languages. It imposes no limits on how language researchers
and designers can use or combine language (sub-)constructs.

The contributions of this work are as follows:

1. We introduce advanced-dispatching as a declarative yet expressive execution
model.

2. We provide a meta-model for advanced dispatching, whose generality and re-
usability we show by refining it for AspectJ [KHH+01], CaesarJ [AGMO06],
JPred [MFRW09], Compose* [dRHH+08] as well as for several domain-specific
languages including ConSpec [AN08].

1The Advanced-dispatching Language Implementation Architecture for Java. See http://www.
alia4j.org/.
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3. For executing the advanced-dispatching IR, we provide a framework implementing
common work flows. We demonstrate that it supports execution in terms of
interpretation and (machine) code generation by providing three back-ends based
on different execution strategies: NOIRIn, SiRIn, and SteamloomALIA.

4. We provide a graphical debugger for programs using our meta-model as IR. This
debugger helps to observe the execution of advanced dispatch and to localize all
constructs in the source code that influence it.

1.4 Structure & Previous Work
The next section introduces a tutorial-style running example, whose subsequent parts
are inter-woven with the remainder of this article. Section 3 then fully describes the
ALIA4J approach, including the meta-model and framework, and Section 4 takes an
in-depth look at ALIA4J’s meta-object protocol. Both meta-model and framework
are evaluated in Section 5. The generic debugger for advanced-dispatching languages
is presented in Section 6. Section 7 discusses related work before Section 8 concludes.

This article is an extension of papers on ALIA4J presented at TOOLS ’11 [BSMA11]
and VMIL ’11 [BSZ11]. Section 6, which describes the ALIA4J-based debugger, both
summarizes and generalizes a paper presented at MODULARITY:aosd ’12 [YBA12].
The tutorial presented in this article is completely new. Sections 3, 4 and 7 are
significantly extended over prior publications.

2 Running Example
To illustrate how the ALIA4J approach works in practice, we present, inter-woven
with the main matter of the article, a tutorial-style running example. For easy access,
the different parts of this tutorial are marked with a vertical bar in the margin.

Tutorial part I – Introduction

In this tutorial, we will design and (partially) implement a small extension to Java
that declaratively realizes the Decorator design pattern. In this pattern, a so-called
decorator object is associated with a decoratee object, with both objects being instances
of a common supertype. Whenever the user invokes a method from the common
supertype on the decorator, the decorator can execute its own behavior and also
forward the call to the decoratee. The Writer from the java.io library is an excellent
example of this:

1 Writer decoratee = new FileWriter(". . . ");
2 Writer decorator = new BufferedWriter(decoratee);
3 // Perform I/O
4 decoratee.close(); // Issue: Does not flush the decorator’s buffer.

However, the above example also highlights a well-known issue with the Decorator
pattern: The decoratee remains an autonomous object. It is thus possible to acciden-
tally bypass its decorator (Line 4), which then cannot execute its own behavior, e.g.,
flushing its buffer. The language designed in this tutorial fixes this issue by redirecting
calls, if necessary, to the decorator; accidental mis-use becomes impossible.

The language’s semantics is based on four assumptions: (1) There exist both a
decorator class and a decoratee class whose objects may play the role of decorator and
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decoratee, respectively. A decoratee class can be associated with multiple decorator
classes. (2) One decoratee object can have at most one direct decorator object, which
is an instance of one of the decorator classes associated with the decoratee’s class.
However, a decorator object can itself be decorated, i.e., play the decorator role and the
decoratee role at the same time; thus, decorators can be stacked. (3) The relationship
between a decorator object and a decoratee object is established by a decorating
constructor, i.e., a constructor of the decorator class which takes an instance of the
decoratee class as argument. (4) Only the decorator object is allowed to directly call
operations on the decoratee object.

For implementing the language design according to the above assumptions we
need runtime support with three distinct responsibilities: The runtime maintains a
mapping from decoratee to decorator classes, it maintains a mapping from decoratee to
decorator objects that is updated whenever a new decoratee-decorator relationship is
established, and it redirects calls of operations on a decoratee to its decorator—unless
the operation is called by the decorator itself. We can thus rephrase the above example:

1 DecoratorRuntime.enforce(FileWriter.class, BufferedWriter.class);
2 Writer decoratee = new FileWriter(". . . ");
3 Writer decorator = new BufferedWriter(decoratee);
4 // Perform I/O
5 decoratee.close(); // Issue fixed: Call redirected to decorator.

The remainder of this tutorial outlines how to first prototypically implement this
language extension and then optimize its execution.

3 The ALIA4J Architecture
The ALIA4J architecture realizes our approach to implementing programming lan-
guages with advanced dispatching. At its core, it contains a meta-model of advanced dis-
patching declarations, called LIAM,2 and a framework for execution environments that
handle these declarations, called FIAL.3 LIAM hereby defines a language-independent
meta-model of concepts relevant for dispatching. For example, dispatch may be ruled
by predicates which depend on values in the dynamic context of the dispatch. When
mapping the concrete advanced-dispatching concepts of an actual programming lan-
guages to it, LIAM either has to be refined with the language-specific semantics or
suitable, existing refinements have to be re-used. FIAL defines workflows common to
all execution environments able to execute a LIAM-based intermediate representation.
In the following two sub-sections, we will discuss both LIAM and FIAL in detail.

But first, we will present ALIA4J’s overall architecture, as shown in Figure 1, and
illustrate the relationships between its components by outlining the flow of compilation
and execution of applications on top of an ALIA4J-based language implementation:
First, the compiler processes the application’s source code; it produces an intermediate
representation ¬ for the advanced dispatching declarations in the program based on
the refined subclasses  of the LIAM meta-entities ®. Moreover, it also produces Java
bytecode ¯ for the program parts not using advanced dispatching. Then, at runtime,

2The Language-Independent Advanced-dispatching Meta-model. See http://www.alia4j.org/
alia4j-liam/.

3The Framework for Implementing Advanced-dispatching Languages. See http://www.alia4j.
org/alia4j-fial/.
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Figure 1 – Components and artifacts in an ALIA4J-based language implementations.

AttachmentPrecedenceRule CompositionRule

Action Specialization ScheduleInfo

Context Predicate Pattern

AtomicPredicate

2..*

2..*

1..*

* 0..1

*
* 0..1

0..2

Figure 2 – The LIAM meta-model of advanced dispatching.

both LIAM-based IR and bytecode are passed to a concrete JVM extension ° and
thereafter handled by the FIAL framework itself ±. Note that this JVM extension
can be implemented in a variety of ways, e.g., as a light-weight VM plug-in (NOIRIn,
SiRIn) using standard APIs like java.lang.instrument or JVMTI offered by production
JVMs, or as a more heavy-weight modification of a particular JVM (SteamloomALIA).
We discuss and evaluate the three JVM extensions in Sections 4 and 5.2, respectively.

3.1 A Meta-Model of Advanced-Dispatching
The meta-entities of LIAM capture the core concepts underlying the various dispatching
mechanisms, but at a finer granularity than commonly found in the source languages;
one concrete concept often maps to a combination of concepts in LIAM. This facilitates
mapping diverse mechanisms to just a handful of LIAM entities; re-use of meta-entities
between different language mappings increases as well.

LIAM’s meta-entities, shown in Figure 2, are implemented as plain Java classes,
some of which are abstract. The entities Attachment, Specialization, and Predicate
simply group meta-model entities and cannot be refined. In the following, we will
explain the meta-entities in a bottom-up fashion, all the way to Attachment, and
illustrate them with example refinements (not shown in Figure 2).

Pattern Each dispatch site, e.g., field access or method call site, has a signature,
These signatures can be quantified over by means of LIAM’s Patterns. As one can
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model the majority of advanced-dispatching languages using just five kinds of dispatch
sites (calling a method, constructor, or static initializer, and reading or writing
a field), LIAM offers five predefined subclasses of Pattern. While many pointcut-
advice languages [Nag06, Chapter 2] support such pattern-based quantification, other
advanced-dispatching languages typically use trivial patterns without wildcards; i.e.,
the used patterns correspond to exactly one signature.

Context Dynamic dispatch is context-dependent. In LIAM, the Context meta-entity
models this dependence on runtime values: Its refinements embody different kinds of val-
ues that are available during dispatch, e.g., a single argument (ArgumentContext) or the
receiver object (CalleeContext). Context entities can also model values that are derived
from other values, e.g., the reification of an AspectJ join point (ThisJoinPointContext)
accessible through the thisJoinPoint keyword, which aggregates various values like
the caller, callee, and arguments, all of which are modeled by contexts of their own.

Atomic Predicate During dispatch, the current context can not only be exposed,
but also be subjected to tests. In LIAM, the Atomic-Predicate meta-entity models
a single such test parameterized with Contexts specifying the values to test. For
example, a dynamic type check (InstanceofPredicate) parameterized with an argument
of a call (ArgumentContext) models multiple dispatching.

Predicate Since dispatch predicates in the investigated languages can be arbitrarily
complex, LIAM also provides composite Predicates, which are trees whose inner
nodes are either conjunctions (AndPredicate) or disjunctions (OrPredicate) and whose
leafs (LeafPredicate) are either labeled with an Atomic Predicate or its negation. Every
predicate is thus a Boolean formula in negation normal form.

Action Once all predicates have been evaluated, actions need to be performed. LIAM
models the dispatch’s targets as collections of Action meta-entities, which are e.g.,
calling an individual method (MethodCallAction) or raising an exception (ThrowAction).

Specialization The Specialization meta-entity selects specific calls by associating a
Pattern with a Predicate. It also declares, as a list of Contexts, which runtime values
must be exposed to Actions at selected join points. An AspectJ pointcut corresponds
to a collection of Specializations which together match all join points selected by the
pointcut. Predicate dispatching is modeled using one Specialization per predicate. A
JPred when clause [MFRW09] then corresponds to the Specialization’s predicate.

Attachment and Schedule Information A collection of Specializations is associ-
ated with an Action by the Attachment meta-entity. Whenever both the Pattern and
the Predicate of a Specialization match, the context values specified by the respective
Specialization are passed to the Action as arguments. An Attachment’s associated
Schedule Information meta-entity describes when the Action is to be executed. This
corresponds to AspectJ’s before, after and around keywords.

Precedence Rule and Composition Rule LIAM allows to control the execution
order of Actions that are together applicable at the join point by means of the
Precedence Rule meta-entity. By such rules, a partial order among Attachments
is defined which carries over to the associated Actions at shared join points. The
Composition Rule meta-entity can be used to define overriding relationships and
constraints for jointly executed Actions in a similar way.
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Tutorial part II – The Meta-Model

Armed with knowledge about LIAM, we can now model the redirection of calls
from decoratee to decorator (cf. part I of the tutorial) with one Attachment for each
operation we want to redirect. Below, we show the common structure of all redirection
Attachments by the example of the close method. Individual Attachments only differ
in the intercepted method (printed in gray) and the reified method arguments; as close
takes no arguments, there are none in the example.

These Attachments are created and deployed when a new decoratee-decorator
relationship is established, i.e., when the decoratee object is passed to the decorator’s
constructor. This process will be shown in part III of the tutorial.

: Attachment

: MethodCallAction
pattern="Writer+.close()" : Specialization : ScheduleInfo

time = AROUND

: DecoratorContext : AndPredicate
: MethodPattern

pattern="Writer+.close()"

: CalleeContext
: LeafPredicate
negated = true

: LeafPredicate
negated = false

: FromDecoratorPredicate : IsDecoratedPredicate: CallerContext

¬



®

Each Attachment’s sole MethodPattern ¬, shown in AspectJ-like syntax, selects all
calls to the method to be redirected, e.g., to all zero-argument methods named close
belonging to the type Writer or any subtype thereof (denoted by +). The action to be
performed at selected dispatch sites, specified by the MethodCallAction , is to call
the method with the same name and signature on the associated decorator object,
specified by the DecoratorContext ®. Any arguments, of which close happens to have
none, would be specified just like the receiver with a Context of their own.

Beyond general-purpose LIAM entities there are several that are specific to our lan-
guage extension: DecoratorContext, IsDecoratedPredicate, and FromDecoratorPredicate.
These allow us to model that the redirection should target the associated decorator ob-
ject (DecoratorContext) if the original receiver is indeed decorated (IsDecoratedPredicate)
and we are not dealing with a call made by the decorator itself (FromDecoratorPredicate);
such calls should obviously not be redirected.

3.2 A Framework for Implementing Advanced-Dispatching Languages
FIAL defines several common components needed by any execution environment
that uses a LIAM-based intermediate representation. Figure 3 illustrates FIAL’s
abstract components and their concrete implementations in a JVM extension. Both
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Figure 3 – Abstract and concrete components in FIAL and JVM extensions, as well as the
flow (thick arrows) of code representations (chamfered boxes).

communicate through a shared first-class representation of the dispatch sites in the
program: Extended JVMs have to create such a representation for every dispatch
site encountered in the program under execution. FIAL constructs the dispatch site’s
execution model and stores it in the shared dispatch-site representation. The execution
model is based on LIAM entities and acts as meta-object protocol (cf. Section 4). The
following paragraphs explain FIAL’s central components and common workflows.

System The system component is a Singleton used throughout FIAL and JVM
extensions for managing deployment and undeployment of Attachments. When classes
are loaded at runtime through Java’s dynamic class loading, the JVM extension has
to provide FIAL with DispatchSite objects identifying the dispatch sites contained
therein. At class loading, the System scans all previously deployed Attachments and
matches their Patterns against the newly available dispatch sites. When a Pattern
matches a dispatch site FIAL attaches the Action, Predicate and Contexts associated
with the pattern to that site. At deployment of an Attachment, the System likewise
identifies which of the already-loaded dispatch sites are affected and modifies them
accordingly; at undeployment, the corresponding Action, Predicate and Contexts are
removed from the dispatch site. After either deployment or undeployment, the JVM
extension is notified which dispatch sites have been affected. Execution environments
that do code generation for dispatch sites can thus (re-)generate the affected code.
The dynamic deployment of ALIA4J supports language mechanisms like the dynamic
aspect deployment of CaesarJ [AGMO06] or JAsCo [SVJ03], or behavioral reflection
as found in Smalltalk or Reflex [TT06].

Tutorial part III – Deployment

The Attachments for forwarding method calls from the decoratee object to the decorator
object, created as explained in part II of the tutorial, do not take effect until they are
deployed. According to the semantics of our Decorator-enforcing DSL (cf. part I of the
tutorial) forwarding must be performed after a decorating constructor of the decorator
class has been called. With ALIA4J, we can implement these semantics by defining an
Attachment whose Action is executed after a decorating constructor has been called.
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The two values exposed to the Action must be the newly created object (the decorator
object) and the decorating constructor’s argument (the decoratee object).

For brevity, we leave out the definition of this Attachment and only show the code
of the Action that ultimately gets performed. Its perform method (lines 2–9) takes the
decorator object and the decoratee object as arguments. It passes the pair of these
objects to the DecoratorRuntime to establish their relationship which can be queried
as will be shown in part V of the tutorial. Afterward, it creates new Attachments
that describe the forwarding and passes them to the deploy method (line 8) of FIAL’s
System class; from then on, the Attachments are active and all calls bypassing the
decorator are automatically forwarded to the decorator.

1 class DecorateAction extends Action {
2 public void perform(Object decorator, Object decoratee) {
3 DecoratorRuntime.establish(decoratee, decorator);
4 Attachment[] attachments =
5 new Attachment[/∗ number of decoratee methods ∗/];
6 for (int i = 0; i < /∗ number of decoratee methods ∗/; i++)
7 Attachment[i] = // create Attachment as shown in previous tutorial part
8 org.alia4j.fial.System.deploy(attachments);
9 } }

Factory The factory component used to create LIAM entities is also a Singleton
that interfaces with JVM extensions as well as with clients. As it follows the Abstract
Factory design pattern, the implementer of the JVM extension can replace the concrete
factory to be used without affecting any client. This way, one can ensure the consistent
usage of LIAM entity implementations which exploit low-level APIs of the extended
JVM to execute more efficiently than the default implementation (cf. Section 4).
This pattern must also be followed whenever a LIAM-based language implementation
introduces additional concrete entities.

Importers FIAL provides a call-back that is triggered right before the JVM starts
the application. Language developers can thus implement and register a call-back in
order to define and deploy Attachments according to the semantics of the implemented
language. In particular, the call-back can be used to integrate legacy language front-
ends that generate a proprietary intermediate representation of advanced-dispatching
concepts, which can then be transformed to the LIAM-based intermediate representa-
tion by the importer. We have implemented two such importers: one for the AspectJ
language that processes bytecode and the annotations added by the AspectJ compiler,
and one for the ConSpec language [AN08] that directly processes ConSpec source code.
The language developer is thus flexible with respect to the importer’s inputs.

Tutorial part IV – Importer

Explicitly instructing the runtime to enforce the Decorator pattern (cf. part I of
the tutorial) is cumbersome; a better solution is a language extension. As our case
study is simple, so is the resulting language: a single annotation (@Decorates).

1 @Decorates(Writer.class)
2 class BufferedWriter extends Writer {
3 BufferedWriter(Writer writer) { . . . }
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4 void close() { . . . }
5 . . .
6 }

The Java Development Kit provides the Annotation Processing Tool; an Anno-
tation Processor can be implemented for this tool to ensure the correct usage of
the annotation, e.g., whether an appropriate constructor is defined. Furthermore,
the Annotation Processor can write a summary file listing all relationships between
decoratee and decorator classes. Upon import, this summary is then turned into a
runtime representation:

1 class DecoratorImporter implements Importer {
2 void performImport() {
3 Map<String, String> decorator2Decoratee = process(
4 getClass().getClassLoader().getResourceAsStream("relations.summary"));
5 // Populate decorator2Decoratee mapping
6 for (String decorator : decorator2Decoratee.keySet())
7 DecoratorRuntime.enforce(
8 systemClassLoader.loadClass(decorator),
9 systemClassLoader.loadClass(decorator2Decoratee.get(decorator)));
10 } }

When triggered to execute, our importer picks up the summary file from the
application’s class path (Line 4) and extracts the persisted relationships. It then
simply instructs the runtime to create and deploy the necessary Attachments (Line 7).

4 Implementations of ALIA4J’s Meta-Object Protocol
From all deployed Attachments, FIAL creates an execution model for each dispatch site
in the program. The execution model of a dispatch site combines the Predicates, Actions
and Contexts associated with a Pattern that matches the signature of the dispatch
site. It has the form of a dispatch function [CC99] determined by the evaluation of
the Atomic Predicates jointly occurring in the dispatch site’s Predicates. The result
of evaluating the dispatch function is an ordered tree of Actions to execute, which is
derived by FIAL from three LIAM entities: Schedule Information, Precedence Rule,
and Composition Rule [BMAK11]. The Actions at each level have to be executed
sequentially; Actions associated with an around Schedule Information may have
children which are executed when the around Action proceeds. This is to accommodate
the around Advice found in AspectJ and other aspect-oriented languages.

To represent dispatch functions, FIAL uses binary decision diagrams (BDDs) [Bry86].
They provide an explicit evaluation strategy and can be directly transformed into a
branching program, which enables FIAL to generically perform optimizations on the
execution model [SBM08]: Each Atomic Predicate will be tested at most once even if
used by multiple Predicates; dispatch is redundancy-free. FIAL also automatically
optimizes the evaluation strategy with respect to its average runtime cost.

Testing all predicates before performing any action is only possible under two
assumptions: The tests are side-effect-free and their outcome is not influenced by the
actions to be performed. These assumptions are trivially true for multiple dispatching,
but often also hold for predicate dispatching [EKC98] and advice dispatching [SBM08].

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a7


12 · Christoph Bockisch et al.

Moreover, we have preliminary results in improving our execution model to take action-
induced changes of context values into account by splitting the dispatch function into
several BDDs whose evaluation is then intertwined with action execution. Further
details about this are subject to future work.

The declarative execution model fully describes the semantics of dispatch sites
in terms of first-class objects, the LIAM entities, which can be introspected and
modified (by deploying and undeploying Attachments) by the application program.
It thus forms a meta-object protocol (MOP) defining the control flow and data flow
of evaluating the LIAM entities which comprise the execution model. This protocol
may be implemented differently by different JVM extensions; we have explored
implementation strategies based on interpretation, bytecode generation and just-
in-time (JIT) compilation. Thus, ALIA4J’s MOP is a runtime MOP and a (JIT)
compile-time MOP.

The language developer is free to use any level of MOP by choosing among the
three strategies when implementing the language’s semantics through refined LIAM
classes. The JVM extension will then pick the lowest-level implementation which
is provided by the LIAM entity in question and supported by the JVM extension
itself,4 working under the assumption that the lowest-level implementation performs
the most effective optimizations. It is not necessary, however, to provide a complex,
low-level implementation if it does not improve performance over plain interpretation
or if performance is not an issue. LIAM entities implemented using different strategies
can freely be mixed at runtime.

4.1 The Runtime MOP in NOIRIn
NOIRIn5 is a fully portable JVM extension implemented using the java.lang.instrument
API. Using the ASM bytecode engineering library,6 it replaces every dispatch site
in the program with an invocation of a call-back method. When this call-back is
invoked, NOIRIn retrieves the execution model associated with the dispatch site in
question and interprets it by traversing the execution model’s object structure and
evaluating every LIAM entity it encounters. For ALIA4J’s runtime MOP it is required
that each LIAM entity implements a method taking all context values it requires as
arguments and returning the evaluation result. While the method name is subject to
a naming convention that depends on the entity type, for simplicity we refer to is as
the “compute” method throughout this article.

To evaluate a LIAM entity, first, all Context entities it depends on must be
evaluated. Next, the “compute” method is invoked passing the result values from
the previous step as arguments. During the evaluation of the dispatch function, the
traversal of the BDD depends on the boolean value returned by the interpretation of
the Atomic Predicates’ own “compute” methods.

Tutorial part V – Runtime MOP

Of the LIAM entities specific to our small language extension, we show how
a language designer can implement the FromDecoratorPredicate in plain Java (the

4Some JVM extensions may not support the bytecode-generation or JIT-compilation strategies.
5The Non-Optimizing Interpretation-based Reference Implementation. See http://www.alia4j.

org/alia4j-noirin/.
6See http://asm.ow2.org/.
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others are even simpler) in the listing below. The predicate’s implementation de-
clares (Lines 3–4) that its evaluation depends both on the caller (CallerContext) and
the callee (CalleeContext). Using the runtime’s decoratee-to-decorator mapping the
predicate can trivially compute whether the caller is the callee’s decorator (Line 7).

1 class FromDecoratorPredicate extends AtomicPredicate {
2 FromDecoratorPredicate() {
3 super(ContextFactory.findOrCreateCallerContext(),
4 ContextFactory.findOrCreateCalleeContext());
5 }
6 public boolean isSatisfied(Object caller, Object callee) {
7 return caller == DecoratorRuntime.mapDecoratee2Decorator(callee);
8 } }

4.2 The Compile-Time MOP in SiRIn
Like NOIRIn, SiRIn7 is a fully portable JVM extension implemented using the
java.lang.instrument API. Through ASM-based bytecode transformation, it wraps
dispatch sites into special methods; each dispatch site in the original program is trans-
formed into a statically-bound call to a site method containing the actual dispatch logic.
This clean separation between base program and dispatch logic has two advantages:
It makes the runtime values available during dispatch explicit as arguments to the site
method and it allows for straight-forward code generation.

Note that this separation between base program and dispatch logic does not incur
a performance penalty, because modern JVMs inline small, statically-bound methods
like the wrapped dispatch sites. Within these site methods, however, using the code
generation strategy implied by the runtime MOP does incur a performance penalty
for many fundamental entities (e.g., CalleeContext, ArgumentContext) which perform
little if any computation but, e.g., simply load an argument value. Especially for those
entities bytecode generation strategies are obviously more efficient than a reflectively
implemented “compute” method. In fact, often bytecode can be generated which is
equivalent to code a Java compiler would generate for the selfsame functionality.

SiRIn therefore offers a compile-time MOP. In this MOP, SiRIn passes a description
of the syntactic context in which the dispatch takes place to a dedicated bytecode-
building method. This method can then use the information together with a simple,
assembler-like interface to generate Java bytecode. In particular, the method has full
control over when and whether depended-upon context values are computed, as such
computations are often only necessary in some rather than all syntactic contexts.

Tutorial part VI – Compile-Time MOP

For the language-specific LIAM entities, explicit bytecode generation offers few
optimization opportunities. Thus, in this tutorial, we refrain from demonstrating an
implementation using the compile-time MOP; SiRIn will simply rely on the plain Java
implementations presented in part V of the tutorial.

7The Site-based Reference Implementation. See http://www.alia4j.org/alia4j-sirin/.
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4.3 The JIT Compile-Time MOP in SteamloomALIA

SteamloomALIA is an extension of the Jikes Research VM (RVM) [AAB+05], a high-
performance Java VM. Like SiRIn, SteamloomALIA wraps dispatch sites into special
method-like constructs. Also SteamloomALIA allows LIAM entities to make use of
the compile-time MOP, as described in the previous subsection. In addition, Steam-
loomALIA can bypass bytecode generation for LIAM entities and directly generate
native machine code for them, using one of the two JIT compilers of the Jikes RVM,
the baseline compiler and the optimizing compiler.

Both compilers are exposed through the JIT compile-time MOP offered by Steam-
loomALIA. In it, a machine-code building method gets passed a description of the
current JIT compilation context. This includes not only all the syntactic information
about the currently compiled dispatch but also, in the case of the optimizing compiler,
additional information about the chain of calls leading to the dispatch in question.

Tutorial part VII – Just-in-Time Compile Time MOP

According to our requirements analysis in part I of the tutorial, each object has at
most one directly associated decorator object, a mapping which is so far maintained
by the DecoratorRuntime. One possible optimization is to allocate a dedicated field
in instances of a decoratee class to store the reference to the decorator object, if any.
LIAM entities that query the mapping, e.g., FromDecoratorPredicate, simply look up
the decorator in that field.

This optimization is not possible in a portable fashion, as it affects the object layout,
If one is willing to directly interact with a specific execution environment, however, one
can perform such an optimization—as well as others beyond what is possible within
the limits of Java bytecode. We thus implement the JITSupport interface specific to
SteamloomALIA and the Jikes RVM’s two JIT compilers.

For Jikes RVM’s so-called baseline compiler we make use of the fact that the flags
set upon comparing the addresses of the caller and the callee’s decorator can be loaded
into a register. Properly masked, the Zero Flag, which indicates equality, can be
directly treated as the predicate’s result; no branching is required.

1 class FromDecoratorPredicate extends AtomicPredicate implements JITSupport {
2 public void generateBaselineIR(Assembler asm) {
3 // Load context value
4 asm.emitPOP_Reg(T0);
5 // Load field value into T0 and compare with context value at 0(SP)
6 asm.emitMOV_Reg_RegDisp(T0, T0, decoratorField.getOffset());
7 asm.emitCMP_Reg_RegDisp(T0, SP, Offset.zero());
8 // Extract Zero Flag and store it at 0(SP)
9 asm.emitLAHF();
10 asm.emitAND_Reg_Imm(EAX, ZERO_FLAG_BITMASK);
11 asm.emitMOV_RegDisp_Reg(SP, Offset.zero(), EAX);
12 } }

For Jikes RVM’s optimizing compiler we instead make use of the INT_COND_MOVE
instruction part of the JIT’s intermediate-instruction set; the result is set to 1 (true)
if decorator and caller are identical and to 0 (false) otherwise. Again, no expensive
branching is required.
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1 class FromDecoratorPredicate extends AtomicPredicate implements JITSupport {
2 public void generateHIR(BC2IR asm, GenerationContext gc) {
3 Operand callee = asm.popRef();
4 Operand caller = asm.popRef();
5 RegisterOperand decorator = createObjectTemporary();
6 asm.appendInstruction(GetField.create(GETFIELD,
7 decorator, callee, new AddressConstantOperand(decoratorField.getOffset()),
8 new LocationOperand(decoratorFieldRef), . . . ));
9 RegisterOperand result = createBooleanTemporary();
10 asm.appendInstruction(CondMove.create(INT_COND_MOVE,
11 result, decorator.copyD2U(), caller, EQUAL,
12 new IntConstantOperand(1), new IntConstantOperand(0)));
13 asm.push(result.copyD2U());
14 } }

5 Evaluation
We evaluate the ALIA4J approach on two levels: First, we investigate LIAM’s ability
to realize new as well as existing languages and the degree of re-use facilitated by our
approach. Second, we show the independence of both FIAL and our execution model
of a concrete environment’s execution strategy.

5.1 Evaluation of LIAM
LIAM strives to be extensible where necessary and to allow for re-use where possible.
With these goals in mind, we have evaluated LIAM in two distinct scenarios: First,
we have refined LIAM ourselves with the concrete language sub-constructs found in
several existing languages with very different philosophies of modularization (AspectJ,
CaesarJ, Compose*, JPred, and ConSpec) [BSMA11]. Second, we have asked students
to implement a domain-specific language (DSL) of their own choosing.

5.1.1 Existing (General-Purpose) Languages
To evaluate LIAM’s applicability “in the large,” we implemented refined meta-models
for various advanced-dispatching languages. We have also implemented a further,
prototypical refinement supporting the ConSpec language [AN08], which is not an
advanced-dispatching language as such but rather a language for policy enforcement.

Table 1 shows the different concrete entities we implemented while mapping the
different languages (AspectJ, CaesarJ, JPred, Compose*, and ConSpec) to LIAM, as
well as their usage in the different language mappings. Although the entities for the
CaesarJ language are a superset of those for AspectJ, Table 1 considers AspectJ and
CaesarJ separate languages; the way the entities are used in CaesarJ is sometimes
very different from their use in AspectJ. In particular, CaesarJ supports scoped and
dynamic deployment, which requires the dynamic creation of mutated Attachments
and a mapping between CaesarJ’s and FIAL’s deployment APIs.

Figure 4 summarizes re-use of entities by means of a Venn diagram showing the
overlap in the usage of LIAM entities by four different languages; AspectJ is not
shown here because it uses the same entities as CaesarJ. In the Venn diagram, we only
consider entities that are non-trivial and explicitly used by the languages’ importer, i.e.,
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Figure 4 – Venn diagram showing the usage of context entities by four language mappings.

those marked X in Table 1. The diagram shows that 21 of the 28 implemented entities
are used by more than one language mapping; of those, seven entities are shared among
three languages. The five entities that are shared among all considered languages
characterize traditional receiver-type polymorphism and multiple dispatching.

We would like to emphasize, though, that these languages may still differ signifi-
cantly, even though their execution is based on the same building blocks. In particular,
each language defines its own restrictions and provides its own guarantees. JPred, e.g.,
can guarantee that at each call exactly one method implementation is applicable, an
assumption that does not hold in Compose* at all. But this highlights the flexibility of
our approach, which does not make any assumptions on the characteristics of dispatch
and is thus able to realize languages that fundamentally differ in some respects.

Note furthermore that some of the discussed languages extend Java with mech-
anisms other than advanced dispatching; AspectJ, e.g., adds so-called inter-type
declarations. While we have already mapped inter-type member declarations to LIAM,
i.e., to advanced dispatching, other mechanisms are out of scope for an architecture
focusing on advanced dispatching.

5.1.2 Newly-designed DSLs
We asked 22 students,8 in groups of two or three, to develop prototypes of domain-
specific languages embedded into Java. Save for the choice of Java as a foundation,
the students’ designs were unconstrained and consequently covered a broad range of
domains: declarative definition of debugging activities, annotation-defined method-
level transactions, asynchronous Future-based inter-thread communication, runtime
model checking, as well as authentication and authorization.

All language prototypes could be implemented by re-using the LIAM entity im-
plementations developed in the aforementioned case studies (cf. Table 1), which are
shipped with ALIA4J. This serves as evidence that those predefined entities already
cover many use cases and makes the ALIA4J approach an attractive proposition for

8All students participated in the course “Advanced Programming Concepts” at the University of
Twente, taught in both 2009/10 and 2010/11.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a7


An In-Depth Look at ALIA4J · 17

AspectJ CaesarJ JPred Compose* ConSpec
[KHH+01] [AGMO06] [MFRW09] [dRHH+08] [AN08]

Pattern
Method X X X X X
Constructor X X X X
StaticInitializer X X
FieldRead/-Write X X

Context
Argument X X X X X
Callee X X X X X
Caller X X X
Result X X X X
Arguments X X X
DebugInfo X X
Signature X X X
PerTuple X X X X
PerCFlow-/Below X X
ObjectConstant X X X
AspectJSignature X∗ X∗

JoinPointKind X∗ X∗

SourceLocation X∗ X∗

ThisJoinPoint X∗ X∗

Thread X
Constant X X
Field/ArrayElem. X X
Binary-/UnaryOp. X X
MethodResult X X X
ReifiedMessage X∗

AtomicPredicate
Instanceof X X X X
Method X X X X X
ExactType X X X X
CFlow/CFlowBelow X X
BinaryRelation X X X

Action
MethodCall X X X X X
FieldRead/-Write (X) (X) (X) (X) (X)
CFlowEnter/-Exit X X
NoOp X X
Throw X X

Table 1 – Concrete LIAM entities and their usage in different languages. A X marks non-
trivial entities directly used by the language’s importer, while a X∗ marks trivial
entities which only adapt the computed value to a different interface. A (X) marks
non-trivial entities not used directly by the language’s importer but by FIAL itself.
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designers of DSLs, who can simply pick the entities they need from LIAM’s library.
Moreover, the range of domains to which the students successfully applied the ALIA4J
approach indicates that our meta-model is expressive enough in practice.

5.2 Evaluation of FIAL
We have developed three FIAL-based back-ends (NOIRIn, SiRIn, and SteamloomALIA)
using different execution strategies ranging from interpretation over bytecode genera-
tion to machine-code generation.

NOIRIn relies solely on interpretation of the execution model produced by FIAL.
Because NOIRIn does not generate code for dispatch sites, it can only handle LIAM
entities which implement a “compute” method. This is not a restriction since it can be
expected that for each LIAM refinement a “compute” method is initially implemented
by the language designer. A language implementer, potentially a different person, may
eventually supplant it by optimizing bytecode or machine-code generation.

SiRIn wraps every dispatch site into a special method and generates bytecode for
it. Each wrapper method contains code derived from FIAL’s execution models. SiRIn
may duplicate code if several leaf nodes share an Action. This code-splitting approach
opens up new optimization opportunities for the JVM’s just-in-time compiler. SiRIn
does not require a native component and is, like NOIRIn, fully portable.

The SteamloomALIA Virtual Machine, a re-design of an earlier execution environ-
ment developed, among others, by the first author [BHMO04], is a JVM extension of the
high-performance Jikes Research Virtual Machine (RVM). The JIT compile-time MOP
of SteamloomALIA offers the possibility to tailor the machine-code generation of both
just-in-time compilers of the RVM, the baseline compiler and the optimizing compiler.
To give an impression of the performance gain possible by using ALIA4J’s JIT compile-
time MOP, we present preliminary measurements for the FromDecoratorPredictate
from the Decorator-enforcing DSL (cf. parts V and VII of the tutorial) in Table 2.
The table shows the execution times we measured for that Atomic Predicate in four
different configurations. The two columns contain the measured times when the
dispatch site was compiled with the baseline compiler respectively with the optimizing
compiler; the two rows contain the measurements for an implementation of the Atomic
Predicate using the default runtime MOP respectively the JIT compile-time MOP.
This experiment shows that even for relatively simple entities notable speed-ups may
be observed: The implementation using the JIT compile-time MOP is more than an
order of magnitude faster for the baseline compiler and still more than six times as fast
for the optimizing compiler. For other LIAM entities that we have developed for the
Decorator-enforcing DSL, native machine-code generation does not significantly im-
prove performance. Nevertheless, for more complex language constructs the speed-up
achieved by integration with the just-in-time compiler can be a lot higher [BKH+06];
this particular optimization, however, has yet to be ported to SteamloomALIA.

All FIAL-based execution environments can be tested using the same, extensive test
suite. Each of the tests uses the framework to define and deploy LIAM-based dispatch
declarations, execute an affected dispatch site, and verify the correct execution. Almost
all of the 4,083 tests are systematically generated to cover all relevant variations of
dispatch sites and LIAM entities; the test suite thus ensures compatibility between
different execution environments like NOIRIn, SiRIn, and SteamloomALIA.
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Compiler
Code Generation Strategy Baseline [ns] Optimizing [ns]

Runtime MOP 47.54 23.10
JIT Compile-Time MOP 4.32 3.49

Table 2 – Execution times of computing a sample Atomic Predicate’s value, using different
compilers and code generation strategies.

6 A Generic Debugger for Advanced Dispatching
As dispatching mechanisms in programming languages become more expressive, the
resulting programs become more flexible. At the same time, however, it gets harder
for the programmer to predict the target of a dispatch. Therefore, dynamic tools are
required to observe and comprehend the program execution. Especially when the
program is erroneous and faults must be located in the source code, programmers use
so-called debugger tools to observe and intercept the execution and to inspect runtime
values while the execution is paused. Because most new programming languages with
advanced-dispatching mechanisms provide a compiler that produces intermediate code
of an established programming language, the debugger of that underlying language,
e.g., Java, can also be used to debug programs with advanced dispatching. As discussed
already, in this code transformation approach the structure of the generated code is
different than the source code and what is inspected is the synthetic, transformed
code instead. Furthermore, not all source code constructs have a counterpart in the
intermediate code [YBA+11], e.g., the declare precedence statement in AspectJ is
evaluated during compilation and the influence of such constructs on the execution
cannot be observed with the Java debugger.

An ALIA4J intermediate representation, in terms of LIAM Attachments, provides
a representation of every construct influencing dispatch and is available as first-class
objects at runtime. The execution model of each dispatch site is also available as
first-class objects and is linked with the intermediate representation. Therefore we
provide a debugger which allows observing the execution of dispatch in terms of
our execution model and LIAM Attachments. While the granularity of the LIAM
meta-model and its terminology often differ from those of the actual source language,
the structure is similar and each LIAM entity can be traced back to the source code.

Our debugger defines a communication interface that decouples the front-end and
the back-end. The back-end is currently only implemented by the NOIRIn execution
environment. The front-end of the ALIA4J debugger is integrated into the Eclipse
IDE, where it extends the built-in Java debugger with additional views specific to
visualizing and interacting with ALIA4J’s execution models: the Join Point view, the
Attachments view, and the Pattern Evaluation view.

Join Point View The Join Point view, shown in Figure 5, is the central view of
the ALIA4J debugger. It shows runtime information about the join point at which
the debuggee is currently suspended, including the entire stack of join points (top
left), the context values needed to evaluate the dispatch function and exposed to the
actions (right), and a graphical representation of the execution model for the selected
join point (bottom left). To reason about the composition of Attachments at a join
point, the ALIA4J debugger can also visualize the precedence relationships between
them (not shown). In the case of Figure 5, the execution model’s root node represents
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Figure 5 – A screenshot of the Join Point view.

Figure 6 – The Attachments view.
Figure 7 – The Pattern Evaluation view.

an Atomic Predicate, whose evaluation may lead to one of two leaf nodes, each of which
executes different Actions. The currently active execution path is highlighted (bold
outline) together with the currently executing action (dark background).

Attachments View In order to dynamically deploy and undeploy attachments at
runtime, the debugger provides the Attachments view shown in Figure 6. It shows all
attachments that are defined in the executing program together with a checkbox that
controls its deployment status in the debugged program (top), along with detailed
information about the selected Attachment (center, bottom)

Pattern Evaluation View To debug the matching of Patterns at a join point, the
Pattern Evaluation view, shown in Figure 7, visualizes their evaluation at sub-patterns
granularity. Since Patterns that do not match at a join point are not shown in the
Join Point view, this functionality is accessible through the Attachments view which
contains all dispatch declarations in the program.

7 Related Work
This article’s presentation of ALIA4J revolves around ALIA4J’s meta-object protocol,
which links LIAM and FIAL, and the improvements in debugging support facilitated by
a common meta-model. The discussion of related work is thus structured accordingly.

7.1 Meta-Object Protocols
Several approaches, with goals as diverse as improved performance and rigorous
semantic foundations, provide abstractions in the intermediate language that are
closer to the source-language constructs of aspect-oriented, context-oriented, or similar
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languages than the abstractions offered by established intermediate languages, e.g.,
Java bytecode. What all these approaches have in common is that the intermediate
languages are accompanied by a MOP at one of the three levels addressed by ALIA4J:
runtime MOP, compile-time MOP, and just-in-time compile time MOP (cf. Section 4).
Unlike ALIA4J, however, none of presented approaches supports all three levels of
MOPs; in particular, no systematic approach is provided for transitioning from one
level to another when switching from the language design to the optimization phase.
Many of these intermediate languages and MOPs are also intrinsically tied to a specific
execution strategy, which makes moving to back-ends with different strategies difficult.

7.1.1 Runtime MOPs for Dispatching
JSR 292 specifies the invokedynamic instruction and its supporting API [Ros09], which
can be seen as an extension to Java bytecode with an associated MOP. Together,
they can be used to specify advanced-dispatching semantics, albeit at a much lower
level than using LIAM. The language implementer is nevertheless barred from the
optimization opportunities offered by user-defined bytecode or machine code generation;
despite its low-level design, the JSR 292 meta-model is a pure runtime MOP.

The Nu project [DR10] extends Java bytecode with two instructions which realize
dynamic aspect deployment and undeployment: bind and remove. The bind instruction
hereby takes both a Pattern and a Delegate object, which act as pointcut and advice,
respectively, and returns a BindHandle. The remove takes this handle and undoes the
corresponding binding. While parts of this runtime MOP are declarative (Pattern),
others require an imperative definition (Delegate, execution order of aspects).

The Reflex project [Tan06] uses dynamic bytecode instrumentation to provide
behavioral reflection. It’s runtime MOP is used to link so-called hooksets, which select,
e.g., classes or methods, to meta-objects, which are Java classes that may be implicitly
instantiated. Each link specifies which method of the meta-object is to be called and
is further configured by link attributes. However, this model is not very fine-grained.
Also, despite the fact that Reflex relies on dynamic bytecode instrumentation, it does
not expose this capability to language implementers.

The delegation-based execution model for the Multi-Dimensional Separation of
Concerns (delMDSOC) [SJHH08] defines several primitive operations along with
operational semantics that allow formal reasoning about language constructs. The
model’s expressiveness is shown by realizing Java-like, AspectJ-like, and context-
oriented languages in it. The delMDSOC model is not declarative in the definition
of dynamic behavior; instead, language constructs are represented by imperative and
often program-specific code. A declarative model of context exposure is also missing.

The Java Aspect Metamodel Interpreter (JAMI) [HBA08] defines a meta-model, not
unlike LIAM, to capture the semantics of features in aspect-oriented languages. But
unlike LIAM, JAMI is tied to a specific execution strategy: interpretation. Meta-model
refinements must resort to using reflection; code generation cannot be realized.

Pinocchio [VBG+10] uses (a tower of) first-class interpreters to allow for changes
to a languages semantics, including but not limited to dispatching. Pinocchio uses
abstract syntax trees as its single intermediate language, whereas ALIA4J relies on a
combination of Java bytecode and LIAM-based IR, which, just like Pinocchio’s tower
of interpreters, ensures that base and meta-level are cleanly separated.
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7.1.2 Compile-Time MOPs
The AspectBench Compiler (abc) [ACH+06] is an extensible compiler for the AspectJ
language. Its front-end and back-end are decoupled by using an abstract syntax
tree (AST) as intermediate language. To implement a language extension, the language
designer has to introduce new AST node types. These are, along with predefined types
representing key aspect-oriented concepts, transformed to instances of abc-specific
classes similar to ALIA4J’s meta-model. As is the case in ALIA4J, the classes have
to be refined for new language concepts. Such a refinement must provide both a
method that attempts to statically evaluate the concept and a fallback method that
generates Java bytecode if static evaluation is not possible. The language designer
is thus always confronted with low-level implementation details. In our approach a
language designer can choose to stay at the high abstraction level of our runtime MOP,
e.g., to create quick prototypes of new language features or if the performance achieved
in this approach is sufficient; if needed, a lower-level and more efficient implementation
can later be supplanted—possibly by another specialist—without breaking clients.

7.1.3 Just-in-Time Compile Time MOPs
The org.vmmagic framework [FBC+09] in the Jikes RVM provides low-level primitives
to a VM written in a high-level language, namely Java. The framework achieves
extensibility by so-called intrinsic methods following a special naming convention. The
methods’ Java implementation serves merely as a placeholder; when the just-in-time
compiler encounters a call to such a placeholder, it instead inserts the corresponding
machine code. In the org.vmmagic framework, this translation is hard-wired in the
JIT compiler, whereas in ALIA4J each primitive language concept is implemented
modularly and separate from the JIT.

The Klein virtual machine [USA05] is a Self VM written in Self. Like the
org.vmmagic framework it offers primitives not implemented (or even implementable)
in application code. For those, Klein provides several ways of implementing them:
generating corresponding machine code or implementing the primitive in a lower-level,
restricted variant of Self. Moreover, Klein provides an API, which can be used by the
compiler implementer to factor out the code sequences realizing common functionality.
The ability to implement a primitive through code-generation or through a callout to
a method is similar to ALIA4J’s notions of JIT compile-time MOP and runtime MOP.
In contrast to ALIA4J’s extensible meta-model the API of Klein is fixed.

The XIR language [TWSC10] is a recent example mainly driven by the goal
of improving compiler-runtime separation. With it, the developer of the runtime
uses so-called snippets written in an assembler-like embedded DSL to communicate
the implementation strategy for essential runtime features like method calls to the
developer of the compiler. Like XIR, ALIA4J’s MOP was designed as a clear interface,
albeit not between implementers of runtime and compiler but between the language
designer and language implementer. As such, ALIA4J by default exposes the language
designer to less low-level detail; it is easily possible to realize a concept’s semantics in
a reflective, interpretative style only. If, however, more control over code generation
for LIAM entities is desired, a language like XIR could be employed to good effect.

7.2 Debuggers
As the ALIA4J approach can be used to implement both existing general-purpose
programming languages of, e.g., the aspect-oriented or predicate-dispatching paradigms
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and domain-specific languages (cf. Section 5.1), we will now review the state-of-the-art
in debugging support for these classes of languages.

7.2.1 Tools Dedicated to one Language
Several researchers discuss debuggers for aspect-oriented programming (AOP) that
provide information closer to the source code, such as the composite source code
in Wicca [EAH+07], the aspect-aware breakpoint model in AODA [DBLJ09], or the
identified AOP activities in TOD [PT08]. Nevertheless, all of these debuggers use
only the transformed IR of the underlying language. AOP-specific abstractions, e.g.,
aspect-precedence declarations, and their locations in the source code are partially or
even entirely lost after compilation.

For some advanced-dispatching languages, dedicated integrated development en-
vironments (IDEs) offer tools for analyzing the programs. Common IDE tools for
AOP languages, like the JPred Eclipse plug-in,9 the AspectJ Development Tools,10

and the CaesarJ Development Tools,11 only provide static code visualizations. The
ObjectTeams Development Tools (OTDT) [HHM+06] go a step further and enhance
the user interface of the standard Java debugger by filtering out call frames that belong
to infrastructural code and subsequently adapting the placement of breakpoints. They
also provide a view that shows so-called “Teams” and allows to dynamically enable
and disable them, similar to the Attachments view of our debugger (cf. Figure 5).

7.2.2 Tool generators for domain-specific languages
To compile new languages embedded in host languages, Helvetia [RGN10] defines
transformation rules used in the compilation process. Helvetia provides tools for
the host language which have explicit extension points for usage by the embedded
languages. By using these transformation rules and extensions points, existing tools like
a debugger can be applied to new languages. The TIDE [vdBCOV05] environment is a
generic debugging framework that can be instantiated for new DSLs. LISA [HPV+04]
is an attribute-grammar-based compiler generator that can automatically generate
several language-based tools, like editors, debuggers, and animators, from language
specifications by identifying generic and specific parts.

Just like conventional compilation approaches, these tools require that code is
generated in an established language, with the same limitations as discussed in already
this paper: Not all new language constructs are explicit in the generated code and
source locations may be lost. Furthermore, with both TIDE and LISA, it is the
generation process that is generic rather than the product. In contrast, our debugger is
based on a semantic meta-model, which can be targeted by many syntactic variations.

8 Summary and Directions for Future Research
In this article, we have presented the ALIA4J approach to implementing language
extensions. Phrasing them in terms of advanced-dispatching enables us to implement
numerous languages, from AspectJ to new, domain-specific languages, using just a
few core abstractions. With a fine-grained intermediate representation close to the
source-level abstractions, re-using the implementation and optimization of language
sub-constructs is possible without the need to syntactically extend another language.

9See http://eclipse-plug130.sourceforge.net/.
10See http://www.eclipse.org/ajdt/.
11See http://caesarj.org/.
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ALIA4J provides an execution model independent of any concrete JVM extensions
and facilitates the modular implementation of a language construct’s semantics. Lan-
guage implementers can freely choose the most appropriate implementation strategy, be
it interpretation, bytecode generation, or machine code generation. Because optimiza-
tions are implemented modularly, they can also be re-used. Likewise, dedicated tools
for analyzing advanced-dispatching-based programs can be re-used for new languages,
as is shown by the debugger presented in this paper; due to ALIA4J’s genericity, the
debugger allows reasoning about all source language constructs that affect dispatch
while being completely independent of any particular source language.

This increase in re-use allows programming-language researchers and designers
of domain-specific languages to focus on their immediate task: developing source
languages that solve the problem at hand. Already established language sub-constructs
do not have to be implemented anew. We believe that this can improve the quality of
language prototypes, not only in terms of performance but also in terms of correctness,
as low-level details need to be implemented only once. Our approach also facilitates
using the prototypical, unoptimized implementations as test oracles because they
share the interface with the optimized implementation, namely the factory used to
define dispatch declarations; these test oracles can then be used to ensure correctness.
However, future studies are needed to quantify these improvements.

A future direction for research enabled by our work on ALIA4J are additional tools,
besides the aforementioned debugger, that exploit ALIA4J’s declarative, first-class
intermediate representation and execution model: Profilers or code coverage analyses
come to mind here. One can even imagine using model checking based on ALIA4J’s
intermediate representation to reason about the possible outcomes of the dispatch
function; for programs that utilize dynamic deployment, all possible combinations of
deployed and undeployed Attachments can be enumerated by the model checker.

Another direction for future research is the composition of multiple source languages
that have all been mapped to the same language-independent meta-model: LIAM. It
may thus be possible to combine, e.g., AspectJ and JPred within a single program
without unwanted interferences caused by low-level code transformations. A detailed
study of such interactions between different languages, however, has yet to be done.
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